
Homework 4 Solutions

Igor Yanovsky (Math 151B TA)

Section 5.9, Problem 2(a): Use the Runge-Kutta method for systems to approximate
the solutions of first-order differential equation

u′1 = u1 − u2 + 2, u1(0) = −1,
u′2 = −u1 + u2 + 4t, u2(0) = 0;

0 ≤ t ≤ 1; h = 0.1,
(1)

and compare the result to the actual solution

u1(t) = −1
2
e2t + t2 + 2t− 1

2
,

u2(t) =
1
2
e2t + t2 − 1

2
.

Solution: For a system of two differential equations

u′1 = f1(t, u1, u2), u1(a) = α1,
u′2 = f2(t, u1, u2), u2(a) = α2,

a ≤ t ≤ b,
(2)

the fourth-order Runge-Kutta method is

k1,1 = hf1

(
ti, w1,i, w2,i

)
,

k1,2 = hf2

(
ti, w1,i, w2,i

)
,

k2,1 = hf1

(
ti +

h

2
, w1,i +

k1,1

2
, w2,i +

k1,2

2

)
,

k2,2 = hf2

(
ti +

h

2
, w1,i +

k1,1

2
, w2,i +

k1,2

2

)
,

k3,1 = hf1

(
ti +

h

2
, w1,i +

k2,1

2
, w2,i +

k2,2

2

)
,

k3,2 = hf2

(
ti +

h

2
, w1,i +

k2,1

2
, w2,i +

k2,2

2

)
,

k4,1 = hf1

(
ti + h,w1,i + k3,1, w2,i + k3,2

)
,

k4,2 = hf2

(
ti + h,w1,i + k3,1, w2,i + k3,2

)
,

w1,i+1 = w1,i +
1
6
(
k1,1 + 2k2,1 + 2k3,1 + k4,1

)
,

w2,i+1 = w2,i +
1
6
(
k1,2 + 2k2,2 + 2k3,2 + k4,2

)
,

(3)

where u1(ti) ≈ w1,i, u2(ti) ≈ w2,i.

NOTE THAT THE BOOK USES THE ”i,j” NOTATION INCONSISTENTLY. COM-
PARE, FOR EXAMPLE, FORMULAS (5.48)-(5.52) WITH ALGORITHM 5.7 ON PAGE
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316.

Running the code gives:
N = 10, h = 1.0000000e− 001, t = 1.00,
w1 = −1.1944446208e + 000, w2 = 4.1944446208e + 000,
u1 = −1.1945280495e + 000, u2 = 4.1945280495e + 000,
err1 = 8.3428635596e− 005, err2 = 8.3428635596e− 005.

Running the code with h = 0.1 and h = 0.05, gives the convergence rate of p ≈ 3.88
for each of the two ODEs.
Running the code with h = 0.01 and h = 0.005, gives the convergence rate of p ≈ 3.99 for
each of the two ODEs. This verifies that our algorithm is indeed fourth-order accurate.

Section 5.9, Problem 3(b): Use the Runge-Kutta for Systems Algorithm to approxi-
mate the solution of the following higher-order differential equation

t2y′′ − 2ty′ + 2y = t3 log t,
y(1) = 1, y′(1) = 0,
1 ≤ t ≤ 2,
with h = 0.1,

(4)

and compare the result to the actual solution

y(t) =
7
4
t +

1
2
t3 log t− 3

4
t3. (5)

Solution: We will convert the second order differential equation (4) into a system of two
first order differential equations.

Let

u1(t) = y(t),
u2(t) = y′(t).

Then,

u′1 = y′ = u2,

u′2 = y′′ =
t3 log t + 2ty′ − 2y

t2
=

t3 log t + 2tu2 − 2u2

t2

is a first order system of two differential equations with initial conditions

u1(1) = y(1) = 1,
u2(1) = y′(1) = 1.

Exact solution (5) for the system above can be written as

u1(t) = y(t) =
7
4
t +

1
2
t3 log t− 3

4
t3,

u2(t) = y′(t) =
7
4

+
3
2
t2 log t− 7

4
t2.

Running the Runge-Kutta fourth-order code for systems, gives
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N = 10, h = 1.0000000e− 001, t = 2.00,
w1 = 2.7258237314e− 001, w2 = −1.0911211887e + 000,
u1 = 2.7258872224e− 001, u2 = −1.0911169166e + 000,
err1 = 6.3491028489e− 006, err2 = 4.2720262261e− 006.

Running the code with h = 0.1 and h = 0.05, gives the convergence rate of p ≈ 3.97
for the first ODE and p ≈ 4.02 for the second ODE.
Running the code with h = 0.01 and h = 0.005, gives the convergence rate of p ≈ 4.00 for
each of the two ODEs. This verifies that our algorithm is indeed fourth-order accurate.

Theorem 5.20, (i): Suppose the initial-value problem

y′ = f(t, y), a ≤ t ≤ b, y(a) = α,

is approximated by a one-step difference method in the form

w0 = α, wi+1 = wi + hφ(ti, wi, h).

Suppose also that a number h0 > 0 exists and that φ(t, w, h) is continuous and satisfies
a Lipschitz condition in the variable w with Lipschitz constant L. Then the method is
stable.

Section 5.10, Problem 1: To prove Theorem 5.20, part (i), show that the hypothe-
sis imply that a constant K > 0 exists such that

|ui − vi| ≤ K|u0 − v0|, for each 1 ≤ i ≤ N, (6)

whenever {ui}N
i=1 and {vi}N

i=1 satisfy the difference equation wi+1 = wi + hφ(ti, wi, h).

Solution: We have

ui+1 = ui + hφ(ti, ui, h),
vi+1 = vi + hφ(ti, vi, h).

(7)

Subtracting the second equation in (7) from the first, we obtain

ui+1 − vi+1 = ui − vi + h(φ(ti, ui, h)− φ(ti, vi, h)).

According to one of the hypothesis of Theorem 5.20, φ(t, w, h) is continuous and satisfies
a Lipschitz condition in the variable w with Lipschitz constant L:

|φ(t, w1, h)− φ(t, w2, h)| ≤ L|w1 − w2|.
Thus,

|ui+1 − vi+1| = |ui − vi + h(φ(ti, ui, h)− φ(ti, vi, h))|
≤ |ui − vi|+ h|φ(ti, ui, h)− φ(ti, vi, h)|
≤ |ui − vi|+ hL|ui − vi|
= (1 + hL)|ui − vi|
= (1 + hL)n+1|u0 − v0|.

Thus, |ui − vi| ≤ K|u0 − v0|, where K = (1 + hL)n.
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Section 5.10, Problem 2:
For the Adams-Bashforth and Adams-Moulton methods of order four,
a) Show that if f = 0, then

F (ti, h, wi+1, . . . , wi+1−m) = 0.

b) Show that if f satisfies a Lipschitz condition with constant L, then a constant C exists
with

|F (ti, h, wi+1, . . . , wi+1−m)− F (ti, h, vi+1, . . . , vi+1−m)| ≤ C
m∑

j=0

|wi+1−j − vi+1−j |.

Solution: a) The Adams-Bashforth fourth-order method can be expressed as

wi+1 = wi + F (ti, h, wi+1, wi, wi−1, wi−2, wi−3),
F (ti, h, wi+1, wi, wi−1, wi−2, wi−3)

=
h

24
[
55f(ti, wi)− 59f(ti−1, wi−1) + 37f(ti−2, wi−2)− 9f(ti−3, wi−3)

]
.

If f = 0, then F (ti, h, wi+1, wi, wi−1, wi−2, wi−3) = 0. X.

The Adams-Moulton fourth-order method can be expressed as
wi+1 = wi + F (ti, h, wi+1, wi, wi−1, wi−2),
F (ti, h, wi+1, wi, wi−1, wi−2)

=
h

24
[
9f(ti+1, wi+1) + 19f(ti, wi)− 5f(ti−1, wi−1) + f(ti−2, wi−2)

]
.

If f = 0, then F (ti, h, wi+1, wi, wi−1, wi−2) = 0. X.

b) Function f satisfies a Lipschitz condition with constant L:

|f(t, w1)− f(t, w2)| ≤ L|w1 − w2|.
Thus, for the Adams-Bashforth fourth-order method, we have
|F (ti, h, wi+1, wi, wi−1, wi−2, wi−3)− F (ti, h, vi+1, vi, vi−1, vi−2, vi−3)|
=

h

24

∣∣∣∣
[
55f(ti, wi)− 59f(ti−1, wi−1) + 37f(ti−2, wi−2)− 9f(ti−3, wi−3)

]

−[
55f(ti, vi)− 59f(ti−1, vi−1) + 37f(ti−2, vi−2)− 9f(ti−3, vi−3)

]∣∣∣∣
≤ 55h

24
|f(ti, wi)− f(ti, vi)|+ 59h

24
|f(ti−1, wi−1)− f(ti−1, vi−1)|

+
37h

24
|f(ti−2, wi−2)− f(ti−2, vi−2)|+ 9h

24
|f(ti−3, wi−3)− f(ti−3, vi−3)|

≤ 55h
24

L1|wi − vi|+ 59h

24
L2|wi−1 − vi−1|+ 37h

24
L3|wi−2 − vi−2)|+ 9h

24
L4|wi−3 − vi−3|.

Let C = max
(

55h

24
L1,

59h

24
L2,

37h

24
L3,

9h

24
L4

)
. Then,

|F (ti, h, wi+1, wi, wi−1, wi−2, wi−3)− F (ti, h, vi+1, vi, vi−1, vi−2, vi−3)|
≤ C|wi − vi|+ C|wi−1 − vi−1|+ C|wi−2 − vi−2)|+ C|wi−3 − vi−3|

= C
4∑

j=1

|wi+1−j − vi+1−j |. X

Similarly, for the Adams-Moulton fourth-order method, we have
|F (ti, h, wi+1, wi, wi−1, wi−2)− F (ti, h, vi+1, vi, vi−1, vi−2)|

≤ C

3∑

j=0

|wi+1−j − vi+1−j |. X
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Section 5.10, Problem 4:
Consider the differential equation

y′ = f(t, y), a ≤ t ≤ b, y(a) = α.

a) Show that

y′(ti) =
−3y(ti) + 4y(ti+1)− y(ti+2)

2h
+

h2

3
y′′′(ξi),

for some ξ, where ti < ξi < ti+2.

d) Analyze the following method

wi+2 = 4wi+1 − 3wi − 2hf(ti, wi) (8)

for consistency, stability, and convergence.

Solution: a) We want to show that

y′(ti)− 1
2h

[− 3y(ti) + 4y(ti+1)− y(ti+2)
]

=
h2

3
y′′′(ξi). (9)

Expanding y(ti+1) and y(ti+2) in Taylor’s series about ti, we obtain

y′(ti)− 1
2h

[− 3y(ti) + 4y(ti+1)− y(ti+2)
]

= y′(ti) +
3
2h

y(ti)

− 4
2h

[
y(ti) + hy′(ti) +

h2

2
y′′(ti) +

h3

6
y′′′(ξi1)

]

+
1
2h

[
y(ti) + 2hy′(ti) +

4h2

2
y′′(ti) +

8h3

6
y′′′(ξi2)

]

=
h2

3
y′′′(ξi),

where ti < ξi1 < ti+1, ti < ξi2 < ti+2, and ti < ξi < ti+2.

d) The method is consistent if the local truncation error τi(h) → 0 as h → 0. The
method in (8) has the following truncation error (in formulas below, we again expand
y(ti+1) and y(ti+2) in Taylor’s series about ti, similar to part (a) ):

τi+2(h) =
y(ti+2)− 4y(ti+1) + 3y(ti)

h
+ 2f(ti, y(ti))

=
y(ti+2)− 4y(ti+1) + 3y(ti)

h
+ 2y′(ti) =

2h2

3
y′′′(ξi),

and since τi+2(h) → 0 as h → 0, the method in (8) is consistent. X

For a multistep method to be stable, it has to satisfy the root condition. A multistep
method is said to satisfy the root condition if all roots λi of the characteristic polynomial
P (λ) (for a general form of P (λ) see equation (5.57) in the book) are such that |λi| ≤ 1,
and if |λi| = 1, then λi is simple.
The characteristic polynomial of the following multistep method

wi+2 − 4wi+1 + 3wi = −2hf(ti, wi) (10)
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is

P (λ) = λ2 − 4λ + 3,

which has roots

λ1 = 1, λ2 = 3.

Thus the method in (8) does not satisfy the root condition, and therefore is unstable. X
Thus, the method is not convergent. X

Note that a quick way of writing a characteristic polynomial is to associate the coeffi-
cient a0 to the leftmost grid point in the method’s stencil. In the example above, the
leftmost grid point has an index i, and therefore, a0 = 3, a1 = −4.

Section 5.10, Problem 8:
Consider the problem y′ = 0, 0 ≤ t ≤ 10, y(0) = 0, which has the solution y ≡ 0. If the
difference method of Exercise 4 is applied to the problem, then

wi+1 = 4wi − 3wi−1, for i = 1, 2, . . . , N − 1,

w0 = 0, and w1 = α1.

Suppose w1 = α1 = ε, where ε is a small rounding error. Compute wi exactly for
i = 2, 3, 4, 5, 6 to find how the error ε is propagated.

Solution: The reason for this exercise is to show that a method, even though it is
consistent, will not produce reasonable results unless it is stable. We have

w0 = 0,

w1 = ε,

w2 = 4w1 − 3w0 = 4ε,

w3 = 4w2 − 3w1 = 16ε− 3ε = 13ε,

w4 = 4w3 − 3w2 = 52ε− 12ε = 40ε,
w5 = 4w4 − 3w3 = 160ε− 39ε = 121ε,

w6 = 4w5 − 3w4 = 484ε− 120ε = 364ε.

Thus, the error grows fast with each iteration for this multistep method due to method’s
instability.
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