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Abstract

The Monge-Kantorovich mass transportation theory originated in three influential pa-
pers. The first one was written by a great geometer, G. Monge [37]. The second and
third one were due to Kantorovich [32] [33] , who received a Nobel prize for related work
in economics [38]. The Monge-Kantorovich theory is having a growing number of applica-
tions in various areas of sciences including economics, optic (e.g. the reflector problem),
meteorology, oceanography, kinetic theory, partial differential equations (PDEs) and func-
tional analysis (e.g. geometric inequalities). The purpose of these five hour lectures is to
develop basic tools for the Monge-Kantorovich theory. We will briefly mention its impact
in partial differential equations and meteorology. These applications are fully developed in
the following preprints, [12] [15] [18] [28], which you can download from my webpage at
www.math.gatech.edu/ gangbo/publications/.

We have ended this manuscript with a bibliography of a list, far from being exhaustive, of
recent contributions to the mass of transportation theory and its applications to geometric
inequalities, as well as computer vision and optics (the reflector problem) .

These notes have been written as a set of lectures for the 2004 Summer Institute at
Carnegie Mellon University. It is a pleasure to thanks the organizers of that Summer Institute
for their support, hospitality and the impressive organization.

1 Introduction

Assume that we are given a pile of sand occupying a region X C R? and assume that we
have another region Y C R?, that consists of holes, of prescribed distribution. Let p, be the
distribution of the sand and p; be the distribution of the holes. We also assume that for each
pair of points (z,y) € X x Y we have assigned a nonnegative number c¢(z,y) which represents
the cost for transporting a unit mass from x to y. A transport map T is a strategy which tells
us that the mass from x will be moved to Tx. It must satisfy a mass conservation condition that

[y oz = [ i )

for all Borel sets B C R%. When (1) holds, we say that ”T pushes p, forward to p;” or that T
is a strategy for transporting p, onto p; (see definition 2.1) and we write Ty p, = p1.

Pick up a strategy for transporting p, onto p1, or in other words, pick up a map 7" such that
Typo, = p1. Given a point z, if p,(x)dr is the mass carried by a small neighborhood of z, the
cost for transporting p,(x)dx to a small neighborhood of Tx is ¢(z, Tz)p,(x)dx. Thus, the total
cost for transporting p, onto p; is

Cost[T] = /Rd c(x,Tx)po(x)dx.



The Monge problem is to find a minimizer for
inf{/ c(z,Tx)po(x)dx | Tepo = p1}- (2)
T R

In 1781, Monge conjectured that when ¢(z,y) = |z — y| then, there exists an optimal map that
transports the pile of sand to the holes. Two hundred years ellapsed before Sudakov claimed
in 1976 in [46], to have proven Monge conjecture. It was recently discovered by Ambrosio [4],
that Sudakov’s proof contains a gap which cannot be fixed in the case d > 2. Before that gap
was noticed, the proof of Monge conjecture was proven for all dimensional spaces by Evans and
the author, in 1999, in [25]. Their proof assumes that the densities p, and p; are Lipschitz
functions of disjoint supports. These results in [25] were recently independently refined by
Ambrosio [4], Caffarelli-Feldman-McCann [13] and Trudinger-Wang [47] . In a meanwhile,
Caffarelli [11], McCann and the author [28] [29], independently proved Monge conjecture for
cost functions that include those of the form ¢(x,y) = h(x — y), where h is strictly convex. The
case c(x,y) = l(|x — y|) where [ is strictly concave, which is relevant in economics, was also
solved in [28] [29].

One can generalize Monge problem to arbitrary measures p, and p; when there is no map
T such that Tip, = p1. To do that, one needs to replace the concept of transport map by the
concept of transport schemes which can be viewed as multivalued maps, coupled with a family
of measures. Let us denote by X the support of u, and by Y the support of p1. As usually done,
we denote by 2Y the set of subsets of Y. We consider maps T': X — 2¥ and associate to each
x € X, a measure 7, supported by the set Tz, which tells us how to distribute the mass at z
through T'z. Therefore, the cost for transporting « to T'x is

/ c(x,y)dvy; ().
Tx

The total cost for transporting p, onto p; is then

7 frehoex] = [

X

[/;xc(x’y)dW%(y)]dﬂo(x).

It is more convenient to encode the information in (7', {7, }zex ) in a measure y defined on X xY
by

/ F(z,y)dy(z,y) = / [ F(x,y)d%a(y)} dpio ().
XY X Tz
The measure 7 is to satisfy the mass conservation condition:

oAl =4[Ax Y], A[X x B] = B8]

for all Borel sets A C X and B C Y.
In section 2, we introduce Kantorovich problem in terms of ~, as a relaxation of Monge
problem. Indeed, we have already extended the set 7 (po, 1) of maps T : X — Y such that



Tyfto = 1, to a bigger set I'(i,, 11). Then, we extend the function T — I[T] := [ c(z, Tx)po(x)
to a function I defined on I'(u,, pt1) so that if 7 (ue, 1) # () then we have that
inf I= inf I
T (pto,p1) D(ko,p1)
The new problem at the right handside of the previous equality will be called, as usually done
in the calculus of variations, a relaxation of the first problem.

In these notes, we first formulate the mass transportation problems and under suitable as-
sumptions, prove existence of solutions for both, the Monge and Kantorovich problems. We
incorporate in these notes prerequisites which we don’t plan to go over during these five hour
lectures. We mention how the mass transportation fits into dynamical systems and fluids me-
chanic. The Wasserstein distance and its geometry , as a mass transportation problem, which
have played an important role in PDEs during the past few years, are studied. We also comment
on the applications of the mass transportation theory to PDEs and meteorology. The applica-
tions to geometric inequalities will be covered in parallel lectures given by N. Ghoussoub, we
omit them here.

2 Formulation of the mass transport problems

2.1 The original Monge-Kantorovich problem

Let us denote by 7 (10, 1t1) the set of maps that push u, forward to p; (see definition 2.1 ).
Monge problem. Find a minimizer for

gt [ clo. Ta)do(a) | Tyno = m}. 3)

Given two measures u, and pp, proposition 7.18 gives a sufficient condition for the existence
of a map T that transports p, onto u1. Hence, 7 (po, f11) may be empty unless we impose for
instance that p, is absolutely continuous with respect to Lebesgue measure. In case, 7 (i, 1)
is empty, one can replace the transport maps by multivalued maps, coupled with a family of
measures as done in the introduction. We go directly to the right concept to use. We refer the
reader to the introduction of this manuscript where we have given a more detailed justification
of how we introduced the so-called transport scheme.

Definition 2.1 (Transport maps and schemes). Assume that p is a measure on X and that
v is a measure on Y. (i) We say that T : X — Y transports p onto v and we write Tyup = v if

v[B] = p[T~1(B)] (4)

for all Borel set B C'Y. We sometimes say that T is a measure-preserving map with respect to
(n,v) or T pushes p forward to v. We denote by T (u,v) the set of T such that Typ = v.
(ii) If v is a measure on X X Y then its projection projx~y is a measure on X and its
projection projyy is a measure on'Y defined by projxvy[A] = v[A x Y], projyy[B] = v[X x RY.
(iii) A measure v on X XY has p and v as its marginals if p = projxvy and v = projy-y.
We write that v € T'(u,v) and call v a transport scheme for u and v.



Exercise 2.2. Assume that ji, and i are two probability measures on R®. Assume that T :
R? — R? is a Borel map and that ~ is a Borel measure on R? x R%. (i) Show that Typo = 1
if and only if
G(Tx)dpo(x) = | G(y)dy
Rd R4
for all G € LY(RY, juy).
(i) Show that v € T'(ue, 1) if and only if

[ F@in@ = [ F@se). [ 6w = [ cwdu).

for all F € LY(R%, j1,) and G € LY (R%, 11y).

Remark 2.3. (i) Note that (4) expresses a mass conservation condition between the two mea-
sures.

(ii) While the set T'(uo, 1) always contains the product measure i, X p1 when p,[RY] =
p1[RY = 1, the set T (juo, p11) maybe empty. For instance, assume that x,y,z are three distinct
elements of RY, set p1o = 1/2(8; + 6,) and iy = 1/3(85 + 6, + 9,). Then there is no map T that
transports (L, onto 1.

(iii) If v € T'(po, p11), (,y) being in the support of v, expresses the fact that the mass dy(x,y)
is transported from x to y. Here, the support of v is the smallest closed set K C R* x R?* such
that v[K] = v[R? x R4].

Kantorovich problem. Find a minimizer for

inf / c(z, y)dy(@,y). (5)
Y€l (ko,11) JRIXRA

Unlike Monge problem, existence of a minimizer for Kantorovich problem is an easy task. Let
us denote by P(R?) the set of Borel probability measures on R.

Theorem 2.4. Assume that e, p1 € P(R?) and that ¢ : RY x RY — [0,400) is continuous.
Then, (5) admits a minimizer.

Proof: The set I'(uo, 1) is a compact subset of P(R? x R?) for the weak * convergence.
Thus, if {7,}7° ; be a minimizing sequence in (5), extracting a subsequence if necessary, we may
assume without loss of generality that {7, }2; converges weak * to some 7Yoo in I'(po, p11). Let
R, € C,(R% x R?) be a function such that 0 < R, <1 and R, = 1 on the ball of center 0 and
radius r > 0. We have that

/ Ry (z,y)c(x,y)dVoo (z,y) = lim Ry (x,y)c(x,y)dym(z,y)
RIxRY n—-—+0o RIxRA

< lim c(z, y)dyn(z,y)

n—+oo JRdxRd

— it [ e (6)
Y€l (kos1) JRIXRA



Letting r go to 400 in the first expression of (6) , we obtain that
/ o(z,y)dVsc(z,y) < inf / c(@,y)dy(z,y)
RIxRd Y€ (o,p1) JREXRA

which proves that 7., is a minimizer in (5) . This, concludes the proof of the theorem. QED.

Why is Kantorovich’s problem a relaxation of Monge’s problem? To each T : R* — R¢
such that T pu, = 1 we associate the measure y7 defined on R? x R? by

1[0 = pol{z € R? | (,Tz) € C}).

Exercise 2.5. Assume that 1o, 1 € P(RY) and that ¢ is a nonnegative continuous on R? x RY,
Define I on T (po, p1) and I on T'(po, p1) by

1= [ e Taau@,  10)= [ ey

(i) Prove that if Ty, = p1 then yr € I(pto, p1) and I[T) = I[yr).

(ii) Prove that if o, and py don’t have atoms then {yr | T € T (po, p1)} is weak * dense in
Do, 1) )

(iii) Conclude that infr(,, )1 = infpg, ) 1

A detailed proof of these statements can be found in [27].

2.2 Guessing a good dual to the Monge-Kantorovich problem

If T is a functional on a set I and J is a functional on a set C we say that infr I and sup, J are
dual problems to each other if

inf I = sup J.

r c

In pratice, one is given for instance the variational problem infr I to study and one needs to
identify a dual problem sup; J that would be useful in understanding the primal problem. We
use Kantorovich problem to illustrate these facts. We don’t insist on the rigor of the arguments
used in this subsection. We make them just to help readers who are unfamiliar with duality
arguments, to understand how to guess "meaningful” dual problems.

Let B be the set of Borel measures on R? x R? and define D : B — R U {+o0} by

0 if v €Tl(ko,m)
+oo if v & Do, p11)-

In other words, if x € {0, 1} is the characteristic function of I'(j,, 1) then, D € {400,0} is the
”infinite” characteristic function of T'(p,, 111). Define

D(v) =

L) = [ w@dn@) ~ [ @i+ [ @ - [ o)

R4xR4



on the set C,(R?%) x Cy(R%). Note that

D(y) = sup Ly (u,v). (7)
(u,0)ECH(RF)xCo (R4)

Indeed, if v € I'(pto, pt1) then, L, = 0. But if v & I'(uo, p£1) then, either

/ Uo(x)dpo(x) uo(z)dy(z,y)
Rd

RiIxR4
for some u, or

[ o) # [ vl

R4 RIxR4

for some v,. Assume for instance that the first equality fails. Since we can substitute u, by —u,,
we may assume without loss of generality that

/Rd to(@)dpo(@) > /Rded Uo(2)dY(z,y)-

This yields that L (u,,0) > 0. Because L., is linear in its argument, we use that L (Au,,0) =
AL~ (uo,0) tends to 400 as A tends to +o00, to conclude that the supremum D(7y) = +o0.
Clearly,

o [ deaden) =l DO+ [ e

YEL (po,p1) RIxR4
and so,
it /Rded e(z,y)dy(e,y) = inf sup /RdU(rr)duo(w)+/Rdv(y)dm(y)
N /R o elmy) —u) — ey} ®)
— (Silp) Wirellfg { /R Ju(@)dpo(x) + /R L o(m)du(y)
+ /R o eley) —u@) — )by} )

To obtain that the expression in (8) and (9) are equal, we have used the minimax theorem since
the functional

@it + [ otdist+ [ (elon) = ule) o))

is convex in the variables v for (u,v) fixed and concave in the variables (u,v) for 7 fixed.
Note that for (u,v) fixed

0 if (u,v)€C

inf /RdXRd(c(ac,y) —u(z) —v(y))dy(z,y) = {—oo it (u,0) €C,

yeB



where, C is the set of pairs (u,v) such that u,v : R — R U {—oc} is upper semicontinuous and

u(z) +v(y) < c(z,y)
for all z,y € RY. Indeed, if (u,v) € C then

v - (c(@,y) — u(z) —v(y))dy(z,y) =0
RIxR4

is minimized by 7, = 0. But, if (u,v) & C then c(z,,y,) — u(x,) — v(yo) < 0 for a pair (z,,y,) €
R? x R If we set vy = Ad(z,,40) then
| (elw) =~ ule) = o) diep) — o
RIxR4

as A tends to 4-oc.
We combine (9) and (10) to conclude that

inf /R (o) = s /R ()l + / o(y)dpn ().

YEL (po 1) (u,w)eC R4

The set C is convex and its extreme points are the (u,v) satisfying

u(z) = yiergd c(z,y) —v(y),  (zeRY (11)
and
v(y) = [t c(z,y) —u(z),  (yeR?) (12)

The aim of next subsection is to study properties of the set of (u,v) satisfying (11) and (12).

2.3 Properties of ”Extreme points of C”

Throughout this subsection, we assume that there exists h : R — [0, +00) such that
(H1) c(z,y) = h(z —y)

(H2) limy | 400 2 = 400,

(H3) h € CY(RY) is strictly convex

Definition 2.6. Ifu,v: R? — RU {—o0} are upper semicontinuous, we define

vi(x) = infd c(z,y) —v(y), (x € RY) (13)
yeR
and
uely) = inf cla,y) —u(@),  (yeRY). (14)

We call v¢ the (upper) c-concave transform of v and u. the (lower) c-concave transform of u.



Throughout this section, if A C R% and u : A — R U {—o0} we identify u with the function
u defined by
u(z) if veA
(z) = .
—o00 if x & A.

Observe that in that case

(@)e(y) = inf e(z,9) —u(z),  (y € R,

We define
Cr = {(u,v) € C(Bg) x C(Bg) | u(z) +v(y) < c(z,y) Ya,y € Br}.
Remark 2.7. If (u,v) € Cr and x € By then

u(z) < c(z,y) —v(y) (15)

for all y € Bg. Minimizing the right handside of (15) over y € Bg, we obtain that u(x) < v°(x).
Hence, u < v°. Similarly, v < u..

Lemma 2.8. Assume that ¢ € C(R? x RY) and that u,v € C(Bg). Then (i) v < (v°). and
u < (ue)C.
(i) If v = u. then (v°). = v. Similarly, if u = v then u = (uc)°.

Proof: 1. For every x,y € Br we have that v°(z) < c(x,y) — v(y) and so,

v(y) < c(z,y) — v*(x).

Minimizing the right handside of the previous inequality over x € Bgr we conclude that v < (v°)..
The proof for u is done in a similar manner.

2. Note that if a < b then a. > b. and so, the operation -. reverses inequality. Assume that
v = uc. By (i) we have that v¢ = (u.)¢ > u and so, (v°). < u. = v. This, combined with (i),
gives that (v°). = v. The proof for u is done in a similar manner. QFED.

Proposition 2.9. Assume that (H1), (H2)and (H3)hold. Let Br C R® be the open ball of center
0 and radius R > 0. Assume that v € C(BR), that K C R® is a convex compact and that u = v°.
Then

(i) Lip(ulie) < IVacllze(icx - ]

(i) If w is differentiable at x then, Tx = x — Vh*(Vu(x)) is the unique point y € Br at
which the infimum in (13) is attained. We recall that here, h* denotes the Legendre transform
of h.

(iii) If H € C(BR) and u, = (v+rH)° then, ||[uy —ul| iy < |7|[[H]|| Lo (g)- If in addition
u is differentiable at x then

o 0 TH) () = (@)
r—0 r

=—H(Tz).
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Proof: 1. Let 21,z € K. Assume without loss of generality that u(xa) > u(zx1). Let y1 € Bgr
be such that

u(z1) = c(z1,y1) — v(y1), (16)

in other words, y1 is a point at which the minimum is attained in (13) for v = x1. Since y1 € Br
we have that

u(ze) < c(z2,y1) — v(y1)- (17)
We combine (16) and (17) to obtain that

lu(z2) — u(z1)] = u(w2) — u(z1) < e(z2,91) — c(21,91)
=< Vue(Z,y1); 00 — 21 >

< w2 — 21]|[Vac|| oo (kK x Br)-

We have used the mean—value—theorem in the latest expressions; the point T is obtained as a
convex combination of x1 and xo. This concludes the proof of (i).

2. Assume that u is differentiable at x and let y € Bg be such that u(x) = c(z,y) — v(y).
Since (u,v) € C we have that z — I(z) = u(z) — c(z,y) +v(y) < 0 and so, the previous equality
shows that | attains its maximum at x. Since | is differentiable at x we have that

0 = Vi(z) = Vu(z) — Vyc(z,y).

Hence,
Vu(z) = Vye(z,y) = Vh(z —y). (18)

Because of (H2)and (H3), we have that Vh is invertible and its inverse is Vh*. This, together
with (18) gives that y = x — Vh*(Vu(z)). This proves (ii).

3. Assume that H € C(Bg) and set u, = (v +rH)°. For x € K and each r, there exists
yr € Br such that

ur(x) = c(@,yr) —o(yr) —rH(yr) = u(x) —rH(y,). (19)
In case r = 0 we rewrite (19 ) as
Uo () = (2, Yo) = v(Yo) = c(x,¥0) = v(Yo) = TH(yo) +1H (Yo) = ur(x) +rH(yo).  (20)
We use both (19 ) and (20 ) to obtain that
—rH(yr) < ur(z) = u(e) < —rH(yo). (21)
We obtain immediatly from (21 ) that
[ur =l ooy < A7l H ]| Lo (By)- (22)

By (22 ), {u,}, converges uniformly to u as r tends to 0.
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4. Assume in addition that u is differentiable at x. We claim that

lim y, = Tz.

r—0

To prove the latest statement, we have to prove that every subsequence of {y,}, has a convergent
subsequence which tends to T'x. Assume that {y,, }°2 is a subsequence of {y,}r. Let us extract
from {y,.}o° | a converging subsequence that we still label {y,,}>>,. Call y € Bg the limit of

n—=
{yr, 152 ,. Since v and c are continuous and {y,, }°2, converges to y, we deduce that the right

handside of (19 ) tends to c(x,y) —v(y) as n tends to +o0o. We use (21) to deduce that the left
handside of (19 ) tends to uy(x) as n tends to +o0o. Consequently,
uo() = c(z,y) — v(y).

By (ii), the previous equality yields that y = Tx. Since {y,, }52 1 is an arbitrary subsequence of
{yr}r we conclude that lim,_oy, = Tx.

We divide both sides of (21 ) by r and use that lim,_.oy, = Tx to conclude the proof of (iii).
QED.

Let
Kg := {(u,v) € C(Br) x C(Bg) | v = v, v = u., u(0) = 0}.

Note that Kr C Cp.

Lemma 2.10. If (H1), (H2)and (H3)hold, then Kr is a compact subset of C(Bg) x C(Bg) for
the uniform norm.

Proof: Define
My o= ||Valllpoo(BaxBr)y: Mz = llellLoc(BrxBr)

and let (u,v) € Kg. Since u = v, proposition 2.9 (i) gives that Lip(u) < Mj. This, together
with the fact that w(0) = 0 gives that

ullwroo () < (1+ R)Mi. (23)
Since v = u., we use (23) to obtain that
[0l oo (Br) < llellzoe(BrxBr) T [lullLiBr) < Mo+ (1+ R)Mi.
This, together with the fact that by proposition 2.9 (i) , Lip(v) < My, yields that
[[v]lwiee(Br) < (24 R)My + Mo.. (24)

In the light of Ascoli-Arzela theorem, (23) and (24) yield that Kr is a compact subset of C(BRr) x
C(BR) for the uniform norm.
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2.4 Existence of a minimizer

Let pip, 11 € P(RY) be such that
sptiio, sptpn C Br (25)

J[u, v] :/ uduo—i—/ vdpy .
Br Br

Lemma 2.11. Assume that (H1), (H2)and (H3)hold. Then J admits a mazimizer (uo,v,) over
Cr. If in addition p, << dx then Tyx = x — Vh*(Vuy(x)) is defined p,—almost everywhere and

and define

Toyto = 1, Uo(x) + vo(Tox) = c(x, Tox) po — almost everywhere.

Proof: 1. Observe that if (u,v) € Cr then remark 2.7 gives that uw < v¢ and so, Ju,v] < J[v¢, v].
We repeat the same argument to obtain that J[v¢,v] < J[v¢, (v°).]. Setting (u, v) (ve, (v°)e),
we have that (u,v) € Cr and J[u,v| < J[u,v]. By lemma 2.8 we have that (0). = v and (0)¢ = @.
Note in addition that

J[u = u(0),v +u(0)] = Ju,v] + @(0)(u1(Br) = to(Br)) = J[u, v].

We have just proven that

sup J = sup J.
Cr Kr

By lemma 2.10, Kr is a compact set for the uniform convergence. Thus, J admits a maximizer
(o, o) over Kg.

2. Assume now that p, << dz. Proposition 2.9 (i) gives that u, is a Lipschitz function on
Bgr and so, it is differentiable u,—almost everywhere. Hence, the map Tyx = x — Vh*(Vu,(x))
is defined p,—almost everywhere. Proposition 2.9 (ii) gives that

Uo(x) + vo(Tox) = c(z, Tox) (26)
po—almost everywhere. Let H € C(Bg) and define
up = (vo +17H)S, v, = v, +TH.
Note that (u,,v;) € Cr and so, J[u,,v,] < J[ue,v,]. Hence, im,_o(J [y, vr] — J[to, Vo)) /7 = 0
provided that the limit exists. But, Proposition 2.9 (iii) gives that

lim J[urvvr] _ J[uo,vo] _ hm/ UT(ZE) - UO(ZIT) duo(x) + i H(y)dﬂl(y)
r—0 r r—0 Br r Br

= | —H(T,z)dp,(z) + |  H(y)dui(y).
Br Br

Thus,

_ H(Tox)dpo(x) = | H(y)dpa(y).

Br Br
Since H s arbitrary, this proves that T,up, = p1, which concludes the proof of the lemma.
QED.
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Remark 2.12 (Half of a way to duality). We have the

supJ < inf / c(x,y)dy(z,y) < inf / c(x, Tx)dpo(x). (27)
c [(posp1) JRAXRA T (pom1) JRA

Proof: 1. If (u,v) € C then u(z) + v(y) < ¢(x,y) and so,

/ (ulz) + v(y))d (. ) < / (,9)d(x,p). (25)
RixRd RIxRd

Since v € T'(po, pi1) we use exercise 2.2 (ii) to obtain that

| w@an@ = [ w@ies md [ @) = [ owdo.

This, together with (28) yields the first inequality in (27).
2. To each T € T (o, p11) we associate the measure yp defined on R x R by

1[0 = pol{z € R? | (z,Tz) € C}.

Clearly, yr € T'(to, p11). Indeed, if we denote by C' the characteristic function of C, the definition
of vr gives that

/ 1o(z, y)dy(z,y) = / 1oz, Tr)dpso(z)
RIxR4 R4

for arbitrary set C C Bgr x Bgr. Hence, every function F which is a linear combination of
characteristic functions, satisfies

[ e = [ F o).
R4xR4 R

Standard approzimation arguments yield that the previous identity holds for every F € C(Bpg x

Bg). In particular,
/ c(z,y)dy(z,y) :/ c(z, Tx)dpe(x).
RIxR4 R4

We conclude that

inf / c(x, Tx)dpe(x) = 1nf / c(x,y)dyr(x,y)
T (o,pt1) Ho Hl Rix R4

inf / c(z,y)dy(z,y).
dwRd

T(po,11)

This proves the second inequality in (27). QED.
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Lemma 2.13. Assume that (H1), (H2)and (H3)hold. Assume that p, << dx, that T, 4110 = 1

and that there exists an upper semicontinuous function v, : R* — R U {—o0} Tox = x —

Vh*(Vue(z)), where u, = vs. Assume that v, = —oo outside the support of ui. Then, T,
minimizes

inf c(x, Tx)dp,(x), 29

ront [ el Ta)au (29)

and so, all the expressions in (27) coincide.

Proof: In order to simplify the proof of this lemma, we assume in addition that the support of
w1 is bounded and so, there exists a ball of radius R < +o0o such that

sptu1 C Bpg.

As a consequence, v, = —o0 on the complement of Br. By proposition 2.9 (i), u, is locally
Lipschitz and so, it is differentiable p,—almost everywhere (since u, << dx ). We use proposition
2.9 (ii) to obtain that

Uo(z) + vo(Tox) = ez, Tyx) (30)

po—almost everywhere. We integrate both sides of (30) and use that Toupo = p1 to obtain that

T, 5] = / el To)dpo(a) (31)

R
Because u, = vS, we have that (ue,v,) € C. By remark 2.12, since equality holding in (31), we
must have that T, minimizes (29) and that all the expressions in (27) coincide. QED.

Theorem 2.14. Assume that (H1), (H2)and (H3)hold and that h(z) = [(|z|) for some function
I (As one can see in [29], the last and new assumption we have just made, is not important
but is meant here to make simple statements). Assume that p, << dx. Then, (29) admits a
minimizer. If the expression in (29) is finite then, (i) the minimizer T, in (29) is unique and

inf / c(x,Tz)dpo(x) = inf / c(x,y)dy(z,y). (32)
T (ko) J B D(po,m1) JBrx Br

(iii) If in addition py << dx then T, is invertible on R% up to a set of zero pi,~measure.

Proof: Theorem 2.14 is fundamental in many applications of the Monge-Kantorovich theory.
The case p = 2 was first proven by Brenier in [6]. The general case was independently proven by
Caffarelli [11], Gangbo and McCann [29] under assumptions more general than the above one.
To make the proof simpler, we further assume that the supports of o, and uy are bounded so
that, there exists a ball of radius R < 400 such that

sptio, sptiur C Bpg.
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1. According to lemma 2.11, J admits a mazimizer (uo,vo) over Cr, Tox = x — Vh*(Vu,(x)) is
defined p,—almost everywhere and
Tostlbo = Hi1, Uo(x) + vo(Tox) = c(z, Tox) po almost everywhere.

These, together with lemma 2.13 prove that T, is a minimizer for the Monge problem (29) and
(32) holds.
2. Assume that Ty is another minimizer of (29). Then, we must have that

J[to, Vo] = /B c(x, Tox)dpo(x) > /B (uo(x) + vo(Th))dpo(x) = J[tie, Vo).

Thus, ue(z) +vo(Thz) = c(x, Thx) po—almost everywhere. But, proposition 2.9 (ii) gives that the
equation uy(x) +v,(y) = c(x,y) admits the unique solution y = T,z for po—almost every x. This
proves that Tix = Tyx p,—almost everywhere.

3. If in addition p; << dx then by symmetry, the Monge problem

inf Sy, y)d
SE,;&WO)C( Y, y)dp(y)

admits a unique solution S, and we have that
Sogh1 = o, Uo(Soy) + Vo(y) = c(Soy,y) p1 almost everywhere.

This proves that So(To(x)) = © po—almost everywhere and To(S,(y)) = y p1—almost everywhere.
This concludes the proof of the theorem. QED.

3 The Wasserstein distance

Assume that p, and py are two probability measures on R and that 0 < p < 4+o00. We define

1,
W) (1o, p1) := — inf{ |z —ylPdy(z,y) : v € T(po, 1)} (33)
P 7 JRixRd

We have in theorem 2.14 that when p, << dx then
1,
Wi(po, pa) = —inf{ | |z —T(@)[Pdpo(z) : Typo = p}. (34)
p T Rd
In fact, one can improve that result to obtain that when p, and py don’t have atoms then (34)
holds. The proof of the statement can be found in [{] and [27].
Remark 3.1. Assume that c(x,y) = % and that u,v : R — R U {—oc}. Set i(x) =

|| 2

S-—u(z) and ¢(y) = |yT —v(y). We have that u = v° if and only if

eyl 2 lyl?
u(zx) = inf —v(y) = + inf —<xyjy >+ —v(y).
(z) o v) == i, Y 5~ )

This is equivalent to 1 (x) = supyegra < ;Y > —P(y) = ¢*(y). In that case
u(x) +v(Vip(x)) = 1/2]z — Vi ()]
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Combining lemma 2.13, theorem 2.14 and remarks 3.1, 3.5, we conclude the following corollary.

Corollary 3.2. Assume that pi,, 11 € P(R?) are of bounded second moments, that p, << dx

and that c(z,y) = lz=y* y' . Then (i) there exists a convex, lower semicontinuous function on RY,
whose gradient minimizes

mf{/ |z = T(x)[dpo(x) = Typo = m}.

(ii) Conversely, if 1 is a convex, lower semicontinuous function on R?, such that Vs, =
w1 then, Vi minimizes

it [l = T(@)Pdo(a).

Exercise 3.3. . (See also [41])) Assume that 1 < p < +oo, that {1,}5; C P(R?) and that
oo € P(RY). Prove that the following are equivalent

(i) limyp—s oo Wp(pin, picc) = 0.
(i) {pn}o2, converges weak * to oo and [ga |z[Pdpn(x) converges to [ga |z|Pdpis ().

We denote the p-moment of a measure pn € P(R?) by

M) = [ lelPduta).

Remark 3.4. Let §,, be the dirac mass concentrated at a point z, € R Note that T'(i1,6,,)
contains only one element which is the product measure p x &,,. The interpretation of this is

that there is only one strategy to transport the mass carried by p to the point z,. We conclude
that

WP (u,6.,) = 1/p / & — zofPdu(x),
Rd

which is the p-moment (up to a multiplicative constant) of p with respect to z,.

Remark 3.5. Assume that pi, and py have bounded p—moments and v € T'(fio, 11). Then (i) for
1 < p < +oo, we use that z — |z|P is a convex function on R to deduce that

/ ey Pdy(a,y) < 20 / (leP+lylP)dr (. y) = 227 / (2P () + / P djus () < +oo.
RA R RA R
For 0 < p < 1 we use that z — |z|P is a metric on RY to have that
/ & — yPdy(y) < / (2 + [yP)dv(z,y) = ( / 2P dpio(z) + / lylPdpus (3)) < +oo.
Rd Rd Rd Rd

Lemma 3.6. For 1 < p < +oo, W), is a metric on PP := P(R?) N {u | M,y(n) < +o0}. For
0<p<1, W} is a metric on PP.
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Proof: 1. The facts that W), is symmetric and that Wy(po, 1) = 0 if and only if p, = p1 are
readily checked.

2. Assume that 1 < p < +00 and let us then prove the triangle inequality. Let o, i1, to €
P, Assume first that these three measures are absolutely continuous with respect to Lebesque
measure. By theorem 2.14, there exist T,, Ty : R* — RY such that Toptio = p1, Trppr = p2,

Wl ) = 1fp [ Lo =~ ToaPdiiofa) = 1plid = Tolf
Rd
and

W i2) = 1/p [ Iy = TigPdus ) = 1/plid = T,
RA

where id is the identity map on R®. Note that if T := T} o T, then Tupro = p2. Thus , using the
triangle inequality for || - ||1v(,,) we have that

L.
Wylttor12) < (1/p)7id = Toll oy < (1/p)7 (1lid = Tel gy + 11T = Tllioguy) - (35)

Observe that since Toypo, = pr1, we have that

176 = Tl1Lo ) / | Toa — Ty(Tow)[Pdpo(2) = / ly — TaylPdpa (y) = pWE (a1, p2).
R4 Rd
This, together with (35) yields that

Wp(:“’oa /J/Q) S Wp(uov Ml) + Wp(ulv M?)v

which proves the triangle inequality.

Since the set of measures in P%, that are absolutely continuous is a dense set of P% for the
weak * topology, we use exercise 3.3 to conclude that the triangle inequality holds for general
measures in P%. The proof of the triangle inequality for 0 < p < 1 is obtained in the same
manner. QFED.

Definition 3.7 (The Wasserstein distance). When 1 < p < 400 , we call W), the p—Monge-
Kantorovich distance. When 0 <p <1, we call W} the p-Monge-Kantorovich distance. When
p =2, Wy is called the Wasserstein distance.

3.1 Geodesics of W,

Let z, and 1 be two distinct points in R% and let Ho = 0z, , respectively py = 05, be the dirac
masses concentrated at x, , respectively x1. One may think of several way of interpolating between
Lo and py is an continuous way. One interpolation could be

fir = (1 —t)po +tpa.
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From the mass transportation (and maybe fluids mechanic) point of view, that interpolation
1s not "natural” in the sense that we originally started two measures whose supports contain
exactly one point, whereas the support of each interpolating measure has two points. From the
mass transportation point of view, the next interpolation is interesting since we will see that it
1 a geodesic with respect to Wo. That second interpolation between u, and py is given by

Mt = 5331} (36)

where z; = (1 — t)x, + tay.

In the light of remark 3.4, each one of the distances Wa(pio, pit), Walue, 1) and Wa(po, 1)
is straightforward to compute. Clearly, Wo (o, pit) + Walpe, 1) = Walto, 1) and so, t — g is
a geodesic for Wy. For general measures fio, uy € P(R?) there is an analoge of (36 ), obtained
by interpolating between each point x in the support of o, and each point in the support of ui.
This leads us to define the maps

I (z,y) = (z,(1 = )z +ty),  (z,y) = ((1—t)z+ty,y).

Let v, € T'(p,v) be a minimizer in W3 (o, 1) in the sense that
Wit ) = 1/2 [ o= sfdala.g),
RIxR?

Recall that, to define a measure on P(R? x RY), it suffices to know how to integrate functions
F € C,(R* x RY) with respect to that measure. We define v* and ~v; on R% x R? by

/ F(z,y)dy' (2, y) = / F(IT (2, 9))dvo (2, y)
RIx R4 RIx R4

and

/ Fle,y)dv(e.y) = / F(IL(z, y)) (. ).
RIx R4 RIx R4

In other words, v' = H%gyo and ¢ = It ,7,. Note that the first marginal of s po. Indeed,

[ Fedten= [ @ = [ P,
R4xR4 RIxRd R4
We define u; to be the second marginal of ' :

Gy)dunly) = /

Gy)dy (z,y) = / G((1 = t)x + ty)dyo(z, y).
RIxR4 RIxRd JRA

Rd

Observe that the first marginal of v¢ is s since ,

/ P(2)dv(e.y) = / F((1— )z + ty)dro(a.y) = / F(y)du(y).
RixRd RéxR4 R
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We conclude that

W3 (110, 1) < 1/2 /Rd |z — y|Pdy (z,y) = 1/2/ |z — (1= t)z + ty|*dyo(z, y)

xR RiIxR4
22 [ o yPduey)
RixRd
= W5 (1o i11)- (37)
Similarly, we use that v, € T'(ug, 1) to obtain that

W3 (g, 1) < (1= 6 W3 (120, p11)- (38)

We combine (37) and (38) to conclude that

Wapho, ptt) + Walpee, pr1) < Wofto, pi1)-

This, together with the fact that Wo satisfies the triangle inequality yields that

Wa(pio, pie) + Wa(pie, 1) = Wa(po, f11)
and
Wo(ttos 1) = tWaltto, 1), Walpe, p1) = (1 — ) Wa (o, f1)-

Hence, t — py is a geodesic for Wao, which is parametrized by the arc length.

3.2 Connecting paths of minimal energy

Fact 1. (Calculus of variations) Assume that p, is a probability density of bounded support K,
that is bounded away from 0 on K. Assume K is a set of smooth boundary whose interior is €.
Define

2
Emz/'” do= [ Brpwas (ve2@RLp),
Rd
Assume that ¢ € WH2(, p,), that v € L2(Q,RY, p,), that
div(pov) = div(poV¢) in
and
<v;n>=<V¢;n > on 0L,

where n is the unit outward normal to OS). Using the fact that z — |z|?/2 is strictly conver, we
have that ) )
oF Vel

: < Vé,u - Vo>, (39)
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except at the points where v = V¢, in which case, equality holds. We multiply both sides of (39)
by po and integrate the subsequent equation over ) to obtain that

E[v] > E[V¢] + /Q < V0 — V¢ > poda

BV - | adivl(v— Vopude = B[V (40)

To obtain the last equality, we have used that div(p,v) = div(po,Ve) in Q and < v;n >=<
Vé;n > on 0. Inequality in (40) is strict unless, v = V¢ p,—almost everywhere. Hence, given
a function f: Q) — R, the energy E is minimized over the set

{ve LQ(QaRdvpo) | [ =—div(pov)}

by a unique v,, which is characterized by the fact that it satisfies v, = V¢ for some function
@, provided that we know that such a ¢ exists (an argument for the existence of ¢ will be given
soon, under the necessary and sufficient condition that f is of null average ).

Fact 2. (Calculus of variations) Assume that p, and p; are probability densities on R%. For
each map T : RY — R such that Typo = p1, we define

Gr={g:[0,1] x R? — R? |g(0,2) =z, g(l,z) =Tz, g(-,z)ec WH((0, 1),Rd) }

and introduce the energy functional

sl = [ ([ B at)pue

By Jensen inequality , if g € Gr and we set gr(t,z) = (1 — t)x + tTx then

1512 1 g 12
/@dtzyTx—xP_/ &l
o 2 o 2

This, together with (34) yields that

nf{Elg] | g(L,)xpo = p1} = K Elgr] | Typo = p1} = W3 (po, p1).- (41)

Fact 3. (Fluids mechanic) Assume that v : [0,1] x RY — R? is a smooth vector field and
associate to it the flow g defined by

{g(t,x)_ o(t,g(t,z)) te[0,1], =R

42
g(0,z) = =, xR (42)

Then g is also smooth and invertible. Conversely, if g : [0,1] x R® — R% is smooth, invertible
and satisfies g(0,x) = = then v defined by

U(t, y) = g(t7 g_l (tv y))
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is such that (42) holds. Assume next that (42) holds and that p(t,-) is a probability density. One
can check that the following are equivalent

(1) &(t,-)4po = p(t,)

(ii) dpt oplt) + div(p(t,-)v) =0 and p(0,-) = po.

It is stnghtforward to verify that

' §(t, )| _ [ v(t,y)|?
/0 dt/Rd Tpo(:r)d:r—/o dt/Rd 5 p(t,y)dy

Assuming that the support of p, was compact for establishing fact 1, was imposed to make our
arguments easy and was not necessary. For a complete proof of facts 1-3, in a large generality,
we refer the reader to [14].

Corollary 3.8 ( Conclusions reached from Facts 1- 3 and and (41). ). Assume that p,
and py1 are two probability densities. Then,

W2(porp1) = inf { / “ | WD 1, yyay | 228D ¢ div(pe. o) = o),
Rd 8t

v,p(t,")
Furthermore, the infimum is attained in by a vector field v,(t,y) = Vo(t,y).

In fact, explicit computations in [14] show that if 1 is a convex function such that (V) po =
p1 and Y* is its Legendre transform, then

y — Vi (y)
t b

|

vo(t,y) = where  YP(z) = (1 — t)% + ().

Definition of Tangent spaces associated to elements of M = P2. We recall that P?
denotes the set of Borel probability measures on R?, of bounded second moments. For p, € M,
we would like to describe the tangent space T, , M at ji,, to make M a Riemannian manifold.
A description for general measures i, needs a lot of care, but is possible (see [5]). To make our
definiton easy, we are going to assume for instance that p, = podx and that p, is bounded away
from 0 on its support K.

Ift — p(t,-) is a path in the set of probability densities on R® such that p(0,-) = p, then

d

dt

d
t,x)dz = —1 = 0.
de(,:v)fv 1=0

This shows that the tangent vector p( ) at po = p(0,-) must be of null average. Conuversely,
assume that f is a function of null avemge Assume in addition that the support of f is contained
in the support of po. If we set p(t,x) = po(z) +tf, we obtain that t — p(t,-) is a path in the set
of probability densities on R, for small t and 8’)(0 = f. This completes the argument that the
tangent space at p, is “exactly” the set offunctwns on R? of null average. Given a function f

on R? of null average, there are infinitely many vectors field v such that

f=—div(pov). (43)
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We select the special solution of (43) that is of the form
Vo = Vi,
for some function ¢. In other words,

f=—=div(pV,). (44)

To show that such a ¢, ezists, one may use the following direct argument (of the calculus of
variations) by assuming again that f is supported by K. Let Q denotes the interior of K. We
minimize [o |Vé|*po— ¢ f over WOM(Q) and obtain a unique minimizer ¢,. The Euler-Lagrange
equations of that minimization problem is (44). Thanks to (44), we may identify the tangent
space at po, which is the set of functions f of null average, with the set

T, M= {Vo | Vo e L*RLR% p,) }.

Assume that f1, f2 € T, M are two functions on R? of null average. We define the inner
product between fi and fo to be T,

< f1; f2 >p,= 1/2/ , < V61,V > poda
R

where,
fi = —diV(vaqbi) (’L = 1, 2)
By corollary 3.8 we have that if p1 is another probability density of R? then

) Op(t,-) Op(t,-)
I)VQ . L) = ) =
3 (Pos p1) = pl(?f){< ot | ot > p(t,) | p(o,) = po, p(1,-) = p1}.

This proves that the Wasserstein distance is consistent with the inner products < -;- >, .

The exponential map on M = P(R%). Let e € C2(R?). Then for t small enough, x —
@ +te = () is a strictly convex function since Vb, = I +tV2e > I/2 for t small enough,
and so, Vf, the inverse of Vi, exists and is Lipschitz for these values of t. As a consequence,
the push forward by Vi of a measure which is absolutely continuous with respect to Lebesgue
measure, s itself absolutely conitnuous with respect to Lebesque. Let p, be a probablity density

on R?* and define
p(ta ) = th#po'
The path t — p(t,-) is a geodesic in P(R?) and by corollary 3.2,

W3 (o, ) = 1/2 /R |z =V poda.

We set
p(t,-) = exp,,(tVe)
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where we have identified Ve with the tangent vector f = —div(p,Ve).

Dilatations and translations on M. Assume that A > 0 and that u € R We define the
dilatation operator from P(RY) into P(R?) by

p— pt = Dyp.

where D x = \x. In other words,
A
A
Al = ul—
P A] = 3]

Let g be the dirac mass at the origin. We use remark 3.4 twice to obtain that
WEGA G0 = 1/2 [P ) = 1/2 [ DVl =372 [ el = X W 6o
R4 R4 R4

Note that i — p can be viewed as an extension of D from R to P(RY) (R? can be considered
as a subset of the P(RY) through the imbedding x — J,).

We neat define the translation operator from P(R®) into P(R%) by
p— ptlA] = Thp,

where T%x = x — u. In other words, u*[A] = u[A —u]. Let p,v € P(RY) and assume that

W) =172 [

Rdx

w |z — y[’dy(z,y)

or some v € I'(u,v). Then y1 = (T™ x Ty € T'(u", v"). Hence,
H # H

W3 (u®, ") < 1/2/

[ e =12 [ T =T )
X

RIxR4
—12 [ e yPde)
RaxR4
W2, v). (45)
Since v = (T~ x T™%) 41, an analoge reasoning yields that
W3 (p,v) < Wi, vY). (46)

We combine (45) and (46) to conclude that W3(u,v) = W2(u*,v%). Note that p — u“ can
be viewed as an extension of T from R? to P(R®). This justify why we call p — p“[A] a
translation.
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3.3 differentiating the entropy functional in M

We learn how to differentiate functions with respect to Ws. Assume that H : M — R and we
want to compute the gateauz derivatives of H at a point pdx. If we choose a "direction” f and
to treat p+rf as a density function so that the derivative of H(p+rf) with respect to r at the 0
gives directional derivates then, we have to worry that there maybe points where p+rf becomes
negative. A better alternative for describing paths in P(R?), that originate at pi, € P(R?) is to
choose vector fields ¢ € C(RY, RY) and set

pr = (id + 7€) 110 € P(RY).

These arguments are well developed in many works, including [5] [14] [16] [35]. To avoid listing
the assumptions these functionals must satisfy to be differentiable, we choose to work with the
following examples. First, we define

B |z —ul?

5 (z € R)

and

Then we consider the functionals

p—P)= [ Wode. ()= [ A
Rd R4

on the set of probability densities. The convexity of S along geodesics of P(RY) is ensured if
one assumes that t — t¢A(t=?) is convex and nonincreasing while P is convexr along geodesics of
P(RY) if and only if W is convex on R®. Furthermore, the greatest lower bound of the Hessian
V2W in R? coincides with the greatest lower bound of the Hessian V%(Rd)P in P(RY) (see [16]
). To verify these claims, we are to compute the first and second derivatives of r — S(p"), P(p")
when, r — p" is a geodesic. The next computations show that %S(pT), d%P(p’”) and %P(,o?")
are straightforward to compute. The second derivative %S(pr) 1s more involved, and we refer
the reader to [35] for that.

Let py be a probability density on R%, let ¢ € CLRY,RY) and define

p1 = (id +7r&)4p1,

where id is the identity map. Since T, := id + r& is smooth and one-to-one for r small, we have
that
o (Ty)det[VTra] = pa (x) (47)

for these r.
Note that

P = [ W= [ WL
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Differentiating, we obtain that

TPED = [ <IW(Ta)e@) > ploys (43)

and
2
P = [ < VW Taseyee) > e = [ @Pad @)

In particular, if £ = Ve, is the gradient of a function e, as already observed in the previous
subsection while defining the exponential map on M, r — p} is a geodesic for Wy and the
inequality in (49) proves that the the Hessian of V%(Rd)P in P(RY) is bounded below by 1. For

instance, if we assume that ||v2€”L<x>(Rd) is small enough then, x — |z|?/2 + e(x) = Tix is
convexr and

| @R p@de =203 o1, Tigpn).
This, together with (49) gives that

2o
TGP0 = [ 16@)Por(a)d =203 (o1, Tipmn)
T Rd

Remark 3.9. We have proven that the Hessian of P with respect to Wa is bounded below by 1
whereas, P is merely affine with respect to the L? metric and its Hessian is null with respect to
that metric.

We again use that T,4p1 = p] to obtain that

S6D) = [ o) iy = [ o) nGof (Ty))de

This, together with (47) gives that

T P1 (.’/U) /
St /Rd pr(@)In det|VT,z do = R4 pr(x) Indet]l +rVejde

/ p1(z) In(1 + rdiv€ + o(r))dz
= S(n) = [ pola)diveda + ofr) (50)
This proves that
d
LS (= = - /R pr(a)diveds = /R < Ukt > dr (51)

Assume that p,, p1 are probability densities on R%, of bounded second moments. We use corollary
3.2 to conclude that there exists a convex function ¢ on R?® such that Voupr = p, and

W2(porp1) = 1/2 /R g~ VoPpudy = 1/2 /R = VP podr, (52)
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where 1 is the Legendre transform of ¢ so that, by symmetry, Vi up, = p1. Since T,up1 = pf,
we conclude that (T, o V)up, = pi. Hence,

W(po o) <172 [ o =T, 0 Vi) Pooa
_1)2 /Rd 2 — Vib(x) — € 0 Vib() Rpoda
172 [l Vo) —r [ <o - Vo). e(0@) > pds
R R4
122 [T pda: (53)
We use (52) and (53) to obtain that

W3 (o, 1) < W5 (po, p1) — ?“/Rd < Voly) — y; £(y) > prdy + +1%/2 /Rd () prdy.

Hence,

. W2 0> i _W2 0)
hmsgp 2(po: 1) . 2 (o 1) < —/Rd < Vo(y) —y;€(y) > prdy. (54)
r—0

In fact, condition under which equality holds in (54 ), have been studied in [5].

4 Applications I: The linear Fokker-Planck equations

The application of the Monge Kantorovich theory to the linear Fokker-Planck equations was
discovered by Jordan-Kinderlehrer-Otto in [31]. We also refer the reader to [15] where a more
general Fokker-Planck equations were studied. Throughout this section, we define

PARY = {p e LR p 20, [ plapdo =1, [ JaPplads < +o0)
Rd Rd
and
Elp] =/ (pInp+ Wp)dz,
Rd
where W(x) = |z —u|?/2 and u € RY.
We assume that p, € P2(R?) and consider the linear Fokker-Planck equation
{% + div(Vp—i— plz — ﬁ)) =0
p(07 ) = Po-

The following algorithm was used in [31] to solve (55). Fixz h > 0 a time step size. Define
inductively piy1 to be the unique solution of the variational problem

(55)

inf  W2(pi,p) + hE 56
e 5 (Pks P) (] (56)
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and set

ol if t=0,2€R?
ph(tvx) = ( ) . d (57)
Pk+1 Zf le (tk7tk+1]7x € R%

Here, we have set t, = kh. When h tends to 0 then {p"}n>o converges weakly to the solution of
(55). The novel here is not the existence of solutions of (55) but, the scheme used to construct
these solutions.

4.1 Properties of the entropy functional
Definition 4.1 (Local Maxwellians). When p € P2(R%), we define its average u, and its

variance 8, by
1
e /Rd zpla)dz, g d/Rd o ~uls

(i4) If § > 0 and u € R? we define the local Mazwellians

1 _lz—u?
Mu,@(x) = mde 20
™

Remark 4.2. (i) One can check that My g is a probability density whose average is u and whose
variance s 6.
(i) Note that if p € P2(RY) then its average u and its variance 6 satisfy

/Rd 2 2p(a)dz = d6 + [ul?. (58)

iii) Under the assumption in (i), if a € R then
(iii) p

) _ ) a2 S 2
/ | — q o) — / |z —u+u— 1 o) = / |z — ul o) + |a — u|
Rd 2 Rd 2 Rd 2 2

d [0 — ul?
=0
2 + 2

(59)

Lemma 4.3. Assume that p € P2(R%) is a probability density on R? whose average is u and
whose variance is 0. Then (i)

d o 2
plnp > plnMyg+p— Myg = —§p<ln(27n9) + 2 d@u‘ ) +p— Myp, (60)
(i)
d |z —ul?
plnpl < plnp+ Mg+ 5p(IIn(2r0)] + 20 ) (61)
(iii)

S(p) > 5(Myp) = — 5 (In(2n6) +1). (62)
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Proof: Since t — A(t) = tint is convex, we have that A(t) > A(t,) + A'(to)(t — t,). Applying
that inequality to
t=p, to= Mu,9

we obtain (i). To obtain (iii), we simply integrate both sides of (i) over R and check that all
the inequalities that led to (i) are in fact equalities when p = My .

Note that (i1) holds if plnp > 0. Next, if plnp < 0, then the positive part of plnp is null
and so, by (i), its negative part satisfies

|z — uf?
do

This concludes the proof of (ii). QED.

d
(p1np)- < Sp(Im(2r0)| + ) + Mugp.

Corollary 4.4. (i) If p € P2(R?) then its entropy S(p) is well defined and is finite.

(ii) For each constant C < +oo there exists a constant ko depending only on C' and on u
(the average that occurs in the definition of W and hence the definition of E), such that the
inclusion Ko C Ki, holds for

1
Ko {p e PARY | B[l <C), Kpom {p € PARY| 1 < 2.0, < kol
(iii) If C < 400 then, there ezists a constant lc depending only on C and on u such that
Ko {pe PARY | [ lolnplde < Lo},
Rd

Hence, K¢ is weakly compact in L' (R?).

Proof: Lemma 4.3 gives (i). We use remark 4.2 and lemma 4.3 (iii), to obtain that if p €
P2(RY) and E[p] < C < +oo then

lu, — l_J-|2

d d
—5(111(277«9,,) +1)+ 59,, + 5

<C. (63)

Thus,
d d
—§(ln(27r9p) +1) + 59,) <C. (64)

Since
. d d . d d
lim —E(ln(Qﬂ'a) +1)+ 20 = +oo and lim ——(In(27wa) 4+ 1) + —a = +o0,

a——+00 a—0t+ 2 2

(64) implies that there exists a constant k depending only on C' such that

<0, <k (65)

| =
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We combine (63) and (65) to conclude the proof of (ii).
If p € P2(R?) and E[p] < C < +oo then, (i) of this corollary and lemma 4.3 (ii) give that

d
/d|plnp|d:c§0+1+§<1—|— max )z:lc,
R

aG[%ch]

which proves the inclusion claimed in (iii). Because t — tlnt grows faster than linearly as t
tends to +oo, (iii) proves that K¢ is weakly closed in L*(RY). QED.

4.2 The algorithm in (56) is well-posed

In this subsection, we set
Iilp) = W3 (pr, p) + hE[p).

Theorem 4.5. Assume that p, € P?(R?). Then inductively, there is a unique pyy1 minimizer
in (56). Furthermore,

(i) Elpr+1] < Elpo).

(i1) Let ¢pry1 be a convex function on R? such that VOrt1,Pk+1 = Pk, as ensured by corollary
3.2.. We have that Vori1(y) =y + h(VInpgrr + VW) on the support of pgi1-

Proof: 1. Let {p"}°°, be a minimizing sequence in (56). We may assume without loss of
generality that

W3 (", px) + hE[p"] = I [p"] < Ix[ox] = W3 (pk, pr) + RE[px] = Elpg). (66)

Corollary 4.4 and (66) yield that {p™}>2, admits a subsequence we still label {p"}°,, that is
weakly convergent to some pry1 € P2(RY). By exercise 8.3, W2(-, px) is weakly lower semi-
continuous on L'(RY). Standard arguments give that E is also weakly lower semicontinuous on
LY(RY). Hence, I}, is weakly lower semicontinuous on L'(R?) and so,

inf I = liminf I [p"] > I, .
e wlp] = lim inf Iy [p"] = I [pg-1]
This, proves that pi11 is a minimizer in (56).
2. It is easy to check that W(-, p) and P are convez. Since S is strictly convez, we conclude
that I, = W3 (-, px)+hE is strictly conver. This proves that (56) cannot admit another minimizer
P # pr+1 Since otherwise we would have that

Pk+1+ P

Ii| 5

| < 5 Ukloal + 1) = elpsa)

which would contradict the minimality of Iy at pr+1.
3. Because py, prr1 € P2(RY), corollary 3.2 gives the evistence of a conver function ¢y
on R? such that Vo y14pk+1 = pr and

W3 (pk, pe41) = 1/2 /Rd Y = Vor1(W) | prs1(y)dy. (67)
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Let £ € CHRY, RY) and define
Pry1 = (Ad +78)ppr1.

We have that pj,, € P2(RY). Using the partial derivatives computed in (48), (51), (54 ) and
make the substitution

Po — Pk, P1 — Pk+1

and using the fact that pyg+1 is a minimizer in (56), we obtain that

1| ot — 1
0 < lim sup k[Pk+1] k[karl]

r—07+ r

<= | < Vo) ~ 1) > pralody
wh [ < Voa)e) > dy
+ h/Rd < VW(y); &) > prta(y)dy. (68)

We substitute & by —& and use the fact that the expressions at the right handside of (68) depends
linearly on & to conclude that

/ < VoY) — 1:€W) > prsa(v)dy =h / < Ve (y):E(y) > dy
R Rd

b [ <VWE) > o)y
(69)
for every ¢ € CL(R,RY). This proves (ii). QED.
Lemma 4.6. Assume that p, € P2(R?) and let py, be defined inductively as in theorem 4.5.

Then, (i)
Elpi] < Elpr—1] < - -+ < Elpo).

(ii) There ezists a constant C depending only on u and p, such that

1
<0 <C.

(i1i) There exists a constant jo that depends only on u and p, such that

=

W3 (pk, pr41) < hjc
0

i

Proof: 1. Since pr4+1 is a minimizer in (56) we have that

W3 (pr—1, i) + hE[pr] = Ir-1lpr] < Ix—1lpr—1] = hE[pp—1]. (70)
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Hence,
Elpi] < Elpr—1] < - -+ < Elpo),

which proves (i). We use (i) and corollary 4.4 (ii) to conclude that (ii) holds.
2. We sum up both sides of (70) over k =0,--- N — 1, to obtain that

N-1

S Wi ok prst) < h(Elpo] — Elpw]) < h(Elps] — S(on)). (71)
k=0

By (ii) and lemma 4.3,

d d
S(pn) > —z(In(270,) + 1) > —= max {In(27a) + 1}. (72)
2 2 ae[¢.0]
We combine (71) and (72) to conclude the proof of (iii). QED.

Theorem 4.7. Assume that p, € P2(R%) and that T > 0. We introduce an integer parameter
N and set h = T/N. Let {p"}n>o be defined as in (57). Then, {p"}n=o is weakly compact in
L'((0,T) x RY) and converges weakly to the solution of (55).

Proof: It suffices to show that any arbitrary subsequence of {p" Y=o has itself a subsequence that
converges weakly to the solution of (55) and show that (55) admits a unique solution. Here, we
will skip the uniqueness proof which can be found in standard partial differential equations books.
We also refer the reader to [31] and [39] where the uniquenes of solution in (55) is obtained by
using that E is uniformly convex along geodesics of Wy. The curious reader could consult [1]
where a large class of parabolic equations was studied, using cost functions which don’t lead to a
metric. Recall that (FPE) stands for Fokker-Planck Equations.

1. In what sense is p — ppy1 discretizing the (FPE). Let n € C2(R%). As in theorem
4.5, let be a ¢r11 be a convex function on R? such that (Vort1)#pr+1 = pr. We have that

/Rd(pk—pk+1)ndw=/Rdn(fv)pk(fv)d—/Rdn(y)pkﬂ(y)dy

= / N(Vér+1(y))prt1(y)dy — / n(Y)pr+1(y)dy. (73)
Rd Rd
Set
I(t) = 77((1 —t)y+ tv¢k+1)
so that
U(t) =< Vn((1 = t)y + tVep+1); Vo —y > (74)
and

U (t) =< V(1 = )y + tV 1) (Vi1 — ¥); Vori1 — y > (75)
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Taylor’s expansion gives that

1 t
D(Vrer) —n(y) = (1) — 1(0) = (0) + / dt / P (s)ds

We combine (73), (74) and (75) to conclude that

/ (Pk — Pr+1)nds = / Vi, Vori1 —y > prr1dy
R R

1 t
i [ ] [ s < 9= 0y 19000 (Vo 0 Vo —y > pndy. (76)
R 0 0

1. a. Let us better understand the link between (76) and the (FPE). We are
next going to see how (76), in some sense, means that

M}L_pk = Appt1 + div (WPkJrl) + 0(h). (77)

Before making a rigorous argument, the following formal reasoning will help develop a better
intuition. Note that using (67 ) we have the following estimate of the last term in (76)

1 t
\ /Rd /o dt/o ds < V*((1 — 8)y + sVrs1)(Vore1 — 4); Vérs1 — y > prr1dyl

1
< =|IV2nl| oo (Ray /Rd Vi1 — y) P oksrdy = V20| oo (ray W3 (ks Prt1)- (78)

Theorem 4.5 (ii) tells us that we can make the substitution Vopi1(y) = y+ h(Vinpgi1 + VW)
Pr+1-almost everywhere in (76) and use (78) to obtain that

!/Rd (Pk — pr1)nde — h/Rd < Vn; (VInpgyr + VW) > ppiadyl

< V]| oo (may W3 (Pk pi41) < BIIV 0| oo (ray (Elpr] — Elprs])- (79)

If Elp] — Epk+1]) = 0(h) then (79) gives (77). In fact, one does not attempt to prove that
the “time pointwise” estimate (77) holds, to conclude the proof of this theorem. It is enough
to have that (77) holds with "high probability”. These comments are made rigorous in the next
paragraph.

2. Establishing the rigorous estimates. Let n € C2([0,T) x R%), set
t, = k‘h, nNg = (tk, )
We have that

T N-1 N-1
i =3 [ [ Dpar= Y |
/0 /Rd P et ;;) " e o Pr+1 4T 2 Rd(nk:+1 M) Pre+1dw
N-1

=> / (Pk — pr+1)mKdT + / (PNTIN — potio) d (80)
k=0 /R4 R4
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The last equality in (80) was obtained by rearranging the terms of the previous expression. We
next use that ny = 0, combine (76) , (80) and substitute Vo1 —y by hV(lnprr1 + W) to
conclude that

T
5’77h
dt | ZLohde =h
/0 /Rdat”“"

N-1 1 t
+ ) /Rd/ dt/ ds < V(1 = 8)y + sVr11)(Vori1 — y); Vorir — y > prady.  (81)
k=0 0 0

N-1

> <V V(I pryr + W) > prgady — /R | Pollod
k=0

Next, observe that

T N-1 th1
/ dt/ <V V(np" + W) > plde =) / dt/ <V V(In ppg1 + W) > prprde
0 R4 k=0 tr R4

=

trt+1
[ [ <90 Tns Vg + W) > pgads
t R

k

k=0

=

h /d < Vne; V(In pgyr + W) > prprde
R
0

tet1 \V4 _
/ dt/ < Vi — Vi M) > prt1de
tr Rd h

I —
NV
I

= IMI 7

1

_|_
>

/d < Vne; V(n pgrq + W) > prirde (82)
R

bl

=0

Set
Br :=(0,T) x R%.
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We combine (81) and (82) to obtain that

y/ dt/ T An— < VWV >)p hdx—i—/ PoTlod|
R4 8t Rd

— ‘/ dt/ (—— < Vlnph—i—VW;Vn >)phdac+/ PoTodx]
0 Rd 8t Rd

N-1 thi1 v .
I [ [ < v v YR s s
0 Rd h

1 t
+ /Rd/ dt/ ds < V(1 = 8)y + sVr41)(Vors1 — 4); Vére1 — Y > pry1dyl
0 0

n? IS Vi —y ~
< 7HV?,;C77HL<>°(BT) Z /Rd ‘?’plﬁrld?/ + IV Zanll oo 1) Z W3 (pr prs1)
k=0 k=0

. Nhjc Tjc
< WVl o) (G0 + | =52) = IVl (o + 1 =57 (83)

To obtain (83), we have exploited (78) and used the fact that

N-1
V¢k+1 1 / V¢k+1
}: dy = — = d
Rd ’ Prk+1aY = h\/§ — ’karl Yy

N N—-1 VQbk
vN Z/Rd%p iy
k=

0

| A

H

\/_
\/— N—
h\/— W pkapk-i-l
h

k=0

VN — Tjc
< \/,\/h Vol

(84)
Here, jo is the constant given by lemma 4.6.

3. Weak compactness of {p"},~¢ in L'((0,7) x R?Y). Lemma 4.6 gives existence of a
constant C € (0,+00) independent of h such that

1
— < Opu) <Ch

E[ph(t, )] < Cla C

for all t € [0,T). This, together with corollary 4.4 gives existence of a constant Co € (0,+00)
independent of h such that

sup / |p" In p"|dx < Cs.
te[0,T] JR4
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This proves that {p"}n~o is weakly compact in L'((0,T) x R?) and so, up to a subsequence, it
converges weakly to some p € P2(R?). Letting h go to 0 in (83), we conclude that p is a solution
of (55). QED.

5 Application II: Semigeostrophic equations

The semi-geostrophic systems are systems of partial differential equations which have two main
attractions. First of all, they model how fronts arise in large scale weather patterns. Second,
they describe a 3-D free boundary problem which is an approzimation of the 3-D FEuler equa-
tions of incompressible fluids, in a rotating coordinate frame around the Oxs-axis where, the
effects of rotation dominate. Establishing existence of solutions to the 3-D FEuler equations of
incompressible fluids, for large times, remains a challenge in partial differential equations. The
semi-geostrophic systems keep many interesting feactures of the 3-D Euler equations incompress-
ible and its time-space discretization via the Monge-Kantorovich theory raises a lot of hope for
making substantial progress which could help better understanding the original 3-D Euler equa-
tions (see the review paper by L.C. Evans [24] or [7]). For keeping this manuscript short, in this
section, we omit details and proofs, which the reader will find in [18] .

The semi-geostrophic systems were first introduced by Eliassen [23] in 1948, and rediscovered
by Hoskins [30] in 1975. Since then, they have been intensively studied by geophysicists ( e.g.
[19], [20], [43], [45] ). One of the main contributions of Hoskins was to show that the semi-
geostrophic system, could be solved in particular cases by a coordinate transformation which
then allows analytic solutions to be obtained. The subsequent new system is, at least formally,
equivalent to the original semi-geostrophic system, and has the advantage to be more tractable.
Hoskins claimed that, in the new system, the mechanisms for the formation of fronts in the
atmosphere could be modelled analytically.

Here, we consider a particular case of the semi-geostrophic systems, the so-called the semi-
geostrophic shallow water system (SGSW). We skip its derivation that can be found in [18]. In
the system below, h represents the height of the water above a fixed region ) and is related to
what is called the generalized geopotential function

P(t,z) = |z[*/2 + h(t,z), (t €[0,4+00), h(t,z)>0).
Let P*(t,-) be the Legendre transform of P(t,-). It is related to the geostrophic velocity w by
o= VP Ygplts ), wlty) = J(y— VP (). (85)
The semigeostrophic shallow water in dual variables are

(1) %—i‘ + div(aw) =0 in the weak sense in  [0,7] x R?

(15) wi(t,y) = J(y—VP*t,y)), in [0,7] x R?

(iti) P(t,x):=|z[*/2+ h(t,z), in [0,T] x Q (86)
(

(

~—

i) aft,-) = VPt )gh(t,-), te]0,T]
v) «a(0,) =a, in R
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A time discretized scheme for solving the SWGS. We fiz a time step size § > 0. We
consider the Hamiltonian

H(a):=1/2 min {W(a,n) +/ n*dx}. (87)
n€Pa (L) Q
Step 1. Given oy, € Pu(RY), we substitute o in (87) and define hy, to be the unique minimizer
of H(ay). Let Py, be a convex function such that (V Py)ghi, = a. The Euler-Lagrange equations
of (87) give that
Py(x) = |2*/2 + hy,(2).

Step 2. We set wi(y) := J(y — VP (y)) where P} denotes the Legendre transform of P,. We
solve the system of equations

92 1 div(awy) =0 in  [kd, (k+1)] x R?

a(kd, ) == ag in R?

and set agr1 = a((k +1)d,-).

An approximate solution of the SGS. We define of(ké,-) = ap and extend o’(t,-) on
(kd, (k+1)d) by linearly interpolating between oy, and agy1. In [18] we show the following theo-
rem.

Theorem 5.1 (Main existence result). Assume that 1 < r < +o0, and that o, € L"(B,) is
a probability density whose support is strictly contained in B,, and let Br be the ball of center
0, and radius R := r(1 + T). There exists h € L*((0,T); Wh%°(Q)) which is a limit point of
{h®Yss0 such that h(t,-) € Pu(Q). Furthermore, there exist a function o € L=((0,T); L™ (R%)),
such that (a, h) is a stable solution of (86) and

Wi(a(s2,),a(s1,)) < C|s1 — sal.

for all s1,s9 € [0,T]. Here C is a constant that depends only on the initial data.

Open problem . Degenerate ”hamiltonian” structure and uniqueness. No standard
method apply for studying uniqueness of solution for the SGS. The success of the current effort
made by [5] to develop a rigorous tool that associate a riemannian structure to the Wasserstein
distance is a step toward finding a systematic way of studying uniquess of solutions of some
systems. Using that riemannian structure, we made more precised the degenerate "hamiltonian”
structure of the SGS which we next explain: let M be the set of probability measures on R®. If
wo € M, the tangent space at w, is T,, M = {f | [ga fdx = 0}. To each f € T,,, M we associate
Yy defined by the PDE —div(w,Vs) = f. The inner product of f,g € T.,,M suggested by [39]
is

< f,g >wo—/ woVipy - Vipgdm.
Rd
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We propose to introduce the skew-symmetric form
Bunlfoo) = | wadVis - Vusds

where J is the standard simplectic matriz such that —J? is the identity matriz. For instance if
the physical domain is ) is time independent, the SGS consists in finding t — w(t,-) satisfying
Jor all f € T, M,
. o0H

< f >= (55 7). (88)
Uniqueness of solution in (88) will be straightfoward to establish if H was a smooth function. The
question is to know how much we could exploit the fact that H is only semiconcave with respect
to Wa. For which initial condition w(0,-) the variations of H matters only in some directions?
This leads to the problem of understanding the kernel of (,,(f,:). When d = 2, the kernel of
B, (f,-) is the set of g such that w, and )4 have the same level set. This means that there exists
a function a monotone function on [ such that ¢g4(x) = —B(w(x)). Hence, for a convex function
A, we have that A’ = 3. A flow along degenerate directions is given by

Oyw = div {wv (A'(w))}. (89)

The question is to know how much (89) contributes to the understanding of (88).

6 Example of cost functions; fluids mechanic and dynamical sys-
tems

Many mechanical systems can be described via a lagrangian L : R4 x R* — R, defined on
the phase space R? x RY. Customarily, L € C"(R? x R%), L(z,-) satisfies some converity
assumptions and L(-,v) satisfies suitable growth or periodicity conditions that we call (A1)-
(A4), in the appendiz. Now, we introduce a Hamiltonian associated to L, the so-called Legendre
transform of L(z,-). For (z,p) € R? x R?) we set

H(xz,p) = seufli)d{v -p— L(z,v)}, ((z,p) € R? x RY).

The Hamiltonian H is continuous and by (A3), H(x,-) is continuously differentiable. Also, the
map
(x,v) = (x,VyL(z,v)) = T(x,v)

is of class C" YR x RY) and its restriction to T x R? is one-to-one. It inverse
(‘T7p) - (‘T7VPH(‘T7P)) = S(CC,p)

is then of class C"~1(R® x R?). This proves that H is in fact of class C"(R% x R%).
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One studies the kinematics and dynamics of these systems through the action
T
(T, xo,x) = inf{/ L(o,0)dt | 0(0) = z,0(T) = x1}, (90)
7 Jo

where the infimum is performed over the set AC(T;xo,x7) of o : [0,T] — R that are absolutely
continuous and that satisfy the endpoint constraint o(0) = x,, o(T') = xp. By rescalling, we may
assume that T' = 1.

Given two probability densities p, and p1 on R?, the Monge-Kantorovich problem is then

inf /R 1,2, x(@)pol)dz = gi{lf){ /O it /R L. glt,)polr)dr (91)

r4po=p1

where the infimum is performed over the set of g : [0,1] x R — RY such that g(0,2) = x and
g(1,)gpo = p1. The expression at the left handside of (91) is Wz where ¢ = ¢(1, -, ).

When (91) admits a unique minimizer g (see proposition 8.1 for a condition on L that
ensures such properties), we define the path

pt,-) = &(t: ) 4o (92)

When L(z,v) = |v|?/p for some p € (0,+00) then t — p(t,-) is a geodesic for the Wasserstein
distance (see [5] and [39] ). The passage from Lagrangian to Eulerian coordinates is done through
the ODE

g(t,z) = V(t,glt,z),  g0,z)=uz (93)
We combine (91) and (93) to obtain that

We(po, p1) = p('igva{/ol dt /Rd L(y,V(t,y))p(t,y)dy}, (94)

where the infimum is performed over the set of pairs (p, V) such that
dp | ..
p(0,-) = po,p(1,-) = p1  and ot +div(pV) = 0.

When L(x,v) = |v|?/2, one can recognize the expression in (94) to coincide with the one in
corollary 3.8.

7 Prerequisite for the mass transportation theory

7.1 Convex Analysis in R?

The material of this section can be found in the books [22], [42]. The solutions to the exercises
in this section appear as theorems, lemma, and propositions in these books. Throughout this
section Y, is a Banach space.
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Definition 7.1. Let X C Y be a convez subset of Y and let ¢ : X — RU{+o00} be a real valued
function.
(i) ¢ is said to be convex if ¢ is not identically +o00 and

(1 =t)x +ty) < (1 —t)p(x) + to(y)

for allt € [0,1] and all x,y € X.
(i) ¢ is said to be strictly convex if ¢ is not identically +o00 and

P((1 =)z +ty) < (1 —t)o(z) + to(y)

for allt € (0,1) and all x,y € X such that = # y.
(iii) ¢ is said to be lower semicontinuous on X if

n—+o0o
for every sequence {x,}12 C X converging to z € X.
Remark 7.2. Suppose that ¢ : X — R U {+o0} and we defined ¢ : Y — R U {+oo} by

o Je(x) if xeX
¢(x)_{+oo if v¢X.

Note that ¢ is convex. We refer to it as the natural convex extension of ¢.

Exercise 7.3. (i) Show that ¢ is lower semicontinuous if and only if its epigraph epi(¢) =
{(z,t) | &(z) <t} is closed.

(ii) Show that ¢ is conver if and only if its epigraph is a conver set.

(iii) Is there any extra assumption one needs to impose on X for (i) and (ii) to hold?

Definition 7.4. Assume that X CY is a conver set and that ¢ : X — R U {+o0} is convez.
(i) The subdifferential of ¢ is the set 0¢p C X x Y that consists of the (x,y) such that

¢(z) > p(z) +y-(z —x)

for all z € X.
(ii) If (z,y) € 0° we say that y € 0¢p(x). If E C X we denote by 0¢(F) the union of the
0¢(z) such that x € E.

Definition 7.5. Assume that X CY and that ¢ : X — R U {400} is not identically +o00. The
Legendre transform of ¢ is the function ¢* :' Y — R U {+o0} defined by

¢*(y) = sup{z -y — ¢(x)}.
rzeX

Remark 7.6. Note that ¢ and its natural extension have the same Legendre transform.
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Exercise 7.7. Assume that ¢ : Y — RU{+o0} is conver and lower semicontinuous.
(i) Show that ¢* is convex and lower semicontinuous (in particular ¢* is not identically 400 ).

(ii) Show that ¢ = ¢** = C'¢ where

Cop=sup{g|g<¢, g -conver}.
(iii) Say whether or not the following hold:
(z,y) € 0¢ < (y,x) € 09"
(iv) Conclude the V(V¢*(x)) = x whenever y := V¢*(x) exists and ¢ is differentiable at y.

Definition 7.8. A subset Z C Y X Y s said to be cyclically monotone if for every natural
number n, for every {(x;,yi)}}_y C Z and every permutation o of n letter, we have that

n n
Z |z — yil* < Z i — Yo |-
i=1 i=1

Exercise 7.9. Show that Z C R xR% is cyclically monotone if and only if there exists a convex
function ¢ : R* — R U {+o00} such that Z C d¢.

Exercise 7.10. Assume that Q C R? is an open, convezx set and that ¢ : Q@ — R is convez.
Then

(i) ¢ is continuous on Q. The gradient map V¢ is defined almost everywhere and is a Borel
map.

(i) If (xp,yn) € 0¢ and x, — oo in Q, then every subsequence of {y,}o>, admits a
subsequence that converges to some Yoo € 0¢(x). Conclude that O¢ is closed.

(iii) The function ¢ is twice differentiable almost everywhere in the sense of Alexandrov [3]:
for almost every x,, Vé(x,) exists and there exists a symmetric matriz A such that

1
O(wo + h) = @x0)+ < Vo(wo).h > +5 < Ahih > +o(|h]?).
(iv) Differentiability of ¢ fails only on a rectifiable set of dimension less than or equal to
d—1.

The proofs of (i) and (ii) is easy while the proof of (iii) needs a little bit more thinking and
can be found in [2]. The proof of (iv) is the most difficult one and we refer the reader to [3].

Exercise 7.11. Assume that ¢ : R — R is convex. Show that ¢ is strictly convex if and only
if * is differentiable everywhere on {x | ¢*(x) < +00}.

Exercise 7.12. Assume that ¢ € CY(R? x R%) and that K,L C R? are compact sets. For
u,v: RY — R U {—oc}, not identically oo we define
u(y) = inf {c(k,y) —u(k)},  ve(x) = inf{c(z, 1) —v(D)}.
keK leL

(i) Show that u¢ and v, are Lipschitz.
(7i) Show that if v = u® then (v.)¢ = v.
(iii) Determine the class of u for which (u). = u.
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The next exercise is very similar to exercise 7.12 except that now, we have lost the property
that K, L are compact, by replacing them by R.

Exercise 7.13. Assume that c € C1(R? x RY) and that c(z) = I(|z|) for a function | that grows
faster than linearly as |z| tends to +o0o. For u,v : R* — RU{—oc}, not identically co we define

u(y) = jnf {c(k,y) —u(k)},  ve(z) = inf {e(w, 1) —v(D}

(i) Show that u¢ and v. are locally Lipschitz.
(i) Show that if v = u® then (v.)¢ = v.
(iii) Say whether or not (u€). = u for arbitrary u.

7.2 Measure Theory

Throughout this section X, Y and Z are Banach spaces. We denote by P(Z) the set of probability
measures on Z. Most of the statements below stated for X C R® are still valid if we substitute
R? by a polish space.

Material we assume that you know and which we don’t recall

1. The definition of a measure (nonnegative), a Borel measure and a Radon measure on Z.
Definition of a probability measure on Z.

2. The total variation of v € P(Z) is v[Z].

3. The definition of the weak *x convergence on the set of measure.

4. The definition of LP(Z,7) for 1 < p < 400 and vy a measure on Z.

Examples of measures (a) Assume that z, € Z. The dirac mass at z, is the measure J,

defined by
5..[B] = 1 if 20€B (96)
“ 1o if 2 ¢B

for B C Z.
(b) If Z is a subset of R and p: Z — [0,+00] is a Borel function whose total mass is 1, we

define p = pdx by
u[B] = / pdz,
B

for all B C Z Borel set. The measure i is said to have p as a density and to be absolutely
continuous with respect to Lebesgue measure.

Exercise 7.14. Suppose that X C R%. (i) Show that every probability measure p € P(X) is the
weak * limit of a conver combination of dirac masses.

(ii) Show that every probability measure p € P(X) is the weak * limit of a sequence of
measures that are absolutely continuous with respect to Lebesque measure.

Definition 7.15. A Borel measure p on X is said to have x, as an atom if p{x,} > 0.
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Exercise 7.16. Suppose that p is a Borel measure on X and that p[X]| = 1. Show that the set
of atoms of u is countable.

Hint. Show that {z € X| 1 < p{z} < 25} has at most n elements.
For these lectures, we don’t expect you to master the next definition and the proposition that
follows but, since they are considered basic facts in measure theory, we include them here.

Definition 7.17. (i) We denote by B(X) the Borel sigma algebra on the metric space X.

(ii) Assume that p is a Borel measure on X and v is a Borel measure on Y. We say that
(X, B(X), ) is isomorphic to (Y,B(Y),v) if there exists a one-to-one map T of X ontoY such
that for all A € B(X) we have T(A) € B(Y) and p[A] = v[T(A)], and for all B € B(Y') we have
T7Y(B) € B(X) and u[T~Y(B)] = v[B]. For brevity we say that u is isomorphic to v.

The next proposition is an amazing result that is considered a basic fact in measure theory.
We refer the reader to the book by Royden [44], Theorem 16 for its proof.

Proposition 7.18. Let i be a finite Borel measure on a complete separable metric space X. As-
sume that v has no atoms and p[X] = 1. Then (X, B(X), p) is isomorphic to ([0, 1], B([0,1]), A1),
where A1 stands for the one-dimensional Lebesgue measure on [0, 1].

Definition 7.19. Assume that v is a measure on Z and that Z' C Z. The restriction of v to Z
is the measure 7|z defined on Z' by

V(O] =HlC N 2]
for allC C Z.
Exercise 7.20. Assume that Z' C Z and that v is a measure on Z'. Define
V€l =+[CnZ]
for all C C Z. Is there any condition we must impose on Z' for v to be a measure on Z?

Definition 7.21. Assume that Z = X XY and that v € P(Z). The first and second marginals
of v are the measures projyy defined on X and projy~y defined on'Y by

projxy[A] =v[Ax Y], projy[B] =[X x B,
forall AC X and all BCY.
Definition 7.22. If v € P(Z) and 1 < p < +00, the p-moment of v is

M) = 1/p /Z 2|Pdr (z).

Exercise 7.23. Assume that 1 < p < +o0, that {7,}5%, C P(R?) and that {M,[y]}2>, is a

n=1
bounded set. Show that there exists a subsequence of {y,}°, that converges weak x in P(R?).
Warning. The limit of the subsequence must be not only a measure but a probability measure.
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Exercise 7.24. Assume that v,7 are two Borel probability measures on R®. Show that v[C] =
~|C] for every Borel set if and only if

| P = [ Payie

for all F € C,(RY).

8 Appendix

Throughout this section L : R x R* — R is a continuous functions such that
(A1) L(x+k,v)=L(x,v) for each (z,v) € R¢ x R and each k € Z%.

We assume that L is smooth enough in the sense that there exists an integer r > 1 such that
(A2) L € C"(R? x RY).

We also impose that the Hessian matriz is positive:
(A3) (2 (2,v) > 0

in the sense that its eigenvalues are all positive. We need the following uniform superlinear
growth condition:
(A4) For every A > 0 there exists a constant § > 0 such that Z&% > 4

[[o]]

for every x € R and every v such that ||v|| > 6. In particular, there exists a real number B(L)
such that for every (x,v) € R% x R%, we have that

L(z,v) = ||v]| = B(L).

A continuous function L : R x R* — R satisfying (A1-A4) is called a lagrangian. In many
mechanical systems, the Lagrangian L(z,-) does not go faster than exponentially as v tends to
+oo : there is a constant b(L) € R such that

(A5) L(z,v) <ell’ll —p(L) — 1 for each (z,v) € R x R%
Now, we introduce a Hamiltonian associated to L, the so-called Legendre transform of L(x,-).
For (z,p) € R? x RY) we set

H(xz,p) = seufli)d{v -p— L(z,v)}, ((z,p) € R? x RY).

The Hamiltonian H is continuous and by (A3), H(x,-) is continuously differentiable. Also, the
map

(x,v) = (z,VyL(z,v)) = T(x,v)
is of class "R x RY) and its restriction to T x R? is one-to-one. It inverse
(‘T7p) - (‘T7VPH(‘T7P)) = S(CC,p)

is then of class C""1(RY x R%). This proves that H is in fact of class C"(R? x R%). These
arguments are standard and can be found in [34] pp 1355.
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If (z,v) € R x R and p = V,L(x,v), because both L(x,-) and H(x,-) are convex and
Legendre transform of each other then

v=V,H(z,p), V.L(z,v) = =V H(z,p). (97)

One studies the kinematics and dynamics of these systems through the action
T
o(T, 29, 21) = inf{ / L(o,6)dt | 0(0) = g, 0(T) = o1}, (98)
7 Jo

where the infimum is performed over the set AC(T;x,x7) of o : [0,T] — R that are absolutely
continuous and that satisfy the endpoint constraint o(0) = x,, o(T) = x7.

In the light of (A3) and (A4), there exists o, € AC(T;x,x7) that is a minimizer in (98)
and o, satisfies the Fuler-Lagrange equations

LIV L(oolt), 60(1))] = VaL(ool0). 6,(1),  0<t<T. (99)

The infimum in (98) represents the cost for transporting a unit mass from x, to xp during the
time interval T > 0. There maybe several o, minimizer in (98), if the minimum is performed
other AC(T;xo,x7). Therefore, the differential equation (99) may have multiple solutions in
AC(T; o, x7). It is natural to ask if given (z,,v) € RY x RY, (99) has a unique solution o for
all t € R, when we prescribe 0(0) = z,, and (0) = v. We briefly recall what is known about
the initial value problem and how one ensures ezistence of a flow ® : R x R x R — R% x R

associated to the Lagrangian L, defined by ®(t,z,v) = (¢(t, z,v), ¢(t, z,v)) where ¢ satisfies

%[VUL(U(t)ad(t))] = VaL(o(t),6(t)), (0(0),5(0)) = (z,v). (100)

Here, we have set o(t) = ¢(t,x,v) and have temporarily drop the argument (x,v) in ¢(t,z,v),
to make the text more readable Define

p(t) = VuL(a(t),6(t))
so that by (97), we have that (100) is equivalent to
o(t) = VpH(a(t),p(t))  p(t) = —V.H(o(t),p(t))  o(0) =z, p(0)=V,L(v,v). (101)

Now (101) is a standard initial value problem and so, it admits a unique mazximal solution on
an open interval (t—,ty). That solution satisfies the conservation law

H(o(t),p(t)) = H(o(0),p(0), (€ (t-,t4)). (102)

As a byproduct, (100) admits a unique mazimal solution on the same interval (t_,ty). Set
q = VyL(z,v). We display the dependence in (x,q) and in (z,v) and introduce the flow:

O(t,x,v) = (a(t),d(t)), ®(0,z,q) = (z,v).
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together with the so-called dual-flow ®* :
¥*(ta,q) = (0(),p(t),  D(0.2,9) = (v.q).
This terminology of dual flow is justified by the following fact:
O(t,z,v) =Sod* o T,

where S and T are the diffeomorphisms defined through the functions L and H that are Legendre
dual of each other.

As in [34] we can ensure that the completness assumption t— = —oo and ty = +00 holds.
For that it is enough to impose that L satisfies (A5) so that

H(z,p) = [Ipl|Logllpl| + b(L) + 1 = [|p|[ + b(L). (103)

If (103) holds then by (102) we have that
Ip()]] < €:= H((0),p(0)) — b(L). (104)

We combine (101) and (104) to have that
NG < IVpH || oo (pax 52(0)) (105)
where B(0) is the open ball in R of center 0 and radius é. Consequently, |[p(-)|| + ||o(-)|| are
locally bounded in time. This shows that t_ = —oo and t4 = 400. Consequently, under the

completeness assumption which we make in the sequel, the flow ® is well-defined for all t € R.
Furthermore, it satisfies

O(t+ s,z,v) = O(t, (s, z,0)), ((t,s) € R x R, (z,v) € R? x RY). (106)

This is a byproduct of the uniqueness property of solutions of (100). Also if T > 0 and
O(T,x,v) = ®(0,z,v) then ®(-,z,v) must be periodic of period T.

O(t+T,x,v) =Dt z,v), ((t,z,v) € R x R x RY). (107)
In the next proposition, we assume that
L(z,v) =1l(v) + W(x),
that W is T-periodic of class C2, and that there exists a number e; > 0 such that
< V3 (v)a;a >> ¢l|al?

for all a € RE. We show that for small times T > 0 there exists a unique opimal path Oy that

minimizes o — f(;[ L(o,5)ds over AC(T,x,y). Let us denote by ey the smallest eigenvalue of
V2W, and let c1 be the Poincare constant on (0,1), defined to be the largest number c; such that

1 1.
cl/ b2ds§/ b2ds
0 0

for allb € C$(0,1).
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Proposition 8.1 (Uniqueness of paths connecting two points). Assume T > 0 and that
ew + %+ > 0. For every x,y € R there exists a unique o, € AC(T,x,y) that satzsﬁes the Euler-

Lagmnge equation (99). Therefore, o, is the unique minimizer of 0 — Ko fo o)ds over
AC(T, z,y).

Proof: Assume that o, € AC(T,x,y) satisfies (99). We write Taylor approxzimation of L(o,
around (0,,0,), use that satisfies the Euler-Lagrange equation (99) and that 0 = o(0) — 0,(0)
o(t) — oo(T) to conclude that

o)

T T
Klo] - Klo) > /O (ewlo — aof* + €1l — Go[*)ds > /0 (ew + T3 )l — oofds.

This concludes the proof of the proposition. QED.
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