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We study uniqueness and non uniqueness of minimizers of functionals involving nonlocal17
quantities. We give also conditions which lead to a lack of minimizers and we show how
minimization on an infinite dimensional space reduces here to a minimization on R.19
Among other things, we prove that uniqueness of minimizers of functionals of the formR
Ω

a(
R
Ω

gu dx)|∇u|2 dx− 2
R
Ω

fu dx is ensured if a > 0 and 1/a is stricly concave in the21
sense that (1/a)′′ < 0 on (0,∞).
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1. Introduction25

Throughout this note, Ω is a bounded domain of R
N with boundary Γ. Let Ã :

H1
0 (Ω) → MN×N

+ be a map whose range is contained in the set MN×N
+ of N × N27

positive definite matrices. We are interested in the case where Ã(u) has a nonlocal
dependence in u. An example could be29

Ã(u) = A

(∫
Ω

gu dx, ‖∇u‖L2(Ω)

)

for prescribed functions, say, g ∈ L2(Ω) and A : R
2 → MN×N

+ . In fact, later, we31

will relax the assumption on g to g ∈ H−1(Ω). In the above, we have denoted by
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‖∇u‖L2(Ω) the norm1

‖∇u‖L2(Ω) =
{∫

Ω

|∇u|2 dx

} 1
2

.

It is well known that solving the boundary value problem3 {
−div(Ã(u)∇u) = f in Ω,

u ∈ H1
0 (Ω),

(1.1)

reduces to solving a nonlinear sytem of equations in R
2, (see [2]). Up to now such5

a theory was unavailable for the minimization of

J [u] :=
1
2

∫
Ω

Ã(u)∇u · ∇u dx −
∫

Ω

fu dx,
7

say on H1
0 (Ω) (in the above integral and below the scalar product between vectors

will be denoted by a dot). One of the goals of this note is to fill out this gap and9

to show for instance, that in the case when

Ã(u) = a

(∫
Ω

gu dx

)
I

11

then the minimization of J on a linear space reduces to the minimization of a single
function on R, i.e. to a problem in R and not in an infinite dimensional space (see13

Sec. 2, I denotes the identity matrix). One should note of course that (1.1) is not
the Euler equation corresponding to the minimization of J [u].15

From the point of view of the applications and when

g =
1
|Ω| ,17

with |Ω| denoting the Lebesgue measure of Ω, the minimization of J on H1
0 (Ω)

corresponds to the search of the displacement of an elastic membrane spanned19

along the boundary of Ω and submitted to a force f . The elasticity coefficients, i.e.
the entries of A, are supposed to depend on the average displacement and on the21

elastic energy of this membrane.
Equation (1.1) has also its interpretation in population dynamics (see [3, 1]23

and the references therein). It gives in particular the stationary equilibria of an
evolution process.25

The experience gained in Sec. 2 in a simple situation allows us to give in Sec. 3
sharp existence and uniqueness results for the minimization of J on a closed convex27

set of H1
0 (Ω).

2. The Case A = aI29

We denote by 〈·, ·〉 the duality pairing on H−1(Ω)×H1
0 (Ω) where H1

0 (Ω) is equipped
with the norm31

‖u‖1 = ‖∇u‖L2(Ω).
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Throughout this section,1

f, g ∈ H−1(Ω), (2.1)

and for each m ∈ R, we define3

Km = {u ∈ H1
0 (Ω) : l(u) = m}, l(u) = 〈g, u〉. (2.2)

We assume that a ∈ C(R, (0, +∞]) and we set A = aI where I is the identity5

matrix. We define

J [u] =
a(l(u))

2

∫
Ω

|∇u|2 dx − 〈f, u〉 (2.3)
7

and set

J̃(m) = Inf
Km

J [u]. (2.4)9

As mentioned below in Sec. 3, Proposition 3.2, the existence of a minimizer of
J over H1

0 (Ω) or Km can be easily obtained by direct methods of the calculus of11

variations. Uniqueness of a minimizer of J over H1
0 (Ω) needs to be justified whereas

uniqueness of a minimizer um on Km is trivial. Since for all w ∈ K0, um +tw ∈ Km,13

as usual, one can simply deduce that

d

dt
J [um + tw]|t=0 = 015

and obtain the following characterization of um:

Lemma 2.1. For every m in R, the unique minimizer um ∈ Km of J over Km is17

characterized by the equation∫
Ω

a(m)∇um · ∇w dx = 〈f, w〉 ∀w ∈ K0. (2.5)
19

Theorem 2.2. Let S be the set of minimizers of J over H1
0 (Ω) and let S′ be the

set of minimizers of J̃ over R. Then21

l : u 	→ l(u)

is a one-to-one mapping from S onto S′.23

Proof. Let u be a minimizer of J on H1
0 (Ω). Let m0 = l(u). One has

J̃(m0) = J [u] = Inf
Km0

{
a(m0)

2

∫
Ω

|∇u|2 dx − 〈f, u〉
}

≤ J [v]

∀ v ∈ H1
0 (Ω). (2.6)

In particular, if m ∈ R and um ∈ Km minimizes J over Km, (2.6) implies that

J̃(m0) ≤ J [um] = J̃(m). (2.7)25

Hence, m0 = l(u) is a minimizer of J̃ . This proves that the range of l is con-
tained in S′.27
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To show that l is surjective, we choose an arbitrary m0 minimizer of J̃ and1

denote by um0 the unique minimizer of J over Km0 . If v ∈ H1
0 (Ω) and m = l(v),

we have that3

J [um0 ] = J̃(m0) ≤ J̃(m) ≤ J [v].

This proves that um0 is a minimizer of J over H1
0 (Ω) and J [um0 ] = J̃(m0). Thus, l5

is surjective. If u1, u2 are two minimizers with l(u1) = l(u2) then (under an obvious
abuse of notation) clearly u1 = u2 = ul(ui) and the injectivity is proved.7

Let us define θg to be the unique weak solution of{
−∆θg = g in Ω,

θg ∈ H1
0 (Ω).

(2.8)
9

Lemma 2.3. Given m ∈ R and g �≡ 0, let um be the unique minimizer of J over
Km. Then, um satisfies11

−a(m)∆um = f + cmg in D′(Ω), (2.9)

where cm is the constant given by13

cm =
a(m)m − 〈f, θg〉

l(θg)
. (2.10)

Proof. Since g �≡ 0, θg �= 0 and from (2.8), we deduce15

l(θg) = 〈g, θg〉 =
∫

Ω

|∇θg|2 dx > 0.

Let D(Ω) be the set of C∞ functions whose support is contained in Ω. We may find17

� ∈ D(Ω) such that

l(�) = 1.19

For each v ∈ D(Ω), w = v − l(v)� ∈ K0 and so, by (2.5)

〈−a(m)∆um − f, v〉 =
∫

Ω

a(m)∇um · ∇v dx − 〈f, v〉

=
∫

Ω

l(v)a(m)∇um · ∇� dx − 〈f, l(v)�〉

= l(v)
{∫

Ω

a(m)∇um · ∇� dx − 〈f, �〉
}

:= cml(v), ∀ v ∈ D(Ω).

Setting cm =
∫
Ω a(m)∇um · ∇� dx − 〈f, �〉, we have proven that

〈−a(m)∆um − f − cmg, v〉 = 0 (2.11)21

for all v ∈ D(Ω) and so,

a(m)∆um + f + cmg = 0 in D′(Ω). (2.12)23

We choose v = θg in (2.11) to obtain that

0 = 〈−a(m)∆um − f − cmg, θg〉 = a(m)〈um,−∆θg〉 − 〈f, θg〉 − cml(θg),25
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and thus1

cml(θg) = a(m)l(um) − 〈f, θg〉 = a(m)m − 〈f, θg〉.
This concludes the proof.3

Remark 2.4. Note that if Ã(u) = a(l(u))I, then by (2.9) the solutions of (1.1) are
of the form um with a(m)m = 〈f, θg〉 or cm = 0.5

Theorem 2.5. We have

J̃(m) =
1

2〈g, θg〉
{

(a(m)m − 〈f, θg〉)2 − 〈g, θg〉〈f, θf 〉
a(m)

}
. (2.13)

7

Proof. By (2.9),

∆(a(m)um − θf − cmθg) = 0.9

By the uniqueness of the solution of the Dirichlet problem, we conclude that

a(m)um = θf + cmθg. (2.14)11

Testing (2.9) with um and recalling (2.2) we obtain

a(m)
∫

Ω

|∇um|2 dx = 〈f, um〉 + cmm.
13

Thus

J̃(m) =
a(m)

2

∫
Ω

|∇um|2 dx − 〈f, um〉 =
1
2
{cmm − 〈f, um〉}. (2.15)

15

We apply f to (2.14) to obtain that

a(m)〈f, um〉 = 〈f, θf 〉 + cm〈f, θg〉. (2.16)17

We combine (2.10), (2.15) and (2.16) to conclude after easy computations that

J̃(m) =
1

2〈g, θg〉
a(m)2m2 − 2a(m)m〈f, θg〉 + 〈f, θg〉2 − 〈g, θg〉〈f, θf 〉

a(m)
.

19

This completes the proof.

Remark 2.6. If we set21

〈f, θg〉 = α, 〈g, θg〉〈f, θf 〉 = ‖f‖2
−1‖g‖2

−1 = β > 0, (2.17)

the minimization of J̃ reduces to the minimization of23

J (m) =
(a(m)m − α)2 − β

a(m)
. (2.18)

Since25

〈f, θg〉 =
∫

Ω

∇θf · ∇θg dx, 〈g, θg〉 = ‖∇θg‖2
L2(Ω), 〈f, θf 〉 = ‖∇θf‖2

L2(Ω),



1st Reading

August 11, 2006 0:12 WSPC/176-AA 00081

6 M. Chipot, W. Gangbo & B. Kawohl

by the Cauchy–Schwarz inequality, α2 ≤ β. It is clear that J̃ and J are continuous1

functions of m if a is continuous. Recall that a is assumed to be positive throughout
the paper.3

Note that J (0) = {α2 − β}/a(0) ≤ 0 and so,

J̃(0) ≤ 0.5

We have shown in Theorem 2.2 that J admits minimizers iff J admits minimizers
on R. This leads us to:7

Theorem 2.7. Suppose that a ∈ C(R; (0,∞]).

(i) If for |m| large enough,9

a(m) ≥ δ

|m| , (2.19)

where δ is a positive constant such that11

(δ − |α|)2 > β, (2.20)

then J [·] and J admit minimizers.13

(ii) If for |m| large enough,

a(m) =
δ

|m|15

with (δ − |α|)2 < β, then J [·] fails to have minimizers.

Proof. If (2.19) holds for |m| large enough, we use the fact that α2 ≤ β to obtain
that

J (m) = a(m)m2 − 2αm +
α2 − β

a(m)
≥ δ

|m|m
2 − 2αm +

α2 − β

δ
|m|

= δ|m| − 2αm +
α2 − β

δ
|m|.

This, together with (2.20) yields that

J (m) ≥ δ|m| − 2|α||m| + α2 − β

δ
|m|

= |m|
{

(δ − |α|)2 − β

δ

}
→ +∞ when |m| → +∞.

Thus the minimization of J reduces to a minimization on a compact set and since17

J is a continuous function, a minimizer does exist.
In the case where a(m) = δ

|m| for |m| large enough, we have

J (m) = δ|m| − 2αm +
α2 − β

δ
|m|

= |m|
{

(δ − |α|)2 − β

δ

}
for sign(m) = sign(α)
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and J is not bounded below for (δ − |α|)2 < β. This completes the proof of the1

theorem.

Remark 2.8. It is clear that (2.19) holds for instance when3

a(m) ≥ δ > 0

or, more generally, when5

a(m) ≥ δ|m|−γ for |m| large,

γ being a constant such that 0 < γ < 1, δ being here an arbitrary positive constant.7

In case where the continuity of a fails, we can show:

Theorem 2.9. Suppose that9

a ≥ δ > 0. (2.21)

Then, if a is discontinuous J [·] might fail to have a minimizer.11

Proof. Indeed let a be a continuous function satisfying (2.21). Then J admits
minimizers. Let m0 be one of them. One has13

J (m0) = a(m0)m2
0 − 2αm0 +

α2 − β

a(m0)
.

If m0 and (α2 − β) are not both zero, the function15

a → am2
0 − 2αm0 +

α2 − β

a

is clearly increasing and one can change the value of a(m0) in such a way that m017

is no longer a minimizer. For this new (and discontinuous) a, the functional J has
no minimizer since the function J has none.19

Regarding uniqueness, we have:

Theorem 2.10. If J is strictly convex, then J [·] admits a unique minimizer.21

Otherwise, J can have as many minimizers as we wish — even for a smooth coef-
ficient function a.23

Proof. The first point is clear. Note that

J (m) = a(m)m2 − 2αm +
α2 − β

a(m)25

and this function is strictly convex, in particular when

J ′′(m) = a′′m2 + 4a′m + 2a − (α2 − β)
a2

{
a′′ − 2

a′2

a

}
> 0.

27
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This is in particular the case when1

a′′ > 2
a′2

a
, (2.22)

i.e. when 1
a is strictly concave. Indeed the inequality is clear when m = 0 (recall3

that α2 − β ≤ 0). For m �= 0, we have

J ′′(m) > 2
a′2

a
m2 + 4a′m + 2a =

2
a
{a′m + a}2 ≥ 0.5

Suppose now — this is of course always possible,

α2 − β < 0.7

Then, consider a function J having as many minimizers as we wish (even a contin-
uum). It is always possible to find a positive a such that9

2aJ (m) = (am − α)2 − β ⇔ a2m2 − 2a(αm + J (m)) + α2 − β = 0.

Indeed the discriminant of this equation is11

∆ = 4{(αm + J (m))2 − m2(α2 − β)} (2.23)

and it has its roots in R. Moreover, since α2−β < 0, the roots do not have the same13

signs and one is positive. We call it a(m). It varies of course, continuously with m,
and for the corresponding problem of minimizing (2.3) one has as many solutions15

as J has of minimizers. We can also have an arbitrary number of minimizers in the
case where β = α2. Let j ∈ C2(R) be a function having the number of minimizers17

that we wish and which satisfies the following conditions:

j(m) > 2αm ∀m �= 0, j(0) = 0, j′(0) = −2α, j′′(0) > 0.19

It is clear that there are infinitely many functions j satisfying these assumptions.
We set21

a(m) =




2αm + j(m)
m2

if m �= 0

1
2
j′′(0) if m = 0.

We have that a ∈ C1(R). In fact, the smoothness of a does not matter. Checking23

that J = j, we conclude the proof.

Example 2.11. In biological applications it is often a priori known that the aver-25

age population density m is nonnegative. In that case a typical example of a coef-
ficient function a for which J̃ has at most one minimizer is27

a(m) =
{

m−γ if m > 0
+∞ if m ≤ 0,

where γ ∈ (0, 1). Clearly, 1
a is strictly concave on [0,∞) and solutions with nonneg-29

ative mean value cannot exist because they are penalized with infinite costs.
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3. The General Case1

The main issue in this section is not the existence of minimizers for the class of
variational problems that we consider. They are given by standard and direct meth-3

ods of the calculus of variations which we briefly describe. We will instead keep our
focus on uniqueness of these minimizers. In the sequel,5

∅ �= K ⊂ H1
0 (Ω) is closed under the weak H1

0 (Ω) topology (3.1)

and7

f, g ∈ H−1(Ω).

For each m ∈ R, we define9

Km = {u ∈ K : l(u) = m}, l(u) = 〈g, u〉.
We set11

J [u] =
1
2

∫
Ω

A(l(u)) ∇u · ∇u dx − 〈f, u〉, (3.2)

where A is a matrix-valued map13

A ∈ C(R, MN×N
+ ) (3.3)

such that there exist positive constants λ, δ with15

A(m)ξ · ξ ≥ min
{

λ,
δ

|m|
}
|ξ|2 (3.4)

for all ξ ∈ R
N and all m ∈ R.17

Remark 3.1. Since A is continuous, if there exists M > 0 such that

A(m)ξ · ξ ≥ δ

|m| |ξ|
2

19

for all |m| ≥ M and all ξ ∈ R
N , then (3.4) holds.

If (3.4) holds and {un}+∞
n=1 ⊂ K converges weakly to u then {l(un)}+∞

n=1 converges21

to l(u) and so {A(l(un))}+∞
n=1 converges to A(l(u)). Similarly, {〈f, un〉}+∞

n=1 converges
to 〈f, u〉. Using that ξ → |ξ|2 is convex and that A(l(un)) > 0, we conclude that J23

is weakly lower semicontinous on K. By (3.4), for u ∈ K,

J [u] ≥ 1
2

min
{

λ,
δ

|l(u)|
}
‖u‖2

1 − ‖f‖−1‖u‖1. (3.5)
25

Thus, for every constant C > 0, we have that

{u ∈ K : J [u] ≤ C} ⊂ U1 ∪ U2, (3.6)27

where

U1 =
{

u ∈ K :
λ

2
‖u‖2

1 ≤ C + ‖g‖−1 ‖u‖1

}
29
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and1

U2 =
{

u ∈ K :
δ

2
‖u‖2

1 ≤ |C|‖g‖−1 ‖u‖1 + ‖f‖−1 ‖g‖−1‖u‖2
1

}
.

Using the fact that J is weakly lower semicontinous on K, we exploit (3.5) and3

(3.6) to obtain the following proposition (see [4]).

Proposition 3.2. Assume that (3.3) and (3.4) hold.5

(i) If Km is nonempty, then J admits a unique minimizer over Km.

(ii) If, in addition, δ > 2‖f‖−1 ‖g‖−1, then J admits a minimizer over K.7

Remark 3.3. (i) Uniqueness of the minimizer over Km results from the fact that
the restriction of J over Km is simply u → ∫

Ω A(m)∇u · ∇u dx − 〈f, u〉, which is9

strictly convex.

(ii) To obtain uniqueness of minimizers of J over K, we will need to impose addi-11

tional assumptions on A.

Suppose now that A is symmetric. Let us denote by A′ the matrix whose entries13

are derivatives of the entries of A. Note that A′, A′′ and A′A−1A′ are symmetric.
If ξ ∈ R

N , then15

A′A−1A′ξ · ξ = A−1(A′ξ) · (A′ξ) ≥ 0

since A−1 is positive definite. Thus, A′A−1A′ is nonnegative definite. We denote by17

M the set of minimizers of J over K. One remarks from (3.5) and (3.6) that M is
a priori bounded. We have:19

Theorem 3.4. Assume that E ⊂ R is an open interval, that A ∈ C(R)∩C2(E) is
symmetric in E, that the range 	(K ∩ M) of K ∩ M is contained in E, that (3.4)21

holds and that

A′′ > 2A′A−1A′ on E.23

Then, if K is convex, J has at most one minimizer over K. (The above inequality
means simply that A′′ − 2A′A−1A′ is positive definite, and it is the matrix version25

of (2.22).)

Proof. It suffices to show that if u, v are two distinct elements of K ∩ M then27

t → J [u + t(v − u)] is strictly convex on (0, 1). For that, it suffices to show that

t → I[ut] =
∫

Ω

A(l(ut))∇ut · ∇ut dx
29

is strictly convex on (0, 1), where ut = u + t(v − u). Note that {l(ut) : t ∈ [0, 1]}
is a compact subset of R and so, the fact that A′′ > 2A′A−1A′ implies the31

existence of some λo > 2 such that A′′(l(ut)) > λoA
′(l(ut))A−1(l(ut))A′(l(ut))

for t ∈ [0, 1].33
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Direct computations give that1

d

dt
I[ut] =

∫
Ω

(A′(l(ut))∇ut · ∇ut l(v − u) + 2A(l(ut))∇ut · ∇(v − u)) dx

and that

d2

dt2
I[ut] =

∫
Ω

(A′′(l(ut))∇ut · ∇ut)(l(v − u))2 dx

+ 4
∫

Ω

A′(l(ut))∇ut · ∇(v − u)l(v − u) dx (3.7)

+ 2
∫

Ω

A(l(ut))∇(v − u) · ∇(v − u) dx. (3.8)

We apply the Cauchy–Schwarz and the Young inequalities to estimate the term in
(3.7) as follows:

|A′∇ut · ∇(v − u) l(v − u)| = |A− 1
2 A′∇ut · A 1

2∇(v − u)l(v − u)|
≤ |A− 1

2 A′∇ut| |A 1
2∇(v − u)| |l(v − u)|

≤ λo

4
|A− 1

2 A′∇ut|2l2(v − u) +
1
λo

|A 1
2∇(v − u)|2 (3.9)

=
λo

4
A′A−1A′∇ut · ∇ut l2(v − u) (3.10)

+
1
λo

A∇(v − u) · ∇(v − u). (3.11)

To obtain (3.10) from (3.9), we have used the fact that A is symmetric. We next3

use (3.8), (3.11) and the fact that

A′′(l(ut)) > λoA
′l(ut)A−1l(ut)A′l(ut)5

for t ∈ [0, 1], to conclude that

d2

dt2
I[ut] ≥

∫
Ω

(A′′(l(ut))∇ut · ∇ut)(l(v − u))2 dx

−λo

∫
Ω

A′A−1A′∇ut · ∇ut l2(v − u) dx

+
(

2 − 4
λo

) ∫
Ω

A(l(ut))∇(v − u) · ∇(v − u) dx

≥
∫

Ω

(
A′′(l(ut)) − λoA

′A−1A′)∇ut · ∇ut(l(v − u))2 dx

+
(

2 − 4
λo

) ∫
Ω

A(l(ut))∇(v − u) · ∇(v − u) dx > 0, (3.12)

if ∇(v − u) �≡ 0.
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