Homework 1 Solutions

Igor Yanovsky (Math 151A TA)

Problem 1: Determine a formula which relates the number of iterations, n, required by the bisection method to converge to within an absolute error tolerance of ε , starting from the initial interval (a, b).

Solution: The bisection method generates a sequence $\{p_n\}$ approximating a root p of f(x) = 0 with

$$|p_n - p| \le \frac{b - a}{2^n}.$$

To converge to within an absolute error tolerance of ε means we need to have $|p_n-p| \le \varepsilon$, or

$$\frac{b-a}{2^n} \le \varepsilon. \tag{1}$$

Solving (1), we obtain:

$$2^{n} \geq \frac{b-a}{\varepsilon},$$

$$n \log 2 \geq \log \left(\frac{b-a}{\varepsilon}\right),$$

$$n \geq \frac{\log \left(\frac{b-a}{\varepsilon}\right)}{\log 2}. \checkmark$$

To get some intuition, plug in a=0, b=1, and $\varepsilon=0.1$. Then, we would get n>=3.3219. Thus, n=4 iterations would be enough to obtain a solution p_n that is at most 0.1 away from the correct solution. Note that dividing the interval [0,1] three consecutive times would give us a subinterval of 0.0625 in length, which is smaller than 0.1.

Problem 2: Show that when Newton's method is applied to the equation $x^2 - a = 0$, the resulting iteration function is $g(x) = \frac{1}{2}(x + a/x)$.

Solution: Consider $f(x) = x^2 - a$. Consider Newton's iteration:

$$p_{n+1} = g(p_n) = p_n - \frac{f(p_n)}{f'(p_n)}.$$

Thus, for Newton's iteration, we have

$$g(x) = x - \frac{f(x)}{f'(x)} = x - \frac{x^2 - a}{2x} = \frac{x^2 + a}{2x} = \frac{1}{2} \left(x + \frac{a}{x} \right).$$

1

Problem 3: Use the bisection method to find p_3 for $f(x) = \sqrt{x} - \cos x$ on [0, 1].

Solution: Since f(0) = -1 < 0 and f(1) = 0.46 > 0, there is at least one root of f(x) inside [0, 1]. Set $[a_1, b_1] = [0, 1]$.

$$p_1 = \frac{a_1 + b_1}{2} = 0.5.$$

 $f(0.5) = -0.17 < 0.$

Since $f(p_1)f(b_1) < 0$, there is a root inside $[p_1, b_1] = [0.5, 1]$. Set $[a_2, b_2] = [0.5, 1]$. $f(a_2) < 0$, $f(b_2) > 0$.

$$p_2 = \frac{a_2 + b_2}{2} = 0.75.$$

 $f(0.75) = 0.13 > 0.$

Since $f(a_2)f(p_2) < 0$, there is a root inside $[a_2, p_2] = [0.5, 0.75]$. Set $[a_3, b_3] = [0.5, 0.75]$.

$$p_3 = \frac{a_3 + b_3}{2} = 0.625. \quad \checkmark$$

Problem 4: The function $f(x) = \sin x$ has a zero on the interval (3,4), namely, $x = \pi$. Perform three iterations of Newton's method to approximate this zero, using $p_0 = 4$. Determine the absolute error in each of the computed approximations. What is the apparent order of convergence?

Solution: Consider $f(x) = \sin x$. In the interval (3,4), f has a zero $p = \pi$. Also, $f'(x) = \cos x$. With $p_0 = 4$, we have

$$p_{1} = p_{0} - \frac{f(p_{0})}{f'(p_{0})} = 4 - \frac{\sin(4)}{\cos(4)} = 2.8422,$$

$$p_{2} = p_{1} - \frac{f(p_{1})}{f'(p_{1})} = 2.8422 - \frac{\sin(2.8422)}{\cos(2.8422)} = 3.1509,$$

$$p_{3} = p_{2} - \frac{f(p_{2})}{f'(p_{2})} = 3.1509 - \frac{\sin(3.1509)}{\cos(3.1509)} = 3.1416.$$

The absolute errors are:

$$e_0 = |p_0 - p| = 0.8584,$$

 $e_1 = |p_1 - p| = 0.2994,$
 $e_2 = |p_2 - p| = 0.0093,$
 $e_3 = |p_3 - p| = 2.6876 \times 10^{-7}.$

The corresponding order(s) of convergence are

$$k = \frac{\ln(e_2/e_1)}{\ln(e_1/e_0)} = \frac{\ln(0.0093/0.2994)}{\ln(0.2994/0.8584)} = 3.296,$$
 $k = \frac{\ln(e_3/e_2)}{\ln(e_2/e_1)} = \frac{\ln(2.6876 \times 10^{-7}/0.0093)}{\ln(0.0093/0.2994)} = 3.010.$

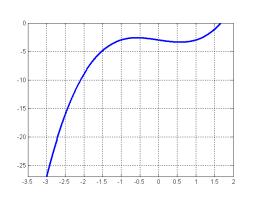
We obtain a better than a 3^{rd} order of convergence, which is a better order than the theoretical bound gives us. For Newton's method, the theoretical bound gives convergence order of 2. ¹

$$\frac{e_2}{e_1} = \left(\frac{e_1}{e_0}\right)^k.$$

 $^{^{1}}$ The convergence order of k ensures that

Remarks about the Computational Problem 1:

The graph of the function $f(x) = x^3 - x - 3$ is shown below.



We start with $p_0 = 0$. The calculation gives:

$$p_1 = -3,$$

$$p_2 = -1.96,$$

$$p_3 = -1.15,$$

$$p_4 \approx 0,$$

$$p_5 = -3.00,$$

$$p_6 = -1.96,$$

$$p_7 = -1.15,$$

$$p_8 \approx 0,$$

$$p_9 = -3.00,$$

$$p_{10} = -1.96,$$

$$p_{11} = -1.15.$$

Thus, $p_0 = p_4$, $p_1 = p_5$, $p_2 = p_6$, $p_3 = p_7$, ... That is, the Newton iteration for $f(x) = x^3 - x - 3$ produces a cyclic sequence if $p_0 = 0$, which does not converge.