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On the Linear Convergence of the ADMM in
Decentralized Consensus Optimization

Wei Shi, Qing Ling, Kun Yuan, Gang Wu, and Wotao Yin

Abstract—in decentralized consensus optimization, a connected accomplished in a decentralizeaid collaborative manner by
network of agents collaboratively minimize the sum of their local the agents. This approach can be powerful atieft, as the
objective functions over a common decision variable, where their computing tasks are distributed over all the agents and infor-

information exchange is restricted between the neighbors. To this fi h v bet th ts with direct
end, one canbrst obtain a problem reformulation and then apply mation exchange occurs only between the agents wi irec

the alternating direction method of multipliers (ADMM). The  communication links. There is no risk of central computation
method applies iterative computation at the individual agents and overload or network congestion.
information exchange between the neighbors. This approach has |n this paper, we focus otecentralized consensus optimiza-

been observed to converge quickly and deemed powerful. This 5 an important class of deceatized optimization in which
paper establishes its linear convergence rate for the decentralized ' .
a network of, agents cooperatively solve

consensus optimization problem with strongly convex local objec-
tive functions. The theoretical convergence rate is explicitly given L
in terms of the network topology, the properties of local objective min Z fi(), (1)
functions, and the algorithm parameter. This result is not only a F ’ '

performance guarantee but also a guideline toward accelerating =t

the ADMM convergence. over a common optimization variablewheref; () : RY — R
Index Terms—Decentralized consensus optimization, alter- is the local objective function known by agentThis formu-
nating direction method of multipliers (ADMM), linear  |ation arises in averaging [4]6], learning [7], [8], and estima-
convergence. tion [9]-[13] problems. Examples df(#) include least squares
[4]-[6], regularized least sques [8], [10]-[12], as well as more
l. INTRODUCTION general ones [7]. The values:dtan stand for average tempera-
ture of a room [5], [6], frequesy-domain occupancy of spectra

. . 11], [12], states of a smart grid system [13], [14], and so on.
R ECENT advances in signal processing and control of nA;t'There exist several methodsr decentralized consensus

worked multi-agent systems have led to much researSBtimization, including distributed subgradient descent algo-

interests in decentralized optization [2]-{14]. Decen.tral— rithms [15]-[17], dual averaging methods [18], [19], and the

t includ dinati f aircraft hicl i r1o{lternating direction method a@hultipliers (ADMM) [8]-[10],
szys (stdlr:c ude coor |naf|op ? aircratt or Vi 'Ci neSWOI&EO], [21]. Among these algorithms, the ADMM demonstrates
[21-4], data processing of wireless sensor networks [S}-{ st convergence in many applicats, e.g., [8]-[10]. However,

spectrum sensing of cognitive radio networks [11], [12], sta ow fast it converges and what factors affect the rate are both
estimation and operation optimization of smart grids [13], [14

. ; - unknown. This paper addresses these issues.
etc. In these scenarios, the aas collected and/or stored in pap
a distributed manner; a fusion center is either disallowed ar Our Contributions

not economical. Consequently, any computing tasks must beFirstly we establish the lear convergence rate of the

ADMM that is applied to decentraded consensus optimization
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whereas the advantage of the ADMM, subgradient descent, Il. THE ADMM FOR DECENTRALIZED CONSENSUS

and dual averaging is that they do not rely on any predel OPTIMIZATION

structures. Subgradient destemd dual averaging work well | this section, weprst reformulate the decentralized con-
for asynchronous networks but suffer from slow convergencgansys optimization problem (1) such that it can be solved by
Indeed, for subgradient desceigarithms [15] and [16] estab- (e ADMM (see Section 11-A). Then we develop the decentral-

lish the convergence rate 6f(1/k), wherek is the number of ;64 ADMM approach and provide a simpdid decentralized
iterations, to a neighborhood of the optimal solution when thgqorithm (see Section I1-B).

local subgradients are bounded and the stepsizead. Further
assuming that the local objective functions are strongly convek, Problem Formulation

choosing a dynamic stepsize leads to a rat&)@log(k)/k) Throughout the paper, we consider a network consistirg of
[17]. Dual averaging methods using dynamic stepsizes alggents pidirectinally connected b edges (and thusE arcs).
have sublinear rates, e.g(log(k)/Vk) as proved in [18] and e can describe the network as a symmetric directed graph
[19]. _ Ga = {V, A} or an undirected grapf, = {V,£}, whereV

The decentralized ADMM appazhes use synchronous stepg; the set of vertexes with cardinality| = L, A is the set of
by all the agents but have much faster empirical convergenggy with|A| = 2E, and£ is the set of edgés Witlf| = E.
as demonstrated in many applications [8]-[10]. However, eXigorithms that solve the decenlized consensus optimization
isting convergence rate analysis of the ADMM is restricted t|9rob|em (1) are developed based on this graph.

the classic, centraled computation. The centralized ADMM Generally speaking, the ADMM applies to the convex opti-
has a sublinear convergence rat¢l/k) for general convex mi-ation problem in the form of

optimization problems [23]. I(i24] an ADMM with restricted
stepsizes is proposed and prdue be linearly convergent for win  g1(y1) + 92(v=2),
certain types of non-strongly ngex objective functions. A re- gLy _
cent paper [25] shows a linear convergence rate/a*) for st Gy + Gy =0, @

somea > 1 under a strongly convex assumption, and our pap@herey, andy- are optimization variableg; andg, are convex
extends the analysis tools ther¢o the decentralized regime. fynctions, and’,y; + Cay» = b is a linear constraint of; and
A notable work about conveegice rate analysis is [20],,, The ADMM solves a sequence of subproblems involving
which proves the linear conrgence rate of the ADMM ap- andy, one at a time and iterates to converge as long as a saddle
plied to the average consensus problem, a special case of (Ijdfht exists.
which f,(z) = ||z — y;||5 with y; being a local measurement 14 solve (1) with the ADMM in adecentralized manner, we
vector of agent. Its analysis takes a state-transition equatiqRformulate it as
approach, which is not apphkble to the more general local L
objective functions considered in this paper. min Z fila)
{ebdz) 7T
st m =z, v = 2, V(?/]) c A (3)

C. Paper Organization and Notation . . .
Herex; is the local copy of the common optimization variable

. . . . Z at agent andz;; is an auxiliary variable imposing the con-
This paper is organized as follows. Section Il reformulates : . : . i
. s Sensus constraint on neighboring agentnd j. In the con-
the decentralized consensusiopzation problem and develOpSstraints{:L--} are separable whe;, } arebxed, and vice versa
an algorithm based on the AM. Section Ill analyzes the e P *J ' '

. herefore, (3) lends itself toettentralized computation in the
linear convergence rate of the ADMM and shows how to acceg— : (3) P

) ) DMM framework. Apparently, (3) is equivalent to (1) when
erate the convergence through tuning the algorithm parameter P Y, 3) q (1)
Section IV provides extensiveumerical experiments to vali-

€ network is connected.
. . . . Debning RLY as a vector concatenating all
date the theoretical analysis@ection Ill. Section V concludes . 9% ox g
the paper. ’

v, = € RN as a vector concatenating ad;, and

In this paper we denotéz||» as the Euclidean norm of af("’) = 2o filwi), (3) can be written in a matrix form
vectorz and{zx,y) as the inner product of two vectogsand
y. Given a semidenite matrixG with proper dimensions, the min  f(z) + g(2),
G-norm ofz is VzT Gx. We leta,,..(G) be the operator that 2 ’
returns the largest singular value@fanda,;,,(G) be the one s.t. Az + Bz =0, (4)

B T 0 3 rcon MITS2) = . Wt th form f 2, s amenabe

: gence, “OMthe ADMM. HereA = [A;; Ao]; Ay, Ay € RZENXIN gre poth

vergence and R-linear convergence. We say that a seqyénce : o

i o . composed ofE x L blocks of N x N matrices. If(z,j) € A

where the superscrigt stands for time index, Q-linearly CON-_ ndz. . is theath block of . then the(q, i)th block of A; and the
verges to a poing* if there exists a number € (0, 1) such that *d 1 ' 31 !

(g, j)th block of 4> areN x N identity matriced y ; otherwise

O [ 2| R ; ; ; ’
Jim Seera = p with || -[] being a vector norm. We say thatiyg corresponding blocks aléx N zero matrices y . Also, we
a sequence” R-linearly converges to a point* if for all k, haveB = [~Izgpn; —Iapn]| With Ipy being &2EN x 2EN

|lz¥ — 2*|| < |jy* — y*|| wherey* Q-linearly converges tg*.  identity matrix.
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B. Algorithm Development Indeed, (7) also leads to a simglecentralized algorithm that
involves only anc-update and a new multiplier update. To see
this, substitutingt M1 z* — z* = 0 into theprst two equations
of (7) we have

Now we apply the ADMM to solve (4). The augmented La
grangian of (4) is

Le(m,2,A) = f(z) + (A Az + Bz) + gHA-T + Bz|3, V@) + Mgkttt — eMy M "
+EM MIz =0, (8)
where) € R*EYN s the Lagrange multiplier and is a posi- pEFL — gF — M Tkl =,

tive algorithm pararater. At iteratiork + 1, the ADMM prstly
minimizes L.(x, 2%, A¥) to obtainz**!, secondly minimizes
L.(a*+1, 2, \¥) to obtainz**1, andbnally updates\*** from
2%+t andz**1. The updates are

which is irrelevant withz. Note that in thebrst equation of
(8) the z-update relies onM _ 3%+ other thang®. There-
fore, multiplying the second equation with/_ we have
M_phtt — M_pgk — SM_MTz* = 0. Substituting it to

z-update : Vf(zhtt) + AT Ak the brst equation of (8) we obtain the-update wherec*+!
+cAT(Azk 1 4 B2F) =0, is decided byz* and M_g*, i.e., Vf(zF1) + M_p* +

z-update :  BTA* + BT (Azh+! + B2FY) =0, (SMyMT + sM_MT)H — sM . MTsF = 0. Let

A-update : AL A\E _ o(AxFtl 4 B2 =0, ting W ¢ RENXLN pe a block diagonal matrix with its

(5) (¢,4)th block being the degree of agenmultiplying 7» and
other blocks bein@x, Ly = M MT, L_ = tM_MT,
whereV f(«**1) is the gradient of (+) at pointz = «**'if f  we know W = L(L, + L_). Debning a new multiplier
is differentiable, or is a subgradientffis non-differentiable. o = A _pg ¢ RYY, we obtain a simpled decentralized
Next we show that if the initial values efand are properly algorithm

chosen the ADMM updates in (5) can be sinmald (see also N L ka1 % Tkl
the derivation in [8]). Multiplying the two sides of theupdate w-update ;- Vf{#") +of + ZiWI:L +k —0 )
by AT and adding it to the:-update, we havé/ f(z*F1) + uvdate - kil ok -LL el 0
AT XML 4 AT B(2% — 2k+1) = 0. Further, multiplying the two arupdate: « e o
sides of the\-update byBT and adding it to the-update we  The introduced matriced/ , M_, L., L _, andW are re-
haveBT \k¥+1 = 0. Therefore (5) can be equivalently expressekted to the underlying network topology. With regard to the

as undirected graply,, M andM _ are the extened unoriented
and oriented incidence rtrices, respectivelyl., andL_ are

V) + ATAR 4 cATB(2R — 2 =0, the extended signless and sighLaplacian matrices, respec-
BT )+l — ¢ tively; and W is the extended degreeatnix. By “extended”,

AL R o AghtT 4 Bkt = ()j (6) we mean replac_ir_lg every 1 by, —1_by —In,and 0 by in
the original dénitions of these matrices [26]—-[29].

Letting A = [B;~] with 3,7 € RZEYN and recallingB = The updates in (9) are distributed to agents. Note that
[~ oy _IQE‘N]’a we know/ﬁkﬂ — _4¥+1 from the second [¥1:---:2z] wherez; is the local solution of agenitanda =
equation of (6). Therefore, therst equation in (6) reduces tol1; - *: az] wherea; € RY is the local Lagrange multiplier of

VF(xF) + M_gEH — ML (2% — 2%+1) = 0 whereM, = agent:. Recalling the denitions of W, ., andZ_, (9) trans-
AT + AT andM_ = AT — AZ. The third equation in (6) lates the update of agenby

splits to two equationg*t! — gk — cA;2b+t 4+ c2F L = 0

andy" " — 4 — cAprt T 4 ez = 0. fwe choose the ini- 51— (V£ 4 26\ D) [ e AGlek e STk —al ]

tial value of A as3% = —~+ such that3* = —~* holds for ' fen
k =0,1,---, summing and subtracting these two equations re-
sultint MT gkt _ 2kl — pandghtt — gk — c M T+ +1 =, kel ok kbl k1
respec?tiveJrly. If we further choose the initial valuesohsz® = %~ % T ¢ Walei ™ = ZA:[ i ’ (10)
LMT0, LMT ek — 2% = 0 holds fork = 0,1,.... e

To summarize, with initialization3® = —+° and whereN; denotes the set of neighbors of agértthe algorithm
2% = IMT2°, (6) reduces to is fully decentralizedsince the updates of; anda; only rely

on local and neighboring infaration. The decentralized con-
Vi) + M_gEtt —eM (25 - 2H) =0, sensus optimization algorithm based on the ADMM is outlined
J Ly L ngkarl =0, in Table 1.
%fok ) [ll. CONVERGENCERATE ANALYSIS

This sectiorbrst establishes the linear convergence rate of the
In Section Il we will analyze the convergence rate of thADMM in decentralized consensiwoptimization with strongly
ADMM updates (7). The analysis requires an extra initializazonvex local objective funatins (see Section IlI-A); the de-
tion condition that3® lies in the column space d¥” (e.g., tailed proof of the main theoretl resultis placed in Appendix.

(% = 0) such that3**! also lies in the column space 87; We then discuss how to tune the parameter and accelerate the
the reason will be given in Section Il. convergence (see Section I1I-B).
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TABLE |
ALGORITHM 1: DECENTRALIZED CONSENSUSOPTIMIZATION BASED ON THEADMM

A. Main Theoretical Result of MT also satibes Vf(z*) + M_3* = 0. Next we show
Otﬁe uniqueness of such @ by contradiction. Consider two

; T, T 2EN .
that the local objective functiws are strongly convex and havedifferent VeCtorW}1’17 MZwvy € R*ZT that both lie in the
Lipschitz continuous gradients: note that the latter implig!umn space oft/- ?nd satisfy the equation. Thj(::‘refore, we
dlﬁerentlablllty haVGVf([E*) + M_M-* v = 0 ande (T*) +M_M* Vg = 0.
. . . T( _ .

Assumption 1:The local objective functions are stronegSUbtraCTt'ng them yieldsM_ M= (v, T”Q) = 0. Since
convex. For each agent and given anyi.. 7, € RY IM-MZ(vi = v2)llz > Gumin(M_)||MZ (01 — v2)||2 where
(Vfi(ia) — VfilFo)Ta — ) > my, | _ #3]2 with Fmin(M_) is the smallest nonzero singular value df_,

' ' n . we conclude that|A %' (v; — v2)|l2 = 0 and consequently
schitz continuous. For each agérind given any, , , € R™ MTy; = MTv, which contradicts with the assumption of
IV £ () = ¥ fi()lla < My ||, — dolle with MJ: >0, M7T v, andM 7T v, being different. Hencej* is the unique dual

Recall the dbnition f&) :12971 Fulis). Assurr;ption 1 gj- ©optimal solution that lies in the column spacendf .

rectly indicates thaf () is strongly convex (i.eV f(is) — Our main theoretical result considers the convergence of a
VF(50); e — w1) > mg||te — 312 given any'.L- 'wb E ”[%LN vector that concatenating the primal variabknd the dual vari-
yra = @ 2 L

with 17 = min; my,) and the gradient of () is Lipschitz con- ables, which is common i_n the convergence rate analysis of the

tinuous (i.e.||V f(za) — Vf(wp)|l2 < Myllze — 232 for any ADMM [23]—{25]. Let us introduce

Lo,y € REY with My = max; My,). P chhen  0sgn
Although the convergence of Algorithm 1 to the optimal so- w= (/3) , G= ( Ooen %IQEN> ’

lution of (4) can be shown based on the convergence property /

of the ADMM (see e.g., [21]), eablishing its linear conver- We will show thatu* = [2*; %] is Q-linearly convergent to its

gence is nontrivial. In [25] the linear convergence of the centradptimal ™ = [2*; 3*] with respect to th&'-norm. Further, the

ized ADMM is proved given that eithex(z) is strongly convex Q-linear convergence af* = [2*; 8*] tou* = [2*; #*] implies

or B is full row-rank in (8). However, the decentralized conthatz* is R-linearly convergent to its optimat*.

sensus optimization problem does not satisfy these conditionsTheorem 1:Consider the ADMM iteration (7) that solves (4).

The functiong(z) = 0 is not strongly convex, and the matrixThe primal variables andz have their unique optimal values

B = [-Lhgn; —Ipn] is row-rank décient. ¥ andz*, respectively; the dual variab}g has its unique op-
Next we will analyze the convergence rate of the ADMM itertimal value3* that lies in the column space 81”. Recall the

ation (7). The analysis requires axtra initialization condition debnition of» andG debned in (12). If the local objective func-

that/3° lies in the column space @ such thap3*+! also lies tions satisfy Assumption 1 and the dual variaplés initial-

in the column space a¥/”, which is necessary in the analysisized such thag® lies in the column space @/, then for any

Note that there is a unique optimal multipligt lying in the u > 1, u* = [2¥; 3] is Q-linearly convergent to its optimal

column space o/ . To see so, taking — +oc in (7) yields «* = [2*; 3*] with respect to th&-norm

the KKT conditions of (4)

Throughout this paper, we make the following assumpti

mg¢, > 0. The gradients of the local @@rtive functions are Lip-

(12)

k= utE < ——Jlu* - |, (13)
Vi(*)+ M_5* =0, L+6
MTz* =0, where

1

SMT e =  — 12, (M

2 +‘L Z 07 (ll) 6 — HliIl (/l Z)Umln(l ) ,

) ) ) . . MJIIlaX(M+)

where (z*, 2*) is the unique primal optimal solution and the
unigueness follows from the strong convexity f&fz) as well my >0. (14)
as the consensus constraiit + Bz = 0. Since the consensus G02(My) + %M}(}H’fn(Mf)

constraintsAx + Bz = 0 are feasible, there is at least one

optimal multiplier3 exists such thaW f(z*) + M_f3=0.We Furtherz* is R-linearly convergent to* following from
show that its projection onto the column spacésf , denoted 1

by 5*, is also an optimal multiplier. According to the property "+t — 2|5 < WH”’“ - U*||%;‘ (15)
of projection,M_ (3 — 3*) = 0 and hence\l_§3 = M_j3". "’L

Therefore, the projectiorf* that lies in the column space Proof. See Appendix. [ |



























