
Homework 2 Solutions

Igor Yanovsky (Math 151B TA)

Section 5.3, Problem 1(b): Use Taylor’s method of order two to approximate the
solution for the following initial-value problem:

y′ = 1 + (t− y)2, 2 ≤ t ≤ 3,
y(2) = 1,

(1)

with h = 0.5.

Solution: Let us first derive the Taylor’s method or order two for general initial value
problem

y′ = f(t, y), a ≤ t ≤ b,
y(a) = α.

(2)

Expand the solution y(t) in terms of its second Taylor polynomial about ti and evaluate
at ti+1, we obtain

y(ti+1) = y(ti) + hy′(ti) +
h2

2
y′′(ti) +

h3

6
y′′′(ξi), (3)

for some ξi ∈ (ti, ti+1). Since we have y′(t) = f(t, y(t)), differentiating y′(t) twice gives

y′′(t) = f ′(t, y(t)),
y′′′(t) = f ′′(t, y(t)).

Plugging these into (3) gives

y(ti+1) = y(ti) + hf(ti, y(ti)) +
h2

2
f ′(ti, y(ti)) +

h3

6
f ′′(ξi, y(ξi)). (4)

When h is small, the last term in (4) is small, and thus, we can ignore it. The Taylor’s
method of order two for general initial value problem (2) is therefore

w0 = α,

wi+1 = wi + hf(ti, wi) +
h2

2
f ′(ti, wi).

(5)

For the initial value problem (1), we have

f(t, y(t)) = 1 + (t− y)2,

f ′(t, y(t)) =
d

dt
(1 + (t− y)2) = 2(t− y) · (1− y′) = 2(t− y) · (1− (1 + (t− y)2))

= −2(t− y)3.

Equation (5), with ti = 2 + 0.5i, becomes

wi+1 = wi + h(1 + (ti − wi)2)− h2

2
(2(ti − wi)3)

= wi + 0.5(1 + (2 + 0.5i− wi)2)− 0.25(2 + 0.5i− wi)3.
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Hence, with w0 = 1, we have

w1 = w0 + 0.5(1 + (2− w0)2)− 0.25(2− w0)3 = 1 + 0.5(1 + 1)− 0.25 = 1.75, X
w2 = w1 + 0.5(1 + (2 + 0.5− w1)2)− 0.25(2 + 0.5− w1)3

= 1.75 + 0.5(1 + (2 + 0.5− 1.75)2)− 0.25(2 + 0.5− 1.75)3 = 2.425781. X

Section 5.3, Problem 1(c): Use Taylor’s method of order two to approximate the
solution for the following initial-value problem:

y′ = 1 +
y

t
, 1 ≤ t ≤ 2,

y(1) = 2,
(6)

with h = 0.25.

Solution: The Taylor’s method of order two for general initial value problem (2) is
given by equation (5). For the initial value problem (6), we have

f(t, y(t)) = 1 +
y

t
,

f ′(t, y(t)) =
d

dt

(
1 +

y

t

)
=

y′t− y

t2
=

(1 + y
t )t− y

t2
=

1
t
.

Equation (5), with ti = 1 + 0.25i, becomes

wi+1 = wi + h
(
1 +

wi

ti

)
+

h2

2

( 1
ti

)

= wi + 0.25
(
1 +

wi

1 + 0.25i

)
+ 0.03125

( 1
1 + 0.25i

)
.

Hence, with w0 = 2, we have

w1 = w0 + 0.25(1 + w0) + 0.03125 = 2.78125, X

w2 = w1 + 0.25
(
1 +

w1

1.25

)
+ 0.03125

( 1
1.25

)
= 3.6125, X

and, similarly, calculate w3 and w4.
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Problem 2: Assume that y(t) = 4 cos t − 7(t − 4)3 is the solution to some initial value
problem on −2 ≤ t ≤ 3.

a) Calculate the local truncation error when Euler’s method is applied to this problem.
Derive an upper bound for the local truncation error at t = 3 if the stepsize is h = 0.001.

b) For the same function y(t), and also for h = 0.001, find an upper bound for the
global error for Euler’s method at t = 3, if we assume that the Lipschitz constant is L = 2.
You would likely get a bigger number than the local truncation error.

Solution:
a) Since y(t) = 4 cos t − 7(t − 4)3, we have y′(t) = −4 sin t − 21(t − 4)2 and y′′(t) =
−4 cos t− 42(t− 4).
Thus, f(t, y) = y′(t) = −4 sin t− 21(t− 4)2.
Euler’s method

w0 = α,
wi+1 = wi + hf(ti, wi)

(7)

has local truncation error

τi+1(h) =
1
h

(yi+1 − (yi + hf(ti, yi))) =

=
yi+1 − yi

h
− f(ti, yi).

For this problem, we have

τi+1(h) =
yi+1 − yi

h
+ 4 sin ti + 21(ti − 4)2. X

Local truncation error measures the accuracy of the method at a specific step, assum-
ing that the method was exact at the previous step. It is important to note that this
error depends on the differential equation, the step size, and the particular step in the
approximation. We know the differential equation, i.e., we know f(t, y). Hence, the local
truncation error is a function of the step size h and the particular step i. X

The local truncation error for Euler’s method is:

τi+1(h) =
h

2
y′′(ξi),

for some ξi in (ti, ti + 1). The upper bound for the local truncation error is

|τi+1(h)| ≤ h

2
M.

At t = 3, we have

|y′′(3)| = | − 4 cos 3− 42(3− 4)| = 45.96.

Hence, for h = 0.001, at t = 3 we have

|τi+1(h = 0.001)| ≈ 0.001
2

· 45.96 = 0.023. X
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b) The formula for calculating the global error is located on page 327 of the textbook:

|y(ti)− wi| ≤ τ(h)
L

eL(ti−a),

where τi(h) satisfies τi(h) ≤ τ(h).
Since y′′(t) = −4 cos t− 42(t− 4), we have

|y′′(t)| ≤ | − 4 cos t− 42(t− 4)| ≤ 250.4 = M,

which gives

|τ(h)| ≤ h

2
M =

0.001
2

· 250.4 = 0.1252.

Thus, the global error is

|y(ti)− wi| ≤ 0.1252
2

· e2(3+2) = 1379. X
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Problem 3: Use the midpoint method to approximate the solution to the initial value
problem

y′ = 1 + (t− y)2, 2 ≤ t ≤ 3,
y(2) = 1,

(8)

with stepsize h = 0.5. The exact solution is y(t) = t +
1

1− t
. Compare the approximate

and exact solutions.

Solution: The Runge-Kutta Midpoint method for the solution of the initial value problem

y′ = f(t, y), a ≤ t ≤ b,
y(a) = α,

(9)

can be written as

w0 = α,

wi+1 = wi + hf
(
ti +

h

2
, wi +

h

2
f(ti, wi)

)
, i = 0, 1, . . . .

(10)

For the initial value problem in (8), ti = 2 + ih, i.e. t0 = 2.0, t1 = 2.5, t2 = 3.0, and we
need to take only two steps, calculating w1 at time t1, and w2 at time t2. We have:

w0 = 1, (11)

w1 = w0 + hf
(
t0 +

h

2
, w0 +

h

2
f(t0, w0)

)
(12)

= 1 + 0.5f
(
2 + 0.25, 1 + 0.25(1 + (2− 1)2)

)
(13)

= 1 + 0.5f(2.25, 1.5) (14)
= 1 + 0.5 · (1 + (2.25− 1.5)2) = 1.78125, (15)

w2 = w1 + hf
(
t1 +

h

2
, w1 +

h

2
f(t1, w1)

)
(16)

= 1.78125 + 0.5f
(
2.5 + 0.25, 1.78125 + 0.25f(2.5, 1.78125)

)
(17)

= 1.78125 + 0.5f
(
2.75, 1.78125 + 0.25 · (1 + (2.5− 1.78125)2)

)
(18)

= 1.78125 + 0.5f(2.75, 2.16040) (19)
= 1.78125 + 0.5(1 + (2.75− 2.16040)2) (20)
= 2.455064. (21)

The exact solution gives the following values: y(t1 = 2.5) = 1.8333 and y(t2 = 3) = 2.5.
Note that these results are more accurate than the results obtained with Euler’s method
in Homework 1.
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Problem 4: Consider the initial value problem

y′ = 1 +
y

t
, 1 ≤ t ≤ 2,

y(1) = 2.
(22)

The exact solution to this problem is y(t) = t log t + 2t.

a) If Euler’s method is used to solve this problem and an accuracy of 10−4 is desired
for the final value y(2), what stepsize h should be used approximately?

b) Write a code for Euler’s method and use it to solve this problem using the h in part
(a). Plot both the numerical and exact solutions at all intermediate mesh points.

c) Repeat part (b) with midpoint method.

d) Repeat part (c) with step with stepsize
h

2
. Then use the numerical results from (c)

and (d) to estimate the order p of the midpoint method.
Hint: O(hp) is the global error for the method when a stepsize h is used.

Solution:
a) We will use the following formula to obtain the stepsize h:

|y(ti)− wi| ≤ hM

2L

[
eL(ti−a) − 1

]
. (23)

We first find M and L. We have y′(t) = log t+3, and y′′(t) =
1
t
. The bound M is obtained

from: |y′′(t)| =
∣∣∣1
t

∣∣∣ ≤ 1 = M , 1 ≤ t ≤ 2. Also, since f(t, y) = 1 +
y

t
, we have

∣∣∣∣
∂f

∂y

∣∣∣∣ =
∣∣∣∣
1
t

∣∣∣∣ = 1 = L, 1 ≤ t ≤ 2. (24)

Plugging these into (23), we get

10−4 =
h

2
[
e1 − 1

]
,

h = 1.164 · 10−4.

b) Running the code gives:
N = 8591, h = 1.1640088e− 004, t = 2.00, w = 5.3862361624e + 000, y = 5.3862943611e +
000, error = 5.8198752389e− 005.

As expected, with stepsize h = 1.164·10−4 from part (a), we obtained the desired accuracy
of 10−4.
Check the plots of the exact solution and the solution obtained using Euler’s method. The
plots of the functions are overlaid due to sufficient accuracy.
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c) The Runge-Kutta Midpoint method for the solution of the initial value problem

y′ = f(t, y), a ≤ t ≤ b,
y(a) = α,

(25)

is

w0 = α,

wi+1 = wi + hf
(
ti +

h

2
, wi +

h

2
f(ti, wi)

)
, i = 0, 1, . . . .

(26)

Running the Runge-Kutta Midpoint method program gives:

N = 8591, h = 1.1640088e− 004, t = 2.00, w = 5.3862943603e + 000, y = 5.3862943611e +
000, error = 8.5053120102e− 010.
Thus, RK Midpoint rule gives considerably more accurate results than Euler’s method.

d) Running the Midpoint program gives the following results:

N = 17182, h = 5.8200442e−005, t = 2.00, w = 5.3862943609e+000, y = 5.3862943611e+
000, error = 2.0656898414e− 010.

Order of convergence:

p =
log10

( wh−yexact

wh/2−yexact

)

log10(2.0)
=

log10

(
8.5053120102e−010
2.0656898414e−010

)

log10(2.0)
≈ 2.041. X

We obtain the 2rd, or quadratic, order of convergence, for the second order Runge-Kutta
Midpoint method, which is expected.
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