
Final Review Problems

Igor Yanovsky (Math 151B TA)

These sample review problems do not necessarily represent the content, length, or depth
of the material you will be tested on.

Among other things, it is also a good idea to go over the homework sets.

1 Fourier Series

Problem: Find the general continuous least squares trigonometric polynomial Sn(x) for

f(x) =

{
0, if − π < x ≤ 0,

1, if 0 < x < π.

Solution: The continuous least squares approximation Sn(x) is in the form

Sn(x) =
a0

2
+

n∑

k=1

(ak cos kx + bk sin kx),

where, for k = 1, 2, . . .,

a0 =
1
π

∫ π

−π
f(x) dx,

=
1
π

∫ 0

−π
0 dx +

1
π

∫ π

0
1 dx = 1, X

ak =
1
π

∫ π

−π
f(x) cos kx dx,

=
1
π

∫ 0

−π
0 · cos kx dx +

1
π

∫ π

0
1 · cos kx dx,

=
1
π

sin kx

k

∣∣∣
x=π

x=0
= 0, X

bk =
1
π

∫ π

−π
f(x) sin kx dx

=
1
π

∫ 0

−π
0 · sin kx dx +

1
π

∫ π

0
1 · sin kx dx,

= − 1
π

cos kx

k

∣∣∣
x=π

x=0
= − 1

π

(
(−1)k − 1

k

)
=

1
π

(
1− (−1)k

k

)
. X

Thus,

Sn(x) =
1
2

+
1
π

n∑

k=1

(
1− (−1)k

k

)
sin kx. X
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2 QR decomposition and Least Squares

The QR decomposition (also called the QR factorization) of a matrix is a decomposition
of the matrix into an orthogonal matrix and a triangular matrix. A QR decomposition of
a real square matrix A is a decomposition of A as

A = QR,

where Q is an orthogonal matrix (i.e. QT Q = I) and R is an upper triangular matrix. If
A is nonsingular, then this factorization is unique.

There are several methods for actually computing the QR decomposition. One of such
method is the Gram-Schmidt process.

2.1 Gram-Schmidt process

Consider the GramSchmidt procedure, with the vectors to be considered in the process as
columns of the 3x3 matrix A. That is,

A =
[

a1

∣∣ a2

∣∣ · · · ∣∣ an

]
.

Then,

q̃1 = a1, q1 =
q̃1

||q̃1||2 ,

q̃2 = a2 − (qT
1 a2)q1, q2 =

q̃2

||q̃2||2 ,

q̃3 = a3 − (qT
1 a3)q1 − (qT

2 a3)q2, q3 =
q̃3

||q̃3||2 .

2.2 QR Factorization

The resulting QR factorization is

A =
[

a1

∣∣ a2

∣∣ a3

]
=

[
q1

∣∣ q2

∣∣ q3

] 

||q̃1||2 qT

1 a2 qT
1 a3

0 ||q̃2||2 qT
2 a3

0 0 ||q̃3||2


 = QR.

2.3 Example

Consider the matrix

A =




1 1 0
1 0 1
0 1 1


 ,

with the vectors a1 = (1, 1, 0)T , a2 = (1, 0, 1)T , a3 = (0, 1, 1)T .
Note that all the vectors considered above and below are column vectors. From now on,
I will drop T notation for simplicity, but we have to remember that all the vectors are
column vectors.
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Performing the Gram-Schmidt procedure, we obtain:

q̃1 = a1 = (1, 1, 0),

q1 =
q̃1

||q̃1||2 =
1√
2
(1, 1, 0) =

(
1√
2
,

1√
2
, 0

)
,

q̃2 = a2 − (qT
1 a2)q1 = (1, 0, 1)− 1√

2

(
1√
2
,

1√
2
, 0

)
=

(
1
2
,−1

2
, 1

)
,

q2 =
q̃2

||q̃2||2 =
1√
3/2

(
1
2
,−1

2
, 1

)
=

(
1√
6
,− 1√

6
,

2√
6

)
,

q̃3 = a3 − (qT
1 a3)q1 − (qT

2 a3)q2

= (0, 1, 1)− 1√
2

(
1√
2
,

1√
2
, 0

)
− 1√

6

(
1√
6
,− 1√

6
,

2√
6

)
=

(
− 1√

3
,

1√
3
,

1√
3

)
,

q3 =
q̃3

||q̃3||2 =
(
− 1√

3
,

1√
3
,

1√
3

)
.

Thus,

Q =
[

q1

∣∣ q2

∣∣ q3

]
=




1√
2

1√
6

− 1√
3

1√
2

− 1√
6

1√
3

0 2√
6

1√
3


 ,

R =



||q̃1||2 qT

1 a2 qT
1 a3

0 ||q̃2||2 qT
2 a3

0 0 ||q̃3||2


 =




2√
2

1√
2

1√
2

0 3√
6

1√
6

0 0 2√
3


 .

Also, review homework problems on solving linear least squares problem with QR decom-
position.
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3 Vector and Matrix Norms

The L∞ and L2 norms for the vector x = (x1, x2, . . . , xn)T are defined by

||x||∞ = max
1≤i≤n

|xi|,

||x||2 =
{ n∑

i=1

x2
i

} 1
2

.

For matrices, the definitions of || · ||∞, || · ||F , and || · ||2 norms are:

||A||∞ = max
1≤i≤n

n∑

j=1

|aij |,

||A||F =
( n∑

i=1

n∑

j=1

|aij |2
) 1

2

,

||A||2 = max
||x||2=1

||Ax||2.

Note, that Ax is a vector:

Ax =




∑n
j=1 a1jxj∑n
j=1 a2jxj

...∑n
j=1 anjxj


 .

Thus, we have

||Ax||2 =
( n∑

i=1

( n∑

j=1

aijxj

)2
) 1

2

.
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4 Iterative methods for the solution of linear systems of
equations.

4.1 Jacobi Method

A general n× n linear system can be written as Ax = b, where

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann


 .

Jacobi method is written in the form x(k) = Tx(k−1) + c by splitting A. Let D be the
diagonal matrix whose diagonal entries are those of A, −L be the strictly lower-triangular
part of A, and −U be the strictly upper-triangular part of A. Hence,

A =




a11 0 · · · 0

0 a22
. . .

...
...

. . . . . . 0
0 · · · 0 ann



−




0 · · · · · · 0

−a21
. . .

...
...

. . . . . .
...

−an1 · · · −an,n−1 0



−




0 −a12 · · · −a1n
...

. . . . . .
...

...
. . . −an−1,n

0 · · · · · · 0




= D − L− U.

The equation Ax = b, or

(D − L− U)x = b, (1)

is then transformed into

Dx = (L + U)x + b,

and, if D−1 exists,

x = D−1(L + U)x + D−1b.

This results in the matrix form of the Jacobi iterative technique:

x(k) = D−1(L + U)x(k−1) + D−1b.

Introducing Tj = D−1(L + U) and cj = D−1b (here, “j” stands for “Jacobi”), the Jacobi
method has the form

x(k) = Tjx(k−1) + cj .

4.2 Gauss-Seidel Method

Equation (1) can be written as

(D − L)x = Ux + b,

which gives the Gauss-Seidel method:

(D − L)x(k) = Ux(k−1) + b

or

x(k) = (D − L)−1Ux(k−1) + (D − L)−1b.

Introducing Tg = (D−L)−1U and cg = (D−L)−1b (here, “g” stands for “Gauss-Seidel”),
the Gauss-Seidel method has the form

x(k) = Tgx(k−1) + cg.

Please see relevant homework problems for examples.
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4.3 Spectral Radius

The spectral radius ρ(A) of matrix A is defined by

ρ(A) = max |λ|, where λ is an eigenvalue of A.

4.4 Diagonal Dominance

The n× n matrix A is said to be strictly diagonally dominant when

|aii| >
∑

j=1, j 6=i

|aij |, (2)

holds for each i = 1, 2, . . . , n.

4.5 Condition Number

The condition number of the nonsingular matrix A relative to a norm || · || is

K(A) = ||A|| · ||A−1||.
In particular, the condition number of A relative to || · ||∞ is

K(A) = ||A||∞ · ||A−1||∞,

where

||A||∞ = max
1≤i≤n

n∑

j=1

|aij |.
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5 Consistency, Stability and Convergence of Numerical Meth-
ods

A one-step difference equation method with local truncation error τi(h) at the ith step is
said to be consistent if

lim
h→0

max
1≤i≤N

|τi(h)| = 0. (3)

A one-step difference equation method is said to be convergent if

lim
h→0

max
1≤i≤N

|wi − y(ti)| = 0, (4)

where yi is the exact solution and wi is the approximation obtained from the difference
method. Recall that for Euler’s method, we have

max
1≤i≤N

|wi − y(ti)| ≤ Mh

2L
|eL(b−a) − 1|, (5)

and, therefore, Euler’s method is convergent with the linear (first order) rate of conver-
gence of O(h).

A method is stable if its results depend continuously on the initial data.
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5.1 Stability of Multistep Methods

Problem: To approximate the initial value problem

y′ = f(t, y) (6)

for t > 0, consider a multistep method

wi+1 = 2wi−1 − wi + h
[5
2
f(ti, wi) +

1
2
f(ti−1, wi−1)

]
.

Is this method stable?

Solution: For a multistep method to be stable, it has to satisfy the root condition. A
multistep method is said to satisfy the root condition if all roots λi of the characteristic
polynomial P (λ) (for a general form of P (λ) see equation (5.57) in the book) are such
that |λi| ≤ 1, and if |λi| = 1, then λi is simple.
The characteristic polynomial of the following multistep method

wi+1 + wi − 2wi−1 = h
[5
2
f(ti, wi) +

1
2
f(ti−1, wi−1)

]
.

is

P (λ) = −2 + λ + λ2,

which has roots

λ1 = 1, λ2 = −2.

Thus this multistep method does not satisfy the root condition, and therefore is unstable.
X
Note that a quick way of writing a characteristic polynomial is to associate the coefficient
a0 to the leftmost grid point in the method’s stencil. In the example above, the leftmost
grid point has an index i− 1, and therefore, a0 = −2, a1 = 1, a2 = 1.
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5.2 Local Truncation Errors and Consistency

Problem: To approximate the initial value problem

y′ = f(t, y) (7)

for t > 0, consider a multistep method

wi+1 = 2wi−1 − wi + h
[5
2
f(ti, wi) +

1
2
f(ti−1, wi−1)

]
.

Find the local truncation error.

Solution: Expanding terms in Taylor’s series around ti, we obtain the following local
truncation error τ(h):

τi+1(h) =
1
h

(
y(ti+1) + y(ti)− 2y(ti−1)− h

[5
2
f(ti, y(ti)) +

1
2
f(ti−1, y(ti−1))

])
=

=
1
h

[
y(ti+1) + y(ti)− 2y(ti−1)

]
− 5

2
y′(ti)− 1

2
y′(ti−1)

=
1
h

[
y(ti) + hy′(ti) +

h2

2
y′′(ti) +

h3

6
y′′′(ξi1)

+y(ti)

−2
(
y(ti)− hy′(ti) +

h2

2
y′′(ti)− h3

6
y′′′(ξi2)

)]

−5
2
y′(ti)

−1
2

[
y′(ti)− hy′′(ti) +

h2

2
y′′′(ξi3)

]

=
1
4
h2y′′′(ξi),

where ti−1 < ξi < ti+1.
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5.3 Regions of Absolute Stability

Problem: Show that the Backward Euler (or Implicit Euler) method

wi+1 = wi + hf(ti+1, wi+1)

is A-stable.

Solution: The region R of absolute stability is R = {hλ ∈ C | |Q(hλ)| < 1}, where
wi+1 = Q(hλ)wi. A numerical method is said to be A-stable if its region of stability R
contains the entire left half-plane.

In other words, in order to show that the method is A-stable, we need to show that
when it is applied to the scalar test equation y′ = λy = f , whose solutions tend to zero
for λ < 0, all the solutions of the method also tend to zero for a fixed h > 0 as i →∞.

For the Backward Euler method, we have

wi+1 = wi + hλwi+1,
wi+1 − hλwi+1 = wi,
wi+1(1− hλ) = wi,

wi+1 =
1

1− hλ
wi,

wi+1 =
(

1
1− hλ

)n+1

w0.

Thus,

Q(hλ) =
1

1− hλ
.

Note that for Re(hλ) < 0, |Q(hλ)| < 1. Therefore, the region of absolute stability R for
the Backward Euler method contains the entire left half-plane, and hence, the method is
A-stable.
Note that the region of absolute stability contains the interval (2,+∞).
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6 Boundary Value Problems

Given the second-order boundary-value problem

y′′(x) = p(x)y′(x) + q(x)y(x) + r(x),
a ≤ x ≤ b,
y(a) = α, y(b) = β,

the differential equation to be approximated at the interior points xi is

y′′(xi) = p(xi)y′(xi) + q(xi)y(xi) + r(xi). (8)

It might be helpful to know how to derive the following approximations to the first and
second derivatives of y(xi) (pages 656-657 in the book). Expanding y(xi+1) and y(xi−1) in
Taylor polynomials about xi, and doing some arithmetic manipulations (as in the book),
we obtain the following formulas:

y′′(xi) =
1
h2

[
y(xi+1)− 2y(xi) + y(xi−1)

]− h2

12
y′′′′(ξi),

y′(xi) =
1
2h

[
y(xi+1)− y(xi−1)

]− h2

6
y′′′(ηi).

The approximation to (8) is therefore:
(−wi+1 + 2wi − wi−1

h2

)
+ p(xi)

(
wi+1 − wi−1

2h

)
+ q(xi)wi = −r(xi). (9)

Problem: Write the discretization of the following boundary value problem

y′′ = −4
x

y′ +
2
x2

y − 2
x2

log x,

1 ≤ x ≤ 2,

y(1) = −1
2
, y(2) = log 2,

in matrix-vector notation Aw = b.

Solution: At the interior points xi, for i = 1, 2, . . . , N , the differential equation to be
approximated is

y′′(xi) = − 4
xi

y′(xi) +
2
x2

i

y(xi)− 2
x2

i

log xi. (10)

Since

y′′(xi) =
y(xi+1)− 2y(xi) + y(xi−1)

h2
− h2

12
y(4)(ξi),

y′(xi) =
y(xi+1)− y(xi−1)

2h
− h2

6
y′′′(ηi),

we can write the numerical approximation to (10) as

wi+1 − 2wi + wi−1

h2
+

4
xi

(
wi+1 − wi−1

2h

)
− 2

x2
i

wi = − 2
x2

i

log xi. (11)

Multiplying both sides of (11) by −h2 gives

−(wi+1 − 2wi + wi−1)− 2h

xi
(wi+1 − wi−1) +

2h2

x2
i

wi =
2h2

x2
i

log xi.
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Collecting wi−1, wi, and wi+1 terms, we obtain

−
(
1− 2h

xi

)
wi−1 +

(
2 +

2h2

x2
i

)
wi −

(
1 +

2h

xi

)
wi+1 =

2h2

x2
i

log xi. (12)

The resulting system of equations can be expressed in the tridiagonal N ×N matrix form

Aw = b, where

A =




2 +
2h2

x2
1

−1− 2h

x1
0 · · · 0

−1 +
2h

x2
2 +

2h2

x2
2

−1− 2h

x2

. . .
...

0
. . . . . . . . . 0

...
. . . . . . . . . −1− 2h

xN−1

0 · · · 0 −1 +
2h

xN
2 +

2h2

x2
N




,

w =




w1

w2
...

wN−1

wN




, and b =




2h2

x2
1

log x1 +
(
1− 2h

x1

)
w0

2h2

x2
2

log x2

...
2h2

x2
N−1

log xN−1

2h2

x2
N

log xN +
(
1 +

2h

xN

)
wN+1




. X

In order to see that this system satisfies (12), look at a couple of rows of matrix A, for
example, the second row:

−
(
1− 2h

x2

)
w1 +

(
2 +

2h2

x2
2

)
w2 −

(
1 +

2h

x2

)
w3 =

2h2

x2
2

log x2.

Also, first and last elements of b might be a little daunting. However, if we look at the
first row (for example), we see that

(
2 +

2h2

x2
1

)
w1 −

(
1 +

2h

x1

)
w2 =

2h2

x2
1

log x1 +
(
1− 2h

x1

)
w0,

or

−
(
1− 2h

x1

)
w0 +

(
2 +

2h2

x2
1

)
w1 −

(
1 +

2h

x1

)
w2 =

2h2

x2
1

log x1,

which satisfies equation (12).

Also, note that the book considers the general second-order boundary value problem:

y′′(x) = p(x)y′(x) + q(x)y(x) + r(x).

For our problem, p(x) = −4
x

, q(x) =
2
x2

, and r(x) = − 2
x2

log x. Plugging these values
into the formulas in the book, we can verify whether our calculations are correct.
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