Ordinary Differential Equations: Graduate Level Problems
and Solutions

[gor Yanovsky



Ordinary Differential Equations Igor Yanovsky, 2005 2

Disclaimer: This handbook is intended to assist graduate students with qualifying
examination preparation. Please be aware, however, that the handbook might contain,
and almost certainly contains, typos as well as incorrect or inaccurate solutions. I can
not be made responsible for any inaccuracies contained in this handbook.
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1 Preliminaries

Cauchy-Peano.

{ @ ftu)  to<t<t (1.1)

u(to) = uo

f(t,u) is continuous in the rectangle R = {(t,u) : to < t < to+ a, |u— ug| < b}.
M = m}gx|f(t, u)|, and a = min(a, ). Then 3 u(t) with continuous first derivative

s.t. it satisfies (1.1) for tg <t <ty + a.

Local Existence via Picard Iteration.
f(t,u) is continuous in the rectangle R = {(t,u) : to <t < to+ a,|u—up| < b}.
Assume f is Lipschitz in u on R.

|f(t7 u) - f(t,’U)| < L|u - U|
M = mgx|f(t, u)|, and o = min(a, ). Then 3 a unique u(t), with u, % continuous

on [to,to+ 5], B € (0,a] s.t. it satisfies (1.1) for tg <t <to+ 3.

Power Series.

du
- = t
M paw
u(0) = ug
o :
1 du ; d*u
— - J ; - —
u(t) = ; a0t ie. =5 (0)=(fi+ fuf)lo
Fixed Point Iteration.
|xn — 2" < E™zg — x| k<1
|Tnt1 — Tn| < K" |21 — 20 k<1
k,n
= |z* =z, = lim |z, — 2z <K+ E+E2 )|z — 20| = |z — o

Picard Iteration. Approzimates (1.1). Initial guess: ug(t) = ug

Uni1(t) = Tu,(t) = uo—l—/f(s,un(s))ds.

to

Differential Inequality. v(t) piecewise continuous on ty <t <ty + a.
u(t) and % continuous on some interval. If

[ v(s)ds
= u(t) < u(tp)e

—ftv(s)ds — ft v(s)ds
Proof. Multiply both sides by e *o . Then %[e to u(t)] <0. O
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1.1 Gronwall Inequality

Gronwall Inequality. u(t),v(t) continuous on [to,to + a]. v(t) >0, ¢ > 0.
t
u(t) <ec+ /v(s)u(s)ds
to

ftv(s)ds
= u(t) < ceo to <t<tyg+a

Proof. Multiply both sides by v(¢):

t

w(tyo(t) < v(t){c + / os)u(s)ds)

¢
Denote A(t) = ¢ —I—tfv(s)u(s)ds = 44 < y(t)A(t). By differential inequality and
0
hypothesis:

fv(s)ds fv(s)ds
u(t) < A(t) < A(tg)e = ce'o

Error Estimates. f(t,u(t)) continuous on R = {(t,u): |t — to|] < a,|u—ug| < b}
f(t,u(t)) Lipschitz in u: |f(t, A) — f(t, B)| < L|A — B
uy(t), us(t) are €1, €3 approximate solutions

% — f(tbua(®) + Ri(t),  |Ra(t)] <
% = f(tus(t)) + Ro(t),  |Ra(t)] < 3

ui(to) — uz(to)| < 0
= Jui(t) —ua(t)] < (5 + aler + e2))e*™ to<t<to+a

Generalized Gronwall Inequality. w(s), u(s) >0

u(t) < w(t) + / o(s)u(s)ds

to
t t
Jv(z)dz
= u(t) <w(t)+ /v(s)w(s) es ds
to

Improved Error Estimate (Fundamental Inequality).
Juy (t) — ug(t)| < deX(0) 4 late) Z ) (elt=to) _ 1)

1.2 Trajectories

Let K C D compact. If for the trajectory Z = {(¢,2(t)) : @« < t < ()} we have that
B < oo, then Z lies outside of K for all ¢ sufficiently close to 3.
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2 Linear Systems

2.1 Existence and Uniqueness

A(t), g(t) continuous, then can solve
y =AMy +9(t) (2.1)

y(to) = vo

For uniqueness, need RHS to satisfy Lipshitz condition.

2.2 Fundamental Matrix

A matrix whose columns are solutions of y' = A(t)y is called a solution matrix.
A solution matrix whose columns are linearly independent is called a fundamental
matrix.

F(t) is a fundamental matrix if:

1) F(t) is a solution matrix;

2) det F'(t) # 0.

Either det M (t) #0 Vt € R, or det M(¢t) =0 Vt e R.

F(t)c is a solution of (2.1), where ¢ is a column vector.

If F(t) is a fundamental matrix, can use it to solve:

y'(t) = A()y(t), y(to) = o
i.e. since F(t)cly, = F(to)e=y0 = c=F "ty =

= y(t) = F(t)F(to) 'yo

2.2.1 Distinct Eigenvalues or Diagonalizable

F(t) = [eMloy, ..., ety et =Ft)C

2.2.2 Arbitrary Matrix

i) Find generalized eigenspaces X; = {x : (A — \;I)"z = 0};
ii) Decompose initial vector n = vy + - -+ vy, v; € X},

solve for vy, ..., v in terms of components of n
k n]-—l tZ
\ ,
y(t) = e ]t[ > gA =) v (2:2)
j=1 i=0

iii) Plug in n = eq, .. ., e, successively to get y1(t), ..., yn(t) columns of F(t).
Note: y(0) =n, F(0) = 1.
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2.2.3 Examples

Example 1. Show that the solutions of the following system of differential equations
remain bounded as t — oo:

/

u = v—u
Vo= —u
u ) -1 1 m
Proof. 1) ( ; ) = ( 10 ) ( ; ) The eigenvalues of A are \j o = —% + ‘/Tgi, SO
the eigenvalues are distinct = diagonalizable. Thus, F(t) = [e*tvy, e*?tus] is a funda-
mental matrix. Since Re()\;) = —% < 0, the solutions to ' = Ay remain bounded as
t — oo.
2) u”:v’—u’:—u—u’,
' +u +u=0,
w'u" + (u')? 4+ u'u = 0,
3o (W)?) + (u)? +2dt( ?) =0,
%(( "2 )—I—%( —I-ft ")2dt = const,
%(( "? )—I— %( 2) < const,
= (u/,u) is bounded. O
1 0 3
Example 2. Let A be the matriz given by: A= | 2 1 2 |. Find the eigenvalues,
0 0 2

the generalized eigenspaces, and a fundamental matriz for the system y'(t) = Ay.
Proof. @ det(A — XI) = (1 —X)?(2 —\). The eigenvalues and their multiplicities:
)\1 = 1,’!21 :2; )\2 :2,n2 =1.

e Determine subspaces X; and X, (A —\;I)"2 =0.

(A-D)?z =0 (A-20Nx=0
To find X7:
0 0 3 0 0 3 0 0 3 21 0
(A-D?x=1|2 0 2 2 0 2 |z=|00 8 xz2 | =1 0
0 0 1 0 0 1 0 0 1 x3 0
o
= x3=0, x1, 2o arbitrary = X1:{ I} ,anya,ﬁe(C}. dim X; = 2.
0
To find Xo:
-1 0 3 -1 0 3 1 0
(A—20)z = 2 -1 2 Jz= 0 -1 8 x2 | =10
0 0 0 0 0 0 3 0
3
= x3=7, r1=37, To =8y = ng{'y 8 ,any'yE(C}. dim Xy = 1.
1

e Need to find v1 € X1, v € Xo, such that initial vector 7 is decomposed as 1 = v1+vs.
m « 3y

e |={08 |+ &
73 0 Y

1 — 313 3n3

= vi=| n2—8n3 |, va=| 83

0 73
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k n;—1 i
o y(t) = Ze’\ft[ Z :—'(A — NI vj = eMUT+ (A — 1))y + ey
j=1 i=0
m — 3n3 313
= I +t(A-D)vy+ePvg=e(T+t(A-I)) | n2—8n3 | +e* | 8ns
0 73
Lo 3 n — 313 313
= | 2t 1 2 no—8n3 | +e* | Sns
0 0 1+t¢ 0 N3
m
Note: y(0)=n= | no
13
1 0 0
e To find a fundamental matrix, putting n successively equalto | 0 |, 1 |, O
0 0 1
in this formula, we obtain the three linearly independent solutions that we use as
1 1 0
columns of the matrix. If n = [ 0 |, yi(¢) =€ | 2t |. U= 1 |, pt) =
0 0 0
0
el 1
0
0 -3 3
Ifn=1| 0 |, yt)=e| —6t—8 | +e? | 8 |. The fundamental matrix is
1 0 1
et 0 —3et + 3
F(t)=eM = | 2te! e (—6t—8)el + 8%
0 0 et

Note: At ¢t =0, F(t) reduces to I. O
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2.3 Asymptotic Behavior of Solutions of Linear Systems with Con-
stant Coefficients

If all A\; of A are such that Re();) < 0, then every solution ¢(t) of the system ' = Ay
approaches zero as t — co.  |p(t)| < Ke 7 or et < Ke .

If, in addition, there are \; such that Re();) = 0 and are simple, then |e/| < K, and
hence every solution of 3/ = Ay is bounded.

Also, see the section on Stability and Asymptotic Stability.

Proof. A1, Ao, ..., A\ are eigenvalues and ni,no, ..., n; are their corresponding multi-
plicities. Consider (2.2), i.e. the solution y satisfying y(0) = 7 is

Subdivide the right hand side of equality above into two summations, i.e.:
1) Aj, s.t. nj =1, Re(\;) <0;
2) Aj, s.t.nj > 2, Re()\j) < 0.

k k
tn]'—l
y(t) = D Nty +> e [I (A= NI+ -+ ﬁ(A — NI v
n; — 1)!
i—1 i—1 g
;f—/ { ~~
(nj=1) Re(X\;)<0 (n;>2) Re(X;)<0
k k
pol < SIMl+ Bt <Xyl K
J=1 —o=max(Re(}\;), Re();)<0) J=1
Re(A;)<0
< ckmax|vj] + Ke™ " < max(ck, K) [ max|v;| + ¢ <K.
j —_——— j ~—~~
const indep of t ~—~— 0 asimeo
indep of t
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2.4 Variation of Constants

Derivation: Variation of constants is a method to determine a solution of ' = A(t)y+
g(t), provided we know a fundamental matrix for the homogeneous system y' = A(t)y.
Let F' be a fundamental matrix. Look for solution of the form 4 (t) = F(t)v(t), where
v is a vector to be determined. (Note that if v is a constant vector, then 1) satisfies

the homogeneous system and thus for the present purpose v(t) = ¢ is ruled out.)
Substituting ¢ (t) = F(t)v(t) into v/ = A(t)y + g(t), we get

U(t) = F'(t)o(t) + F(t)v'(t) = A() F(t)v(t) + g(t)
Since F' is a fundamental matrix of the homogeneous system, F’(t) = A(t)F(t). Thus,

F)'(t) = g(t),
_ 1

o(t) = t F~(s)g(s)ds
Therefore, () = F(1) /t F(s)g(s)ds.

Variation of Constants Formula: Every solution y of 4/ = A(t)y + ¢(t) has the
form:

t

u(t) = enlt) + Gyt) = F(O)F + F(1) / F(s)g(s)ds

to

where 1), is the solution satisfying initial condition v,(ty) = 0 and ¢ (t) is that solution

of the homogeneous system satisfying the same initial condition at tg as y, ép(to) = yo-
F(t) = e is the fundamental matrix of 4/ = Ay with F(0) = I. Therefore, every

solution of i/ = Ay has the form y(t) = e“tc for a suitably chosen constant vector c.

t
y(t) = =104y 4 / )4 (5)ds
to

That is, to find the general solution of (2.1), use (2.2) to get a fundamental matrix
F(t).

t t
Then, add [e(=94g(s)ds = F(t) [ F~'(s)g(s)ds to F(t)é.
to to
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2.5 Classification of Critical Points

y' = Ay. Change of variable y = Tz, where T is nonsingular constant matrix (to be
determined). = 2 =T 'ATz The solution is passing through (ci, cp) at t = 0.

1) A1, Mg arereal. 2/ = ( A0 )z

0 Ao
= 2= cre
czeAQt

a) A > A >0= 2(t) =c(21(t))?, p>1 Improper Node (tilted toward zs-axis)
b) A2 <A1 <0= 2(t) =c(z1(t))?, p>1 Improper Node (tilted toward zs-axis)
) A2 = A1, A diagonalizable = z9 =c¢z; Proper Node
d) A <0< A = z1(t) =c(22(t))?, p< 0 Saddle Point

e

1
2) A2 = A1, A non-diagonalizable, 2’ = ())‘ \
At At
_ (e te a1\ [ ettt )
- 2= ( 0 M > ( co > = ( ey >e Improper Node
3) Mo=oxiv. 2= g oV,
v o

- 5 — ot ( C1 cos(ut) + c2 sin(ut)

iral Point
—cy sin(vt) + ¢o cos(vt) ) Spiral Poin

2.5.1 Phase Portrait

Locate stationary points by setting:

2 f(u,v) = 0

fl—g =g(u,v)=0

(ug,vg) is a stationary point. In order to classify a stationary point, need to find
eigenvalues of a linearized system at that point.

of of
T, v), 9(u [ i g |
Find A;’s such that det(J|(uO vw) — M) =
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2.6 Problems

Problem (F’92, #4). Consider the autonomous differential equation

3

Vg +0 — 07 —vg =0

in which vy 1s a constant.
a) Show that for vg < 2%, this equation has 8 stationary points and classify their type.
b) For vy =0, draw the phase plane for this equation.

Proof. a) We have

3

v+ v —0v° —vy =0.

In order to find and analyze the stationary points of an ODE above, we write it as a
first-order system.

y1 =0,
/
Yo =0

y1=v' =y =0,
vh=v"=—v+v3 g =9 —y +vo=0.
The function f(y1) =93 —y1 = y1(y? —1) haszerosy; =0, y1 = —1, y; = 1.
See the figure.
It’s derivative f'(y1) = 3y? — 1 has zeros y;

At these points, f(—%) = %, f(%) = —%. N

If vg = 0, y) is exactly this function f(y1), with 3 zeros.

vo only raises or lowers this function. If |vg| < %, 2 X "

i.e. vg < 2%, the system would have 3 stationary points:

Stationary points: (p1,0), (p2,0), (p3,0),

with p; < p2 < ps.
Yy =12 = f(y1,92),
Yy =Y —y1 +vo = g(y1,92).

In order to classify a stationary point, need to find eigenvalues of a linearized system
at that point.

Iy gl = | B % :[ ) ]
By Bus 3y1—1 0
e For (y1,y2) = (p;,0) :
_ _)\ 1 )2 _ 2 _
det(J|(pi70)—)\I)_| 71 I_)\ 3p2 +1=0.

Ar =+4/3p? — 1.

Aty; =p1 < —%, A_ <0< A;. (p1,0) is Saddle Point.

V3’
At —% <y =pr < %, Ar € C,Re(Ar) = 0. (p2,0) is Stable Concentric
Circles.

Aty =pg > % A <0< M. (ps,0) is Saddle Point.



Ordinary Differential Equations Igor Yanovsky, 2005

b) For vy =0,

Yy =y2 =0,
yézyio’—ylzo-

Stationary points: (—1,0), (0,0), (1,0).

J(f (Y1, 92), 9(y1, 12)) = [ 33@0_ 1 (1) ] '

e For (y1,42) = (0,0) :

-2 1
det(J|(070) — )\I) = 1\ ‘

Ay = =+

(0,0) is Stable Concentric Circles (Center).
o Tor (y1,y2) = (£1,0):

-2 1
det(J|(:t170) — )\I) = 9 )\

Ay = :|:\/§.
(-1,0) and (1,0) are Saddle Points.

wl'=y2
Y2 =yl -yl

[
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Problem (F’89, #2). Let V(z,y) = 2(z — 1) +y2. Consider the dynamical system

d_ ov
dat oz’
dy _ oV
at Oy’

a) Find the critical points of this system and determine their linear stability.

b) Show that V' decreases along any solution of the system.

c) Use (b) to prove that if zg = (xo,yo) is an isolated minimum of V then zy is an
asymptotically stable equilibrium.

Proof. a) We have

= —423 + 62° — 22

1
Stationary points: (0,0), <§,O>, (1,0).

J(f(y1,92), 9(v1,92)) = [ &%
ox Oy

ool [ —1222+122-2 0
a 0 —2

e For (z,y)=(0,0):

0 —2-=A
= (=2-XN)(-2-X)=0.
y = Ay, \1 = Ay < 0, A diagonalizable.
(0,0) is Stable Proper Node.
e For (z,y) = (%,0)

—2—-A 0
det(J|(070) — )\I) = ‘ ‘

det(J|(1 9= M) = ‘1_A 0 ‘

0 -2-2X
— (1-X\)(-2-)) =0.
AM==-2, =1 A <0< As.
( %J))is[hmtabkaSaddkaPohﬁ.
e For (z,y)=(1,0):

0 —2-A
— (2N (=2-XN) =0

y = Ay, \1 = Ay < 0, A diagonalizable.
(1,0) is Stable Proper Node.

—2-=A 0
det(J|(170) — )\I) = I I
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b) Show that V' decreases along any solution of the system.

dv
— = Vami+ Vyyr = Va(=Va) + Vy(=V,) = =V =V} < 0.

c) Use (b) to prove that if zg = (xo,y0) is an isolated minimum of V then zy is an
asymptotically stable equilibrium.

Lyapunov Theorem: If 3V (y) that is positive definite and for which V*(y) is negative
definite in a neighborhood of 0, then the zero solution is asymptotically stable.
Let W(z,y) =V (z,y) — V(zo,y0). Then, W(xg,yo) = 0.
W (z,y) > 0 in a neighborhood around (z, yo), and L¥(z,y) < 0 by (b). (L (z,y) <0
and %(xo,yo) =0).
(z0,y0) is asymptotically stable. O
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Problem (S’98, #1). Consider the undamped pendulum, whose equation is

’p g
— + =sinp =0.
az "o
a) Describe all possible motions using a phase plane analysis.
b) Derive an integral expression for the period of oscillation at a fized energy F,
and find the period at small E to first order.

¢) Show that there exists a critical energy for which the motion is not periodic.

Proof. a) We have

Yy1=p

yzzp/-

Y=p=y2=0

Yy =p" = —%sinp: —%sinzn =0.

Stationary points: (nm,0). ‘

Yy =12 = f(y1,92),

/

_ 9. _
Yy = —7siny = 9(y1, y2).

[ 84 %4 0 1
J , , , — Y1 Y2 — .
(f1(y1,y2);s f2(y1,92)) _ g_ﬁ % [ “Scosy 0 ]
e For (y1,y2) = (nm,0), n-even:
det(J|(mr70) — )\I) = ‘ :2 _1)\ = )\2 + % =0
1

\ :I:i\/% e C, g>0, = (nm,0), n-even, are Stable Centers.
:l: pr—
+,/-9€R, ¢g<0. = (nrm,0), n-even, are Unstable Saddle Points.

e For (y1,y2) = (nm,0), n-odd:
-2 1 ‘

det(J|(mr70) — )\I) = ‘ g

g x =N -9=0.

\ i\ﬁ €R, g¢>0 = (or,0), n-odd, are Unstable Saddle Points.
:l: pr—
+i,/-4€C, ¢<0, = (nm,0), n-odd, are Stable Centers.
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e gy

b) We have ; o
p”+%sinp = 0, o

p’p”+%p’sinp = 0,

1d, ,, g¢gd

__ _J - = 0

sat P~ T g(cosp) )
1 5
Loy ooy =
1 /N2

E = 5(19) + % (1 — cosp)

Since we assume that [p| is small, we could replace sinp by p, and perform similar
calculations:

+%p = 0,
p’p”+lpp = 0,
1d N2 4 lgd
-4 g - 0
2dt( ) 2ldt() ’
1 19 e
z -J - E
(') —I—% ? = F = constant.
Thus
w)? o
E TE T
g

which is an ellipse with radii v/E on p’-axis, and lgE on p-axis.

We derive an Integral Expression for the Period of oscillation at a fixed energy F.
Note that at maximum amplitude (maximum displacement), p’ = 0.
Define p = pmax to be the maximum displacement:

1

B = 5(p)+ (1~ cosp).

2
p = \/2E——g(1—cosp),

L

T T

/4 ’ it = [Tar =L
0 \/2E—2fg(1—cosp) 0 4

% p/ Pmax dp
= 4/ dt. T = 4/
0 \/2E—2fg(1—cosp) 0 \/2E—2fg(1—cosp)

Making change of variables: & = p(t), d& = p/'(t)dt, we obtain

/pmax df
pmax =
\/ 2F — 24(1 — cos & )
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Problem (F’94, #T7).
The weakly nonlinear approximation to the pendulum equation (& = —sinx) is

1
i=-—x+ 6333. (2.3)

a) Draw the phase plane for (2.3).

b) Prove that (2.3) has periodic solutions x(t) in the neighborhood of x = 0.

¢) For such periodic solutions, define the amplitude as a = max; z(t). Find an integral
formula for the period T of a periodic solution as a function of the amplitude a.
d) Show that T is a non-decreasing function of a.

Hint: Find a first integral of equation (2.3).

Proof. a)

1 1
/ 3 3
= =—x+-x°=—y1 + =-yj; =0.
Y=o x 637 1 6111

Stationary points: (0,0), (—v6,0), (v/6,0).

= Y2 = f(y1,42),

<
=~

1
Yy = —y1 + gyf’ = g(y1, y2)-

Sl 0 1
J(f(y1,y2), 9(y1,92)) = L2 :[ 192 ]
8_ygl ﬁ —1—1-5:1/1 0
e For (y1,42) = (0,0):
-2 1
det(J‘(070)—)\I): 1 _)\ _)\2‘1‘1:

A+ =+i.  (0,0) is Stable Center.

e For (y1,12) = (£/6,0):

-2 1
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b) Prove that & = —x+ %x?’ has periodic solutions x(t) in the neighborhood of x = 0.
We have
1
r = —x -+ 6;1?3,
. 1 4.
TT = —xx + 6;13 T,
1d o, 1d, o 1d,,
st )= o) o)
d (.o 2 1 4) _
7 (;r +x 12;1: =0

1
E = 22 2__4'
T+ 12;1:

Thus the energy is conserved.

For E > 0 small enough, consider i = +,/E — 22 + 2%, Forsmall E, z~ VE.
Thus, there are periodic solutions in a neighborhood of 0.

¢) For such periodic solutions, define the amplitude as a = max; x(t). Find an Integral
Formula for the Period T of a periodic solution as a function of the amplitude a.

Note that at maximum amplitude, = = 0. We have

1
E — 42 2 14
O 12;1:,
T = E—x2+ix4
1277

T . T
/4 * dt:/4dtzz,
0 /E—224 Lt 0 o
T .
T:4/4 * dt.
0 /E—.’L'2+%.’L‘4

Making change of variables: & = z(t), d¢ = x(t)dt, we obtain

_ a4/ dg
T(a) = 4/0 \/m.

d) Show that T is a non-decreasing function of a.

ar _
d

ey A—
a da J, E—52+%£4'
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Problem (S’91, #1). Consider the autonomous ODE
T2 | nz =0
— +sinz = 0.
dt?
a) Find a nontrivial function H (x, ‘fi—f) that is constant along each solution.*
b) Write the equation as a system of 2 first order equations. Find all of the stationary
points and analyze their type.
¢) Draw a picture of the phase plane for this system.

Proof. a) We have
T+ sinx =0.
Multiply by & and integrate:
zx + xsinx = 0,
d
—— (&%) + a(—cosw) =0,
.2
% —cosz = C,
)
H(z, %)= % — COS .
H(z, ) is constant along each solution. Check:

d OH OH
aH(w, )= —&+ ——2 = (sinx)x + &(—sinz) = 0.

ox ox

"Note that H does not necessarily mean that it is a Hamiltonian.
2See S'98 #1a.
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2.7 Stability and Asymptotic Stability

¥ =f) (2.4)

An equilibrium solution gy of (2.4) is stable if Ve, 35(e) such that whenever any
solution ¥ (t) of (2.4) satisfies |1)(tg) — yo| < 0, we have [1h(t) — yo| < e.

An equilibrium solution yy of (2.4) is asymptotically stable if it is stable, and
409 > 0, such that whenever any solution v (t) of (2.4) satisfies |1 (to) — yo| < do, we
have lim;_,o [¢(t) — yo| = 0.

y' = f(t,y) (2.5)

A solution ¢(t) of (2.5) is stable if Ve, Vg > 0, (¢, t9) > 0 such that whenever
any solution ¢ (t) of (2.5) satisfies |¢(tg) — ¢(to)| < &, we have [(t) — p(t)| < €, Vt > to.
A solution ¢(t) of (2.5) is asymptotically stable if it is stable, and 35y > 0,
such that whenever any solution v (t) of (2.5) satisfies [1)(tg) — ¢(to)| < dg, we have

limg—oc [1(t) — 9(8)] = 0.

e Re(\j) <0, and when Re();) =0, A; is simple = y = 0 is stable
e Re(\j) <0 = y =0 is asymptotically stable

eMt=10) 3 fundamental matrix. IK > 0,0 > 0, s.t. [eAt10)| < Keo(tto)
e Re(A\g) > 0 = y =0 is unstable.
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Y = (A+ B(D)y

24

(2.6)

Theorem. Re()\;) < 0, B(t) continuous for 0 <t < oo and such that [~ |B(s)|ds <
o0o. Then the zero solution of (2.6) is asymptotically stable.

Proof. y = (A+ B(t))y = Ay + B(t)y, ¢(t) is an inhomogeneous term.
——

g(t)

Let 1 (t) be a solution to the ODE with ¢ (t9) = yo.
By the variation of constants formula:

e(t)

(@)

¥

IN

IN

IN

IN

IN

<

¢
eA(t_tO)yo—l-/ eA(t_S)B(s)w(s)ds

to
Note: ¥(to) = yo
o= etoAn = = e—toAyO = e_tko(tO)'
t
|eA(t—t0)||y0| _|_/ |eA(t—S)||'¢(s)||B(5)|ds
to

Re(M\j) <0 = 3dK,o >0, such that
|eA(t_t°)| < Ke_”(t_t‘)), to <t < oo
|eA(t_S)| < Ke_”(t_s), th < s< o0
¢
Ko y| + & [ ()] [B(s)lds
to

t

Kelyo| +K [ ¢”°|v(s)||B(s)| ds
—— N—— N~

to

¢ u(s) v(s)
By Gronwall Inequality:

t
K670 |y T 1B

Ko (t=t0) |y Jig 1BNds
t
But K [ |B(s)|lds< My<oo = e
to

KMe 7t |y0l — 0, as t — oo.

K[ 1B(s)lds

Thus, the zero solution of y' = (A + B(t))y is asymptotically stable.

S eMO — M17

O

Theorem. Suppose all solutions of y' = Ay are bounded. Let B(t) be continuous for
0<t< oo, and [;°|B(s)|ds < co. Show all solutions of y' = (A+B(t))y are bounded

on tg <t < oo.

Proof.

y = Ay

Y = (A+ B(D)y

Solutions of (2.7) can be written as e

tA t

co, where e

Since all solutions of (2.7) are bounded, |e!4co| < ¢, 0 < t < 0.

A is the fundamental matrix.

(2.7)

(2.8)
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Now look at the solutions of non-homogeneous equation (2.8). By the variation of
constants formula and the previous exercise,

t
P(t) = Aoy, ¢ / A=) B(s5)ip(s)ds

to

t t
A0y + / A9 [y ()] | B(s)|ds < clyo| + / ()| | B(s)|ds
to to

<
=
A

By Gronwall Inequality,

W) < clyoleo PO

t t Bl
But |B(s)|ds < oo = ¢ [ |B(s)|lds < My, = ¢ ig IB()1ds < M;.
to to

=[] < clyoMr < K.

Thus, all solutions of (2.8) are bounded.

Claim: The zero solution of ¥/ = (A + B(t))y is stable.

An equilibrium solution g is stable if Ve, 3d(e) such that whenever any solution ()
satisfies |1 (to) — yo| < J, we have |[¢(t) — yo| < €.

We had |¢(t)| < ¢|tbo|M;. Choose [1)(tg)| small enough such that Ve, 3d(¢) such that
|w(t0)| <0< 016\41

= () = 0] = ()] < clip(to) [ My < oMy <e.

Thus, the zero solution of ¢y = (A + B(t))y is stable. O
y'=(A+BM)y+ f(t.y) (2.9)

Theorem. i) Re(\;) <0, f(t,y) and %(t, y) are continuous in (t,y).

i) limyy| g RG] (|Z’|y)| = 0 uniformly with respect to t.

ii1) B(t) continuous. limy_. B(t) = 0.
Then the solution y =0 of (2.9) is asymptotically stable.

2.8 Conditional Stability
y'=Ay+g(y) (2.10)

Theorem. g,g—ygj continuous, g(0) = 0 and limy,_ % = 0. If the eigenvalues of

A are A\, —p with X\, > 0, then 3 a curve C in the phase plane of original equation
passing through 0 such that if any solution ¢(t) of (2.10) with |p(0)| small enough starts
on C, then ¢(t) — 0 as t — oco. No solution ¢(t) with |p(0)| small enough that does
not start on C' can remain small. In particular, ¢ =0 is unstable.
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2.9 Asymptotic Equivalence
¥ = A(t)x (2.11)
y'=At)y + f(t.y) (2.12)

The two systems are asymptotically equivalent if to any solution z(t) of (2.11) with
x(tp) small enough there corresponds a solution y(t) of (2.12) such that

Jim [y(t) — x(t)] = 0

and if to any solution §(t) of (2.12) with §(¢o) small enough there corresponds a solution
Z(t) of (2.11) such that

lim |§(t) —&(t)] = 0

t—o0

2.9.1 Levinson

Theorem. A is a constant matriz such that all solutions of ¥’ = Az are bounded on
o0

0 <t <oco. B(t) is a continuous matriz such that [ |B(s)|ds < co. Then, the systems
0

' = Ax and y' = (A+ B(t))y are asymptotically equivalent.
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3 Lyapunov’s Second Method

Lagrange’s Principle. If the rest position of a conservative mechanical system has
minimum potential enerqgy, then this position corresponds to a stable equilibrium. If the
rest position does not have minimum potential enerqgy, then the equilibrium position is
unstable.

3.1 Hamiltonian Form

A system of 2 (or 2n) equations determined by a single scalar function H(y, z)

(or H(Yy1, .-, Yn, 21, - - -, 2n)) is called Hamiltonian if it is of the form
, OH / OH
H - -
(y,2) v =g z 9y
. OH / OH ,
H(y1, . Yny 21, - -+ 2n) yi:a% zi:_ayi (i=1,...,n) (3.1)

Problem. If ¢ = (¢1,...,d2,) is any solution of the Hamiltonian system (3.1), then
H(p1,...,¢02,) is constant.

Proof. Need to show dH = 0.
Can relabel: H(¢1, .. ,qbn, Onttse oy on) = HY1y ooy Yny 215 - - - 2n)-

dH d

% = %H(qblv"'7¢n7¢n—|—17"'7¢2n)
_ 0H dqbl ' 0H do¢, OH doni1 N O0H dooy,
N 8¢1 dt 0py, dt — Oppyp1 dt 8¢2n dt

B OH dpy ~~ OH dop; OH dy; OH dz;
N Z D¢y dt Z Oppyi dt Z dy; dt Z Dz dt

OH OH OH , OH
= (by (3.1)) Zayzazz z;@zz(_@yi):&

Thus, H(¢1, . .., ¢2,) is constant. O
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Problem (F’92, #5). Let x = x(t), p = p(t) be a solution of the Hamiltonian
system

dx 0

= =ZH -
o ap (z,p), z(0) =y
dp 0

— = —H =¢£.

Suppose that H is smooth and satisfies
OH
‘%(ijp)‘ <CVIpl*+1
OH
— < (C.
| <c

Prove that this system has a finite solution x(t), p(t) for —oo <t < oo.

Proof.

x(t) = /—ds
|+/| “|ds = [z(0 |+/| [ds < [2(0 |—|—C/ds_|g:()|+0t
Thus, x(t) is finite for finite t.
b = 20+ [ Las
|+/( (ds—| |+/( ‘ds<|p |+C/\/st

0)|—|—C/0(1—|—|p|)ds:|p(0)|—|—0t—|—0/0 ip| ds

< (Ip(O)]+ Ct)els Ot < (|p(0)] + C)e,
where we have used Gronwall (Integral) Inequality. 3 Thus, p(t) is finite for finite t. [

=5
—~
=
IN

=3
—~
=
IN

IN

3Gronwall (Differential) Inequality: v(t) piecewise continuous on to <t < tg + a.
u(t) and £ continuous on some interval. If

du

— <

" o)

= u(t) < u(to)eftto v(s)ds

Gronwall (Integral) Inequality: wu(t),v(t) continuous on [to,to + a]. v(t) >0, ¢ > 0.

u(t) <ec+ /ttv(s)u(s)ds

= () < celto v to<t<to+a
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3.2 Lyapunov’s Theorems

Definitions: v = fly)

The scalar function V' (y) is said to be positive definite if 1 (0) = 0 and V(y) > 0 for
all y # 0 in a small neighborhood of 0.

The scalar function V(y) is negative definite if —V (y) is positive definite.

The derivative of V' with respect to the system 3y’ = f(y) is the scalar product

Vi(y) =VV - f(y)

d

%V(y(t)) =VV - fly) =V*(y)

= along a solution y the total derivative of V(y(t)) with respect to t coincides with
the derivative of V' with respect to the system evaluated at y(¢).

3.2.1 Stability (Autonomous Systems)

If 3V (y) that is positive definite and for which V*(y) < 0 in a neighborhood of 0, then
the zero solution is stable.

If 3V (y) that is positive definite and for which V*(y) is negative definite in a neighbor-
hood of 0, then the zero solution is asymptotically stable.

If 3V (y), V(0) = 0, such that V*(y) is either positive definite or negative definite, and
every neighborhood of 0 contains a point a # 0 such that V(a)V*(a) > 0, then the 0
solution is unstable.
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Problem (S’00, #6).
a) Consider the system of ODE’s in R*™ given in vector notation by

dr

dp
u- f(z®)p and = = —f'(|z*)|p|*=,

dt

where © = (x1,...,2), p= (P1,---,0n), and f > 0, smooth on R. We use the nota-
tion x-p=x1p1 + -+ TuPp, |T|> =2 -2 and |p|> =p - p.

Show that || is increasing with t when p-x > 0 and decreasing with t when p-x < 0,
and that H(x,p) = f(|x|?)|p|? is constant on solutions of the system.

b) Suppose @ has a critical value at s = 2. Show that solutions with x(0) on the
shpere |x| = r and p(0) perpendicular to x:(0) must remain on the sphere |x| =r for all

t. [Compute M and use part (a)].

Proof. a)
e Consider p-x > 0:

Case L p>0,2>0 = 9 >0 = x=|r|isincreasing.

Case L p<0,2<0 = Ccll—’t” <0 = x=—|z|isdecreasing = |z|is increasing.

e Consider p-x < 0O:

Case L p>0,2<0 = gl—’t” >0 = x = —|z|isincreasing = |z|is decreasing.
X

Case L Hp<0,2>0 = 5 <0 = z=]|z|is decreasing.
Thus, |z| is increasing with ¢ when p -z > 0 and decreasing with ¢ when p-z < 0. v

To show H(z,p) = f(|z|?)|p|? is constant on solutions of the system, consider

dH d
== = [ FaPIpP| = £(2f?) - 20lp? + f(|2f?) - 295

= f'(ll?) - 22 f(|2)plpl® + f(j2) - 20 (= f(|2P)|pl*z) = 0. v

Thus, H(z,p) is constant on solutions of the system.

b) G(s) = f(ss) has a critical value at s = 2. Thus,

G = LS
7”2 / 7”2 _ 7”2
G/(T2) — — f ( ,’)A4 f( )7

0 = r2f(r") = f(?).
Since p(0) and x(0) are perpendicular, p(0) - z(0) = 0.

A2 o 2 PPl + £ ol = P (£(2) ~ ()l
d(p - x)

=

(= 0) = pPP(£67) — £67)r?) = Ipl*-0=0.

Also, d(p I) = 0 holds for all |x| = r. Thus, p-x = C for |z| = r. Since, p(0) - (0) = 0,
p-x = 0 Hence p and x are always perpendicular, and solution never leaves the sphere.

Note: The system

dx dp

e gt 2 2
==z and =2 = —f' (2 pl*,
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determined by H(x,p) = f(|z|*)|p|* is Hamiltonian.
_oH

Igor Yanovsky, 2005

i =27 = of (|22, p=———=—2zf"(|la[*)p|*

dp

31
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Example 1. Determine the stability property of the critical point at the origin for the
following system.

Y=~y + v
¥y = 2yl — v

Try Vi, y2) = ui + ey
V(0,0)=0; V(y,y2) >0, Vy#0 =V is positive definite.

dav

Vi(y1,92) = yri 20191 + 2cy21h = 201 (—yi + v1y3) + 2c2(—207 Y2 — U5)
= —2y; — 2cy; + 2yiYF — deyiys.
Ife=3  Vinwm)= -2~ <0, Wy £0; V°(0,0)=0
= V* negative definite.

Since V(y1,y2) is positive definite and V*(y1,y2) is negative definite, the critical point
at the origin is asymptotically stable.

Example 2. Determine the stability property of the critical point at the origin for the
following system.

Yo=Y -

Yo = 20195 + 4ty + 295

Try — V(yi,y2) = yi + cya.

V(0,0)=0; V(y1,y2) >0, Vy#0 =V is positive definite.

dav

Vi) = —- = 201t + 2em0yh = 2 (1 — v3) + 201(20193 + 4yTye + 202)
= 2yl — 2195 + deyrys + Scyiys + deys.
Ife=g, Vi) =2t +4hd+ 28>0, Wy #0; V*(0,0)=0
= V* positive definite.

Since V*(y1,y2) is positive definite and V(y)V*(y) > 0, Yy # 0, the critical point at
the origin is unstable.

Example 3. Determine the stability property of the critical point at the origin for the
following system.

Vo= —ui+ 25

vy = 2143

Try Vi, y2) = ui + ey
V(0,0)=0; V(yi,y2) >0, Vy#0 =V is positive definite.

. av
Vi) = = 2u1) + 2cyah = 2y1(—v5 + 2y3) + 2cy2(—2113)
= =2y +4y1ys — deyrys.
If e=1, V*(y1,y2) = —2y1 <0, Vy; V*(§) =0 for y = (0,1).

= V* is neither positive definite nor negative definite.
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Since V is positive definite and V*(y1,y2) < 0 in a neighborhood of 0, the critical point
at the origin is at least stable.

V is positive definite, C*, V*(y1,y2) < 0, Vy. The origin is the only invariant
subset of the set E = {y|V*(y) = 0} = {(y1,y2) | y1 = 0}. Thus, the critical point at
the origin is asymptotically stable.

Problem (S’96, #1).
Construct a Liapunov function of the form ax?® + cy? for the system

&z = —a2° —I—;ry2

= —22%y -y’

and use it to show that the origin is a strictly stable critical point.

Proof. We let V (x,y) = ax? + cy?.
. A% . . 3 2 2 3
V¥ (x,y) = = = 2axd + 2cyy = 2ax(—x° + zy°) + 2cy(—2x7y — y°)
= —2azt 4 2a2%y® — dex®y? — 2cyt = —2ax + (20 — 4¢)2%y? — 2ey’.

For 2a — 4¢ < 0, i.e. a < 2¢, we have V*(x,y) < 0. For instance, c =1, a = 1.
Then, V(0,0) =0; V(x,y) >0, ¥Y(z,y) # (0,0) =V is positive definite.
Also, V*(0,0) = 0; V*(z,y) = —2ax* — 22%y% — 2cy* < 0, V(z,y) # (0,0)
= V™ is negative definite.
Since V(x,y) is positive definite and V*(x, y) is negative definite, the critical point at

the origin is asymptotically stable.
O

Example 4. Consider the equation u" + g(u) = 0, where g is C' for |u| < k, k > 0,
and ug(u) > 0 if u # 0. Thus, by continuity, g(0) = 0. Write the equation as a system
Y1 =y
v = —9(y)

and the origin is an isolated critical point. Set

y% Y1
V(yi,y2) = 5 —I—/O g(o)do.

Thus, V(0,0) = 0 and since og(o) >0, [ g(o)do >0 for 0 < |y1| < k.
Therefore, V (y1,y2) is positive definite on Q = {(y1,y2) | |y1]| < k, |y2| < o0}.

. dv
V*(y1,42) = = = yavs + 9(y1)yr = y2(—g(y1)) + g9(y1)y2 = 0.

Since V is positive definite and V*(y1,y2) < 0 in a neighborhood of 0, the critical point
at the origin is stable.
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Example 5. The Lienard Equation
u +u' 4+ g(u) =0

or, written as a system,
o= v
Yo = —9(n) —y

where g is O, ug(u) >0, u# 0. Try

2

5 Y1
V(yi,y2) = 5 —I—/O g(o)do.

V' is positive definite on Q = {(y1,y2) |

. dv
V*(y1,42) = = = yauh + g(v1) vy

Igor Yanovsky, 2005

. Consider the scalar equation

ly1] < K, |y2| < oo}

= y2(—g(1) — v2) + 9(y1)y2 = — 13-

34

Since V*(y1,y2) < 0in §, the solution is stable. But V*(yi1,y2) is not negative definite
on Q (V*(y1,y2) = 0 at all points (y1,0)). Even though the solution is asymptotically

stable, we cannot infer this here by using Lyapunov’s theorems.

4

1See the example in ‘Invariant Sets and Stability’ section.
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3.3 Periodic Solutions

Problem. Consider the 2-dimensional autonomous system y' = f(y) where f(y) €
CH(R?). Let Q € R? be simply connected, such that Yy € Q, we have div f(y) # 0.
Show that the ODE system has no periodic solutions in ().

Proof. Towards a contradiction, assume ODE system has a periodic solution in . Let
0f) be a boundary on ).

o yi:fl(y17y2)7
v=st = {Z/éZfz(yhyz)-

n = (n1,n2) = (v5, —y;) is the normal to 0. Recall Divergence Theorem:

an'nds://QdivfdA.

Let y be a periodic solution with period T', i.e. y(t+T) = y(t). Then, a path traversed
by a solution starting from ¢t = a to t = a + 1" is 0). Then, 0L is a closed curve.

a+T
f-nds = / (fin1 + fang) ds-/ (y1y2 — yoy1) dt =0

= //dwfdA_O

However, by hypothesis, div f(y) # 0 and f € C'. Therefore, div f € C°, and ei-
ther divf > 0 or divf < 0 on Q. Thus, [[,divf dA > 0or [[,divf dA <0, a
contradiction. O

o0

Example. Show that the given system has no non-trivial pertodic solutions:

d
d—i = z+y+a®—y7
dy 2 Y’
= = — 2 —.
7t T+ 2y+ 7y + 3
P?"OOf. Ccll_?:fl(xvy)v Ccll_?:f2(x7y)
0 0
div f(z,y) = a—ﬁ—l—a—{j—(1+2x2)+(2+x2+y2):3+3x2+y2>0.

By the problem above, the ODE system has no periodic solutions. ]
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Problem (F’04, #35).
Consider a generalized Volterra-Lotka system in the plane, given by

d(t) = f(z(t), a(t) R, (3:2)

where f(.l‘) = (fl(x)v fQ(x)) = ((I.Tl _bx1$2 —6.1‘%, _C$2+d$1$2 _fl‘%) and a, bv ¢, d7 €, f
are positive constants. Show that

div(<pf) #0 xy >0, 22 >0,

where p(x1,x9) = 1/(x122). Using this observation, prove that the autonomous system
(3.2) has no closed orbits in the first quadrant.

Proof.
_ 2
P MO\ gyt — b — ey
L=\ zematdorapod | T\ —eait 4d— fay ey )
r1To
. a - o 8 n 1 2 1
div(pf) = F—(awy' —b—exizy") + ——(—cay' +d — fry'wy) = —exy' — fay! #0,

81‘1
for 1, zo >0, f,e>0. V

81‘2

Towards a contradiction, assume ODE system has a closed orbit in the first quad-
rant. Let ) be a bounded domain with an orbit that is 0.

Let x be a periodic solution with a period 7', i.e. z(t +7T) = z(t).

n = (n1,n2) = (xh, —2}) is the normal to 9. By Divergence Theorem,

/ div(pf)dr = / (of) -ndS = / o(finn + fons) dS
Q o0 o0

a+T
= / o (haly — xbal) dt = 0.
a

Since f € C! in Q, then div(ef) € C? in Q.
Thus, the above result implies div(pf) =0 for some (z1,z2) € €,
which contradicts the assumption. ]
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Problem (F’04, #4).
Prove that each solution (except x1 = x9 = 0) of the autonomous system

o= x4 wy(z? + 22)
y = —a1 + xa(27 + 23)

blows up in finite time. What is the blow-up time for the solution which starts at the
point (1,0) when t =07

Proof. We have r? = 22 +x3. Multiply the first equation by x1 and the second by w»:
rry = xixe + 23 (2?4 ),
Toxh = —xymo+ w3(2? + 23).

Add equations:

rxh +aoxh = (23 +23)(2? + 22),
1
S@t+a3) = (a7 +a8)(a] +23),
1
—(’I”2)/ — 7”4,
2
e’ =
o= 3,
dr 3
a
dr
’I”_?’ == dt,
1
~5.3 = t+4+C,

B 1
" T\ 2ro)

Thus, solution blows up at t = —C'. We determine C'.
Initial conditions: z1(0) =1, 29(0) =0 = r(0)=1.

1= r0) = \/%

1
c = —=
27

== V= e
r = = .
2t — 1 1-—2t

Thus, the blow-up time is t = % U
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3.4 Invariant Sets and Stability

A set K of points in phase space is invariant with respect to the system 3’ = f(y) if
every solution of ' = f(y) starting in K remains in K for all future time.

A point p € R™ is said to lie in the positive limit set L(CT) (or is said to be a limit
point of the orbit CT) of the solution ¢(t) iff for the solution ¢(t) that gives C* for
t >0, 3 a sequence {t,} — 400 as n — oo such that lim, . ¢(t,) = p.

Remark: V* <0, Sy ={y e R": V(y) <A}

For every X the set Sy, in fact, each of its components, is an invariant set with respect
toy = f(y).

Reasoning: if yo € S\ and ¢(t, 1) is solution =

= %V(Cb(t, yo)) = V*(o(t,y0)) <0

= V(o(t,yo)) < V(0(0,90)), Yt>0
= o(t,y0) € Sy, YVt >0

= S\ invariant (as its components).

e If the solution ¢(t,7y) is bounded for t > 0 = L(C™") is a nonempty closed,
connected, invariant set. Moreover, the solution ¢(t,yo) — L(CT) as t — co.

eV eNisCl. V¥ <0on Q. Let yo € Q and ¢(t, o) be bounded with ¢(t,9) € Q,
Vt > 0. Assume that L(C™T) lies in . Then, V*(y) = 0 at all points of L(CT).

e V positive definite, C*, V* < 0. Let the origin be the only invariant subset of the set
{y|V*(y) = 0}. Then the sero solution is asymptotically stable.

e V mnonnegative, C', V* < 0, V(0) = 0. Let M be the largest invariant subset of
{y|V*(y) = 0}. Then all bounded solutions approach the set M as t — oco.

e L(CT) contains a closed (periodic) orbit = L(C™) contains no other points.

e The limit set can not be a closed disk topologically.
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Example. The Lienard Equation. Consider the scalar equation
u’ + fu)u' + g(u) =0
where f(u) >0 for u # 0 and ug(u) > 0 for u # 0. Written as a system,
Y1 =
yo = —fy)y2 —g9(n)
y% Y1
V(yi,y2) = ) —I—/ g(o)do.
0
V(0,0)=0; V(y1,y2) >0, Vy #0, soV is positive definite.

. av
Vi(y1,y2) = - = vav + 9y = va(=f(y1)ye = 9(1)) + 9(y)ye = = (1) y; <0.
———~
>0 >0

The zero solution is at least stable by one of Lyapunov’s theorems.

V*y1,0) =0 ony aris = E={y|V*(y)=0}={y| (v1,0)} = FE isyi-azis.

A set I' of points in phase space is invariant if every solution that starts in I' remains

in I' for all time. -
On yy-azis (yo = 0):

ri 1L

i - 9= < 0,11 <0. > 0,1 <0.

dys _{>0,y1>0, :{<0,y1>0, P

The solution can remain on E (y2 = 0) only if yb, = —g(y1) = 0.
Thus, (0,0) is the largest (and only) invariant subset of E = {y | V*(y) = 0}.
Since V is positive definite, C* on R?, V* < 0, Vy € R?, and the origin is the only
mwvariant subset of E, the zero solution is asymptotically stable.

Example. Van Der Pol Equation. Region of Asymptotic Stability.
Determine an estimate of the region of asymptotic stability in the phase plane for

"+ e(1 —u?)u/ +u =0, e >0, a constant.

Proof. Recall the Lienard equation: u” + f(u)u’ + g(u) = 0. In our case,

flu) =e(l —v?), g(u) =
Similar to assumptions made for the Lienard equation, we have
9(0) =0, ug(u) =u*>0,u#0. Let F(u) = [, f(o)do.

v v eu’
F(u) = / flo)do = / e(1—o*)do = eu — —.
0 0 3
Find a > 0 such that uF(u) > 0 for 0 < |u| < a:
, eut
uF(u):eu—?>0 = 0<ul<V3=a. (3.3)

Here, we employ a different equivalent system than we had done in previous examples,

n o= U,
yo = u' + F(u),  which gives
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v = y2—F(n),
vy = —u1.

_ [ _ _ oy
Define G(y1) = J;" g(0) do = [ 0 do = 7.

Choose V(y1,y2) = % +G(y) = % + % = V(y1,y2) is positive definite on R2.
Vi(y1y2) = e+ yimn = v2(—y1) +yi(ye — F(y)) = 5 F(y1) <0
on the strip Q={(y1, ) | —V3<y1 <V3, —0o<ys<oo}, by (3.3)
Thus, the origin is stable.
V*=—yF(y1) =0 for y1 =0 (y2—axis)
= E={y|V"(y) =0} ={(y1,42) [ 11 =0}. On E:y; =1y, yp =0.
Thus, 0 is the only invariant subset of E, and the zero solution is asymptotically stable.

2 2
Consider the curves V(yi,y2) = A (‘%1 + ‘%2 = \) for —/3 < y1 < /3 with increasing
values of A, beginning with A\ = 0. These are closed curves symmetric about the y;-axis.

¥y2

¥ l l’

-
—
—

Since V(y1,y2) = % + %, V(y1,y2) first makes contact with the boundary of €2 at
one of the points (—v/3,0) or (v/3,0). The best value of A = min(G(v3), G(—V3)) =

2 2 ~
min(3, 3) = 3 and C5 = {(y1,92) | F + 9 <A} = {(y1,92) | 7 + 5 <3}.
= Every solution that starts in Cy approaches the origin.® O

3.5 Global Asymptotic Stability
Theorem. Let there exist a scalar function V(y) such that:

(i) V(y) is positive definite on all R";

(i1) V() — 00 as |y| — o0;

(iii) V*(y) <0 on R™;

(iv) 0 it the onlty invariant subset of E = {y | V*(y) = 0}.
Then 0 is globally asymptotically stable.

Corollary. V(y) satisfies (i) and (ii) above, and V*(y) is negative definite.
Then 0 is globally asymptotically stable.

SBrauer, Nohel, Theorem 5.5, p. 214.
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3.6 Stability (Non-autonomous Systems)

Y = f(t,y)

The scalar function V (¢, y) is positive definite if V(¢,0) = 0, V¢ and IW (y) positive
definite, s.t. V(t,y) > W(y) in Q@ = {(t,y) : t >0, |y| < b,b> 0}.
The scalar function V' (¢,y) is negative definite if —V (¢, y) is positive definite.

Vi) = SV (D) = V- f(t)
If there exists a scalar function V (¢, y) that is positive definite and for which V*(¢,y) < 0
in , then the zero solution is stable.
If there exists a scalar function V (¢, y) that is positive definite, satisfies an infinitesimal
upper bound (i.e. lims_g+ sup;> y1<s |V (£, y)| = 0), and for which V*(¢,y) is negative
definite, then the zero solution is asymptotically stable.

3.6.1 Examples
e Vit,y) =yi+ (1+t)ys > y? +y3 = W(y) = V positive definite on Q = {(¢,y) : t >

0)}
o V(t,y) = y? +tys >y} +ay? = W(y) = V positive definite on Q = {(¢,y) : t >
a,a>0)}

2 2
o Vi(t,y) =y + ly—jt Since V' (t,0,a2) = f—jt — 0 ast — oo = V not positive definite
even though V(t,y) > 0 for y # 0.
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4 Poincare-Bendixson Theory
A segment without contact with respect to a vector field V : R® — R" is a finite,

closed segment L of a straight line, s.t:

a) Every point of L is a regular point of V;
b) At no point of L the vector field V' has the same direction as L.

Poincare-Bendixson Theorem. Let CT be a positive semi-orbit contained in a closed
and bounded set K C R?. If its limit set L(CT) contains no critical points of vector
field f, then L(C™) is a periodic orbit. Also, either:

i) C'=L(CT), or

ii) C' approaches L(CT) spirally from either inside or outside.

Corollary. If CT is a semiorbit contained in an invariant compact set K in which
f has no critical points, then K contains a periodic orbit. Such a set cannot be
equivalent to a disk.

Example. Prove that the second order differential equation
24 (2420 1) 4+2=0 (4.1)
has a non-trivial pertodic solution.

Proof. Write (4.1) as a first-order system:

yi = Y2,
vy = —y1— (5 + 295 — D
1 1
Let V(y1,92) = 51/% + 51/%
V*(yi,92) = ylyﬂ + yzyé =y1y2 + Y2 (—y1 — (Z/% + 21/% —1)yo)

= —ys(yi +2y5 - 1)

Use Poincare-Bendixson Theorem: If CF is a semiorbit contained in an invariant
compact set K in which f has no critical points, then K contains a periodic orbit.
Setting both equations of the system to 0, we see that (0,0) is the only critical point.
Choose a compact set K = {(y1,y2) | i < y? + y3 < 4} and show that it is invariant.

V*=VV-f. Need V*p,,, <0, V¥, >0.
Check invariance of K: A
© Vr,. = —v3(ui +2y5 — 1) <0,

need

Need: y% =+ 2y§ —1>0,
Y2yl - 1>y +y3—1=4-1=3>0. v

g L

o V¥, =-y3(yi +2y5—1) > 0,

need

Need: y? +2y2 — 1 <0,

v 2ys —1<2y+2y3 —1=2(H-1=-1<0. v
= K is an invariant set. (0,0) ¢ K.

Thus K contains a periodic orbit.
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Polar Coordinates. Sometimes it is convenient to use polar coordinates when ap-
plying Poincare-Bendizson theorem.
y1 = fi(y1,92)
ys = f2(y1,92)
V = ﬁ + ﬁ
2 2
V* =L = y1y) + yayh =1 cos O fi(r,0) +r sinf fo(r,6).
Example. Polar Coordinates. Consider the system

yi = ptunl-yi—93),
vh = —y1 +ye(l—yl— ).

Proof. Let V(y1,1y2) = yl + y2

V*(y1,y2) = w1y +yeyh =1 cos fi(r,0)+rsinb fo(r,0)
= 7 cosf (rsin® +r cosf(1 —r?)) +r sinf (—r cosf + r sinf(1 — r?))
= r2cosfsind 4 r?cos? O(1 — 1) — r® cosfsin  + r?sin? (1 — r?)

= 721 —r?).

Use Poincare-Bendixson Theorem: If CT is a semiorbit contained in an invariant
compact set K in which f has no critical points, then K contains a periodic orbit.
Setting both equations of the system to 0, A

we see that (0,0) is the only critical point.

Choose a compact set K = {(y1,y2) | i <y+ys <4
and show that it is invariant.

V*=VV-f. Need V*|p,,, <0, V*p, >0

Check invariance of K:

o V¥, =73 (1—-r%) =4(1-4) <

g L

v
/

Oc:

o Vi, =r2(1—1?)=t1-1)>
= K is an invariant set. (0,0) ¢ K
Thus K contains a periodic orbit.
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Example. Show that the autonomous system

du 3 2
— = u—v—u —uv
dt
dv 3 9
— = u+tv—v’—uv
dt

has (a) a unique equilibrium point, (b) which is unstable, and (¢) a unique closed
solution curve.

Proof. a) Set above equations to 0 and multiply the first by v and the second by w:
w —v? — P —ud =0

u? 4w —uv —udv =0 = +P=0 = =0 = u=0, v=0.

Thus, (0,0) is a unique equilibrium point.
b) Let V(u,v) = 3u? + 1v?, V is positive definite in R?

V¥(u,v) = wu' +ov' =ulu—v—u®—uww?)+o(utv—vd—uv)

(u? 4+ v?) — (u? +0?)% = (W + v (1 - (u® +0?)).
V*(u,v) is positive definite in a small neighborhood of (0,0), i.e. V* is positive definite
on Q = {(u,v) | u? + v? = 1}. Thus (0,0) is unstable.
¢) To show that the ODE system has a closed solution curve, use Poincare-Bendixson
theorem: If CT is a semiorbit contained in an invariant compact set K in which f
has no critical points, then K contains a periodic orbit.
Choose a compact set K = {(u,v) | 3 < u? 4+ v? < 2} and show that it is invariant.
V*=VV-f. Need V*|p,,, <0, V*p, >0. '
Check invariance of K:
o V¥, = (u?+0?)(1— (u?+2v?)) =2(1 - 2) =-2<0. v T
o V¥, = w?+vH)(1 - (u?+v?) = (1——):4 >0. vV

= K is an invariant set. (0,0) ¢ K.
Thus K contains a periodic orbit.
To show uniqueness of a periodic orbit, suppose I' is

the orbit of a periodic solution in K.

/dV = 0,
I

dav
= —dt=V"dt
dt

= /V*dt = 0.

r
= [ (W +0*) (1 - (u® +v%) dt =0. &ﬁ .
u? +v% =1 is a periodic orbit.

Suppose there is another periodic orbit in K. We know that the following integral
should be equal to 0 for a closed curve I':

/ (W + 02 (1— (2 +02)) dt = 0.
I N——— N———

#0 oscillates about 0 as going around

wityi=2

£

wF

N[

&
/‘\ .
-
e
I
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In order for integral above to be equal to 0, (1 — (u? 4 v?)) should change sign as going
around. At some point a, T' = {(u,v) | u? + v? = 1} and I's defined by the second
solution would intersect. But this is impossible, since at that point, there would be
more than one possible solution. = contradiction. Thus, the system has unique closed
solution curve. O
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Problem (S’99, #8). Consider the pair of ordinary differential equations

d.)?l

i .

dt ?

d

% = —x;+ (1 —2? — 2y

a) Show any nontrivial solution has the property that 1‘% + x% decreases in time if its
magnitude is greater than one and increases in time if its magnitude is less than one.
b) Use your work in (a) to show that on a periodic orbit, the integral

l/@—xﬂw—ﬁu»ﬁuwu:o.

¢) Consider the class of solutions x1 = sin(t + ¢), xo = cos(t + ¢). Show that these are
the only periodic orbits, for ¢ any constant.

Hint: Use (b) to show that any periodic solution for which 1 —x?% — 2% # 0 must be such
that 1 — x% — x% changes sign on the orbit and use (a) to show this is impossible.

Proof. a) (0,0) is the only equilibrium point.

Let V(z1,22) = 327 + 123; V is positive definite on R2.

V*(x1, 10) = 212} + 10245 = 2179 —I—xg(—xl—l—(l—xl x%)xg) (1- ;1:1 )x% (4.2)

V*(x1,22) > 0 inside and V*(x1, x2) < 0 outside the unit circle in the phase plane.
Since V* =0 on 9 = 0 (x1-axis), it can not be concluded
that the statement to be proved is satisfied.

Let r = 122 + 123 in (4.2), then
* drl o 1, 22\ 2
Vi(@1,22) = dt< 7+ 2372) = (1 — ] — a3)x3, 47 I

dr (1 222 <0, 2r>1 <0, 22 +23 > &ﬁ
—_— = — LT )T = =
dt 2 >0, 2r<1 >0, 23+ 123 <

Thus, 7 (and thus, 27 + 22) decreases if 22 + 23 > 1 and increases if 22 + 23 < 1.

It r = %, ill_: =0, so 27 + 2% = 1 is a circular orbit.

b) The only periodic orbit is 23 + 23 = 1 where V* = 0:

/dV:O,
I

dv = ﬂdt V*dt

:>/th—0 = / — x3)a3 dt = 0.

c) The class of solutions x1 = sin(t + ¢), x2 = cos(t + c) satisfy 23 + 23 = 1, and
therefore, are periodic orbits, for ¢ any constant. Suppose there is another periodic
orbit. We know that the following integral should be equal to 0 for a closed curve I':

/ (1—;17%—;1?%) - x3 -dt = 0.
r — ~~

oscillates about 0 as going around 70

In order for integral above to be equal to 0, 1 — 22 — 23 should change sign as going

around.
At some point a, T' = {(z1,72) | 22 + 23 = 1} and I'y defined by the second solution
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would intersect. But this is impossible, since at that point, there would be more than

one possible solution. = contradiction. Thus, the system has a unique closed solution

curve.

Also, by (a), we can conclude that solution curves either increase or decrease in time

if the magnitude of x% + x% is not one. Thus, they approach the only periodic solution
2 2 _

r] +x5 = 1. O
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5 Sturm-Liouville Theory
Definition. The differential equation
(py) +qu+rdy=0, a<z<b (5.1)

cry(a) +coy'(a) =0,  c3y(b) +cay'(b) =0
1s called a Sturm-Liouwville equation. A value of the parameter \ for which a non-
trivial solution (y # 0) exists is called an eigenvalue of the problem and correspond-
ing nontrivial solution y(x) of (5.1) is called an eigenfunction which is associated with
that eigenvalue. Problem (5.1) is also called an eigenvalue problem.
The coefficients p, q, and r must be real and continuous everywhere and p > 0 and
r > 0 everywhere.

5.1 Sturm-Liouville Operator

Consider the Sturm-Liouville differential operator

Ly = (py') +qy [L = % (p%> + q} (5.2)

where p > 0, » > 0, and p/, ¢ and r are continuous on [a, b]. The differential equation
(5.1) takes the operational form

Ly + A\ry =0, a<xz<b (5.3)

c1y(a) + cay'(a) =0, c3y(b) + cay/'(b) = 0.

5.2 Existence and Uniqueness for Initial-Value Problems

Theorem®. Let P(z), Q(x) and R(x) be continuous on [a,b]. If xq is a point in this
interval and yo and y1 are arbitrary numbers, then the initial-value problem

y"+ Px)y + Q(x)y = R()
y(zo) = yo, ¥'(w0) =m
has a unique solution on [a, b).

Note. The unique solution of the initial-value problem with R(xz) = 0, y(xg) =
y' (o) =0, is the trivial solution.

5.3 Existence of Eigenvalues

Theorem’. The Sturm-Liouville problem (5.1) has an infinite number of eigenvalues,
which can be written in increasing order as A\ < Ao < ... < A, < ... , such that
lim, 00 Ay = 00. The eigenfunctions y,(x) corresponding to A\, has exactly n—1 zeros
in (a,b).

5Bleecker and Csordas, Theorem 1, p. 260.
"Bleecker and Csordas, Theorem 2, p. 260.
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5.4 Series of Eigenfunctions

Theorem?®. The eigenfunctions ¢, (x) form a “complete” set, meaning that any piece-
wise smooth function f(x) can be represented by a generalized Fourier series of eigen-
functions:

n=1

5.5 Lagrange’s Identity

We calculate uL(v) — vL(u), where v and v are any two functions. Recall that
L(u) = (pu')’ +qu and  L(v) = (pv) +qv,

and hence
uL(v) —vL(u) = u(pv") + quv — v(pu') — quv = u(pv’) — v(pu')’.

The right hand side is manipulated to an exact differential:

uL(v) — vL(u) = [p(w’ — vu’)]/.

5.6 Green’s Formula

The integral form of the Lagrange’s identity is known as Green’s formula.

b
/ [uL(v) — vL(u)] dz = p(uv’ — vu')|,

for any functions u and v.

8Haberman, edition 4, Theorem 4, p. 163.
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5.7 Self-Adjointness

With the additional restriction that the boundary terms vanish,

p(uv’ — vu')|b =0,

a

we get

b
/ [uL(v) — vL(u)] dz = 0. (5.4)
a
In fact, in the regular Sturm-Liouville eigenvalue problems, the boundary terms

vanish.” When (5.4) is valid, we say that L is self-adjoint.

Definition'®. Let L and L* denote the linear, second-order differential operators de-
fined by

Ly = pao(z)y” +pi(x)y + po(z)y,
Ly = (ypa(x))” — (ypi(2)) + ypo(x).

Then L* is called the adjoint of L and the differential equation L*y = 0 is called
the adjoint equation. The operator L is said to be self-adjoint, if L = L*. A
homogeneous, linear, second order ODE is said to be in self-adjoint form if the ODE
has the form

(p(2)y) + q(x)y = 0.

Note: The linear, second-order differential operator
Ly = pa(x)y" + p1(2)y’ + po(2)y

is self-adjoint (L = L*) if and only if p5(x) = p1(z), i.e.,
Ly = (p2(2)y") + po()y.

Proof. The adjoint L* is given by

Ly = (ypa(2)" — (yp1(x))" + ypo(x) = y"p2 + 2y'py + ypy — vy — Py’ + ypo
= pay’ + (205 —p1)Y + (V5 — P} +po)y.
Thus, L = L* = 2pl, —p1 = p1, or ph =p1. |

9Haberman, p. 176.
10Bleecker and Csordas, p. 264.
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Problem (F’91, #6). Consider the boundary value problem

2w dw
T —I-(a—;r)dw = —\w
w(L) =

( ) - 07
where a, L(> 0) and R(> L) are real constants.

By casting the problem in self-adjoint form shows that the eigenfunctions, wy and
wo, corresponding to different eigenvalues, \1 and Ao, are orthogonal in the sense that

R R
Ldw d
/ e T wwy dr = / e Tz ﬂ&d
L L d.’l? d
Show also that
fLRe_Ixa(dwl) dx

Ai =
R _ 1
[ et e w? dx

and hence that all eigenvalues are positive.

Proof. A homogeneous, linear, second order ODE is said to be in self-adjoint form
if the ODE has the form

(p(x)u) + q(z)u = 0.

We have
Lu = zu’ + (a—x)u

Multiply the equation by v so that it becomes of self-adjoint form:
vLu = zvu” + (a —x)vu.

Thus, we need

(pu') = avu” + (a — z)vdd,
!/

pu” +p'u = xou + (a — x)vu.
Thus, p=zv, and

/
(zv) = (a—z)v,
' +v = av — I,
v’ a—x—1
v x ’
v’ a—1
= —1,
v T
Inv = (a—1)lnz— =z,
Inv = Ina* -z,
a—1 __ _ _
v = elnr er:xa le T

Thus, the self-adjoint form is
(zvu') 4+ v = 0, or

(x% %) + X tePu=0. ®
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e Let A\, Ay, be the eigenvalues and u,,, u, be the corresponding eigenfunctions.
We have
(% "ul,) + Amr® e u, = 0, (5.5)

(z%ul) + Az te™%u, = 0.

Multiply (5.5) by u, and (5.6) by u,, and subtract equations from each other

up(z%e " ul ) + Az e Tupu, = 0,
U (2% ul) + Az e P uu, = 0.
A — M)z e upu, = um(z®eul,) — uy (2% %ul,),

= [z% " (umul, — unul,)]’.

Integrating over (L, R) gives
R
(A — )\n)/L e upu,de = 2% (Ui, — upul )|F =0,  ©
Since A\, # A, un(z) and u,,(z) are orthogonal on [L, R].

1

e To show that u/, and u/, are orthogonal with respect to 2% *e™*, consider

R R
/ 2%l ul de = x% "l u,|F - / (% "ul,) u, d
L L

R 1
= —/ (x%"ul,) updz = ® = )\m/ e uu, de = © = 0.
L 0

e We now show that eigenvalues A\ are positive. We have
(z%%u) + Ax? e ™%u = 0.

Multiplying by v and integrating, we get

R
/ w(z®e ) + Ae? e Pt de = 0,
L

R R
e uu! | — / % U de + )\/ el dr = 0,
— = t

R _
) fL x%e "y dx
o fR a—1,—x,,2
L rhT e dzx

The equality holds only if ' = 0, which means u = C. Since u(0) = u(1) = 0, then
u = 0, which is not an eigenfunction. Thus, A > 0. O
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Problem (F’01, #2). Consider the differential operator

L= (%)2 +2(%) +alz)

in which « is a real-valued function. The domain is x € [0, 1], with Neumann boundary
conditions

du du
—(0)=—(1)=0.
7 (0)=—(1)

a) Find a function ¢ = ¢(x) for which L is self-adjoint in the norm

1
]2 :/0 2 b da.

b) Show that L must have a positive eigenvalue if « is not identically zero and

/01 a(z)dr > 0.

Proof. a) Lu=u"+ 2u' + a(z)u. L is self-adjoint in the above norm, if
1
/ [uL(v) —vL(u)|]¢dz = 0, or
0
1 1
/ uL(v)pdx = / vL(u)¢ dx,
0 0

1 1
/ u(v” 4+ 20" + a(z)v)pdr = / v(u" 4+ 2u" + a(x)u)é dz,
0 0

g’ g’

1 1 1 1 1 1
v ug d33—|-2/ uv’qbda:—l—/ a(r)uvdr = / u’ e d33—|—2/ vu’qbda:—l—/ a(z)uv dr,
/0 v\f/ 0 0 0 v\f/ 0 0

1 1 1 1
vud|y — / v'(u'p+ ued') do + 2 / w'opde =  uvd|y — / u' (V' +ve)dr + 2 / vu'¢ de.
0 0 0 0

Boundary terms are 0 due to boundary conditions. Cancelling out other terms, we get

1 1 1 1
— / w'¢ dx + 2/ w'dpde = — / vu'¢' do + 2/ vu'¢ de,
0 0 0 0
—w'd + 2w = —vu'¢ + 209,
(vu' —w’)¢' = 2(vu' —uv')e
¢ = 2¢. Thus,

¢ = ae*®.
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b) Divide by u and integrate:
w420 +a(r)u = Au,

1y 1
/—da:—|—2/ —da:—l—/ alz)dr = /)\dm,
0 u 0

!/
— ' dx+2 zdaz—l—/ alz)de = A,
/0 —~ 0

u u
~~—
f
1 1 1 1 !/ 1
—u/|§ - = de+2 | Lde+ alz)der = A,
u 0 Ut 0o u 0
— g

f/

1 u/2 1
/ 2da:—|—2/ —da:—l—/ alz)de = A\
o U 0
In order to have A\ > 0, we must prove that there exists u(z) such that
1 NP l
/ [(Q + 21] dw > 0.
0 u u

We can choose to have
! !

u'\ 2 U
()22 > 0
U U
which means that % >0 or % < —2. For example, if u(z) =e*“* with ¢ > 0, we

have

For such u(z), A >0.

Problem (F’99, #7). Consider the differential operator

d \?2 d
1= () (%)
dx + dx
The domain is x € [0, 1], with boundary conditions u(0) = u(1) = 0.
a) Find a function ¢ = ¢(x) for which L is self-adjoint in the norm

1
||u||2=/0 2 da.

b) If a < 0 show that L + al is invertible.
¢) Find a value of a, so that (L + al)u =0 has a nontrivial solution.
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Proof. a) Ly =1vy" +2y. L is self-adjoint in the above norm, if
1
/ [uL(v) —vL(u)]¢dz = 0, or
0
1 1
/ uL(v)pdx = / vL(u)¢ dx,
0 0

1 1
/ u(v” +20")pdr = / v(u" + 20" )¢ dz,
0 0

1 1 1 1
v ug dr + 2 / w'dpdr = / v e dr+2 / vu'¢ de,
/0 \7"\?&’ 0 ¢ 0 \f’\g 0 ¢
9 f 9 f
1 1 1 1
vudly — / V'(u'¢+ud') de + 2 / w'édr = uvlh — / w (W' +ve)dr +2 / vu'¢ de.
0 0 0 0

Boundary terms are 0 due to boundary conditions. Cancelling out other terms, we get

1 1 1 1
- / w'¢ da + 2/ w' ¢ dx - / vu'¢ dx + 2/ v/ ¢ dx,
0 0 0 0

—wv'¢ +2u'dp = —vu'¢ + 20U,
(vu/ —wv')¢' = 2(vu —uw)g,
¢ = 29,

Thus,

¢ = ae*®.
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b) L + al is invertible if the following holds:
(L+al)u=0 < u=0.

< | u=0 = (L+al)u=0.
= | We have
(L+al)u = 0,
Lu+au = 0,
u'+2u +au = 0.

Multiply by v and integrate:

1 1 1
/ uu”daz—l—/ 2uu’daz—|—/ au’de = 0,
0 0 0

1 1 1
uU’Ié—/ (u')? dx + 2uul —/ 2u'u dx +/ a’dr = 0,
5 Y e > 0
= = N———

=0, since fol 2u/ u=— fol 2u'u

1 1
—/ (u’)de—l—/ a’dr = 0,
0 0

/1(— (W)?+au?) dz = 0.
0

<0, (a<0)
Thus, u = 0.
e = | We could also solve the equation directly and show u = 0.
(L+al)u = 0,
Lu+au = 0,
2 fau = 0,
u = ce’, (anzats)

u(z) = creTIHVIZOT 4 o p(—1-vIza)z

u(0) = 0=c1+ca = c¢1=—co.
uw(l) = 0=ce tVima ¢ l-Vviza

)
0 = cle_l(em—e_m),

= =0 = =0 =u=0.

¢) We want to find a value of a, so that (L 4+ al)u = 0 has a nontrivial solution.

u 4+ 2u 4+ au =0,
u(x) _ Cle(—l—f—\/l—a)z + 626(—1—\/1—a)z'

Let a = 1+ 72. Then

_ 2 . L L
u(z) = Cle( 1+ —72)x —I—Cge( 1—v—n2)z _ cle( 1+im)z —I—Cge( 1—im)z
c1e” %™ 4 coe e

S
—~

(=)
S—

I

O=ci+co = c¢1=—cy.
cre”*(cosmr +isinmx) — cre” “(cosmr — isinmx) = 2icie” Csinwr.
u(l) = 0. v

=
&
I

56

Y= cie""(cosTx + isinmr) + cae” “(cosmr — isinmx),
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Let ¢y = —i. Then, wu(z) =2e *sinwz, is a nontrivial solution. O
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Problem (F’90, #6). Consider the differential-difference operator
Lu = u"(z) +u'(x — 1) + 3u(z)

defined on 0 < x < 3/2 along with the boundary conditions u(x) =0 on —1 <z <0
and u(3/2) = 0. Determine the adjoint operator and the adjoint boundary conditions.

Hint: Take the inner product to be (u,v) = f03/2 u(x)v(z) de.

Proof. The adjoint operator of L is L*, such that
3

/05 [uLv —vL*u| dz = H(x)

/0% ulvdr = /%u(vﬂ(ﬂf) +'(z = 1) + 3v(x)) do

0
= / w(z)v”(z) + / w(z)v' (z—1) + 3/ u(z)v(z) = @
0 0 0
Change of variables: y = x — 1, dy = dx, then
3 1
2

/05 w(z)v'(x — 1) de = /j u(y 4+ 1)v'(y) dy = / w(z + 1) (z) da.

-1

3

® = /0 %u(x)v”(x)—l— / %u(x—l—l)v’(x) dz+3 /0 ® (@) ()

= u(z)v(x) j _ /02 o' ()0 (z) + ulz + 1)v(x) : = /j u (x4 1)v(x) + 3 /05 u(z)v(z)
0 =0
= )| + /0 W (2)0(x) — /_ o+ Do)+ 3 /0 w(z)v(z)

— /05 u’(x)v(z) — /05 o' (z+ 1)v(z) + 3 /5 u(x)v(z) (ifu=0 for z € [-1,0], [%7 %])

0

— /05 (v (z)v(z) — o/ (z + Dv(z) + 3u(z)v(z)) do

njw

3
2

_ /0 v (x) — o/ (z + 1) + Bu(z)) dz = /0 vL*u da.

Thus, the adjoint boundary conditions are v =0 for —1 <z <0, % <z<

L*u=u"(x) —u'(z + 1) + 3u(z).
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Problem (S’92, #2). Consider the two point boundary value problem
y"" 4+ a(x)y" +b(x)y +c(zv)y=F 0<xz<l1

with boundary conditions
y(0)=0, ¥"(0)=ay"(0), y(1)=0, y'(1)=7py"(2).

Here a, b, c are real C*-smooth functions and o, 3 are real constants.
a) Derive necessary and sufficient conditions for a,b,c, a, 3 such that the problem is
self-adjoint.

Proof. a) METHOD 1I: L is self-adjoint if

L = L7,
" tay" + by ey = y" = (ay)" = (by) + v,
ay” + by’ = —(ay)” - (by)',
ay” + by = —d"y—3d"y —3dy" —ay” -0y — by,
2ay" +3a"y" + (3a" 4+ 2b)y" + (a"" + )y =0,
= a=0, b=0, carbitrary.

METHOD I1I: L is self-adjoint if
(Lulv) = (u|Lv),  or

/0 " uL(v) dr = /0 L oL(w) da.

In the procedure below, we integrate each term of uL(v) by parts at most 4 times to
get

/01 wL(v) dz = /01 vL(u) dz + F(z),
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and set F'(x) = 0, which determines the conditions on a, b and c.

1 1
/ uL(v)dx = / w4+ av” + b’ + cv) da
0 0

1 1 1 1
= / w"" + / auv” + / buv’ + / cuv
0 0 0 0

1 1 1 1
= w"|§ - / v + awv |} — / (d'uv” 4 au'v") + buv|f — / (b'uv + bu'v) + / cuw

1 1 1 1 J
= )} + / u"v" — d'ud |} —I—/ (a"uwv’ + d'u'v') — au V| + / (a'u'v" + au"v") — / (b'uv + bu'v) + /
0 — 0 0 0 0

1 1 1
_ —u’v”|(1) —|—u"v'|(1) _/ W —|—a”uv|(1)—/ ((IWU’U—I—(I”UI’U) —|—a'u’v|(1)—/ (a”u'v _|_a/u//,u)
0 SN—— 0 SN—— 0

1 1 1 1
— auV'|§ + dulv|) - / (a"u'v + d'u"v) + auv|} — / (a'u"v + au'"v) — / (b'uv + bu'v) + / cuw
SN—— 0 S—— 0 0 0

1 1 1
_ _u/U//|(1) _|_u//U/|(1) _ u///U|(1)+/ W _/ (a///uv —I—a”u'v) _/ (a”u'v _|_a/uuv)
\\6—/ 0 0 0

1 1 1 1
— auV'|§ — / (a"v'v + a'u"v) — / (a'vv + au'"v) — / (b'uv + bu'v) —I—/ cuw
0 0 0 0
_ _u/,U//|(1) +U”UI|(1) . au’v'|(1)
1
+ / W —d"u— " — d'W — d" — " — du — au — ad” — Y — b+ cu)v
0
1
_ _u/,U//|(1) + U”’Ul|(1) . au’v’|(1) + / (u//// —d"u = 3d" — 3d'd! — au — by — bu! + cu)v
0
1
_ / (" + au” + bu' + cu)
0
1
u'v"|§ 4w — eV )b + / (—a""u — 3a"u' — 3d'u" — 2au”"" — b'u — 2bu’)v
0
1 1
= / vL(u) dz — u'v"| + V') — auV'|§ + / ((—a" = ¥)u— (3" + 2b)u — 3d'u" — 2au”")v.
0 0

Thus, L is self-adjoint if fol (=" = b)u — (3d” 4 2b)u/ — 3d'v" — 2au")v = 0, or
a =0, b=0, c arbitrary. Also, need

—u/(1)v"(1) + 4/ (0)0"(0) + " (1)0'(1) — " (0)0'(0) — au/v'|§ = 0,
=0, (a=0)
—pu/ (1) (1) + a/ (0)0"(0) + Bu’(1)v'(1) — a/” (0)0'(0) = 0.
Thus, «, G =0.

Note that both Methods I and II give the same answers. However, we need to use
Method II in order to obtain information about boundary conditions.

b) Assume that c(x) = co is constant and that the problem is self-adjoint. Deter-
minte the eigenvalues and eigenfunctions and show that they form a complete



Ordinary Differential Equations Igor Yanovsky, 2005 61

orthonormal set.
From part (a), we have

"+ coy=F 0<z<1

y(0)=0, y'(0)=0, y1)=0, y'(1)=0.

The eigenvalue problem is
y"" + coy = Ay,

= YY" —(AN—co)y=0.
To determine eigenfunctions, try y = a cos()\—co)%x—l—b sin()\—co)%x. Initial conditions
give

y(0) = a=0 = y:bsin()\—co)%x,

y(l) = bsin(A— Co)i =0 = (A= Co)i =nt = A\ =01+ 0.

Thus, the eigenvalues and eigenfunctions are

. 1 .
Ay =ntrt 4y, yp=sin(\, —co)ir =sinnmr, n=12,....

[ We could also use the table to find out that the eigenfunctions are y = sin *7* =

sinnmz. We have

y" ey = Ay,
(sinnwz)” + cosinnmr = Asinnrwz,
nt*rtsinnre + cosinnmxr = Asinnnz,
ntrt e = A |

The normalized eigenfunctions form an orthonormal set

/1(\/§sinnm¢) (V2sinmmz)de = { 0 n#m
0

1 n=m

Any smooth function f can be written in terms of eigenfunctions f(z) = > 7, anV/2sinnre.
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c) Use the eigenfunctions to construct the Green’s function.

We have
y" + coy = F(), (5.7)
y(0)=0, y"(0)=0, y1)=0, y"(1)=0.

The related eigenvalue problem is

y" 4+ coy = Ay
y(0)=0, ¢"(0)=0, y(1)=0, y"(1)=0.

The eigenvalues are \,, = n*7* + ¢y, and the corresponding eigenfunctions are sinnr,
n=12 ...
Writing y = Y an¢n = > apsinnmr and inserting into (5.7), we get

o0

Z (ann'm* sinnrz + coan sinnrz) = F(2),
n=1
Zan nint +¢o)sinnrz = F(x),

1
/ E an(nint 4+ ) sinnmz simmrzdr = / F(x) sinmnx dz,
0

1 1
an(ntct 4+ cp)= 5 = / F(x) sinnmx dz,
0

2 fol F(z) sinnrz dx

a, =
nimt + ¢

' F(€) sinnrx sinnmg de

. — 2 Jy
= E ap Sinnrr = E 1 ,
n =m* + co

n=1

B ! 2. sinnrz sinnré
y_/o (g [22 nird + co } dc.

n=1

= G‘(rrvg)

See a less complicated problem, y” = f, in Poisson Equation subsection of Eigenvalues
of the Laplacian section (PDEs). O
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Problem (S’91, #5). Define the operator
Lu = tugpe + a(x) gy + b(x)uy + c(x)u

for 0 < x < 27 with boundary conditions
U= Uyy =0 on x =0, 2.

a) Find conditions on the functions a, b and c so that L is self-adjoint.
b) For a =b=0 and c = constant, find the fundamental solution for the PDE

uy = —Lu
as a Fourier series in x.

Proof. a) METHOD 1I: L is self-adjoint if

L = L
" +au +ou + e = 4"+ (aw)” — (bu) + cu,
au” +bu' = (auw)” — (bu),
av + b = d"u+2dv +au” —bu— b,
0 = a’u+2dv —bu—2b0,
0 = (a"=V)u+2(d - ),
= a’ =b, c arbitrary.

METHOD I1I: L is self-adjoint if
(Lulv) = (u|Lv), or

/0 T L) dr = /0 L) d.

In the procedure below, we integrate each term of uL(v) by parts at most 4 times to
get

/0 T L) dr = /0 T oL(w) dz + F(z),
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and set F'(x) = 0, which determines the conditions on a, b and c.

2w 2w
/ uL(v)dr = / w4+ av” + b’ + cv) dx
0 0

2 2 27 27
= / w"" + / auv” + / buv’ + / cuv
0 0 0 0

o o 2 2w
_ U’U”/|(2)7r . uo" + auv/|(2)7r . / (a’uv’ + au’v/) + bu’l)|(2)7r _ / (b/uv + bulv) + / cuv

T 0 N—— 0 v 0 0

o o o2 2w

= )" —|—/ u"v" — a'uv|3" —I—/ (a"wv + d'u'v) — av/v[E" -I-/ (a'u'v + au"v) — / (b'uv + bu'v) +

—— 0 N—— 0 v 0 0

2 27 2m 2 2m

_ u”’U/|(2)7r _ W+ / (a//uv + a'u'v) + / (a'u/v + au”v) — / (b’uv + bul’U) + / cuv

T 0 0 0 0 0

2w
= —uvF"+ / (u""v + a"uv + a'u'v + d'v'v + au’v — Vuv — bu'v + cuw)
N—— 0

=0

2w 2w
= / v + au” + bu' + cu) + / (a"uv + 2a"u'v — b'uv — 2bu'v)
0 0

2w 2w
= / vL(u) dr + / (a"uv + 2a"u'v — b'uv — 2bu'v).
0 0

Thus, L is self-adjoint if f027r(a”u +2ad/v — V'u —2bu')v =0, or o =b, carbitrary.
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b) For a =b=0 and c = constant, find the fundamental solution for the PDE
uy = —Lu
as a Fourier series in x.

We have uy = —Lu = —u""—cu. We first need to find eigenfunctions and eigenvalues.
The eigenvalue problem is
u"" + cu = \u,
= u"" -~ (AN—c)u=0,
U=1Uprz =0 on x =0, 2.

To determine eigenfunctions, try u = a cos(A— C)le +bsin(A— C)le. Initial conditions:

=

u(0) = a=0 = wu=bsin(\—c)iz,
4
u(2w) = OZbSin()\—C)i27T:0 = (A—c)i27rzn7r = An:%+c.

Thus, the eigenvalues and eigenfunctions are

)\n:%"FCa un:sin()\n—c)ix:sm%, n=12,
Let wu(x,t) Zun sm—
s n4 nw nw
n4
16
4
ol (£) + (16 n c)un(t) _0,

In order to determine ¢, we need initial conditions u(x,0) = f(x). Then
> na
u(xz,0) = Z Cp Sin o> dr = f(x).

TCy = f( )sm—da:
0 2

1
= ; f( )sm?da:

27
= ZC e 16+C sm— Z / f(& 51n—e (16+C sm—df

""ChiuYen’s solutions list G(z,t;z0,t0) = > o0,
be found in Haberman, p. 383.

. nt
% sin “50e” (5 Fo)t=to) ¢jp 22 - Similar result may
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27 o nd
u(z,t) = /0 f(&) ;%sin%f sinn2—xe_ Tt de.
= G(I;;I(),to)
5.8 Orthogonality of Eigenfunctions ]

Definition'2. A positive, continuous function r(z) defined on [a,b] is called a weight
function. Two continuous functions f(x) and h(x) defined on [a,b] are said to be
orthogonal on [a,b] with respect to the weight function r(x), if

b
/ F)h(@)r () = 0.

Theorem™. Let \,,, and A, be two distinct eigenvalues of the Sturm-Liouville problem
(5.3). Then the corresponding eigenfunctions y,,(x) and y,(z) are orthogonal on [a, ]
with respect to the weight function r(x).

b
/ Ym () yn (x)7r(x)dx = 0.
a
Proof. We have the relations
(PYr) + QY + AT Ym = 0, (5.9)

(pyn)" + qun + Anryn = 0. (5.10)
Multiply (5.9) by y, and (5.10) by y,, and subtract equations from each other '4

(A = A)rYm¥n = Yn (DY) — Ym(0Y) = PWnYrn — Ymyn)]’- (5.11)

Integrating both sides of (5.11) over (a, b) gives

b
(An = Am) / YmYnr = [D(Unn — Ym¥n)lo-
a
The boundary conditions in (5.3) ensure that the right side vanishes (e.g. if co # 0, then

%ll(la) = _z_;y(a)v and y,(a)y,(a) — ym(a)yy(a) = _yn(a)z_;ym(a) +ym(a)§_;yn(a) =0).

b
()‘n - )\m) / YmYnr = 0.

Since A, # Am, Yn(z) and y,,(z) are orthogonal on [a,b] with respect to the weight
function r(z). O

12Bleecker and Csordas, p. 266.
13Bleecker and Csordas, Theorem 5, p. 267.
MNote an important identity:

Yn(Pym)" — ym (pyn)" = PWnYm — ymyn)]"
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Problem (S’90, #3). Consider the eigenvalue problem

d?u(x)
a(x) T02
with the boundary conditions u(0) =0, u/(1) = 0. Here 0 < ¢1 < a(x) < ¢g is a smooth

function on [0,1]. Let A, n =1, ..., be the eigenvalues and o, (z) be the corresponding
eigenfunctions. Prove that there is a weight p(x) such that

= Au(x), 0<z<l1,

1
/0 Om(z)on(z)p(z)dr =0 for m #n.

Proof. Rewrite the equation as

1
u' = A——u=0.

a(x)

Let A, An, be the eigenvalues and u,,, u, be the corresponding eigenfunctions. We
have

1
" 1
Uy — Ap——Up, = 0. (5.13)

a(x)

Multiply (5.12) by u, and (5.13) by u,, and subtract equations from each other

1
unugl = )\mmumum
umug = )\nmunum.
1
A — M) —— Uy, = Ut — Ut = (Upul, — upul)’.

a(x)

Integrating over (0, 1) gives

1
1
()‘m - )\n) / U Uy dT = [unu;n - umu;z](l) =0.
0

a(x)
Since Ay, # A, upn(z) and w,,(x) are orthogonal on [0, 1] with respect to the weight
function p(x) = ﬁ O
5.9 Real Eigenvalues

Theorem!. For any regular Sturm-Liouville problem, all the eigenvalues \ are real.

Proof. We can use orthogonality of eigenfunctions to prove that the eigenvalues are
real. Suppose that X is a complex eigenvalue and ¢(x) the corresponding eigenfunction
(also allowed to be complex since the differential equation defining the eigenfunction
would be complex):

L(¢) + Aré = 0. (5.14)
Thus, the complex conjugate of (5.14) is also valid:

L(¢) + \rg = 0, (5.15)

Haberman, edition 4, p. 178.
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assuming that r is real. Since the coefficients of a linear operator L = % (p%) + q are

real, L(¢) = L(¢). Thus,

L(¢) + Mr¢ = 0.
If ¢ satisfies boundary conditions with real coefficients, for example ¢1¢(a)+cad’(a) = 0,
then ¢ satisfies the same boundary conditions, c16(a) + c2¢ (a) = 0. Equation (5.14)
and the boundary conditions show that ¢ satisfies the Sturm-Liouville problem, but
with eigenvalue being A. Thus, if A is a complex eigenvalue with corresponding
eigenfunction ¢, then ) is also an eigenvalue with corresponding eigenfunc-
tion ¢. _
Using orthogonality of eigenfunctions, ¢ and ¢ are orthogonal (with weight 7). Thus,

/abqbardxzo.

Since ¢p = |¢|> > 0 and r > 0, the integral above is > 0. In fact, the integral can equal
0 only if ¢ = 0, which is prohibited since ¢ is an eigenfunction. Thus, A = A, and hence
A is real. O



Ordinary Differential Equations Igor Yanovsky, 2005 69

5.10 Unique Eigenfunctions

Theorem. Consider the Sturm-Liouville problem (5.3). If y1(x) and y2(x) are two
eigenfunctions corresponding to the same eigenvalue A, then y(x) = ays(z), a < x < b,
for some nonzero constant «, (i.e., y1(x) and yo(x) are linearly dependent).

Proof. ' Method 1: Suppose that there are two different eigenfunctions y; and 1
corresponding to the same eigenvalue A. In this case,

L(y1) + Ay = 0,
L(y2) + Arys = 0.

!/
0=1y2(L(y1) + My1) — y1 (L(y2) + Arya) = o L(y1) — y1 L(y2) = [p(yzyi - ywé)} :
where the Lagrange’s identity was used in the last equality. It follows that

p(ygyi — ylyé) = constant.

This constant is evaluated from the boundary conditions and is equal to 0 if the bound-
ary conditions are of the Sturm-Liouville type. Thus,

Y2y — y1y5 = 0.

This is equivalent to %(Z_;) = 0, and hence for these boundary conditions

Y2 = Cy1.
Thus, the two eigenfunctions are dependent; the eigenfunction is unique. ]

Proof. 1" Method 2: Consider the function
w(z) = yy(a)yr(z) — yi(a)yz(2),
and suppose that
Y1 (a)” + yh(a)® #0. (5.16)

Then w(x) satisfies the following initial-value problem
Lw+ M rw=20 a<z<b [(pw')'—l—qw—l—)\rw:O]
w(a) = w'(a) = 0.

[ Check that w(z) indeed satisfies the initial-value problem:

yila

(pw") + qu + Arw = [p(yé(a)yl(ﬂ?) - yi(a)yz(:r))'}/ +a(ya(a)y (@) Y2
+2r (ya(a)pn ()
= a(@) [(PyA (2))' + @y () + Ay ()] = 41(0) [ (P9 (2))' + qz() + Arya(a)| =0,

since y; and yo are eigenfunctions. Also,

—yi(a)ya())
— i (a)ya(x))

w(a) = %wwmw—%mwmw=—§wmwmw+§mmwmw=m

w'(a) = yy(a)yi(a) —yi(a)ys(a) =0. |

Haberman, edition 4, p. 179.
17Bleecker and Csordas, Theorem 3, p. 265.
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By the uniqueness theorem for initial-value problems, w(z) = 0. Therefore,
ya(a)yi(x) —yi(a)ya(z) =0, a<z<h (5.17)

Since y1(x) and yo(x) are eigenfunctions, y;(z) and y2(x) are not identically 0. Hence,
(5.16) and (5.17) imply that v (a)ys(a) # 0. Thus, by (5.17), y1(x) = aya(z), where
o = 1, ()/h(0). 0

Remark: In the theorem above, we showed that, for the Sturm-Liouville prob-
lem (5.3), there is only one linearly independent eigenfunction associated with each
eigenvalue . For this reason, A is said to be simple.

5.11 Rayleigh Quotient

Theorem!®. Any eigenvalue can be related to its eigenfunction by the Rayleigh quo-
tient:

_ —pod' b+ [, [p(¢)? — ag?] da
fab o%rdx '

Proof. The Rayleigh quotient can be derived from the Sturm-Liouville differential equa-
tion,

A

(pd') + qd + Aré =0, (5.18)

by multiplying (5.18) by ¢ and integrating:
b b
/ [é(mﬁ’)’ + qcﬂ dx + A/ r¢?dz = 0.

Since f f r¢? > 0, we can solve for \:

e [ 6we) — ad?] da

fab ro? dx '
Integrating by parts gives
_ oo+ J, [p(&) — 48]

A b
[ ré?dx

Note: Given the equation:
1
—(.Tf/)/ + )‘f = 07
x

we can obtain

5= fol zf? dx
fol xf2dx

¥Haberman, edition 4, Theorem 6, p. 189.

®




Ordinary Differential Equations Igor Yanovsky, 2005

We can establish the Rayleigh-Ritz principle, namely that
Jo 2(f)? dz
fol xf2dx

is an upper bound on the smallest eigenvalue.
Let f(x) = anfn, where f,,’s are eigenfunctions. Then,

F(f) = Ofo f2 - fz > anfn (by orthogonality)
Sarfyefide

da? fol zf2dx a2 fol xf2dx mmza% fol rf2de

F(f) =

Zan)\nfolegdx . Za%folegdx _

71
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5.12 More Problems

Example. Determine the eigenvalues and eigenfunctions of the Sturm-Liouville prob-
lem

Proof. Note that we get this equation from (5.1) withp =1, ¢=0, r=1, a =0,
b = L. We consider the three cases A >0, A =0, A <0.

e If A =0, the ODE reduces to ¢y’ = 0. Try y(z) = Az + B.

Applying the first boundary condition gives y(0) = 0 = B. The second boundary
condition gives y(L) = 0 = AL, or A = 0. Therefore, the only solution for this case is
the trivial solution, y(x) = 0, which is not an eigenfunction, and therefore, 0 is not an
eigenvalue.

e If A\ <0, or A = —32, the ODE becomes

y' =By =0.
The anzats y = e** gives s> — 32 = 0, or s = £3. Thus the general solution is
y(z) = AeP® + Be P2,
Applying the first boundary condition gives
y(0)=0=A+B, or B=-A.
The second boundary condition gives
y(L) = 0= A(ePF — e PL) =2Asinh BL, or A=0.

Thus, the only solution is the trivial solution, y(x) = 0, which is not an eigenfunction,
and therefore, there are no negative eigenvalues.
o If A >0, try A =+

y' + 5%y =0,
with the anzats y = e**, which gives s = +i( with the family of solutions
y(z) = Asin Sz + B cos (.
Applying the first boundary condition gives
y(0)=0=B.
The second boundary condition gives
y(L) =0= Asin5L.

Since we want nontrivial solutions, A # 0, and we set A sin SL = 0, obtaining L = n.
Thus the eigenvalues and the corresponding eigenfunctions are

A=\, = (”L—”f yn(z) = Ay sin (?)
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[ Also, the eigenfunctions can always be used to represent any piecewise smooth func-
tion f(x),

o0
@)~ S auyn(a):
n=1
Thus, for our example,

f(;r)wnz_:lansin$. ]
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Problem (F’98, #3). Consider the eigenvalue problem

2
£ apco

do do ..
#(0) — %(0) =0, o(1)+ %(1) =0

a) Show that all eigenvalues are positive.
b) Show that there exist a sequence of eigenvalues X\ = \,,, each of which satisfies

tan\/_ = 2\/X

A\ —

Proof. a) Method [le If A = 0, the ODE reduces to ¢” = 0. Try ¢(x) = Az + B.
From the first boundary condition,

#(0)-¢'(0)=0=B-A = B=A
Thus, the solution takes the form ¢(z) = Az+ A. The second boundary condition gives
o(1)+¢'(1)=0=34 = A=B=0.

Thus the only solution is ¢ = 0, which is not an eigenfunction, and 0 not an eigenvalue.
v

o If A <0, try ¢(x) = 5, which gives s = v/ -\ = £5 € R.

Hence, the family of solutions is ¢(z) = AeP* + Be=5%. Also, ¢/(x) = BAel* — BBe=P,
The boundary conditions give

$(0)—¢'(0)=0=A+B—BA+BB=A(1-B)+ B(1+B), (5.19)

p(1)+¢' (1) =0 = A’ + Be P + gAe’ — fBe™" = A’ (14 3)+Be P (1—4). (5.20)
From (5.19) and (5.20) we get

1+ A 1406 B _, A _
- rF__ d 12— _Z .2 Z B
- 5 and 5 —5 2¢ or S =e
A A +
From (5.19), 8= + B —5 and thus, 5= eg—g, which has no solutions. v/

Method [ IMultiply the equation by ¢ and integrate from 0 to 1.

/ qbqb”da:—l—)\/ $?dx =0,

o'lh — /0< dw+>\/ o dz = 0,

—¢(1)¢'(1) + ¢(0)¢'(0) + [, (¢')? _0(1)°+6(0)° + Jo (¢)?
fo ¢2 da: fo ¢2 dx
Thus, A > 0 for ¢ not identically 0.

b) Since X > 0, the anzats ¢ = e°* gives s = iv/A and the family of solutions takes
the form

d(z) = Asin(zvVA) + B cos(zVA).
Then, ¢/(z) = AV Acos(zv/A) — BV Asin(zv/)\). The first boundary condition gives
p(0)—¢'(0) = 0=B—-AVAX = B=AV\

A=
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Hence, ¢(z) = Asin(zv/A) + AV Acos(zv/)\). The second boundary condition gives
p(1)+¢'(1)=0 = Asin(vVA) + AV Acos(VA) + AV Acos(VA) — Axsin(v/A)
= A[(1 - \)sin(VX) + 2V A cos(VV)]

A # 0 (since A = 0 implies B = 0 and ¢ = 0, which is not an eigenfunction). Therefore,
—(1 = A sin(v/A) = 2v/Acos(V/A), and thus tan(v/)) = ?\é O
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Problem (F’02, #2). Consider the second order differential operator L defined by
Lu=—u" +exu

for 0 < x < m with boundary conditions
u(0) = u(m) = 0.

a) For e = 0 find the leading (i.e. smallest) eigenvalue Ao and the corresponding
etgenfunction ¢g for L.

b) For € > 0 look for the eigenvalues and eigenfunctions to have an expansion of the
form

A= )\0—1—6)\1—1—0(62),
¢ = ¢o+ep1+O().

Find formulas for A1 and ¢1 (your formulas will contain definite integrals which you
do not need to evaluate).

Proof. a) Since € = 0, the eigenvalue problem for A = v? becomes
v’ 4+ v2u = 0.

The equation has solutions in the form
u(x) = Asinva + Bcosv.

The first boundary condition gives u(0) = 0 = B, and the second gives u(w) = 0 =
Asinvm. Since we are looking for nontrivial solutions, A # 0 and sinvm = 0, which
gives v = 1,2, 3,.... Thus, the smallest eigenvalue and the corresponding eigenfunction
are

Ao =1, ¢ = sinx.

b) For € > 0, we have

—u" 4 exu — \u = 0,

—(do + €p1)” + ex(do + €d1) — (Ao + €A1)(do + ed1) = 0,

—¢p — €d] + exdo + €21 — Modo — EXgd1 — €A1y — €A1y = 0.
Drop O(€?) terms. Since ¢f + Aogo = 0,

—€¢] + exgy — eNop1 — €A1 = 0,

—@| + o — Aop1 — Ao =0,

—¢] + xsinxr — ¢1 — Ay sinz = 0,

!+ ¢1 = xsinz — A\isinx.

Multiplying by ¢o and using orthogonality of the eigenfunctions!?, we get

/ bo¢’dz + / poprde = / (zsin®z — Ay sin® z)dx,
0 0 0
=0

0Py |5 — / doPrdr = / (xsin® x — A sin® z)dz, (integration by parts)
0 0

0 = /(xsin2x—)\1$in2x)d33,
0

™ ™
A1 / sinzdr = / zsin? z dz,
0 0

9Bleecker and Csordas, p. 267, p. 274.
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fo7r xsin? x dx

A=
fo7r sin? z dx

Since A1 is known, we should be able to solve the ODE ¢/ + ¢1 = xsinx — Ay sinz by
the variation of parameters. O
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Problem (F’00, #5). Consider the eigenvalue problem on the interval [0, 1],
—y"(t) +p(t)y(t) = Ay(1),
y(0) =y(1) = 0.

a) Prove that all eigenvalues A are simple.
b) Prove that there is at most a finite number of negative eigenvalues.

a) In order to show that A is simple, need to show that there is only one linearly
independent eigenfunction associated with each eigenvalue .

Proof. Method 1: Let y;(x) and ya(z) be two eigenfunctions corresponding to the
same eigenvalue \. We will show that y; and y» are linearly dependent. We have

—yl +pp—App = 0,
—yy +pya — Ay = 0.

0=ya(— o +py1 — A1) — v ( — v5 + py2 — Ay2) = vays — voult = [v1ys — o],
where Lagrange’s identity was used in the last equality. It follows that

Y15 — Y2yy = constant.
Using boundary conditions,

(192 — 1201 (0) = 0.

Therefore, y114 — y2y, = 0. This is equivalent to (2)" = 0, and hence
2 1 Y1

Y2 = CY1-
Thus the two eigenfunctions are dependent; the eigenfunction is unique, and A simple.
O

Proof. Method 2: Let y;(x) and yz(z) be two eigenfunctions corresponding to the
same eigenvalue A\. We will show that y; and ¥y are linearly dependent. We only
consider the case with

¥1(0)* + y5(0)* # 0. (5.21)
Consider the function

w(z) = yo(0)y1(z) — y1(0)ya(2),
Then w(x) satisfies the following initial-value problem
—w" +pw—Aw=0 0<z<l1
w(0) = w'(0) = 0.
[ Check that w(z) indeed satisfies the initial-value problem:
—uw’ 4 pw = Mw = = [y5(0)y1(z) — 1 (0)y2(2)]" + p[ya(0)y1 (x) — y
Al (0)y(2) —y
= y5(0) [ = ¥ (z) + py1(x) — My (2)] = ¥1(0) [ = 93 (2) + pya(z) — Aya(2)] =0,
since y; and yo are eigenfunctions. Also,
w(0) = 5(0)y1(0) — y1(0)y2(0) = y5(0) - 0 —;(0) - 0 =0,
w'(0) = 15(0)31(0) —51(0)y2(0) =0. |
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Then, by the uniqueness theorem for initial-value problems, w(z) = 0. Therefore,
Y2(0)y1(2) — ¥1(0)y2(2) =0, 0<a <1 (5.22)

Since y1(x) and yo(x) are eigenfunctions, y;(z) and yo(x) are not identically 0. Hence,
(5.21) and (5.22) imply that ¢} (0)y5(0) # 0. Thus, by (5.22), y1(x) = aya(z), where
a = y1(0)/y5(0).
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—y"(t) + p(t)y(t) = Ay(t),
y(0) = y(1) = 0.

b) Prove that there is at most a finite number of negative eigenvalues.

We need to show that the eigenvalues are bounded below

—00 < Ag< A <A< ...y with A, 00 asn — .

Multiply the equation by y and integrate:
—yy" +py? = A

1 1
—/ yy”dt—l—/ pyidt = X
0 0

/0
1 1 1 1
—yy’]0+/ (y’)thJr/ pyrdt = )\/ y?dt,
—— 0 0 0

=0

1
y? dt,

_ Jow)dt + fypydt
fol y2dt

The Poincare inequality gives:

1 1
/ yrdt < C/ (v)? dt, or
0 0
1 1
—/ yrdt > —C/ (v)? dt.
0 0

Thus, we have

fol(y/)2 dt + fol py? dt - fol(y/)2 dt — maxg<z<1 |p| fol y? dt

A

A =

1 1
Jo v? dt Jo v?di
1 1.2
> % 01 y2 dt — maxo<z<i |p| fol y2 dt . (6 B max|p|> fO Yy dt
= 1 - 1
Jo 2 dt Jo y2dt

1
= — —max]|p|.

C

80
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Problem (S’94, #6). Consider the eigenvalue problem

d*u
a2 +ov(x)u=Au  on [0,1]

with the boundary conditions 9%(0) = %(1) = 0. Show that if fol v(z)dr =0 then
there is a negative eigenvalue, unless v(x) = 0.

Proof. Divide by u and integrate:

—u" +v(x)u = u,

lu// 1 1
—/ —da:—l—/ v(z)de = /)\dm,
0o u 0 0
——

Thus, A < 0. O
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Problem (S’95, #1). Find the eigenfunctions/eigenvalues for the following op-
erator

2
Lf = d—f—|—4f —r<x<T
dz?
f 21 — periodic.
Find all solutions (periodic or non-periodic) for the problems
a) Lf = cosz,
b) Lf = cos2z.

Proof. To find eigenfunctions and eigenvalues for L, consider

f'+Af+ A =0,
P+ 4)f =0,
The anzats f = e*® gives s> + (A +4) =0, or s = £/ -\ — 4.

Case1l: — A\ —4<0 = s=+iVvA+4.
——
eR

Thus, eigenfunctions are cos v A + 4z, sinv A+ 4z. To make these 27 periodic, need
n=vVA+4 = N+4=n> = N\, =—44+n%, n=0,1,2,... (note: =\ —4 <0).

Thus, the eigenvalues and eigenfunctions are

A\p = —4 +n?, cosnr, n=0,1,2,..., sinnx, n=1,2,....

For example, with n = 1, eigenvalues and eigenfunctions are:
A1 = —3, cosx, sinx.

Note that —co < A\g < A1 < A9 < ...; with A, = 00 asn — oo.
Case 2: —A—4=0, (A+4=0)

= f" =0 f =ax+b Since a # 0 does not satisfy periodicity (being a linear
function), a = 0. Since an eigenfunction can not be 0 everywhere b # 0. Thus,

AN=-4, f=0b#0)|

is 27 periodic.

Case 3: — A —4>0 = s=xv-\—4

Figenfunctions e~V Az , eV=2~12 are not 2m-periodic.

e Asin F'92 #3, could take f(z) =" a,e™, 2m—periodic. Then
" +4f+Af =0,
—n? 444+ A1=0,
Ap = —4 +n?.

e n=20,1,2,..., are eigenfunctions.
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a) f" +4f = cosz. We first solve the homogeneous equation f” + 4f = 0. Sub-
stitution f = e gives s? + 4 = 0. Hence, s19 = £2i and the superposition principle
gives:

fn(x) = Acos2zx + Bsin2z.

Find a particular solution of the inhomogeneous equation f” 4+ 4f = cosx.
Try f(z) = Ccosz + Dsinz. Then,

—C'cosx — Dsinz + 4C cosx + 4D sinx = cosz,

3C cosx + 3Dsinx = cosz,

c=1 D=0
3

Thus,

1

fpolz) = 3 08

f(x) = fulx)+ fp(x) = Acos2x + Bsin2z + % COS .

b) f”"+4f = cos2z. In part (a), we already found
fn(x) = Acos2x + Bsin2z.

to be a homogeneous equation. To find a particular solution of the inhomogeneous
equation, we try

fp(x) = Cxzcos2x+ Dz sin2ex,
fp(x) = —2Cxsin2z + C cos 2z 4 2Dx cos 2 4 D sin 2z,
fy(x) = —4Cwcos2x —2Csin 2z — 2C sin 2z — 4Dx sin 2z 4 2D cos 2z + 2D cos 2

= —4Cxcos2x —4C sin 2x — 4Dz sin2x + 4D cos 2.
Substitution into f” + 4f = cos2x gives:
—4Czcos2x —4Csin2x — 4Dxsin2x + 4D cos2x + 4Cx cos2x + 4Dx sin2x = cos 2z,
which gives —4C'sin2x 4+ 4D cos2xz = cos2x, or C'=0, D = i.
Thus,

1
fpolz) = Vi sin 2z,

1
f(x) = fulz)+ fp(x) = Acos2x + Bsin2zx + Vi sin 2.

Problem (F’92, #3). Denote

0 f 0% f
_YJ g5
Lf = Tt355+/ for 0 <z <m

for f satisfying

2
f:a—QfZO for =0 and z=m.
ox
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a) Find the eigenfunctions and eigenvalues for L.
b) Solve the problem

0
of = Lf

flz,t=0) = | — —

1— %e”ﬂ 1— %e‘ir

with the boundary conditions above.

Proof. a) In order to find eigenfunctions and eigenvalues for L, consider

f////+3f”+f — )\f

[e.e]
Let f(z) = % + Z ap, oS NT + by, sinna.
n=1

f(0)=f(mr)=0 = a,=0, n=0,1,2,....
"0)=f"(m)=0 = a,=0 n=0,1,2,...

= f(x)= an sinnz.
n=1

Thus, the eigenfunctions are sinnz, n=1,2,.... We have
(sinnz)” + 3(sinnz)” +sinnz = Asinnz,
(n*—3n? +1)sinnz = \sinnaz,
n' =3t +1 = A\,

Thus, the eigenvalues and eigenfunctions are

Ap=nt—=3n2+1, fu(z)=sinnz, n=1,2....

b) We have
ft = frzzz + 3frz + fa
eir e—ir
f(.'L',O) = 1 _ %eiz - 1 _ %e_ir
Let f(xz,t) =) fu(t)sinnz. Then

Z flL(t)sinnz = Z fn(®)nt sinna — 3£, (t)n? sinnz + f,(t) sinnz,
n=1 n=1

W) = (n* =30 + 1) fu(2),
(1) — (n* = 30" + 1) fult) = 0,
fal (n4—3n2+1)t’

[e.e]
flz,t) = Z e ™ 3 D gin

n=1

t) = cpe
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o eir e—ir o 1 . o 1 Con
: 1T 1T —iT —iT
f(x,O):chsmm: = [T ] low :Ze (56 ) —Ze (56 )
n=1 2 2 n=0 n=0
o0 o0 o0
1 . 1 . 1 . )
o +1) +—iz(n+l) _  (Jiz(n4l)  —iz(n+1)
= D et =y et = S (e ¢ )
n=0 n=0 n=0
=1 i Sl
— ix(n+1 —iz(n+1)\ _ .
_ Z 2n_12_i(ezr(n ) — emiatnt)) = Z ST sin((n + 1)x)
n=0 n=0
o0 .
= Z 2nZ_2 sinnx
n=1

Thus, ¢, =i/2" 2, n=1,2,..., and

o0 .
f(z,t) = Z 2nZ—2 (At
n=1

sin nx.
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Problem (W’02, #2). a) Prove that

/ " Ju(e) 2ds <

for all continuously differentiable functions u satisfying w(0) = u(w) = 0.
b) Consider the differential operator

™ 2
d_u‘ dx
0 d.’l?

d2
Lu:—d—xg—l—q(w)u, O<z<m

with the boundary conditions u(0) = u(m) = 0. Suppose q is continuous on [0, 7] and
q(z) > —1 on [0, x]. Prove that all eigenvalues of L are positive.

Proof. a) Use eigenvalues of the Laplacian for v” + Au =0, «(0) = u(w) = 0.
Then ¢, =sinnz, A\, =n?, n=1,2,....
Then

/Wqux = / Zamqu Zanqbn = Zai /Wsin2m¢da¢
0 - 0
™1 — cos 2nx 2n;1? | o7
/ (W)¥dz = u(w)u’(w) —u(0)u’(0) —/ wu dx = / wu dx
0
= _/0 (D amdm) (D ~Anandn) du
T ] T
= zn:)\nai/o sin? nx do = 5 zn:)\nai.

Since A, =n%,n=1,2,... = X\, >1,50%
/ wder = Z 2 < Z)\na = / u')2d33.
0 0

b) We have

/ —uu dx + / q(x)u?dz — [ IuPdz =0,
0 0

5 + / (/)2 di + / o) di — / N di — 0,
0 0 0

/ (u’)2d33—|—/ q(x)u2d33:)\/ u? dz.
0 0 0

Since ¢(x) > —1, and using result from part (a),

0 < /(u/)2d$—/ wrdr < /(u')2d33—|—/ q(x)u2d33:)\/ u? dz.
\(f)" 0 0 ~Jo 0 0

qg>—1

[en]

Since fo7r uidr > 0, we have A > 0. O

208ee similar Poincare Inequality PDE problem.
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Problem (F’02, #5; F’89, #6). a) Suppose that u is a continuously differentiable
function on [0,1] with w(0) = 0. Starting with u(x) = [ u/(t)dt, prove the (sharp)
estimate

1
ma [u( )|2§/ (1) 2 dt. (5.23)
[0.1] 0

b) For any function p define p_(x) = —min{p(z),0}.2t Using the inequality (5.23), if
p is continuous on [0, 2], show that all eigenvalues of

Lu=—u"+pu on|0,2]

with w(0) = u(2) = 0 are strictly positive if fo t)dt < 1.

Proof. a) By the Fundamental Theorem of Calculus,

/0 "W dt = ule) - u(0) = u(z),

1
max |u(z)] = (/ 1 di < /|u ) dt < [[1]]2 / (1 |2dt /|u |2dt
[0.1] 0

1
max |u(z)]? < / |/ (t) 2 dt. v
[0,1] 0

b) We have
" +pu = Mu,

2 2 2
/ —uu' dt + / puldt = / A’ dt,
0 0 0
2 2 2
—un |3+ / [/ | dt + / putdt = / u? dt.
~— 0 0 0

=0
If we define p(z) = max{p(z),0} and p_(z)= —min{p(x),0}, then p=py —p_.

2'Note that py and p_ are defined by

P (1‘) _ p(l‘) for p(l‘) 2 0 0 for p(l‘) 2 0
- 0 for p(z) <0, lp(z)| for p(z) < 0.
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2 2 2
/ |u’|2dt—|—/ p+u2dt—/ p_u’dt
0 0 0
2 2
/ |u'|2dt—/ p_u’dt
0 0

2
max|u|2—/ p_u’dt
[0,2] 0

2
max |u|? — max |u|2/ p—dt
[0,2] [0,2] 0
2
max|u|2<1 —/ o dt)
[0,2] 0
—_——
<1
¢? max |u?
[0,2]

Thus, A > 0.

IN

IN

IN

IN

IN
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Problem (F’95, #6). Define
Ly(z) = —y"(2) + q(z)y(z) on (0,a).

Denote q—(z) = min(q(z),0). We seek conditions on q_(x) so that L will be nonnegative
definite on C3°(0,a), i.e.,

(Lo, 6) = /0 o) Lo(@)dz > 0 Ve e (0, a). (5.24)

Find optimal conditions on q_(x) so that (5.24) holds.
Can q_(x) be unbounded and (5.24) still hold?

Proof. Define ¢, = max(g(x),0). We have
[ o Lotwrde = [Tor (0" v ag)de = [ (-00"+ q?)da
0 0 0
_ i a "2 2, _ "2 2
- ¢¢|0+/0 (¢)? + g6 da /0<<z>> dw+/0 4 dz

=0

) [ et [(aar = (2) ["aos [(oas
- [ ve)razo

need

®
V

Thus, if (Z)?+¢_ >0, L will be nonnegative definite on C§°(0,a). v/
Proof of &:

Use eigenvalues of the Laplacian for ¢” + A¢p =0, ¢(0) = ¢(a) = 0.
Then ¢, = sin(“F)z, A\, = (%™)2 n=1,2,.... We have

/0a¢2 dz = /Oa (;am¢m)(;an¢n) dx = zn:ai /Oasin2 (?) dz,
/Oa(¢/)2da: = ¢¢/|g—/0a¢¢”d$:—/0a¢¢”dx

= - /Oa (D amdm) (D —Anandy) dz
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Problem (W’04, #4). Consider boundary value problem on [0, 7]:

—y"(z) +p(x)y(x) = f(z), O0<z<m,
y(0) =0, y'(m)=0.

Find the smallest \g such that the boundary value problem has a untque solution
whenever p(x) > Ao for all x. Justify your answer.

Proof. Suppose y1 and yo are two solutions of the problem. Let w = y; — 2. Then

—w" +pw=0, O<z<m,
w(0) =0, w'(w)=0.

Multiply by w and integrate

1 T
—/ ww”da:—l—/ pw?dx =0,
0 0

—ww’|6r—|—/ (w’)2d33—|—/ pw?dr =0,

/(w')2d33—|—/ pw? dz = 0. ®
0 0

We will derive the Poincare inequality for this boundary value problem.

Use eigenvalues of the Laplacian for w” + Aw =0, w(0) = w’'(7w) = 0.

Expand w in eigenfunctions: w =" an¢,. Then ¢,(z) = a, cos vV A,z+by, sin/Apz.
Boundary conditions give:

1\2 1
An = (n—l— 5) , ¢n(xz) = sin (n—l— —>x, n=20,1,2,.... Then,

[tae = [ (Sant)(Sensyie =30t [ dtioro

/W(w/)2d$ = wu'|f — /Www”dx——/www”dx
0 0
= / Zam¢m Z )\nan¢n Z)\na / ¢2 dx.

Thus, the Poincare inequality is:
1 ™ 1 ™ ™ ™
1wt = e [Cotar < Yt [Tdar = [ @)
0 ~ 0 ~ 0 0

Thus, from & :

0 = / (w’)de—l—/ pw?de > —/ w2d33—|—/ pwide = / (——I—p>w2dx.
0 0 4 Jo 0 0o \4

If i +p(z) >0, (p(x)> —i), Vr, then w = 0, and we obtain uniqueness. O
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Problem (F’97, #5). a) Prove that all eigenvalues of the Sturm-Liouville problem

%(p(x)j—i) + Au(z) =0, 0<z<a,
w0y =0, T 4 pe) =0,

dzx

are positive. Here h > 0, p(z) > 0 and continuous on [0, a.
b) Show that the same is true when h < 0 and |h| is sufficiently small.

Proof. a) Let ¢ be an eigenfunction. We have

(p¢')" + Ap = 0. (5.25)
Multiply (5.25) by ¢ and integrate from 0 to a,

/ ((pd')' ¢+ Ap?) dz = 0.

0
Since foa ¢* dx > 0, we can solve for \:
\_ W) da
fo ?dz

Integrating by parts and plugging in the boundary conditions give

_ —pod'lG+ fo p(¢)?dr_ hp(a)¢*(a) + [y p(2)(¢'(2))* dx
Jo #*da Jo *(x) da -
To show that A > 0, assume A = 0. Then the ODE becomes

A

(pu') =0 = p(z)u/'(x) =C, a constant.
Then
p(a)v'(a) = —hp(a) u(a) = C

Wrong assumption follows: u = 0.

b) h < 0. For |h| is sufficiently small, i.e.

Ihp(a)é(a)] < /0 (@) (¢ (2)) d,

we have

hp(a)¢?(a) + Jy p(z)(¢'(x))? d
Jo ¢*(z) d

A= > 0.
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Problem (S’93, #7). a) Show that the general solution of
il

- = —A 5.26
x dx xdw] / (5.26)
where X\ is a constant, is a linear combination of f1 and fo, where

fi=0(1), fo=0(Inx), x — 0.

Proof. a) We use the method of dominant balance. We have
1 N/
- Y
—(af') = =,
1
E@f”*—f’) = —Af,
1
T O
x

of" + f = —Xaf.
Asx — 0, f'(r) — 0, ie. f(z) — C. (Incomplete) O

b) Consider the eigenvalue problem posed by (5.26) and the conditions
f(0) =0(1), f(1)=0. (5.27)

Assuming that the spectrum of X\ is discrete, show that the eigenfunctions belonging to
different A are orthogonal:

1 1 df; df;
ifidr = —— =L dx = 0, Ai N,
/0 xfifjdx /0 el # A\

and that all eigenvalues are positive.

Proof. Rewrite the equation as
1
E(J?f/)/ +Af=0. ®

Let A, An, be the eigenvalues and f,,, f, be the corresponding eigenfunctions. We
have

i(xf{n)’ + A fm = 0, (5.28)
(@ f) + Anfa =0, (5.29)
Multiply (5.28) by f,, and (5.29) by fn and subtract equations from each other
Fus (@) + Awbufm = 0.
Fne o) + Anbnfa = 0.
O = Adfmfn = I (e fa) = Sz (i)'
O = A fmfa = Fu(efa) = Sl = leUmfa = fafo))
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Integrating over (0, 1) gives

1

= 1(fmf{z_fnf;n)(l)_o(fmf{z_fnf;n)(o) =0, ©
since f, (1) = fn(1) = 0. Since A\, # A, fo(z) and fp,(z) are orthogonal on [0, 1].
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e To show that f/, and f] are orthogonal with respect to z, consider
1 1
| atutide = aputuli= [ @) tda
0 0
1
= L (D) = 0 £, 0£(0) — [ (@ fi) da
0
1 1
N _/ (@) frde = ® = )‘m/ Zfmfndr=© = 0.
0 0

e We now show that eigenvalues A\ are positive. We have
1
_(.Tf/)/ + )‘f = 07
x
(f) + e f =0.
Multiplying by f and integrating, we get

1 1
/f(xf’)’da:—I—)\/ zffdx = 0,
0 0

1 1
fa:f’(l)—/ xf’de+)\/ zffdx = 0,
SN—— 0 0

=0

1 er2
zfcdz
= 7f01 ! 0 ® ®
Jo xf?dx
The equality holds only if f/ = 0, which means f = C. Since f(1) = 0, then f = 0,
which is not an eigenfunction. Thus, A > 0. O

c) Let f(x) be any function that can be expanded as a linear combination of eigenfunc-
tions of (5.26) and (5.27). Establish the Rayleigh-Ritz principle, namely that

folx
fol xf2dx

1s an upper bound on the smallest eigenvalue.

F(f) =

Proof. Let f(z) = E ap fn, where f,,’s are eigenfunctions. Then,

24 nfl)
F(f) = fo 5 ’ fo 22 anfi)” (by orthogonality)
fo f dﬂ? f() Zanfn
1 2 /2 2
Ty a dx a xfledx
— fO Z f Z nfol fn (by®®)
fOxZa f2dx Ea%foxgdx
S flefide | Sabflestde
Ea%folxgdx Ea%folxgdx
Thus, Amin < F(f), i.e. F(f) is an upper bound on Apiy. O
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d) The Bessel function Jo(r) is O(1) at r = 0 and obeys

|

rdr | dr | T —Jo-

Obtain an upper bound for the smallest positive zero of Jy.
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Problem (F’90, #8). Consider the differential equation

—tgy + (1 + 2%)u = M,
u(0) = u(a) = 0.

a) Find a variational characterization for the eigenvalues \;, i = 1,2, . ...

b) Show that the eigenvalues are all positive, i.e. \; > 0.

c) Consider the problem for two different values of a: a = a1 and a = as with a; <
ay. Show that the eigenvalues \1(ay) for a = ay is larger than (or equal to) the first
eigenvalues A1(az) for as, i.e.

)\1(&1) > )\1(&2) fO?” a1 < as.
d) Is this still true for i > 1, i.e. is

)\i(al) > )\Z‘(ag) fO?” a < ag?

Proof. a) We have

—u" + (1+2)u = Mu,
—/ uu”da:—l—/ 1+ 2Hu’de = )\/ u? de,
0 0 0
—uu’|8—|—/ (u’)2d33—|—/ 1+ 2Hu’de = )\/ u? de,
— 0 0 0

\_ foa ((u’)2 +(1+ ;1?2)u2) dx
N foa u? dx '
@ (2 4 (1 242 d
b) A= fo ((u) —Z( +a7)u ) * > 0, if u not identically 0.
fo u? dx
] foal ((u’)2 +(1+ ;1?2)u2) dx
)\ - )
) Milm) = min T2 da
] f0a2 ((u’)2 +(1+ x2)u2) dx
Py — o .
1(a2) [151(11121] o u?dx

The minimum value in a small interval is greater then or equal to the minimum value
in the larger interval. Thus, \j(a1) > A1(a2) for a1 < as.

We may also think of this as follows: We can always make a 0 extension of u from a; to
as. Then, we can observe that the minimum of A for such extended functions would
be greater.

d) O
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6 Variational (V) and Minimization (M) Formulations

Consider

(D) { —u(x) = f(x) for 0 <z <1,
u(0) =u(1) =0,
(V)  Find weV, st. a(u,v)=Lv) YveV,

)
(M) Find weV, st. Flu)<F(v) YveV, (F(u)= %1‘1} F(v)).

V = {v: v e C°0,1], v piecewise continous and bounded on [0, 1], and v(0) = v(1) =

0}.

(D) = (V) & (M)

(D) = (V)
Multiply the equation by v € V, and integrate over (0, 1):
—U” = f(x)v
1 1
/ —vdr = / fvde,
0 0
1 1
—u’v|(1)—|—/ uv'dr = fvdz,
= 0
1 1
/ uv'dr = fvde,
0 0
a(u,v) = L) YvelV.
(V) = (M)

We have a(u,v)= L(v), Yo €V &®. Suppose v=u+w, weV. We have
1
Fv) = F(u—l—w):§a(u—|—w,u—|—w)—L(u—|—w)

1 1
— 5a(u, u) + a(u, w) + §a(w, w) — L(u) — L(w)

= ga(u,w) — L(u) +ga(w, w) + alu,w) - Lw)
D Y ——

i =0, by ®

\%
=
S

(M) = (V)
We have F(u) < F(u +ev), for any v € V, since u+ ev € V. Thus, the function

1
g(e) = F(u+tev) = §a(u—|—5v,u—|—5v) — L(u+ev)

2
= %a(u, u) + ea(u,v) + %a(v, v) — L(u) — eL(v),



Ordinary Differential Equations Igor Yanovsky, 2005

has a minimum at ¢ = 0 and hence ¢’(0) = 0. We have

g () = a(u,v)+ea(v,v)— L(v),
0=4¢'(0) = a(u,v)— L(v),
a(u,v) = L(v).

(V) = (D)
We have

1 1
/ u'v’daz—/ fvde =0 Yv e V.
0 0

Assume v exists and is continuous, then

1 1
u'v|(1)—/ u"vdw—/ fvdr =0,
AT

1
—/(u”—l—f)vdxzo Yo e V.
0

Since u” + f is continuous, then

(W' + f)(x)=0 0<z<l1.

We can show that (V) is uniquely determined if a(u,v) = (v/,0") = fol u'v' dx.

Suppose u1, us € V and

(uy,v) = Lv) YveV,
(uh,v') = L(v) Vv eV.

Subtracting these equations gives
(u) —uh,v') =0 Yoel.
Choose v = uy —us € V. We get
(uy —ug,uy —uy) = 0,
1 1
/ (u) —up)?de = / (ur — ug)'? d = 0,
0 0
which shows that

(ug —ug) (z) =0 = u1 — ug = constant.

The boundary conditions wu1(0) = u2(0) =0 give wuji(x)=wus(x), x € [0,1].

98
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Problem (F’91, #4). Consider a boundary value problem in a bounded plane domain
Q:
2 2 .
273—1-27? = f(z,y) in €, (6.1)
g—; +a(s)u =0 on 09,
where a(s) is a smooth function on OS).
a) Find the variational formulation of this problem, i.e. find a functional F(v) defined
on smooth functions in the € such that the Euler-Lagrange equation for this func-
tional is equivalent to (6.1).

Proof. a) (D) = (M)
We will proceed as follows: (D) = (V) = (M). We have

Au=f in €,
% +a(s)u=0 on 9.
e (D)= (V)
Multiply the equation by v € V', and integrate over €:

Au = f,
/ Auvdr = / fudex,
Q Q

/ @vds—/Vu-Vvdx = /fvd;r,
a0 On Q Q
—/ a(s)uvds—/Vu-Vvdx = /fvd;r,
o0 Q Q
/Vu-Vvdx—l—/ a(s)uvds = —/fvdx.
Q 00 Q
—_———

~~

a(u,v) L(v)

e (V)= (M)
a(u,v) = L(v),

a(u,v) = /Vu-Vvdx—l—/ a(s)uv ds,
Q o0

Lv) = —/fvd;r,
Q
1

Fv) = §a(v,v)—L(v). ®

F(U):%/Q|VU|2CZ$+%/ma(s)UQdS—l—/vadx.

We show that F(v), defined as ®, minimizes the functional.
We have a(u,v) = L(v), Yo €V ®. Suppose v=u+w, weV. We have

Fv) = F(u—l—w):%a(u—l—w,u—l—w)—l,(u—l—w)

1 1
— 5a(u, u) + a(u, w) + §a(w, w) — L(u) — L(w)

= %a(u, u) — L(u) —I—%a(w, w) + a(u,w) — L(w) > F(u).
—_——

=F(u) =0, by ®
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O

b) Prove that if a(s) > 0, then the solution of (6.1) is unique in the class of smooth
functions in §Q.

Proof. e Let uy, us be two solutions of (6.1), and set w = u; —ug. Then
a(uy,v) = L(v),
a(ug,v) = L(v),
a(w,v) = 0.
Let v =w € V. Then,
a(w,w) = / |Vw|2d33—|—/ a(s)w?ds = 0.
Q o0

Since a(s) >0, w = 0.

e We can also begin from considering

Aw =0 in Q,
g—:‘; +a(s)w =0 on 9.

Multiplying the equation by w and integrating, we obtain

/wAwda: = 0,
Q

/ wa—wds—/|Vw|2d33 = 0,
on On Q

Since a(s) >0, w = 0. O
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Problem (W’04, #2). Let C%(Q) be the space gf all twice continuously differentiable
functions in the bounded smooth closed domain Q C R2. Let ug(z,y) be the function
that minimizes the functional

/ / [ (2utry? (3“<8”;vy))2+f(x,y)u(x,y)] dzdy + /a a(s) w2(x(s), y(s)) ds,

Q

where f(x,y) and a(s) are given continuous functions.
Find the differential equation and the boundary condition that ug satisfies.

Proof. (M) = (D)
We will proceed as follows: (M) = (V) = (D). We have

F(v):/ﬂ(|Vv|2+fv) da:—i—/ a(s) v2 ds,

[2/9)
1
Fv) = 5(1(1) v) — L(v),
a(u,v) = /Vu Vo da?—l—Q/aQ a(s)uv ds,
Lv) = / fvdz.

e (M) = (V) Since up minimizes F'(v) we have
F(u) < F(v), YveV.
Thus, the function

1
gle) = F(ug+ev) = §a(u0 +ev,up + ev) — L(ug + ev)
1 g?
= 5aluo, uo) +ea(uo, v) + Sa(v,v) — L(ug) — eL(v),

has a minimum at ¢ = 0 and hence ¢’(0) = 0. We have

g'(e) = a(up,v)+ea(v,v)— L(v),
0=9'(0) = a(ug,v)— L(v),
a(ug,v) = L(v).

2/Vu0-Vvda?—|—2/ a(s)uovds:—/fvdx.
Q o0 Q
e (V)= (D)
2/Vu0-Vvda?—|—2/ a(s)upvds = —/fvd;r,
Q o0 Q

2/ %vds—2/ Auovdx—l—Q/ a(s)upvds = —/fvd;r,
a0 On Q 09 Q
/(—2Auo—|—f)vd;r—|—2/ (8——1—@( )u0>vds = 0.
QO 872
If %1 + a(s)up =0, we have

/(—2Au0 + flvde=0 YveV.
Q
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Since —2Awug + f is continuous, then —2Awug + f = 0.

—2Aug + f =0,
%% + a(s)up =0,

T € €,
x € 0N

See the preferred solution in the Euler-Lagrange Equations section.

102



Ordinary Differential Equations Igor Yanovsky, 2005 103

7 Euler-Lagrange Equations

Consider the problem of determining a C'! function u(x) for which the integral
E = / J(Z,u, Vu) d¥
Q

takes on a minimum value.
Suppose u(z) is the actual minimizing function, and choose any C! function 7(z).

Since u is the minimizer
E(u+en) > E(u), Ve.

E(u+ en) has a minimum at ¢ = 0. Thus,

dE
g(u + 577)!6:0 =0.

7.1 Rudin-Osher-Fatemi
o /|Vu|—|—)\(u—f)2da:.
Q

dE d 2
Tlwrenlsy = L [ IV@ren] + Musen—pPdo |,

_ [ Vluten) _
_ /Q|v(u+5n)| Vn + 2A(u+en— fin dz |__,

Vu
= /QW-Vn—l-”\(u—f)ndx

VU VU
= = [T (e s 2o
Yu Vu
/agﬁw e /Q[V (qu|> A f)]n r

Choose n € C}(2). The Euler-Lagrange equations 22 are

Vu
V<W>—2)\(U—f):0 on Q,

*Hildebrand’s (p.124-128) definition of Euler-Lagrange equations in one dimension:

[ [ () 2] o
s LOY dxz \ 0y’ oy’ .

a1y _ o
dz\ 0y ) 0Oy’

L R
/70 - /70 -

In n dimensions:

V. (V,))=Vu)  on Q

‘Vp.]-n:() on 0L,

where p = Vu = (uz, uy).
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‘Vu-nzO on OQ.‘

7.1.1 Gradient Descent
If we want to find a local minimum of a function f in R', we have

de  df
dt  dx’
To minimize the energy E (in R?), we would have

du ~dE(u)

dt du

Also, consider
o /|Vu|+)\(u—f)2 da.
Q

We want E(u(z,t)) to decrease, that is,

%E(u(x,t)) < 0, forallt.

Assume Vu-n =0 on 0. We have

d _d 2
GE.0) = 5 [ 1Vl aw= P o
= 9%4—2)\@—]‘“)%6&3
= /Q—V-<|§—Z>ut—|—2)\(u—f)ut dx
= /ut[—v'<|§—z|>+2)\(u—f) de < ® < 0.
Q

~~

—1
To ensure that ® holds, we need to choose u; to be negative of [_aok

w = V- (é—“uo — 2A(u—f).

104
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7.2 Chan-Vese
FOV = /5 )|Vo|dx + u/(1—H(¢))dx
+ )\1/|u0—cl| (1—H(¢p))dx + )\2/|u0—62| H(¢)dx

dFCV d d
el = ng [ o+ eV renlds + v [ (1 Ho+en)da

d d
+ A £/52(u0 1)) (1= H(¢p+en))de + A 7 /Q(Uo —2)?H(¢+ en) da

V(p+en)
V(¢ +en)l

= M/Q[5/(¢+577)77|V(¢+577)|+5(¢+577) Vn} dx
—I-I//Q—H'(qb—l-en)ndx
01 [ (w0 = )X (H'(9+ en)) n da
+)\2/52(u0—62)2H’(¢+577)17dx‘
_ / Vo
= u [ [F@rnivel+ a5
v [ H(@)nda
Q

—M[fm—m%w@nm

Vn} dx

+&[fm—m%w@nm

5(¢) 09
W% ndS

— 5/V—d (5 d
“A; Orag T L/ |V<z>|77 v

v [ d@)nda

—MAWwwf&@mm
+AQA¥WY—@F&@ndx

a 9(¢) 9¢
= “l§|vman”ds

= uf d
g@ () |V9| nda +

Choose n € C1(€2). The Euler-Lagrange equations are

6(¢) [MV' (%) + v+ Ar(ug — 1) — Agug — 62)2] =0 on ,

() 0p _

0 o9,
V| on on
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7.3 Problems

The problem below was solved in the previous section. However, the approach below
is preferable.

Problem (W’04, #2). Let C%(Q) be the space gf all twice continuously differentiable
functions in the bounded smooth closed domain Q C R2. Let ug(z,y) be the function
that minimizes the functional

/ / [ (2utry? (3“g”;vy))2+f(x,y)u(x,y)] dzdy + /a a(s) w3 (x(s), y(s)) ds,

Q

where f(x,y) and a(s) are given continuous functions.
Find the differential equation and the boundary condition that ug satisfies.

Proof. Suppose u(x) is the actual minimizing function, and choose any C' function

n(x).
Since u is the minimizer

F(u+en) > F(u), Ve.

F(u + en) has a minimum at ¢ = 0. Thus,

dF
E(u + 517)!620 =0.

Flu) = /Q(|Vu|2—|—fu)d3:—|—/ a(s) u2 ds,

o0
Tlwrenly = L [ (Ve ren)de+ L[ als) wren?ds |

= /(2V(u—|—5n) Vi + fn)dz + 2a(s) (u+en) 77d5’_0
Q o0

= /(QVU.Vn+f17)dJQ—|—/ 2a(s)unds
Q

o0
= 8unds—/(2Aun—fn)das—|—/ 2a(s)unds
on Q P

= 2/{)9(2—”—1—&(8)’&)77(18 — /9(2Au—f)77dx = 0.

The Euler-Lagrange equations are

20Au = f, x € €,
g—z +a(s)u = 0, x € 0N.
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Problem (F’92, #7). Let a; and ay be positive constants with a1 # as and define

a1 for 0<;13<%
a(x) = )
az for 5<z<l1

and let f(x) be a smooth function. Consider the functional

Plu) = jﬁla(x)uidx —-jﬁlf(x)u(x)dx

in which w is continuous on [0,1], twice differentiable on [0,1] and [$,1], and has a

possible jump discontinuity in u, at r = % Find the Fuler-Lagrange equation for

u(x) that minimizes the functional F(u). In addition find the boundary conditions on
1

watx =0,z =35 andz =1.

Proof. Suppose u(x) is the actual minimizing function, and choose any C' function
n(z).

Since u is the minimizer
F(u+en) > F(u), Ve.

F(u + en) has a minimum at ¢ = 0. Thus,

dF
E(u + 517)!620 =0.

: 1 1
F(u) :/0 alu?gdas—l-/l agu? dx —/0 f(@)u(x) dx

2

1
dF d [2 ) d [* ) d (!
E(u%—anﬂe:o = £/0 ai(ug +¢eng)” dx —|—£/% as(ug + eng)*dx — £/0 f(z)(u+en)de »
! 1 !
= / 2a1 (ug + €Ny )Ny dx —I—/1 2a2(uz—|—517r)77rd33—/ flx)ndx
0 1 0

e=0
1

1 1 1
= / 2a1 UMy dxr + /1 2a9Uy My dx — / flx)ndx
0 : 0

1

1 1 1 1
> 2
= 2a1uzn; —/ 201Uz dx + 2a0u,M —/1 2a2um77dx—/ flx)ndx
0 1 0

1
2
1 1

= 2ayugn|  + 2agu.n

1 1
- / 2a(x)ugendr — / flx)ndx.
0 0

2
1
0 2

Thus,

aluz(%)n(%) — a1u. (0)n(0) + agu,(1)n(1) — aguz(%)n(%) =0.

Aﬁmumm+fuﬂmm:a
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2a(x)ugy + f(x) =0,
uz(0) =0,
uz(1) =0,

a1z (3 —) = asuy(3+).

The process of finding Euler-Lagrange equations (given the minimization functional) is
equivalent to (D) < (V) « (M). O
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Problem (F’00, #4). Consider the following functional

///[ 32; a(gvﬂa«")—lﬂ d,

where x = (x1, T2, 3) € R3, v(z) = (v1(x),v2(x), v3()), Q € R? bounded, and o > 0
is a constant. Let u(x) = (ui(x),us(x),us(x)) be the minimizer of F(v) among all
smooth functions satisfying the Dirichlet condition, ug(z) = ¢r(x), k =1,2,3. Derive
the system of differential equations that u(x) satisfies.

Proof. (M) = (D)
Suppose u(z) is the actual minimizing function, and choose any C* function n(z) =

(m (), ma(), n3())-

Since u is the minimizer
F(u+en) > F(u), Ve.

F(u + en) has a minimum at ¢ = 0. Thus,

—F(u + 517)!620 =0.

de
3 3
dF . d 8’&]' 8’!7]' ) N2 2
E(U"i'gn)‘e:(] - %/ﬂ [];1 (8—3% —1-58—%) —|—a<;(u3+5m) 1) ]dw »

axk axk oxy,

j=1
8’&])877] 40&(23:’&2»—1)23:’&' :| dzr
LA Oz /) Oxp, st J st 3N

= / 2(Vu1 - Vi1 + Vug - Viga 4+ Vug - Vi3)
ol

g

w T

—_
/—\ /—\

+ da(uf +uj +uj — 1) (uim + uamo + U3773)] dx

Ouy Oua Ous
0

= / [2(—171 + o 772 + n 773> ds—l—/ [ (Aulm + Ausgng + Augng) dx
[2}9)

+ 4a(u? +u3 +ul — 1) (vim + uame + ugng)] dr = 0

If we assume that u? +u3 + u3 — 1 = 1, we have

dF

de on on on

+ 4CM(U1771 + ugm2 + U3773):| dr = 0.

‘Aui—l—2aui:0, in Q‘

8’&1‘
on

=0, 1=1,2,3, on Of).

ou; on;\ 0 : :
ouj 773) Al AP (Z(u] +eny)? - >2Z uj + €nj 77]] dx
7=1

ou ou ou
_(u + 577)|€:0 = /a |:2<—1171 + —2172 + —3173> ds + / |:2 (AUlnl + AUQ’I?Q + AUQ’I??,) dx
Q Q

e=0
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8 Integral Equations

Fredholm Equation: «(z)y(z) = F(z) + A ffK(x, Ey(&)d¢
Volterra Equation: a(z)y(z) = F(z) + X [T K(z,§)y(&)d¢

When a = 0, the equation is said to be an integral equation of the first kind.
When a = 1, the equation is said to be an integral equation of the second kind.

B<1’ F B A
d €)de = / 0 d d

il WL b 4 1o, b)) 2~ Pl A) 2

8.1 Relations Between Differential and Integral Equations

Example 1. Consider the boundary-value problem

y'+ Ay =0,
y(0) =y(L) =0.

After the first integration over (0, x), we obtain

y(x) =~ /0 ye)de C,

where C represents the unknown value of y'(0). A second integration over (0,x) gives

y(z) = —)\/ ds/ d£+Cx—|—D——)\H /Osy(f)df}:—/ozsy(s)ds]—I—Cx—I—D

= —)\[x/ozy(f)df— ; fy(f)df]—I—Cx—I—D:—)\/Oz(x—f)y(f)df—l-Cx—l—D. ®

y(0) =0 gives D = 0. Since y(L) =0, then

L
WI)=0 = A /0 (L~ €)y(€) dé + CL,

A

L
¢ =2 /0 (L — €)y(€) de.

If the values of C and D are introduced into ®, this relation takes the form

T L
va) = A [ a-gu@dsag [ L-ouede
L

= [ onodeea [ -0 [T - ds

L xT
/5L )y d5+A/ Z(L - €)y(e) de.

Thus,

L
) /0 K (2, €)y(€) d
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Note, K(x,§) is symmetric: K(x,&§) = K(§, ).
The kernel K 1is continuous at x = .
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where

(L_f)v £<$
(L_f)v £>$

=8 S
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Example 2. Consider the boundary-value problem

y" + Ay’ + By =0,
y(0) =y(1) =0.

Integrating over (0, x) twice, we obtain

(@) = —Ay(z) - / y(€) de + C,

Igor Yanovsky, 2005

y(@) = A/Oy ) de - B/0 gf,/ y(€)dé +Cx + D

0

y(0) =0 gives D = 0. Since y(1) =0, then

y(1)=0 = /01[—A—B<1—5>}y<5)d5+0,

C = /01 4+ B - )]y(e) de.

/ @d4+cx+p

/I (©) d£—/ e(e) d5]+0x+D
(

~A- B } §)dé + Cz + D. ®

If the values of C and D are introduced into ®, this relation takes the form

y@) = /0 A= Bz - 9)]y(&)de + a:/ol A4+ B —)]y(e) e

_ /Or:—A—B(x—f)}y(f)df‘i’/or [Ax—l—Ba:(l—f)}y(f)df—l-/

xT

— /01- :A(x —1) + BE(1 — x)}y(f) dé + /: [Ax + Bz (1 — 5)}1/(5) dé

Thus,

1
- /0 K (. O)y(€) de

where

Az + Bx(1 =€), E>

K(z.6) = {A(x—1)+B£(1—x), E<u

Note, K(x,§) is not symmetric: K(x,§) # K(&, x), unless A = 0.

The kernel K is not continuous at x = &, since

r—Et

1

112

A2+ Ba(1 - &)|y(e) e

lim A(x—1)+B{(1—z) = A({—1)+BE(1-€) # AE+BE(1-€) = ligl_ Az+Bx(1-E).
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8.2 Green’s Function

Given the differential operator

d, d

= %(p%) +q,

consider the differential equation

Ly+ F(x) =0, a<z<b
cry(a) + coy'(a) =0, ezy(b) + cay’(b) =0

where F' may also depend upon z indirectly through y(z), F(x) = F(z,y(x)).
We construct a Green’s function GG which, for a given number &, is given by
u(x) when z < € and by v(z) when z > £, and which has the following four properties:

[The functions u and v satisfy the equation LG = 0 in their intervals of definition;
that is Lu = 0 when x < £, and Lv = 0 when x > £.

[ukatisfies the boundary condition at = a, and v that at x = b.
[CGlis continuous at x = &; that is u(§) = v(§).

L8 — u'(8) = —1/p(§).

[ When G(z, &) exists, the original formulation of the problem can be transformed to

b
y(z) = / Gz, €)F(€)de. |

Thus, conditions [Caldd [inkply

e 1L

where u and v satisfty respective boundary conditions, and conditions [Cald [ddter-
mine additional properties of u and v (i.e. constants in terms of &):

cov(&) — aqu(§) = 0, (8.2)

e’ (§) — e/ (€) = DGR (8.3)
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Example. Transform the problem
d?y
a2 +y+ey’ = f(a),
y(0)=0, y(1)=0
to a nonlinear Fredholm integral equation in each of the two following ways. Use
a) Ly =1y".
b) Ly=y" +vy.

Proof. a) We have

y' oty tey’ - fla) =

- —

Ly F(x)
CLy=y"=0 = wy=axr+b
u(z) =ax +b, v(z)=cr+d.

[Cul0)=0=0 =  u(x) =az.
v(l)=0=c+d = v(x)=clz—-1).
Determine a and ¢ in terms of ¢:

Cfe) = v (&),
af = C(f - 1)7
€=

C16) /(€ =c—a= ks = 1,
= c=-¢ a=1-¢&. Thus,

G:{“(x)’ T <& _{w(l—f), z <,
v(@), x>¢& (-6, =>¢&

1
/Gx»s /Gx»s 5)d5+/0 G, ) [y(€) + ey (€)] de

b) We have

y' +y+ey’ — flz)=0
—— ——
Ly F(x)

CLYy=y"+y=0 = wy=Acosx+ Bsinx
u(z) = acosx + bsinz, v(x) = ccosz + dsinz.
[ul0) =0=a = u(x) =bsinz.
v(l)=0=ccosl+dsinl = v(z)=d(sinz — 2L cosz).
Determine b and d in terms of &:

Culs) = (&),
bsiné = d(siné& — S8 cos €),

cos1

b= d(l _ sinl COS§)

cos1 siné

C21€) — o/ (€) = d(22+ siné + cos € — beos ) = —ng) =—1.
After some algebra,
sin(1—¢) sinx
R
sin(1 fz% sin &

sin(1—&) sinx
G {Tv T <§

v(z) =

sin(1—x)sin &
sin 1 ) x> 5
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/Gxg /Ga:»s d5+e/010<x,5)y2<5>d5
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Problem (W’02, #1). Consider the second order differential operator L defined by

d%y
Ly=— —
L
Find the Green’s function (= solution operator kernel) for the boundary value problem
Ly=fon0<z<1,y(l)=y(0)=0.

Proof. LLY)=9y"—y=0 = y=Ae @+ Be®
u(x) = ae™ 4+ be®, v(x) = ce™™ + de”.
[Cul0)=0=a+0b =  u(x)=ale™® —e€").
v(l)=0=cel+de! = v(z)=d(e® —e2™®).
Determine a and d in terms of ¢:
Culg) = v(E),
a(e ¢ —ef) = d(ef — e27%),

£_g2=¢
_ € €
a=ds=—.

L) — /(&) = d(e + €2¢) —a(—e ¢ —¢b) = —ﬁ =—1
Plugging in [inko L[, wle get

€ _ 2-¢
€, ,2-6y _ 4 "€ " -6 gy _
d(e> +¢e“7%) de—f—ef(e et) = —1,
€ _ 2-¢ 1
€, 2-¢ &€ —€ 6y _ 1
e +e —I—e_ —ef(e +e5) = 7

e_g — eg eg — 62_£

1

(e + €2 ’E)e_f_e£ + (e S4ef) = -
1—e2 4272 —e2 1462 — 2% _¢2 1
et —ef i et —ef T
2—-2e2 1

e —ef  d’

o€ _ of
C2(e2 1)

a = — . = .
et—et  2e2—1) eft—e  2(e2-1)

ou [T 22t

SE_ ot _
ﬁ(e’”—e2 o, x>¢&.

O

2

Example. Show that the Green’s function G(z, &) associated with the expression 3732’ —y

over the infinite interval (—oo, 00), subject to the requirement that y be bounded as
T — Fo00, is of the form

G, &) = ge 4.

Proof. CLYy=9"—-y=0 = y=Ae ™+ Be”
u(z) = ae™™ + be*, v(x)=ce "+ de”.
[Sihce y is bounded as z — —o0, a =0 = u(x) = be”.
Since y is bounded as z — +oo, d =10 =  v(x)=ce "
Determine b and ¢ in terms of &:
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Culf) = (),
bes = ce~¢,
b=ce %.

L) — /() = —ce™ —be® = — 75 = —1.
_1-=bef _ 1—ce2ef _ 1—ce”

- e_f - e_f - e_f
c= %ef = b= %e‘f. Thus,

be*, x <& le=€er <€ lev=¢ g <¢
Glr,€) = { - { -4
2

3
=ef — ¢,

ce™™® x>¢ %efe_’”, x> ¢

{%€_|I_§|, xr < 5 B {%€_|I_§|, xr < f’

1 —|¢— 1 —|o—
56 ezl x> 56 le=el > g

G, ) = e

O

Problem (W’04, #7). For the two-point boundary value problem Lf = f.. — f on
—00 < < 00 with limg_. f(x) =lim,—_ f(x) =0, the Green’s function G(z, )
solves LG = §(x — ') in which L acts on the variable x.

a) Show that G(x,2') = G(x — /).

b) For each ', show that

Glr.2') = {a_ez for x < a,

are ™  for o <ux,

in which a4 are functions that depend only on .

¢) Using (a), find the ' dependence of a.

d) Finish finding G(x,x'") by using the jump conditions to find the remaining unknowns
m G4 .

Proof. a) We have
Lf = feu— 1,
LG = G(z,2)p — G(z,2)) = §(x — 1),
7?77 =  G(z,2) =Gz —1).

b,c,d) CL¥=f"—f=0 = y=Ae "+ Be”
u(x) = ae™™ 4+ be®, v(x) = ce™™ + de”.

[Sihce lim, o f(z) =0, a =0 = u(x) = be".
Since lim, 4o f(z) =0, d=0 =  v(r)=ce ",
Determine b and ¢ in terms of &:
Culf) = v(§),
bes = ce¢,
b=ce %,

L) — /() = —ce™ —bef = — 75 = —1.
_1-bef _ 1—ce=26ef __ 1—ce™
e~ & e—¢€ - e—€

£
=ef — ¢,
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c=1f = b= %e‘g. Thus,
Glo€) = be®, ax <& _ %e‘ge’”, <& _ %e’”_g, <&
’ ce ™, x>¢& %efe_’”, x> %ef_’”, x>
B %€_|I_§|, xr < 5 B %€_|I_§|, xr < f’
B %e"g_’g', x> ¢ B %e"’”_ﬂ, x> £

G, ) = e

118
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9 Miscellaneous
Problem (F’98, #1). Determine (3 such that the differential equation

d%¢ 9
W—F(b:ﬁ—l—l‘, (9.1)
with ¢(0) =0 and ¢(7) = 0 has a solution.

Proof. Solve the homogeneous equation ¢’ + ¢ = 0. Subsitution ¢ = e gives
s> 4+1 = 0. Hence, s1,2 = +7 and the superposition principle gives the family of
solutions:

on(x) = Acosz + Bsinzx.

Find a particular solution of the inhomogeneous equation ¢" + ¢ = 5 + 22.
Try ¢(z) = az? + bx + c. Substitution into (9.1) gives

ar? + bz +2a +c = f+ 22
By equating coefficients, a =1, b =0, ¢ = — 2. Thus,

op(z) = 4+ p—2
Use the principle of the complementary function to form the family of solutions:

o(r) = én(x)+ dp(x) = Acosz + Bsinw + 2 + 3 — 2.
pr) = 0=—-A+n>+p3-2.
Thus,A:”Q—Q, Whichgivesﬁ:2—§. U
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Problem (S’92, #5). Consider the initial value problem for the ODEs

y=y—vy', Y=y+y, t>0,

with witial data

120

Investigate whether the solutions stay bounded for all times. If not compute the “blow-

up” time.

Proof. a) We solve the initial value problem.

Wy =y —?) = y(1-p+)

dt
dy
y(1—y)(1+y)

1 11 11
4z - dy = dt
<y+21— 21—|-y>y :

= dt,

Yy
1 1
Iny— §ln (1—vy)— §ln 14y = t+c,
1
Iy (-9 +y) = t+a,
my—ln(1-y)1+y)? = t+ei,
ln < y l) == t + Cla
(1= +y)):2
Y _ t
T — C2€,
(I=y)(A+y)):z
Y _ t
T — C2€
(1—y?)2
Initial condition y(0) = %, we obtain ¢y = % Thus [=\" o=
Y Ly '\
_ = —¢ , \
(1-y2)7 V3 \
9 s W B ey N
1 . .\\. — . A
Y _ e2t’ — i \\
1—y? 3 \
_ I \
Y \Y 36_2t +1 ' ll'\
Ast—o00 = y— *x1. Thus, the solutions stay bounded for all times.
We can also observe from the image above that at y(0) = %, Ccll—’t” > 0. Thusy — 1 as
t — oo.
b) We solve the initial value problem.
[r+x"%, 1y, r"u'll:- . _J)’
dy B , Wi;wb & f,."
at YT -/
y Y =y 41 VAR
—2 / -3/ f
Let v =y %, then v = —2yy’. We have /
) /
—51)’—1):1 = v 420 = -2 = v:ce_Qt—l,
-2 —2t +1 +1
= y “=v=ce T —1 = Y = — =
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The solution blows up at t = %ln 5. ]
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Problem (S’94, #4).

Suppose that p1(t) and @o(t) are any two solutions of the linear differential equation
"+ ai(t)f +ax(t) f = 0. (9.2)

a) Show that

t
P15 (1) — ()i (1) = cem 1l
for some constant c.
b) For any solution p1(t), show that

t B 1
vlt) = er(e) [ e u0r s

is also a solution and is independent of ¢1, on any interval in which @1(t) # 0.

Proof. a) Suppose 1 and @9 are two solutions of (9.2). Then
o + a1 +agpr = 0,
P35 +arpy + azps = 0.
P11y + a1py + agpa] — 2 + a1 + azpr] = 0,
P15 — P2 + arlpripy — p2¢l] = 0.

Let w = @15 — pagy. Then, w' =195 — p2pf. Thus,

/
'LUI + (Il(t)w =0 = 3 = —al(t) = w=ce" ft ai(s) ds'
w

[Tai(s) ds.

1Py — pap] =ce”

b) Let ¢ (t) = p1(t)v(t) for some non-constant function v(¢), which we will find.
Since 1 (t) is a solution of (9.2), we have

Y+ a1’ + agyp = 0,

(p10)" + a1(p1v) + azprv =0,

o+ 2010 + 10" + a191v + a1p10" + asprv =0,

10" + [2¢) + a1V’ + [pf + a16) + aspr]v =0,

-0
010" + 2] + arp1v’ =0,
" 2 ! !
U_/:_M :_Qﬁ_ah
v ®1 ©1

t
Inv' =—2In oy — / ai(s)ds+ ci,

1 [Tai(s)ds

v =c—=e" ,
o}
t1 s
v = c/ —2@—f ai(r)dr g
Y1
to S d
w(t) = (pl(t)v(t) = C(pl(t)/ ()01(8)2 e_f al(r) rds.

¥ (t) is a solution independent of o1 (t). O
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Problem (W’03, #7). Under what conditions on g, continuous on [0, L], is there a
solution of

o _
8.’1)2 - 97
u(0) =u(L/3) =u(L) =07
Proof. We have

Ugy = 9(33)7

- /Og<5)d5+c,

z g
u(z) = / / g(s)dsdé+ Cx + D.
0 0
0 = = Thus,

u(z) = // s)dsdé+ Cux.
0 = // s)dsdé+ CL, ®
o = wiego = [ [aiai L

® and © are the conditions on g. O
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10 Dominant Balance

Problem (F’90, #4). Use the method of dominant balance to find the asymptotic
behavior at t = oo for solutions of the equation

fu+t3ff—4f=0.

Proof. Assume f = ct™ as t — oo, where need to find n and ¢. Then
n(n —1)ct" 2 4+ 232 — 4et™ = 0,
n(n — 1)t 2 4 n2c2? L — 4ot = 0.
The 27 and the 3% terms are dominant. In order to satisfy the ODE for t — oo, set

n+l=n = n=-1,
n=4c = —4c=0 = c=4.

fr~at™t as t— oo

Problem (S’91, #3). Find the large time behavior for solutions of the equation
d2
dt?

using the method of dominant balance.

d 3 _
foof+ =0

Proof. 22 Assume f = ct" as t — oo, where need to find n and ¢. Then
n(n —1)et" 2 4 net" 1 + 33" = 0.

The 2@ and the 3"% terms are dominant. In order to satisfy the ODE for ¢t — oo, set
1
n—1=3n = n=-z

3 1 3
nc+co=0 = —§c+c =0 = ec=4=+

sl-

1
[~ :I:—t_%, as t— oo.

3

23ChiuYen’s solutions show a different approach, but they are wrong.
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11 Perturbation Theory

Problem (F’89, #5a). Solve the following ODE for u(x) by perturbation theory
= (11.1)

for small . In particular, find the first two terms of u as an expansion in powers of
the parameter €.

Proof. We write u = ug(x) + cuy(z) + O(g?) as € — 0 and find the first two terms ug
and u;. We have

u = wup+euy +O(e?),
u? = (uo + eur + 0(52))2 = ud + 2eupu; + O(e?).
Plugging this into (11.1), we obtain
Uogg + EULgz + 0(62) = s(ug + 2euquy + 0(52)),
Uozx + EUtzr + O(%) = eud + O(e?).
O(1) terms:
Upzz = 0,

Uy = cox + 1,

UO(O) =C = 0,
UO(l) =Cy) =1,
® Uy =T

O(e) terms

Ulgy = Ug,
Ulge = T,
.',13'4
U1:E+Cgl‘+63,
u1(0) =c3 =0,
1 1
Ul(l):E-FCQ:O = 62:—57
- xt 1
® U7 E—E
ot 9
u(x) —;13—1—5(5 - Ew) + 0(&%)
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Problem (F’89, #5b). For the differential equation
Upe = u? + 2303 (11.2)

look for any solution which are bounded for x near +o00. Determine the behavior u for
x near +o0o for any such solutions.
Hint: Look for the dominant behavior of u to be in the form x™".

Proof. Let u = cx™™. Plugging this into (11.2), we obtain

—n(—n—1ecx™™? = Ea72" 4+ S37",

n(n + 1)61,—71—2 —2n + 631,3—371‘

a
Using the method of dominant balance, we want to cancel two terms such that the
third term is 0 at 400 compared to the other two. Let

—n —2=3-—3n,
5
on=—_.
2
Also,
5/5
22 1) — 3
2<2+ c=c",
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Problem (F’03, #6a). For the cubic equation
323 — 2e2? + 20 — 6 =0 (11.3)

write the solutions x in the asymptotic expansion © = xg + ex1 + O(e?) as ¢ — 0.
Find the first two terms xy and x1 for all solutions x.

Proof. As e — 0,

r = o+ er; + O(?),
? = (zo + ex1 + 0(52))2 = 12 + 2ex0z + O(?),
2 = (zo+ex+ 0(52))3 = (2§ + 2ezo21 + O(?)) (w0 + ez1 + O(£?))

= xp + 3exdr + O(?).
Plugging this into (11.3), we obtain
e3(xd + 3exda + O(e%)) — 2e(a + 2exxy + O(£%)) + 2(20 + €21 + O(2)) — 6 = 0.
As ¢ — 0, we ignore the O(g?) terms:

—2ex3 — O(£%) + 210 + 261 + O(e?) — 6 = 0,

—exd + xg + ez — 3+ O0(e?) = 0. (11.4)
Ase—0, —ex} +x0+er1 —3+0(?) — x9—3=0. Thus, 79 = 3.
Plugging this value of z( into (11.4), we obtain
—9e+34ex; —3+0(s?) =0,
~9¢ + exy + O(e%) = 0,

.1‘2:9.

=349+ 0(?).
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Problem (F’03, #6b). For the ODE
ot — 3
e = (11.5)
u(0) =1,

write u = ug(t) + euy (t) + 2uz(t) + O(e3) as € — 0. Find the first three terms ug, u;
and us.

Proof. We have u = ug + cuy + €2ug + O(e?) as e — 0.
ud = (uo + eur + e2ug + 0(53))3 = ud + 3euduy + 3c2uduy + 3%upu? + O(e3).
Plugging this into (11.5), we obtain
wor + eure + e2ugr + 0(63)
_ 2 3 3 2 2 2 2. 2 3
= ug + euy + e7ug + O(e%) — e(uf + 3eugur + 3e ugus + 3e ugui + O(e”)),
ugr 4 eury + e2ug + O(€3) = ug + cuq + 2uy — sug — 352u(2)u1 + 0(e?),

O(1) terms:

Upt = Uo,
® Uy = Coet.
O(e) terms:
_ 3

EUlt = €U — EUy,

3
Ule = U1 — U,
Uy — Ul = —Cgegt

1

e Ul = cle — §Cg€3t

O(e?) terms: %4

52u2t = 52u2 — 352u3u1,

2
Uy = U — ugl1,

1
2 9t 3 3t
Ut — Uy = —3cHe cle —cpe
( 2 0 )
3
Ugp — Uy = —30(230 ele?! + 265€2t€3t

3 3
® Uy = cze — 56(236 ete2t + 865€2t€3t

Thus,
ot t_133t t 3o toa 3 503 3
u(t) = coe’ + e(cre 5 €0 )+e (cze 2600 ee” + gcoee )+ 0(?).
Initial condition gives

1 3 3
u(0) = co+&(er — 503) +e?(ca — Scger + gcg) +0(e%) = 1.

2
Thus, cg=1, ¢ = %, co = %, and
1 3 3 3
u(t) = et + £5 (e' — ™) —1—52(§et - Zete% - ge%e?’t) +0(e%).

O

248olutions to ODEs in u1 and s are obtained by adding homogeneous and particular solutions.



