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The QR decomposition (also called the QR factorization) of a matrix is a decomposition
of the matrix into an orthogonal matrix and a triangular matrix. A QR decomposition of
a real square matrix A is a decomposition of A as

A=QR,

where @ is an orthogonal matrix (i.e. Q7Q = I) and R is an upper triangular matrix. If
A is nonsingular, then this factorization is unique.

There are several methods for actually computing the QR decomposition. One of such
method is the Gram-Schmidt process.

1 Gram-Schmidt process

Consider the GramSchmidt procedure, with the vectors to be considered in the process as
columns of the matrix A. That is,
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1.1 QR Factorization
The resulting QR factorization is
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Note that once we find eq,...,e,, it is not hard to write the QR factorization.



2 Example

Consider the matrix
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with the vectors a; = (1,1,0)7, ay = (1,0,1)7, a3 = (0,1, 1)7.

Note that all the vectors considered above and below are column vectors. From now on,
I will drop © notation for simplicity, but we have to remember that all the vectors are
column vectors.

Performing the Gram-Schmidt procedure, we obtain:
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