
Homework 8 Solutions

Igor Yanovsky (Math 151B TA)

Problem 1: Consider the data in the following table

xi 1 2 4 5
yi 2 3 5 6

(1)

We want to find the least squares polynomial of degree 2

P (x) = a0 + a1x + a2x
2 (2)

for the data in the following ways.

(a) Write the normal equations and solve them analytically.

(b) Write a linear least squares problem minu∈R3 E = ||Au − b||2 for the data, where
u = (a0, a1, a2)T . Solve this linear least squares problem analytically with QR decompo-
sition. Compute the error E.

(c) Write a program for part (b) to verify your solutions.

Solution:
Note that in the formulation above,

A =




1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

1 x4 x2
4


 , u =




a0

a1

a2


 , b =




y1

y2

y3

y4


 .

Plugging in the values of xi and yi into Au = b, we obtain

Au =




1 1 1
1 2 4
1 4 16
1 5 25







a0

a1

a2


 =




2
3
5
6


 = b.

It is better to approach part (b) first. From part (b), we see that the polynomial in (2) is
a line.

a) Note: The solution to the normal equations described in this part is a simplifica-
tion. Consult pages 484-486 of textbook for a proper procedure of writing out normal
equations.
We have a linear least squares problem

min
u∈R3

E = ||Au− b||2.

The normal equations associated to this problem are

AT Au = AT b.
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For the problem above, we have




1 1 1 1
1 2 4 5
1 4 16 25







1 1 1
1 2 4
1 4 16
1 5 25


u =




1 1 1 1
1 2 4 5
1 4 16 25







2
3
5
6


 ,




4 12 46
12 46 198
46 198 898


u =




16
58
244


 .

Thus,

u = (AT A)−1AT b =




1
1
0


 . X

Thus the polynomial in (2) is written as

P (x) = 1 + x.

b) We now use Gram-Schmidt process to compute the QR decomposition of A. Be-
low, a1, a2, a3 are the columns of matrix A, not the elements of vector u. First compute
the columns of Q:

q̃1 = a1 =




1
1
1
1


 .

q1 =
q̃1

||q̃1||2 =
1
2




1
1
1
1


 =




1
2
1
2
1
2
1
2


 ,

q̃2 = a2 − (qT
1 a2)q1 =




1
2
4
5


− 6




1
2
1
2
1
2
1
2


 =




−2
−1
1
2


 ,

q2 =
q̃2

||q̃2||2 =
1√
10




−2
−1
1
2


 =




− 2√
10

− 1√
10

1√
10
2√
10


 ,

q̃3 = a3 − (qT
1 a3)q1 − (qT

2 a3)q2 =




1
4
16
25


− 23




1
2
1
2
1
2
1
2


−

60√
10




− 2√
10

− 1√
10

1√
10
2√
10


 =




3
2
−3

2
−3

2
3
2


 ,

q3 =
q̃3

||q̃3||2 =
1
3




3
2
−3

2
−3

2
3
2


 =




1
2
−1

2
−1

2
1
2


 .
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We now compute the elements of R. The elements of R on the diagonal are:

r11 = ||q̃1||2 = 2,

r22 = ||q̃2||2 =
√

10,

r33 = ||q̃3||2 = 3.

The elements of R in the upper triangular part are:

r12 = qT
1 a2 = 6,

r13 = qT
1 a3 = 23,

r23 = qT
2 a3 =

60√
10

.

Thus,

Q =
[

q1 q2 q3

]
=




1
2 − 2√

10
1
2

1
2 − 1√

10
−1

2
1
2

1√
10

−1
2

1
2

2√
10

1
2


 ,

R =



||q̃1||2 qT

1 a2 qT
1 a3

0 ||q̃2||2 qT
2 a3

0 0 ||q̃3||2


 =




2 6 23
0

√
10 60√

10

0 0 3


 .

Q is 4×3 matrix with orthonormal columns. We can assume [Q, q4] is a square orthogonal
matrix for a vector q4. This vector can be obtained by choosing any nonzero vector a4 such
that a1, a2, a3, a4 are linearly independent, and then continuing the above Gram-Schmidt
process.)
Thus, we have

||Au− b||22 = ||QRu− b||22
=

∣∣∣∣[Q, q4]T (QRu− b)
∣∣∣∣2

2

=
∣∣∣∣
∣∣∣∣
(

Ru−QT b
−qT

4 b

) ∣∣∣∣
∣∣∣∣
2

2

= ||Ru−QT b||22 + ||qT
4 b||22,

which is minimized with

u∗ = R−1QT b =




1
1
0


 . X

Thus the polynomial in (2) is written as

P (x) = 1 + x,

which agrees with part (a).
The error is

||Au∗ − b||2 =

∣∣∣∣∣

∣∣∣∣∣




1 1 1
1 2 4
1 4 16
1 5 25







1
1
0


−




2
3
5
6




∣∣∣∣∣

∣∣∣∣∣
2

=

∣∣∣∣∣

∣∣∣∣∣




0
0
0
0




∣∣∣∣∣

∣∣∣∣∣
2

= 0.

That is, the error to this minimization is 0. But this is not surprising, since this polynomial
describes the relationship between xi and yi exactly.
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c) Implementing the QR factorization and running it to decompose A, we obtain the
following matrices:

Q =




0.5 −0.6325 0.5
0.5 −0.3162 −0.5
0.5 0.3162 −0.5
0.5 0.6325 0.5


 ,

R =




2.0 6.0 23.0
0 3.1623 18.9737
0 0 3.0


 .

This agrees with our computation in part (b). The rest of calculations above can also be
verified.
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Problem 2: For the data in problem 1, construct the least squares approximation of the
form beax, and compute the error.

Solution: Instead directly minimizing the least squares error to

y = beax,

we can convert this problem to

log y = log b + ax. (3)

The resulting system is

Au =




1 x1

1 x2

1 x3

1 x4




[
log b

a

]
=




log y1

log y2

log y3

log y4


 = b.

For the data given in (1), we have



1 1
1 2
1 4
1 5




[
log b

a

]
=




log 2
log 3
log 5
log 6


 .

QR factorization of A gives

Q =
[

q1 q2 q3

]
=




1
2 − 2√

10
1
2 − 1√

10
1
2

1√
10

1
2

2√
10


 ,

R =
[ ||q̃1||2 qT

1 a2

0 ||q̃2||2

]
=

[
2 6
0

√
10

]
.

Thus, (don’t confuse two different entities denoted as b below)
[

log b
a

]

︸ ︷︷ ︸
u∗

= R−1QT b =
[

0.4858
0.2708

]
.

Hence, log b = 0.4858, a = 0.2708, or
b = e0.4858, a = 0.2708.

The error is

||Au∗ − b||2 =

∣∣∣∣∣

∣∣∣∣∣




1 1
1 2
1 4
1 5




[
0.4858
0.2708

]
−




log 2
log 3
log 5
log 6




∣∣∣∣∣

∣∣∣∣∣
2

=

∣∣∣∣∣

∣∣∣∣∣




0.063482
−0.071178
−0.040394
0.048090




∣∣∣∣∣

∣∣∣∣∣
2

= 0.114195.

Note that this error corresponds to the modified problem (3).
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Problem 3: In the Gram-Schmidt QR process for A = [a1, a2, · · · , an] ∈ Rm×n, assume
we have obtained j−1 (j < n) orthogonal columns q1, q2, · · · , qj−1. During step j we have
the following formulas

q̃j = ai − (qT
1 aj)q1 − (qT

2 aj)q2 − · · · − (qT
j−1aj)qj−1, rij = qT

i aj ,

qj =
q̃j

||q̃j ||2 .
(4)

Show that ||q̃j ||2 = qT
j aj .

Solution: Hint: One way to approach this problem is to observe that

qj =
Pjaj

||Pjaj ||2 ,

where Pj denotes an orthogonal projector.
Also, note note a simple fact:

q̃1 = a1, q1 =
q̃1

||q̃1||2 ,

we have ||q̃1||2 = qT
1 a1.
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Section 8.5, Problem 4: Find the general continuous least squares trigonometric poly-
nomial Sn(x) for f(x) = ex on [−π, π].

Solution: The continuous least squares approximation Sn(x) is in the form

Sn(x) =
a0

2
+

n∑

k=1

(ak cos kx + bk sin kx),

where

a0 =
1
π

∫ π

−π
f(x) dx,

ak =
1
π

∫ π

−π
f(x) cos kx dx,

bk =
1
π

∫ π

−π
f(x) sin kx dx,

with k = 1, 2, . . .. Thus,

a0 =
1
π

∫ π

−π
ex dx =

1
π

ex
∣∣∣
x=π

x=−π
=

1
π

(eπ − e−π), X

ak =
1
π

∫ π

−π
ex cos kx dx,

bk =
1
π

∫ π

−π
ex sin kx dx.

To determine ak and bk we need to evaluate
∫

ex cos kx dx and
∫

ex sin kx dx, respectively.

Integrating the first integral by parts twice, we have
∫

ex cos kx dx = ex sin kx

k
−

∫
ex sin kx

k
dx = ex sin kx

k
+ ex cos kx

k2
−

∫
ex cos kx

k2
dx.

Multiplying both sides by k2, we obtain

k2

∫
ex cos kx dx = kex sin kx + ex cos kx−

∫
ex cos kx dx,

or
∫

ex cos kx dx =
kex sin kx

k2 + 1
+

ex cos kx

k2 + 1
.

Thus,

ak =
1
π

∫ π

−π
ex cos kx dx

=
1

π(k2 + 1)
[
kex sin kx + ex cos kx

]x=π

x=−π

=
(−1)k

π(k2 + 1)
(
eπ − e−π

)
. X

Similarly,
∫

ex sin kx dx = −kex cos kx

k2 + 1
+

ex sin kx

k2 + 1
.
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Thus,

bk =
1
π

∫ π

−π
ex sin kx dx

=
1

π(k2 + 1)
[− kex cos kx + ex sin kx

]x=π

x=−π

= − k · (−1)k

π(k2 + 1)
(
eπ − e−π

)
. X

Thus, the continuous least squares trigonometric polynomial is

Sn(x) =
1
2π

(eπ − e−π) +
n∑

k=1

[
(−1)k

π(k2 + 1)
(
eπ − e−π

)
cos kx− k · (−1)k

π(k2 + 1)
(
eπ − e−π

)
sin kx

]

=
eπ − e−π

π

[
1
2

+
n∑

k=1

(−1)k

(k2 + 1)
(cos kx− k sin kx)

]
. X
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Section 8.5, Problem 6: Find the general continuous least squares trigonometric poly-
nomial Sn(x) for

f(x) =

{
−1, if − π < x < 0,

1, if 0 ≤ x ≤ π.

Solution: The continuous least squares approximation Sn(x) is in the form

Sn(x) =
a0

2
+

n∑

k=1

(ak cos kx + bk sin kx),

where, for k = 1, 2, . . .,

a0 =
1
π

∫ π

−π
f(x) dx,

=
1
π

∫ 0

−π
−1 dx +

1
π

∫ π

0
1 dx = −1 + 1 = 0, X

ak =
1
π

∫ π

−π
f(x) cos kx dx,

=
1
π

∫ 0

−π
−1 · cos kx dx +

1
π

∫ π

0
1 · cos kx dx,

= − 1
π

sin kx

k

∣∣∣
x=0

x=−π
+

1
π

sin kx

k

∣∣∣
x=π

x=0
= 0 + 0 = 0, X

bk =
1
π

∫ π

−π
f(x) sin kx dx

=
1
π

∫ 0

−π
−1 · sin kx dx +

1
π

∫ π

0
1 · sin kx dx,

=
1
π

cos kx

k

∣∣∣
x=0

x=−π
− 1

π

cos kx

k

∣∣∣
x=π

x=0

=
1
π

(
1− (−1)k

k

)
− 1

π

(
(−1)k − 1

k

)

=
1
π

(
1− (−1)k

k

)
+

1
π

(
1− (−1)k

k

)

=
2
π

(
1− (−1)k

k

)
. X

Thus,

Sn(x) =
2
π

n∑

k=1

(
1− (−1)k

k

)
sin kx. X
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Section 8.5, Problem 7(a): Determine the discrete least squares trigonometric polyno-
mial Sn(x) for f(x) = cos 2x, using m = 4, n = 2, on the interval [−π, π].

Solution: We use the notation of Theorem 8.13, which states that the constants in
the summation

Sn(x) =
a0

2
+ an cosnx +

n−1∑

k=1

(ak cos kx + bk sin kx),

are

ak =
1
m

2m−1∑

j=0

yj cos kxj , for each k = 0, 1, . . . , n,

and

bk =
1
m

2m−1∑

j=0

yj sin kxj , for each k = 1, 2, . . . , n− 1.

For our problem, we will find the discrete least squares polynomial of degree n = 2, S2(x).
For m = 4, the nodes are

xj = −π +
j

m
π and yj = f(xj) = cos 2xj , for j = 0, 1, . . . , 7. (2m− 1 = 7)

The trigonometric polynomial is

S2(x) =
a0

2
+ a2 cos 2x + (a1 cosx + b1 sinx), (5)

where

ak =
1
4

7∑

j=0

yj cos kxj =
1
4

7∑

j=0

cos 2xj cos kxj , for each k = 0, 1, 2. (n = 2),

bk =
1
4

7∑

j=0

yj sin kxj =
1
4

7∑

j=0

cos 2xj sin kxj , for k = 1,

and the coefficients are

a0 =
1
4

7∑

j=0

cos
[
2
(
− π +

j

4
π
)]

cos
[
0 ·

(
− π +

j

4
π
)]

=
1
4

(
cos(−2π) + cos

(
− 3π

2

)
+ cos(−π) + cos

(
− π

2

)
+ cos 0 + cos

π

2
+ cosπ + cos

3π

2

)

= 0,

a1 =
1
4

7∑

j=0

cos
[
2
(
− π +

j

4
π
)]

cos
[
1 ·

(
− π +

j

4
π
)]

=
1
4

(
cos(−2π) cos(−π) + cos

(
− 3π

2

)
cos

(
− 3π

4

)
+ cos(−π) cos

(
− π

2

)

+cos
(
− π

2

)
cos

(
− π

4

)
+ cos 0 cos 0 + cos

π

2
cos

π

4
+ cosπ cos

π

2
+ cos

3π

2
cos

3π

4

)

= 0,
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a2 =
1
4

7∑

j=0

cos
[
2
(
− π +

j

4
π
)]

cos
[
2 ·

(
− π +

j

4
π
)]

=
1
4

(
cos(−2π) cos(−2π) + cos

(
− 3π

2

)
cos

(
− 3π

2

)
+ cos(−π) cos(−π)

+ cos
(
− π

2

)
cos

(
− π

2

)
+ cos 0 cos 0 + cos

π

2
cos

π

2
+ cosπ cosπ + cos

3π

2
cos

3π

2

)

= 1,

b1 =
1
4

7∑

j=0

cos
[
2
(
− π +

j

4
π
)]

sin
[
1 ·

(
− π +

j

4
π
)]

=
1
4

(
cos(−2π) sin(−π) + cos

(
− 3π

2

)
sin

(
− 3π

4

)
+ cos(−π) sin

(
− π

2

)

+cos
(
− π

2

)
sin

(
− π

4

)
+ cos 0 sin 0 + cos

π

2
sin

π

4
+ cosπ sin

π

2
+ cos

3π

2
sin

3π

4

)

= 0.

Thus, the trigonometric least squares polynomial S2(x) defined in equation (5) is S2(x) =
cos 2x. X
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Section 8.5, Problem 12:
a) Determine the discrete least squares trigonometric polynomial S4(x), using m = 16,
for f(x) = x2 sinx on the interval [0, 1].
b) Compute

∫ 1
0 S4(x) dx.

c) Compare the integral in part (b) to
∫ 1
0 x2 sinx dx.

Solution: Note that here you have to make a choice how to define m and the values
j can take.
To find the discrete least squares approximation S4(x) for the data {(xj , yj)}15

j=0, where 1

xj = 0 +
j

16
· 1 =

j

16
and yj = f(xj) = x2

j sinxj , j = 0, 1, . . . , 15,

first requires a transformation from [0, 1] to [−π, π]. This linear transformation is

zj = π(2xj − 1).

Thus, given zj we can transform to xj with xj =
zj

2π
+

1
2

which maps [−π, π] back to

[0, 1].
The transformed data is of the form

{(
zj , f

( zj

2π
+

1
2

)}15

j=0

.

(This transformation distributes the data of f defined on [0, 1] onto [−π, π].)
The least squares trigonometric polynomial is, consequently,

S4(z) =
a0

2
+ a4 cos 4z +

3∑

k=1

(ak cos kz + bk sin kz),

where

ak =
1
16

15∑

j=0

f
( zj

2π
+

1
2

)
cos kzj , for each k = 0, 1, 2, 3, 4, (n = 4)

and

bk =
1
16

15∑

j=0

f
( zj

2π
+

1
2

)
sin kzj , for each k = 1, 2, 3.

Evaluating these sums produces the approximation S4(z), which can be converted back to
the variable x.

1Note that j = m− 1, and not 2m− 1, as in the book, since the problem is different.
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Section 8.5, Problem 15: Show that the functions

φ0(x) = 1
2 ,

φ1(x) = cosx, . . . , φn(x) = cosnx,
φn+1(x) = sinx, . . . , φ2n−1(x) = sin(n− 1)x

(6)

are orthogonal on [−π, π] with respect to w(x) ≡ 1.

Solution: {φ0, φ1, . . . , φn} is said to be an orthogonal set of functions for the interval
[a, b] with respect to the weight function w if

∫ b

a
φj(x)φk(x)w(x) dx =

{
0, when j 6= k,

αk > 0, when j = k.

Note that
∫ π

−π
cos jx cos kx dx =

{
0, when j 6= k,

π, when j = k.

∫ π

−π
sin jx sin kx dx =

{
0, when j 6= k,

π, when k = k.

∫ π

−π

1
2
· 1
2

dx =
π

2
,

∫ π

−π
cos jx sin kx dx = 0, for all j, k

∫ π

−π

1
2

cos kx dx = 0, for all k

∫ π

−π

1
2

sin kx dx = 0, for all k

Thus, the functions in (6) are orthogonal on [−π, π] with respect to w(x) ≡ 1.
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