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1 Abstract

We consider the problem of an oblique shock, generated by a supersonic flow over a
sharp wedge, and the subsequent reflections from a flat plate located underneath the
wedge and the wedge surface itself. We solve the FEuler equations written in general
(&,m) coordinates for a two-dimensional compressible flow problem using different nu-
merical methods. The flow parameters and geometry for the problem are given in the
attached figure. ! We solve system of conservation laws in two spatial dimensions on
nonrectangular grid by employing the finite volume formulation for the discretization
of equations.

2 Grid Generation
Consider the following equation for grid generation:

facz +€yy = 0 (1)
New + My = 0 (2)

"

T2 3 4|15 I8

(5 1)ox 32m Computational D omain

Figure 1: Transformation between physical and computational domains.

Summary 2

e When the Poisson grid generators are used, the mapping is constructed by specifying
the desired grid points (x,y) on the boundary of the physical domain with the interior
point distribution determined through the solution of the equations (1) and (2) where
(&,7n) represent the coordinates in the computational domain.

e Equations (1) and (2) are then transformed to computational space by interchanging
the roles of the independent and dependent variables.

e This yields a system of two elliptic equations.

e This system of equations is solved on a uniformly spaced grid in the computational
plane. This provides the (x,y) coordinates for each point in physical space.

!The problem was originally stated as an article: J.C.T. Wang and G.F. Widhopf, Journal of
Computational Physics 84, 145-173, 1989.
2As in J. Tannehill, D. Anderson, R. Pletcher, Computational Fluid Mechanics and Heat Transfer,

Second Edition.



2.1 Derivation

Transform into computational coordinates to solve the Laplace equation numerically:
y = y&n) n = n(z,y)
The Chain Rule gives: 3
o _ 0 0
o _ 0 0
oy~ Svoe T oy

or, in matrix form

9 0
Dy Sy My an
Similarly, the Chain Rule gives:
o 0 o
{ag = Tepr T Yeoy
o) 0 o)
o = Tnog T Ynagy

or, in matrix form

9 3

aJ - 3
| on | Ty Yn Dy
o Te -1 0

Fl=lm o) 5 )
L By T Yn on

From (3) and (4), we observe that:

-1
|:§r 77:6]:[905 yf] :1|:y77 _y§:|
fy Ty Ty Yn J | —xy  xe ’
where J = ¢y, — x5y, is the Jacobian of the transformation.
Therefore, the metric relations are:

=Y
T 7o
5__&7
y— T J>
nm:_yjé7
_Z‘
Ty = 7

Using these, we can obtain expressions for &z, &yy, Nza, Myy- Plugging these into (1)

and (2), combining the resulting equations, we obtain the Laplace/Poisson equation in
(&,m) plane:

’axgg — 2Bxey + YTy = 0‘

*Note: f(TZ/) = f(iﬂl) = f(f(%?/)a’i(-fvy))v then

of _ ofoc  ofom _ 0f L Of
o9r  ocox | onoxr  "ac " Moy



| ayee — 2Byen + Yy = 0

where
a = ac,27 + yg,
B = TeTy + Yeln,
o= l‘g + yg

The equations are nonlinear, coupled.
The boundary conditions are specified:

z(&1,n)s y(&,n)
z(&2,m), y(&2.n)
z(&,m), y(&m)
z(&,m2), y(& n2)

The equations are solved to get interior solutions:

{ z(§,m) = @i

y(&;m) = yij-

for 1=23,...,IL—-1; j=2,3,...,JL—1.

Note that the first and last column (i = 0 and ¢ = IL 4+ 1) and the first and last row
(j=0and j = JL + 1) represent the ghost points.

Note: 51:1, ngIL, 7’]1:1, 772:JL

Uniform grid in the computational domain is mapped into physical domain.

2.2 Initial Grid

The algebraic grid is discretized uniformly as:

x6a) = (71 )x0)+ (7o )xXata.
Y(i,j) = <j§:i>Y(z 1)+ <JjL__11)Y(z',JL).

Here, for instance, when i = 1, X (i,j) = X(1,5), and wheni = IL, X (i,j) = X(IL,j).

2.3 Numerical Discretizations

Use central difference approximations for elliptic proplem.

Ll —Ti-1j 0
T T oae T O¢,
Ti 1 — Tij—
T, = i,j+1 L=l 80z,
2/A\n K
o Wiy — 2 w1y
Tee = AE2 - 6553:’
_ T 2+ i1 s
Lon = An? = OnnT,
Titl,j41—Ti—1,541  Titlj—1—Ti—1,5-1
v Q(x ) = 2NE 2IAE
&n (97’] 13 2A77
i1+ — Ti—1,541 — Titl,j—1 T Ti—15-1 e
ANEAD s

We can evaluate «, 3, 7, J numerically.
Nonlinear difference equations are solved using the iterative method.



2.4 Discretized Equations

Assume A¢ =1, Anp=1.
We obtain the discretizations:

1
Qg - ($i+1,j — 2% + xifl,j) - 5@‘;’ ‘ (1’1’+1,j+1 — Ti-1j41 — Tiplj-1+ 56‘2‘71,]'71)
+ Yij o (®iger — 2z + @) = 0. ®
1
aij - (Yirrj — 29 + ¥io1j) — iﬁij - (Yir111 = Yic1gr1 — Yirtj—1 F Yio15-1)
+ %ij - (Yig+1 — 295 +Yij-1) = O. ©

Use Jacobi or Gauss-Seidel iterations to solve the equations (®) and (®) above.

2.5 Jacobi or Gauss-Seidel Iterations

@® Jacobi iteration. For Jacobi iteration, need to keep old values in the memory.

n ny,.,.n+1 __ n n n
=2(af; + )l = = oy (i ailyy)
1
n n n n n
+ 505 g — 2 — wha g ailyin)

— 5 (@ ).

1
=20+ = = oy (U T Yity)
1
+ 505 (yz'n+1,j+1 — Y141~ Yir1j-1 Z/?—l,j—l)

= 75 Wi i)
@ Gauss-Seidel iteration. Use the latest available values in x and y in the iteration.
Define

Agttl — pntl _ n 2t — gn + Agitl
{ ij /AN ij ij ij ®®

ij
n+l __ n+1 n n+l __ n n+1
Ay = v U v = v+ O

B —aogex™ + 280" — YOppa"

Azttt =
T 2(a +97)
Ayt = ¥ 0eey” 4+ 280eny™ — yOoumy"
hi 2(a” +97)
Solve for 7™ and ¢! using ®@®.

ij ij
We set the convergence criterion € = 1073, Iterate until

v

max | Az < ¢
maX|AyZ~+l| < e.



3 Governing Equations

The 2D Euler equations can be written in the following convervation-law form:
U 0B OF
ot dx Oy

The vector of conserved quantities is given by

= 0. (5)

p
v=|"
pv

e

9

where p is the density, (u,v) is the velocity, and e is the total energy.
The flux vectors E' and F' are given by

pu pU

E— pu2 +p F— puv
puv |’ pv® +p
(e +p)u (e +p)v

In order to close the system, an equation of state needs to be specified:

p o p(u?+0?)

A R
or, equivalently,
2,2
plu”+v
p=(y- e X))

where p is pressure.
The gas is air, v = 1.4, and gas constant is R = 287.1 Joules/kg — °K.
Auxiliary variables are calculated with the following formulas:

NG
p?

Vu? + v?

M = ,
Rc

Cy, = L

S = C, log(p%>



4 Coordinate Transformation of the Euler Equations

We have found the following metric relations:

gﬂ? yl7

g :_ﬂv

T (6)
7796—_77

ny =5

y = 7>

where J = ey, — Ty
The Chain Rule gives:

g =GBty ™
%:@Q+%ﬂ.
Plugging this into (5), we obtain

ou
or t (&Be+ & Fe) + (noEy +myFy) = 0. (8)

To write equation (8) in conservation law form, we multiply the equation by J and use
metric relations:

ou

Tor + (J&aBe + J&Fe) + (Tne By + TnyFy) = 0,
ouJ
%tLW%&—%QHW—%%+%%)_Q

ouJ

(875 ) + (wE - an)g — (e B — wyeF)

+ (—ygE-i—aZgF)n— (—ygnE-i-xgnF) = 0.
Cancelling out the terms, we get

AU )
ot

Thus, the 2D Euler Equations may be written in conservation law form:

+@E—%H—M—%E+Qﬂn:0

3

ou’ OE' OF" __

or T og T = 0,

U = UJ,

B = yB - wyF = J(&E +&F).
F' = —yeE+a¢F = J(neE+nyF).




5 Finite Volume Method

For the project we use the finite volume formulation for the discretization of the equa-
tions. We apply integral form of the equations to each individual grid cell. We have
ou n ) n oF
ot  dx Oy
Denote
F = Fi+ Fj.
We can rewrite the Euler Equations as

oU ~
il F o=
5tV 0 9)

Integrating (9) over the volume V;;, we have

/V__(%(t]+v-ﬁ>dv — 0.

The divergence theorem gives

= 0.

0 .
/ UdV+y{ F.dS = 0.
ot Jv, Sij
Denoting the average of U over the volume V;; as U= / UVdV, we get
ou;; 1 L
+ — F.-dS = 0,
ot %j Sij
oU;; 1 S
2= —f F-dS = 0,
ot Vij Sij
anj 1 o R - o R
g = Ty |F Sy F Sy + (F8) + (R85, (0)
where
(F'S)H% = ﬂ+%'ﬁi+%si+l = ‘F;'/+%S’L+%7
F' = F-ii = (Bi+F7)) (nzi+nyj) = neE+nyF
U pU pu
pUV pve+0p pvu’ + pny
(e +p)u (e +p)v (e +p)u
and u' = ung +vny = U-7f. Thus, equation (10) becomes
anj 1 / / / /
o _W[F}%SH%*FF%SF%*FJ% 3 HE 1854

where F' = E(U)n, + F(U)n,.

S = Ay + Ax2,

Ay
Ng = g’
Ax
Ny = T

—

S = @S = Ayi— Azj.
Note that the counterclockwise direction is used when calculating Az and Ay.

8



— - —

it: T (?/i+1,j+1 - yz’+1,j)i - (93i+1,j+1 - $i+1,j)j,

i1 = Wi — )i — @i — 2i5) ],

j+i = - [(yz’+1,j+1 - yi,j+1)i - (5Uz'+1,j+1 - fEi,jH)j]»
Sjiot = Wir1y — Yij)i — (Tis1j — )]

We can rewrite the finite volume formulation in the form which looks like finite differ-
ences. As a result, we obtain the formulation below.

5.1 Swurface Variables

Denote
ATl = Titd g4l = Tt
AyH% = Yitlj+1 — Yitl,,
Al‘i,% Tij+1 — Tij,
Ayi_% = Yij+1 — Yij
Aji1 = Tipljel = T,
AYjl = Yirljtl — Yl
A:Ej_% = Tit+1,j — Tij,
ij,% = Yi+1,j — Yij-

The surface vectors are calculated with the following formulas:

+ i+l
S~7l - Ay2 1 +AI2 19
1—3 i i—1
2
S 1 = A 2 A:L’Q
Itz Yis1 + i+3’
S = Ay? Ax?
1 ys o+ AT .
I3 J—3 J=3
AyH% Ach%
Ny = Ty = —
1+% S’Hr% ’ yﬂr% SZJF% ’
Ayz 1 Al‘zfl
_ 2 _ 2
S Ty T e L
=3 =3
" B ij+% " B A:Ej+%
T 1 - - ) Y., 1 )
+3 . +3 ‘
) SJJF% J Sj+%
Ay 1 Al‘-_7
n - 7 n = 172
IJ—% S'_; ’ y]_% S-_;
J—3 J—3



5.2 Cell Volume

The volume of the cell is calculated as:

1 1 oy 1 1
1 §abs z3 ys 1 = 5]($3*$1)(y4*y1)*(964*551)(93*(@1)’
T4 ys 1
1
= 3 (Tig1,j41 — i) i1 — Yig) — (@ija1 — Tij) Wir1.541 — Yij) |
1 1 oy 1 1
Vo = gabsqy| a1 = 5\(x2—x1)(y3—y1)—(333—5'31)(?;2—1/1)\
x3 ys 1

5.3 Flux Terms and the Finite Volume Formulation

The flux terms are given by

/
. = X X
EH% E N, 1 + F nyi+%,
/
Ei_l = Exnﬂﬂi,; + Fxnyiil,
2 2 2
F’ = Exn + Fxn
i+3 Ti+d Yi+y’
/
Fj,l = Exng , + Fxny .,
2 I72 )

and the finite volume formulation becomes

1
5\($¢+1,j — i) (Wit 1,41 — Yij) — (Tir1j41 — Tij) W15 — Yig)| -

8Uij 1 ’
R s

/ !
- Ei—%s'—% + Fj—l—%Sj-&-l

¢ 2

—F, 15' 1
j—

7 172

0.

10



6 Numerical Schemes

6.1 MacCormack Method

The finite volume formulation of the MacCormack method is:

. dt
Uj = Uj— VT] [(Ez{il,jswré - EZ{;-‘SF%) + (Fz‘/3+15j+§ - F’Z(Jnsj*%)}’
1 dt
1 * * * * *
Uit = §<U3 +Ujj — v (B Sips — Ef1 S0 + FiSi0 — Fij 18,

The flux terms for the predictor are calculated as:

/ _
Elf1iSiuy = |Birigne,, + Fiy ”yH%} Sitls
EfS; 1 = |Byne_, + F ﬂy.,;] Si1s
L L) T2 2
/
FijnSiy = |Bijrine,, + Fijn nyﬁ%} Sj+1
/ -
E]’n Sj*% = _Eij nxj_% + Fij nyj_%} Sj*%’
where
[ pu ] U
2 2
u + u” +p
Ei; = P P ; Eit1, = P )
pUV pUv
| (e +p)u | i (e +p)u ey
[ pv ] pU
pUV puv
F. = , Fooq . —
] pv2 +p iE1,j pv2 +p
| (e+p)v |, (e+pv |,
The flux terms for the corrector are calculated as:
/ [ s *
EZ;S'L—‘,-% _EZ] nzH% + Fl] nyi+%:| Si-i—%’
if1Siey = | Blgne,, + Fly ”yi_%} Si1>
/x o * *
FgSiay = -Eij Myt £ nyﬁ%} Sitd
/ -
Fija8-y = |Eijane, , + Fz’fjfl”yj,%} Sj-1
where
p*u* * 0k
2 * * *
prut+p prutv
(" +p)u |, (e"+p

11

)

(predictor)

(corrector)

ij



6.2 MacCormack Method with Artificial Diffusion

The finite volume formulation of the MacCormack method with MacCormack-Baldwin
diffusion is the following. The predictor step is:

o _ D D D .
Uy = Uj— 7[(Ei+gS. 1 — E¢ gS._;) + (F %‘S. — F ’%‘Sj_%)}, (predictor)

where the flux terms are calculated as

Py — 2P + pital

Dn _
Ei+§ - EH‘LJ - (‘“H' )H- 54 p2+1]+2pw+pl 1 ( ﬁkm UZD?
P} — 2071 + Dol

EPY = Ef — e (|40, 2L (U — ULy ),
2 - 7] pz]+2pz 1]+pl 2,9
FP% = Fny — e (W] +0) i1 = 205 P upr up),
.7+% ,j+1 ,]+2 p +1_|_2p”+plj 1 1,j+1

Dn m |pm 2p1] 1+p13 2| n n

F-1 = Fj — (|U|+ ) _1 U5 = U%1),
Ji—3 J ij—3% P+ 207+ J J

for i=1,...,IL—1, j=1,...,JL—1, thatis, for all cells in the interior.

Here, we assume that

7 —_ V13 Vel Vo3 —_ 7 7

Py = 2po; — Pl pi_y = 20} — P,

7 J— T g . 23 J— T 7
Pir1,; = 2P70; — Pro—1; P+l = 2050 — Pign-1-

E'™ and F'™ are MacCormack fluxes, the formulas for which were given in the previous
section. Also,

(Wl+efr; = gl +eng = v e, +vigny, ) [+ ey,
(W|+e)is, = lugl+ey = |ugne  +vigny_ |+ ey, ®
(Wl+e)i = Migal+eagn = [ugnne | +oigany [+ e,

(W) + o)y = lul+ey = |ugne_ +ogny [ +eiy.

The corrector step is

dt
[T"Jrl _ n * D x*

— FPy S;;D, (corrector)
3 J72
where the flux terms are calculated as
|p;k+1j 2p;kj+p;k 1,J|( * U*)
i+1
7,+2,.7 p+1]+2p13+p1 14 i+1,7 1)

\p” 2p;_ 17]+p1 2,J|

EDG = B — e (| +o);

EPY = E* U — U, ),
z,% i—1,5 (|u’+0)1,,d pZ]+2pl 1]+p7, g ( ij z—l,j)

FD#; - FIr _ (‘U ’ + C) ‘pi7j+1 B 2pij +pi7j—1| (U U*)
-1 = F 1 1

J+3 ] ,J+ ;'k,j-i-l + 2p;<j + p;‘k,j—l t,J+

FPY = Flyy = e (| o), s i = (U~ U7 ),
172 W 2 pz]+2p2] 1+p1j 2

“Indexing is based on the C++ implementation.

12



for i=1,...,IL—-1, j=1,...,JL —1, that is, for all cells in the interior.
Here, we assume that

{p*u = 2, - i {p%il = 2, 71,

* _ * * . * _ * *
Prrv1; = 2p1L,j_pIL—1,j’ Dijr+1 = 2pz’,JL_pz‘,JL—1'

E™ and F™* are MacCormack fluxes, the formulas for which were given in the previous
section. ® Also, similar formulas as in ® are used for the corrector.
In our experiments, we took € = 0.6.

®Indexing is based on the C4+ implementation.

13



6.3 Lax-Friedrichs Method

Lax-Friedrichs method can be formulated in the finite volume formulation as:

dt
n+1 n m m m m
Uy™ = Uy~ Vi [(EH—Q,]SZJr Ei—%ﬂjsifé) (F,g+2 e — éS],;)},
where the flux terms are calculated as
Eft;+ BN (Ul = Uf)
] )
E;iz,] - < ) - : 2 = {(EH-I] i+% iT—LO—Lj) + (EZL + ai+%UZ‘)}’
E + Elnl o -U4) 1
By, = () - = U — U (B o U2 ),
En E/n U”)
+ j+1 ]
R = B gy Ul) + (B g UD)),
Em En L U% 1) 1
By = () = (B 0y U (Bl g Ul ),
where
ai+% = \u;j\ +Cij = |ui]~ nxiJr% +Uij nyi+%‘ +Ci]‘,
a1 = ‘uég| +tcij = |Uij ”xi,% + vij ”yi,%’ + Cij,
O‘j+% = |u;,]| tcij = |Uij nxj+% + vij nyﬂ_% | + ¢ij,
O‘jfé = |u;]| + Cij = |’LLij nmj_% + Vij ’I’Lyj_% ’ =+ Cij-
We can rewrite the above fluxes more explicitly as
E™ N E E F F L n U\ s
H—%,] z+2 - 5 ( i+1,5 + Z'j) n$i+% + ( i+1,5 + ij) ny,-_,,_% - iaz—i-%( i+1,5 ij) it
1 1
El’.’j%’jSF% = ((EU + E;_1 j) i1 + (Fij + Fi—l,j) nyi7%> — §Oéi7%(U£' — z'n—l,j):| Si—%v
(1 1
Bl 1S = 5((Ei,j+1 +Eij) e, + (Fije + Fy) nyﬁ%) = 591 Ui Um)} Sitls
1 1
E;Z'_%Sg—l = 5((Ely +Emfl) Ny . + (Fw + i 1) Y, %) - 5%_%([]@7} - iT,Lj—l):| SJ_%7
where
[ pu ] U
2 2
U+ u” +
E;; = P P ; Eit1,; = P P ;
pUv pUv
(e+plu | (e+pu |y
[ pv ] pU
pUY puv
ij pv? 4 p ) it1,j pv2 4+ p
(e+p)v |, (e+pv ],

14



7 Numerical Experiments

7.1 Methods and Grids Considered
1) Lax-Friedrich’s

40x20
80x40
160x80
320x160
640x320

2) MacCormack with no diffusion

40x20
80x40
160x80

3) MacCormack with MacCormack-Baldwin artificial dissipation

40x20
80x40
160x80
320x160

7.2 Initial Conditions

We have chosen uniform initial conditions for all the experiments.

7.3 Boundary Conditions

The following boundary conditions were used for the internal flow in a 2D channel.
The values at the ghost cells are updated once the calculations has been done in the
interior of the domain.

Upper wall:
e In front of shock: i< IS

,

Pi,JL = Pi,JL—1,
PiJL = Pi,JL—1,
Ui, JL = Ui, JL—1,

Vi, JL = —Vi JL—-1-
e Behind the shock: 6 i > 1S
Pi,JL = Pi,JL—1,

bi, gL = Pi,JL-1,
w; g, = cos 20 u; yr—1 —sin20v; jr_1,

Vi, JL = — sin 20 U JL—1 — COS 20 Vi, JL—1-

5The result is derived in Professor X. Zhong’s lecture notes.

15



Lower wall:

Pi,0 = Pi1,
Pio = Pi,1,
Ui 0 = U1,
Vi0 = —Vi1-

)

Left entry conditions:

po,j = constant (fixed),
Po,j = constant (fixed),
ug,; = constant (fixed),

vo,; = constant (fixed).

Right exit conditions:

PILj; = PIL-1,5,
pbrL,; = PIL—1,5,
UIL,j = WIL—1,5,

VIL,j = VIL—1,j-

7.4 Courant Number
The timestep dt is calculated adaptively.

v

lul ol 1,1
dz+dy+c dx? +dy2

dt = min(dtzj).

dtij =

)
ij

In our experiments, v = 0.7.

7.5 Stopping Condition
The calculations are done while the following condition is true:
1
Zj ‘p?;—m - p?L—l,j‘
1
2 ’p?f—l,j’

Note that we consider values of pressure p only on the last (rightmost) z-level in the
interior of the computational domain.

< 1073,

16



7.6 Analysis and Observations
7.6.1 Lax-Friedrichs

Lax-Friedrich’s method, a first order method, is always stable. However, it shows
excessive dissipation when used on coarse grids. As a result, discontinuities are overly
smeared. As grid gets refined, Lax-Friedrichs scheme resolves shocks better. However,
in order to get a result that gives reasonably resolved shocks, the grid needs to be very
fine, which is expensive to do. For example, to get the solution on a 640x320 grid, it
took over 36 hours of computational time.

7.6.2 MacCormack

MacCormack’s method is second order accurate for smooth data, and therefore, its ap-
proximations do not show the dissipative behavior that Lax-Friedrichs approximations
do. However, since MacCormack is a second order method, it is dispersive and results in
spurious oscillations. When used with no dissipation, MacCormack method is unstable.
As displayed in figures, it gives very dispersive approximations for the first few itera-
tions and later blows up. In order to overcome this problem, artificial viscosity has to
be added to make MacCormack method stable. We added the MackCormack-Baldwin
diffusion term (with ¢ = 0.6) for our numerical calculations. As a result, oscillations
are smaller. MacCormack method with diffusion added gives more correct results in
Li-norm than Lax-Friedrichs method does. Also, even though MacCormack method
takes more time to execute a single iteration, it gives convergence in fewer iterations.
Since MacCormack method is second order accurate, we observed that coarser grids
can be used to obtain an approximation which is more accurate than that of the Lax-
Friedrichs approximation on finer grids. As the grid is refined, both Lax-Friedrichs and
MacCormack method give less accurate approximations than their order would suggest.
We would expect this, since the problem we considered has discontinuities (shocks), and
both methods are at most first order accurate near discontinuities. Overall, MacCor-
mack’s approximation converges more rapidly to the exact solutions. Also, when we
restrict our observations to the smooth regions, both Lax-Friedrichs and MacCormack
methods give first and second order accurate solutions, respectively.
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8 Appendix

8.1 Finite Difference Methods (Structured Grids)

We have used the finite volume formulation for the project. There is also a finite
difference approach. The finite difference discretizations for MacCormack are given
here for the rectangular grids and structured non-rectangular grids.

8.1.1 Cartesian Grid
MacCormack Method

aiU_FaiE_'_aiF =0
ot ox oy
Er _En  Fn. _ pn
U; = U[;.—dt< Z“’Zlm 94 ”*Clly 4 > (predictor)
1 . Ef,—E',. F' —Fr |
UZ.T;H = 2<U£+Ui]~—dt< Y dxz LAY, dym ) . (corrector)
8.1.2 Non-Cartesian Grid
MacCormack Method
dt /E™. . —E™ EFn _ _Fmn
Ui = Ui?‘_J”< Hl’(]im Yo mily ”), (predictor)
(3
1 dt (EX—EX. . F _ F
1 * 17 9. ) 1
UZ?;”.Jr = 2<U3+Uij_t]¢-< Y da:Z J 4 dy” ) . (corrector)

where
E' = y,E—x,F,
F = —ygE =+ SUEF,
J = Teyn — whye.
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