Homework 4 Solutions

Igor Yanovsky (Math 151B TA)

Section 5.9, Problem 2(a): Use the Runge-Kutta method for systems to approximate
the solutions of first-order differential equation

= u] — ug + 2, ul(O):—l,

—uq + ug + 4t, UQ(O) = 0; (1)

U
ly =
0<t<1; h=0.1,

and compare the result to the actual solution

1 1

u(t) = —f%+¥+%—§,
1 1

'LLQ(t) = §€2t —+ t2 — 5

Solution: For a system of two differential equations

ull :fl(tau17u2)7 ul(a):ah
uy = fot,ur,uz), wugz(a) = as, (2)
a<t<b,

the fourth-order Runge-Kutta method is

kig = hfi(t, wig, wa),
k12 = hfa(ti, w1, way),

h k11 k12
ko1 =hf1 tz‘+§7w1,z‘+7’,w2,i+ 2’ ;
h k1a k12
koo = hfo ti+§7w1,i+%,w2,i+ 2’ ,
h k‘gl k22
ksn = hfi( i+ 2wy + 2wy + 2
3,1 fi z+2awl,z+ 5 s w2 + 5 ) (3)
h k21 k22
]{7372=th ti+§,w1,i+7’,w2¢+ 2’ s

kaq = hfi(ti + hywi; + ks 1, wa; + ks2),
koo = hfa(ti + h,wi,; + ks, wa, + ks2),

1
w1 =wi,; + = (k11 + 2k 4 2ks 1 + k1),

Wo i1 = Wa; + g(k‘l,z + 2koo + 2k3 o + ka2),

where u (t;) & w13, uz(t;) ~ wa,.

NOTE THAT THE BOOK USES THE ”i,j”7 NOTATION INCONSISTENTLY. COM-
PARE, FOR EXAMPLE, FORMULAS (5.48)-(5.52) WITH ALGORITHM 5.7 ON PAGE

1



316.

Running the code gives:

N =10, h = 1.0000000e — 001, ¢ = 1.00,

wl = —1.1944446208¢e + 000, w2 = 4.1944446208e + 000,
ul = —1.1945280495e + 000, u2 = 4.1945280495¢e + 000,
errl = 8.3428635596e — 005, err2 = 8.3428635596e — 005.

Running the code with h = 0.1 and A = 0.05, gives the convergence rate of p ~ 3.88
for each of the two ODEs.

Running the code with A = 0.01 and h = 0.005, gives the convergence rate of p =~ 3.99 for
each of the two ODEs. This verifies that our algorithm is indeed fourth-order accurate.

Section 5.9, Problem 3(b): Use the Runge-Kutta for Systems Algorithm to approxi-
mate the solution of the following higher-order differential equation

t2y" — 2ty’ + 2y = t®logt,

y()=1, (1) =0,
1<t<2, (4)
with h = 0.1,

and compare the result to the actual solution

7.1 3
y(t) = 4t + §t3 logt — Zt?’. (5)

Solution: We will convert the second order differential equation (4) into a system of two
first order differential equations.

Let
ui(t) = y(t),
us(t) = y'(t)
Then,
ull = y, = uz,
;g Blogt+2ty’ —2y  t3logt + 2tuy — 2uy
’UQ = y = —

t2 t2

is a first order system of two differential equations with initial conditions
ui(l) = y(1) =1,
w(l) = y)=1.

Exact solution (5) for the system above can be written as

— - 1
7T 3 7
! 2 2
== = — - 1 - = .
us(t) y(t) 4 + 2t ogt 475

Running the Runge-Kutta fourth-order code for systems, gives



N =10, h = 1.0000000e — 001, ¢t = 2.00,

wl = 2.7258237314e — 001, w2 = —1.0911211887¢e + 000,
ul = 2.7258872224e — 001, u2 = —1.0911169166¢e + 000,
errl = 6.3491028489¢ — 006, err2 = 4.2720262261e — 006.

Running the code with h = 0.1 and h = 0.05, gives the convergence rate of p ~ 3.97
for the first ODE and p ~ 4.02 for the second ODE.

Running the code with A~ = 0.01 and h = 0.005, gives the convergence rate of p =~ 4.00 for
each of the two ODEs. This verifies that our algorithm is indeed fourth-order accurate.

Theorem 5.20, (i): Suppose the initial-value problem
y=fty), a<t<bd, yla)=a,

is approximated by a one-step difference method in the form
wo =, wir1 = w; + ho(t;, w;,h).

Suppose also that a number hy > 0 exists and that ¢(¢,w, h) is continuous and satisfies
a Lipschitz condition in the variable w with Lipschitz constant L. Then the method is
stable.

Section 5.10, Problem 1: To prove Theorem 5.20, part (i), show that the hypothe-
sis imply that a constant K > 0 exists such that

lu; — vi| < K|ug —wvg|, foreach1<i<N, (6)
whenever {u;}¥ | and {v;}Y | satisfy the difference equation w;1 = w; + hé(t;, w;, h).

Solution: We have

Uj4+1 = Ug + hf¢<tl7 Uyq, h’):
Vit1 = v; + ho(t;, vi, h).

Subtracting the second equation in (7) from the first, we obtain
Uit1 — Vit1 = i — v; + h(P(ti, uis h) — ¢(ti, vi, h)).

According to one of the hypothesis of Theorem 5.20, ¢(t,w, h) is continuous and satisfies
a Lipschitz condition in the variable w with Lipschitz constant L:

|¢(t’w17h) - (b(t:w%h)’ S L|’U}1 - wQ‘-

Thus,

[ui = i + h($(ti, i, h) = B(ti, vi, 1))
lus — vi| + h|é(ti, ui, h) — (ti, vi, b))
lui — ;] + hL|u; — v

(14 hL)|u; — v

= (1+hL)"™ug — vol.

|Ui+1 - Ui+1’

IN A

Thus, |u; — v;| < K|ug — vg|, where K = (1 + hL)".



Section 5.10, Problem 2:
For the Adams-Bashforth and Adams-Moulton methods of order four

a) Show that if f =0, then
Wit1-m) = 0.

F(tz‘, h,wi+1, ey
b) Show that if f satisfies a Lipschitz condition with constant L, then a constant C' exists
with
m
‘F(ti, h, Wi41y - - - ,wi+1_m) — F(ti, h, Vi41y .- - 7vi+1—m)’ < CZ ‘wi—i-l—j — Ui+1—j’~
§=0

a) The Adams-Bashforth fourth-order method can be expressed as

Solution:
Wil = W; + F(tz‘, h, Wi4-1, Wi, Wi—1, Wi—2, W; 3)

(tis by wig1, wi, wi—1, wi—2, Wi—3)
[55.f (ti, wi) — 59f (tim1, wi—1) + 37 f (ti—2, wi—2) — 9f (ti—s3, wi—3)]

If f = 0, then F(ti, h,le,wi, Wi—1,W;—92, W; 3) =0 V.

The Adams-Moulton fourth-order method can be expressed as
wiy1 = wi + F(ti, by wit1, wi, wi—1,w;—2)

F(t’u h7wi+17wi7wi—17 wi—2>
h
= [9f (i1, wir1) + 19 (5, wi) = 5f (tim1, wi1) + f(tim2, wi—2)].
If f == 0, then F(ti, h,le,wi, Wi—1, wi_g) =0. V.

b) Function f satisfies a Lipschitz condition with constant L

|f(t7w1) - f(t,w2)| < L|U}1 - w2|‘
Thus, for the Adams-Bashforth fourth-order method, we have
|F(ti, hy wig1, Wi, wi—1, wi—2, wi—3) (ti, by Vi1, Vi, Vi1, V2, Vi—3))|
h
= 24’ [55.f (ti, w;) — 59 f (tim1, wi—1) + 37f (ti—2, wi—2) — 9f (ti—3, wi—3)]

[55f (i, vi) — 59f (ti—1,vi—1) + 37f (tim2, vi—2) — 9f (ti—3,vi—3)]

55h 59h
< 5 — | f(ti,ws) — f(ti,v)| + ﬂ|f(ti—lywi—1) — f(ti—1,vi-1)]
37h 9h
1 — | f(ti—2, wi—2) — f(ti—2,vi—2)| + 24\f(tz 3, wi—3) — f(ti—3,vi-3)|
5%, 59h 37h 9h
—Lo|wi—1 —vi—1| + 54 —La|wi—2 — vi—2)| + 24L4|w7, 3 — Vi—3|.

< 7L1‘wl Uz‘ + 24

55h 59h 37h 9h
Let C = max <24L1, o 2, ﬂLg, 24L4> . Then,

|F'(t, hy Wit1, Wi, Wi—1, Wi—2, Wi—3)

, (ti, by Vg1, Vi, Vi1, V2, Vi-3)|
< C\wl — 7)1‘ + C’\wi_l — Ui—l‘ + C‘wi_g — Ui_2)| + C’|wz 3 — V; 3|

1
=CY w1y —vipigl- v
=1
Similarly, for the Adams-Moulton fourth-order method, we have
|F'(ti, hy Wit 1, i, wim1, wi—2) — F(ti, b, vig1, vi, vie1, vi-2)|
3
<O wiprj = vl v

=0



Section 5.10, Problem 4:
Consider the differential equation

Y = flt,y), a<t<b, y(a)=a.

a) Show that

—3y(t:) + 4y(tiv1) — y(tiyo)
2h

for some &, where t; < & < tj4a.

h2
() = + 56,

d) Analyze the following method
Wi4+2 = 4wi+1 — 3wi — 2hf(ti, w,-) (8)

for consistency, stability, and convergence.

Solution: a) We want to show that

2
(1) = 5[~ 3y(t) + dylti) — ylti1)] = oy (&) )

Expanding y(t;+1) and y(t;4+2) in Taylor’s series about t;, we obtain

(1)~ 5[ = 3ylt) + Ay(tisn) — y(tir2)]
3

=y (ti) + 5 u(ti)

2 3
o [0 + Ry (1) + oy (1) + oy (6]
o )+ 20/ (1) + oy 1)+ )
2}]2 Y 9 i 6 Y (Gi2

= ///(&)

where t; < &1 < tip1, ti < &2 <tip2, and t; < & < tigo.

d) The method is consistent if the local truncation error 7;(h) — 0 as h — 0. The
method in (8) has the following truncation error (in formulas below, we again expand
y(ti+1) and y(t;42) in Taylor’s series about ¢;, similar to part (a) ):

Y(tiv2) — 4y(tiv1) + 3y(t:)

Tiv2(h) = h 21ty ()
_ y(tiv2) 4?!(;;“) +3y(t:) + 2y (t;) = %ym(&'),

and since 7;42(h) — 0 as h — 0, the method in (8) is consistent. v

For a multistep method to be stable, it has to satisfy the root condition. A multistep
method is said to satisfy the root condition if all roots A; of the characteristic polynomial
P(X) (for a general form of P()) see equation (5.57) in the book) are such that |A\;| <1,
and if |\;| = 1, then \; is simple.

The characteristic polynomial of the following multistep method

Wita — dwir1 + 3w; = —2hf(t;, w;) (10)



is

P(\) = A% — 4\ + 3,
which has roots

A=1, Ay =3.

Thus the method in (8) does not satisfy the root condition, and therefore is unstable. v/
Thus, the method is not convergent. v

Note that a quick way of writing a characteristic polynomial is to associate the coeffi-
cient ag to the leftmost grid point in the method’s stencil. In the example above, the
leftmost grid point has an index ¢, and therefore, ag = 3, a; = —4.

Section 5.10, Problem 8:
Consider the problem ¢y’ =0, 0 <t <10, y(0) =0, which has the solution y = 0. If the
difference method of Exercise 4 is applied to the problem, then

Wi+1 = 4w,~—3wz~_1, fOI'iZl,Q,...,N—l,
wy =0, and wi = a;.
Suppose wy; = a1 = &, where € is a small rounding error. Compute w; exactly for

i =2,3,4,5,6 to find how the error ¢ is propagated.

Solution:  The reason for this exercise is to show that a method, even though it is
consistent, will not produce reasonable results unless it is stable. We have

wg = 0,

w = &,

wy = 4w — 3wy = 4e,

wy = 4wy — 3wy = 16 — 3¢ = 13¢,

Wyq = 4w3 — 3w2 =5H2e — 12 = 406,
Wy = 4w4 — 3’LU3 = 160 — 39¢ = 1216,
wg = 4wy — 3wy = 484 — 120 = 364¢.

Thus, the error grows fast with each iteration for this multistep method due to method’s
instability.



