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On the Linear Convergence of the ADMM in
Decentralized Consensus Optimization

Wei Shi, Qing Ling, Kun Yuan, Gang Wu, and Wotao Yin

Abstract—In decentralized consensus optimization, a connected
network of agents collaboratively minimize the sum of their local
objective functions over a common decision variable, where their
information exchange is restricted between the neighbors. To this
end, one canÞrst obtain a problem reformulation and then apply
the alternating direction method of multipliers (ADMM). The
method applies iterative computation at the individual agents and
information exchange between the neighbors. This approach has
been observed to converge quickly and deemed powerful. This
paper establishes its linear convergence rate for the decentralized
consensus optimization problem with strongly convex local objec-
tive functions. The theoretical convergence rate is explicitly given
in terms of the network topology, the properties of local objective
functions, and the algorithm parameter. This result is not only a
performance guarantee but also a guideline toward accelerating
the ADMM convergence.

Index Terms—Decentralized consensus optimization, alter-
nating direction method of multipliers (ADMM), linear
convergence.

I. INTRODUCTION

R ECENT advances in signal processing and control of net-
worked multi-agent systems have led to much research

interests in decentralized optimization [2]–[14]. Decentral-
ized optimization problems arising in networked multi-agent
systems include coordination of aircraft or vehicle networks
[2]–[4], data processing of wireless sensor networks [5]–[10],
spectrum sensing of cognitive radio networks [11], [12], state
estimation and operation optimization of smart grids [13], [14],
etc. In these scenarios, the data is collected and/or stored in
a distributed manner; a fusion center is either disallowed or
not economical. Consequently, any computing tasks must be
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accomplished in a decentralizedand collaborative manner by
the agents. This approach can be powerful and efÞcient, as the
computing tasks are distributed over all the agents and infor-
mation exchange occurs only between the agents with direct
communication links. There is no risk of central computation
overload or network congestion.

In this paper, we focus ondecentralized consensus optimiza-
tion, an important class of decentralized optimization in which
a network of agents cooperatively solve

(1)

over a common optimization variable, where
is the local objective function known by agent. This formu-
lation arises in averaging [4]–[6], learning [7], [8], and estima-
tion [9]–[13] problems. Examples of include least squares
[4]–[6], regularized least squares [8], [10]–[12], as well as more
general ones [7]. The values ofcan stand for average tempera-
ture of a room [5], [6], frequency-domain occupancy of spectra
[11], [12], states of a smart grid system [13], [14], and so on.

There exist several methodsfor decentralized consensus
optimization, including distributed subgradient descent algo-
rithms [15]–[17], dual averaging methods [18], [19], and the
alternating direction method ofmultipliers (ADMM) [8]–[10],
[20], [21]. Among these algorithms, the ADMM demonstrates
fast convergence in many applications, e.g., [8]–[10]. However,
how fast it converges and what factors affect the rate are both
unknown. This paper addresses these issues.

A. Our Contributions

Firstly, we establish the linear convergence rate of the
ADMM that is applied to decentralized consensus optimization
with strongly convex local objective functions. This theoretical
result gives a performance guarantee for the ADMM and
validates the observation in prior literature.

Secondly, we study how the network topology, the properties
of local objective functions, and the algorithm parameter affect
the convergence rate. The analysis provide guidelines for net-
working strategies, objective-function splitting strategies, and
algorithm parameter settingsto achieve faster convergence.

B. Related Work

Besides the ADMM, existing decentralized approaches for
solving (1) include belief propagation [7], incremental opti-
mization [22], subgradient descent [15]–[17], dual averaging
[18], [19], etc. Belief propagation and incremental optimization
require one to predeÞne a tree or loop structure in the network,
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whereas the advantage of the ADMM, subgradient descent,
and dual averaging is that they do not rely on any predeÞned
structures. Subgradient descent and dual averaging work well
for asynchronous networks but suffer from slow convergence.
Indeed, for subgradient descent algorithms [15] and [16] estab-
lish the convergence rate of , where is the number of
iterations, to a neighborhood of the optimal solution when the
local subgradients are bounded and the stepsize isÞxed. Further
assuming that the local objective functions are strongly convex,
choosing a dynamic stepsize leads to a rate of
[17]. Dual averaging methods using dynamic stepsizes also
have sublinear rates, e.g., as proved in [18] and
[19].

The decentralized ADMM approaches use synchronous steps
by all the agents but have much faster empirical convergence,
as demonstrated in many applications [8]–[10]. However, ex-
isting convergence rate analysis of the ADMM is restricted to
the classic, centralized computation. The centralized ADMM
has a sublinear convergence rate for general convex
optimization problems [23]. In[24] an ADMM with restricted
stepsizes is proposed and proved to be linearly convergent for
certain types of non-strongly convex objective functions. A re-
cent paper [25] shows a linear convergence rate for
some under a strongly convex assumption, and our paper
extends the analysis tools therein to the decentralized regime.

A notable work about convergence rate analysis is [20],
which proves the linear convergence rate of the ADMM ap-
plied to the average consensus problem, a special case of (1) in
which with being a local measurement
vector of agent . Its analysis takes a state-transition equation
approach, which is not applicable to the more general local
objective functions considered in this paper.

C. Paper Organization and Notation

This paper is organized as follows. Section II reformulates
the decentralized consensus optimization problem and develops
an algorithm based on the ADMM. Section III analyzes the
linear convergence rate of the ADMM and shows how to accel-
erate the convergence through tuning the algorithm parameter.
Section IV provides extensivenumerical experiments to vali-
date the theoretical analysis inSection III. Section V concludes
the paper.

In this paper we denote as the Euclidean norm of a
vector and as the inner product of two vectorsand
. Given a semideÞnite matrix with proper dimensions, the
-norm of is . We let be the operator that

returns the largest singular value ofand be the one
that returns the smallestnonzero singular value of .

We use two kinds of deÞnitions of convergence, Q-linear con-
vergence and R-linear convergence. We say that a sequence,
where the superscript stands for time index, Q-linearly con-
verges to a point if there exists a number such that

with being a vector norm. We say that

a sequence R-linearly converges to a point if for all
where Q-linearly converges to .

II. THE ADMM FOR DECENTRALIZED CONSENSUS

OPTIMIZATION

In this section, weÞrst reformulate the decentralized con-
sensus optimization problem (1) such that it can be solved by
the ADMM (see Section II-A). Then we develop the decentral-
ized ADMM approach and provide a simpliÞed decentralized
algorithm (see Section II-B).

A. Problem Formulation

Throughout the paper, we consider a network consisting of
agents bidirectionally connected by edges (and thus arcs).
We can describe the network as a symmetric directed graph

or an undirected graph , where
is the set of vertexes with cardinality is the set of
arcs with , and is the set of edges with .
Algorithms that solve the decentralized consensus optimization
problem (1) are developed based on this graph.

Generally speaking, the ADMM applies to the convex opti-
mization problem in the form of

(2)

where and are optimization variables, and are convex
functions, and is a linear constraint of and

. The ADMM solves a sequence of subproblems involving
and one at a time and iterates to converge as long as a saddle
point exists.

To solve (1) with the ADMM in adecentralized manner, we
reformulate it as

(3)

Here is the local copy of the common optimization variable
at agent and is an auxiliary variable imposing the con-

sensus constraint on neighboring agentsand . In the con-
straints, are separable when areÞxed, and vice versa.
Therefore, (3) lends itself to decentralized computation in the
ADMM framework. Apparently, (3) is equivalent to (1) when
the network is connected.

DeÞning as a vector concatenating all
as a vector concatenating all , and

, (3) can be written in a matrix form
as

(4)

where , which Þts the form of (2), and is amenable to
the ADMM. Here are both
composed of blocks of matrices. If
and is the th block of , then the th block of and the

th block of are identity matrices ; otherwise
the corresponding blocks are zero matrices . Also, we
have with being a
identity matrix.
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B. Algorithm Development

Now we apply the ADMM to solve (4). The augmented La-
grangian of (4) is

where is the Lagrange multiplier and is a posi-
tive algorithm parameter. At iteration , the ADMM Þrstly
minimizes to obtain , secondly minimizes

to obtain , andÞnally updates from
and . The updates are

-

-
-

(5)

where is the gradient of at point if
is differentiable, or is a subgradient ifis non-differentiable.

Next we show that if the initial values ofand are properly
chosen the ADMM updates in (5) can be simpliÞed (see also
the derivation in [8]). Multiplying the two sides of the-update
by and adding it to the -update, we have

. Further, multiplying the two
sides of the -update by and adding it to the -update we
have . Therefore (5) can be equivalently expressed
as

(6)

Letting with and recalling
, we know from the second

equation of (6). Therefore, theÞrst equation in (6) reduces to
where

and . The third equation in (6)
splits to two equations
and . If we choose the ini-
tial value of as such that holds for

, summing and subtracting these two equations re-
sult in and ,
respectively. If we further choose the initial value ofas

holds for .
To summarize, with initialization and

, (6) reduces to

(7)

In Section III we will analyze the convergence rate of the
ADMM updates (7). The analysis requires an extra initializa-
tion condition that lies in the column space of (e.g.,

) such that also lies in the column space of ;
the reason will be given in Section III.

Indeed, (7) also leads to a simpledecentralized algorithm that
involves only an -update and a new multiplier update. To see
this, substituting into theÞrst two equations
of (7) we have

(8)

which is irrelevant with . Note that in theÞrst equation of
(8) the -update relies on other than . There-
fore, multiplying the second equation with we have

. Substituting it to
the Þrst equation of (8) we obtain the-update where
is decided by and , i.e.,

. Let-
ting be a block diagonal matrix with its

th block being the degree of agentmultiplying and
other blocks being ,
we know . DeÞning a new multiplier

, we obtain a simpliÞed decentralized
algorithm

-

-
(9)

The introduced matrices , and are re-
lated to the underlying network topology. With regard to the
undirected graph and are the extended unoriented
and oriented incidence matrices, respectively; and are
the extended signless and signed Laplacian matrices, respec-
tively; and is the extended degree matrix. By “extended”,
we mean replacing every 1 by by , and 0 by in
the original deÞnitions of these matrices [26]–[29].

The updates in (9) are distributed to agents. Note that
where is the local solution of agentand
where is the local Lagrange multiplier of

agent . Recalling the deÞnitions of and , (9) trans-
lates the update of agentby

(10)

where denotes the set of neighbors of agent. The algorithm
is fully decentralizedsince the updates of and only rely
on local and neighboring information. The decentralized con-
sensus optimization algorithm based on the ADMM is outlined
in Table I.

III. CONVERGENCERATE ANALYSIS

This sectionÞrst establishes the linear convergence rate of the
ADMM in decentralized consensus optimization with strongly
convex local objective functions (see Section III-A); the de-
tailed proof of the main theoretical result is placed in Appendix.
We then discuss how to tune the parameter and accelerate the
convergence (see Section III-B).
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TABLE I
ALGORITHM 1: DECENTRALIZED CONSENSUSOPTIMIZATION BASED ON THEADMM

A. Main Theoretical Result

Throughout this paper, we make the following assumption
that the local objective functions are strongly convex and have
Lipschitz continuous gradients; note that the latter implies
differentiability.

Assumption 1:The local objective functions are strongly
convex. For each agent and given any

with
. The gradients of the local objective functions are Lip-

schitz continuous. For each agentand given any
with .

Recall the deÞnition . Assumption 1 di-
rectly indicates that is strongly convex (i.e.,

given any
with ) and the gradient of is Lipschitz con-
tinuous (i.e., for any

with ).
Although the convergence of Algorithm 1 to the optimal so-

lution of (4) can be shown based on the convergence property
of the ADMM (see e.g., [21]), establishing its linear conver-
gence is nontrivial. In [25] the linear convergence of the central-
ized ADMM is proved given that either is strongly convex
or is full row-rank in (8). However, the decentralized con-
sensus optimization problem does not satisfy these conditions.
The function is not strongly convex, and the matrix

is row-rank deÞcient.
Next we will analyze the convergence rate of the ADMM iter-

ation (7). The analysis requires an extra initialization condition
that lies in the column space of such that also lies
in the column space of , which is necessary in the analysis.
Note that there is a unique optimal multiplier lying in the
column space of . To see so, taking in (7) yields
the KKT conditions of (4)

(11)

where is the unique primal optimal solution and the
uniqueness follows from the strong convexity of as well
as the consensus constraint . Since the consensus
constraints are feasible, there is at least one
optimal multiplier exists such that . We
show that its projection onto the column space of , denoted
by , is also an optimal multiplier. According to the property
of projection, and hence .
Therefore, the projection that lies in the column space

of also satisÞes . Next we show
the uniqueness of such a by contradiction. Consider two
different vectors that both lie in the
column space of and satisfy the equation. Therefore, we
have and .
Subtracting them yields . Since

where
is the smallest nonzero singular value of ,

we conclude that and consequently
which contradicts with the assumption of

and being different. Hence, is the unique dual
optimal solution that lies in the column space of .

Our main theoretical result considers the convergence of a
vector that concatenating the primal variableand the dual vari-
able , which is common in the convergence rate analysis of the
ADMM [23]–[25]. Let us introduce

(12)

We will show that is Q-linearly convergent to its
optimal with respect to the -norm. Further, the
Q-linear convergence of to implies
that is R-linearly convergent to its optimal .

Theorem 1:Consider the ADMM iteration (7) that solves (4).
The primal variables and have their unique optimal values

and , respectively; the dual variablehas its unique op-
timal value that lies in the column space of . Recall the
deÞnition of and deÞned in (12). If the local objective func-
tions satisfy Assumption 1 and the dual variableis initial-
ized such that lies in the column space of , then for any

is Q-linearly convergent to its optimal
with respect to the -norm

(13)

where

(14)

Further, is R-linearly convergent to following from

(15)

Proof: See Appendix.


















