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Abstract

A new concept of Fisher-information is introduced through a cost function. That
concept is used to obtain extensions and variants of transport and logarithmic Sobolev
inequalities for general entropy functionals and transport costs. Our proofs rely on
optimal mass transport from the Monge-Kantorovich theory. They express the convexity
of entropy functionals with respect to suitably chosen paths on the set of probability
measures.
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1 Introduction

The purpose of these notes is to further explore the connections between optimal mass trans-
port and Sobolev type functional inequalities. More precisely, the aim of the paper is two-fold.
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On one hand we introduce generalized notions of entropy and of Fisher information, already
present in previous notes of Gangbo and Houdré [15]. This new concept of Fisher-information
occurs naturally when one studies quasilinear parabolic–elliptic equations (1.1), an important
class of equations in partial differential equations (see [2], [21], [22] and, more recently, in [1]).
On the other hand, we show that the simple approach given by Cordero -Erausquin in [13]
for proving logarithmic Sobolev, transport and interpolation inequalities extends to this new
setting. Our approach is purely analytical and uses the Monge–Kantorovich theory.

Since its study by Gross [19], the logarithmic Sobolev inequality (in various forms) has
proved useful in several fields of mathematics. In PDE, it provides a control of the entropy
production for evolutive dissipative systems. In probability theory, it is a tool to obtain
concentration of measure phenomena or to study smoothness properties of Markov processes.
In combinatorial theory, it gives estimates on mixing time of randomized algorithms. Since our
framework is motivated by classes of non linear PDEs, the version of the logarithmic Sobolev
inequality we have in mind is the one linking entropy and Fisher information. Indeed, the
entropy appears naturally as an energy functional in the study of the Fokker–Planck equation,
and in turn the logarithmic Sobolev inequality is used to study the asymptotic behavior of its
solutions. The Fokker–Planck equation is part of an important class of equations modelling
dissipative systems, the so–called quasilinear parabolic–elliptic equations which are described
via

∂ρ

∂t
(t, x) + div

[
ρ(t, x)Uρ(t, x)

]
= 0, (t, x) ∈ [0, +∞) × Ω

Uρ := −∇c∗
(
∇(F ′ ◦ ρ + V )

)
, (t, x) ∈ [0, +∞) × Ω. (1.1)

Here, Ω ⊂ Rd is an open set, c ∈ C1(Rd) is strictly convex with Legendre transform c∗,
F ∈ C1(R+), and the unknown is t → ρ(t, ·) ∈ W 1,1(Ω). When Ω is bounded, we impose in
addition that the boundary condition

Uρ · n = 0,

holds for (t, x) ∈ [0, +∞) × ∂Ω, where n is the outward unit normal to ∂Ω.
Quasilinear parabolic–elliptic equations have been studied by several authors, and pioneer-

ing existence results were obtained by Alt and Luckhaus [2]. The functional inequalities we
obtain in the present paper should prove useful for studying the asymptotic behavior of these
systems.

In order to introduce a criterion which is a way of assessing how two probability measures
are different from one another, we introduce a cost function c : Rd −→ R+ := [0, +∞), so
that if x and y are two points in Rd, then c(x − y) represents the cost of transporting a unit
mass from x to y. Given two probability measures µ and ν on Rd, the minimum cost for
transporting µ onto ν is then

Wc(µ, ν) := inf
γ∈Γ(µ,ν)

∫
Rd×Rd

c(x − y)dγ(x, y), (1.2)

where Γ(µ, ν) is the set of Borel probability measures with marginals µ and ν, respectively:

µ(B) = γ(B ×Rd), ν(B) = γ(Rd × B)
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for every Borel set B ⊂ Rd. When µ and ν are absolutely continuous with respect to the
Lebesgue measure, i.e., dµ = ρ0 dx, and dν = ρ1 dx, we write Γ(ρ0, ρ1) instead of Γ(µ, ν).
Next, a Borel map T : Rd −→ Rd is said to push µ forward to ν (or to transport µ onto ν) if
for every Borel set B ⊂ Rd

µ(T−1(B)) = ν(B).

In other words, ν is the image of µ by T , and this is written as ν := T#µ (or using a
probabilistic notation ν := µ ◦ T−1). Again, when dµ = ρ0 dx, and dν = ρ1 dx, T#ρ0 = ρ1 is
used instead of T#µ = ν. A map T pushing µ forward to ν is said to be c-optimal if

Wc(µ, ν) =
∫
Rd

c(x − T (x))dµ(x), (1.3)

and in this case ∫
Rd

c(x − T (x))dµ = inf
S

∫
Rd

c(x − S(x))dµ,

where the infimum is taken over all Borel maps S : Rd −→ Rd pushing µ forward to ν. Let us
now make some standing assumptions on the cost c which will be used throughout the text:

(H1) c : Rd −→ [0,∞) is strictly convex, even, and of class C1.

Imposing that “c is even” is not important in the present work. This property of c is used
only to state nice symmetric results. As a consequence, the Legendre transform c∗ is even and
∇c∗ is odd. We also conveniently impose that c(0) = 0 so that c∗(0) = 0. This allows us to
avoid carrying the term c∗(0) as an extra additive constant in inequalities such as (1.28).

(H2) c(0) = 0.

(H3) lim
|z|→∞

c(z)

|z| = +∞.

Observe that (H3) is unnecessary when transporting densities with bounded supports.
Cost functions satisfying (H1–H3) include all the radial costs c(z) = `(|z|) of class C1,

growing faster than linearly, and such that `(t) ≥ `(0) = 0 with ` strictly convex. Homo-
geneous costs given, for instance, by c(z) = ‖z‖p

p :=
∑d

i=1 |zi|p, p > 1, also satisfy these
conditions.

Since by definition c∗, the Legendre transform of c, is given by

c∗(y) = sup
z∈Rd

{y · z − c(z)}, (1.4)

and c is convex, Young’s inequality

y · z ≤ c∗(y) + c(z), (1.5)

holds for all y, z ∈ Rd and is saturated when z = ∇c∗(y) :

y · ∇c∗(y) = c∗(y) + c(∇c∗(y)), (1.6)

for all y ∈ Rd. Moreover, the convexity of c∗ implies that for all y ∈ Rd,

y · ∇c∗(y) ≥ c∗(y) − c∗(0) = c∗(y) ≥ 0, (1.7)
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since c∗(0) = c(0) = 0.

When the cost is the quadratic one, i.e. c(z) := |z|2/2, a result of Brenier characterizes the
optimal map T in (1.3) as the gradient of a convex function [8, 9]. For general strictly convex
costs, Caffarelli [10] as well as Gangbo and McCann [16, 17] independently proved that the
c–optimal map is unique and takes the form

T (x) = x −∇c∗(∇θ(x)),

where θ is a c–concave function. We refer to [17] for the definition of c–concavity and precise
statements. Now, let Pa be the set of Borel probability densities, i.e.,

Pa :=
{
ρ ∈ L1(Rd) : ρ ≥ 0 and

∫
Rd

ρ dx = 1
}

.

Let V : Rd −→ R be such that

V (b) − V (a) ≥ ∇V (a) · (b − a) + α0c(a − b), (1.8)

for some α0 ∈ R and all a, b ∈ Rd. When c(z) := |z|2/2 and V is twice differentiable,
(1.8) is equivalent to HessV ≥ α0Id, where Id stands for the d × d identity matrix. Let also
F : R+ −→ R be strictly convex.

We now introduce the so-called, free energy functional

HF
V (ρ) :=

∫
Rd

(F (ρ) + ρV )dx,

which is the sum of the internal energy and the potential energy given respectively by

HF (ρ) :=
∫
Rd

F (ρ)dx, (1.9)

HV (ρ) :=
∫
Rd

ρV dx. (1.10)

Eventually, we will work with the triple (F, V, ρ∞) where ρ∞ ∈ Pa is uniquely determined by

F ′(ρ∞) + V = 0, (1.11)

on its support. In light of (1.11), by the strict convexity of F , and unless ρ ≡ ρ∞, we have

F (ρ) + ρV > F (ρ∞) + ρ∞V = −F ∗(−V ), (1.12)

on the support of ρ∞ (since F is only defined on R+, and in order to properly define F ∗ when
needed, we set throughout F (t) = +∞, for t < 0). Thus, HF

V (ρ) is well defined, although
possibly infinite, provided that F ∗(−V ) is integrable. Furthermore, ρ∞ is the unique minimizer
of HF

V on that set. In the classical case, when

c(z) = |z|2/2, F (t) = t log t − t, F (0) = 0, (1.13)
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and, in view of (1.11),
ρ∞ = e−V ,

we simply denote the free energy functional by H and we have H(ρ) =
∫
Rd ρ log(ρ/ρ∞)dx −1.

As already mentioned, (1.8) then reads as

HessV ≥ α0Id,

when V is twice differentiable. To use a terminology similar to the classical one,

HF
V (ρ) − HF

V (ρ∞), (1.14)

is called the relative entropy of ρ with respect to ρ∞. Note that under the condition (1.13),
the equation (1.1) is just the Fokker–Planck equation

∂ρ

∂t
= div(∇ρ + ρ∇V ) = div(ρ∇ (log ρ + V )). (1.15)

with ground state ρ∞ = e−V . When its solution ρ is smooth enough, it satisfies

d

dt

(
H(ρ)

)
= −I(ρ | ρ∞), (1.16)

where I(ρ | ρ∞) is the relative Fisher information of ρ with respect to ρ∞, defined by

I(ρ | ρ∞) =
∫
Rd

|∇(log ρ + V )|2 ρdx. (1.17)

Similarly, if ρ is a smooth solution of the quasilinear parabolic–elliptic systems (1.1) then it
is easily verified that

d

dt

(
HF

V (ρ)
)

= −Ic∗(ρ | ρ∞), (1.18)

where
Ic∗(ρ | ρ∞) :=

∫
Rd

∇(F ′ ◦ ρ + V ) · ∇c∗
(
∇(F ′ ◦ ρ + V )

)
ρdx. (1.19)

Because of the analogy between (1.15) and (1.16) on one hand, and (1.1) and (1.18) on the
other hand, we call Ic∗(ρ | ρ∞) the generalized relative Fisher information of ρ with respect to
ρ∞, measured against the cost c∗. Note that by (1.7), Ic∗(ρ | ρ∞) is nonnegative (and possibly
infinite).

The idea of finding paths connecting elements of Pa has, in the present context, its origin
in the work of McCann [25]. It will provide a nice interpretation of the inequalities we are
interested in. When c is homogeneous of degree p ≥ 1, these paths will turn out to be geodesics
for the metric W 1/p

c . To avoid technical difficulties when studying properties of HF
V , we keep

our focus on path connections for ρ0, ρ1 ∈ W 1,∞(Ω), (Ω open bounded and convex), such that
infΩ ρ0 > 0. If T is the c-optimal map that pushes ρ0 forward to ρ1, we define the interpolant
measures

µt :=
(
(1 − t)id + tT

)
#(ρ0dx). (1.20)
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For the functional HF in (1.9) to have interesting properties along t → µt we assume that

(H4) F ∈ C2(0, +∞) ∩ C([0, +∞)), and F (0) = 0.

The assumption F (0) = 0 is made to ensure that

∫
Rd

F (ρ)dx =
∫
{ρ>0}

F (ρ)dx.

(H5) t −→ tdF (t−d) is convex and nonincreasing on (0, +∞),

In the classical context, (H5) appears in McCann [25] as a condition that ensures ”displacement
convexity” of HF and is used to prove (1.21) below.

It is important to have in mind the following examples of functions F , related to the
so-called Rényi entropy functionals in information theory:

Fm(ρ) :=
1

m − 1
(ρm − ρ).

In that case, (H4-H5) is satisfied if and only if m ≥ 1 − 1/n. The case m = 1, defined in
the limit as F1(t) = t log t, was already considered above. For a given m ≥ 1 − 1/n, the
corresponding ρ∞ in (1.11) is given by

ρ∞(x) :=
(
σ +

1 − m

m
V (x)

)− 1
1−m

+
.

In the classical case (V (x) = |x|2/2) this function is sometimes called the Barenblatt profile.
Note that it is compactly supported when m > 1 and positive of polynomial decay when
m < 1.

It shown in [1] and [26] that when c satisfies (H1–H3), and F satisfies (H4-H5) then

HF (ρ1) − HF (ρ0) ≥
∫
Rd

(T − id) · ∇(A ◦ ρ0) dx =
∫
Rd

(T − id).∇(F ′ ◦ ρ0) ρ0 dx, (1.21)

where A(0) = 0, and A(t) := tF ′(t)−F (t), for t > 0. A simple proof of (1.21) under different
boundary conditions will be given in Appendix A, Proposition 5.1. Cordero -Erausquin [14] has
noticed that (with stronger regularity assumptions on the cost c) the µt’s (1.20) are absolutely
continuous with respect to Lebesgue measure. Hence, it is natural to define the displacement
interpolant densities

ρt := [(1 − t)id + tT ]#ρ0. (1.22)

We emphasize that in the proofs of the current work, we will make no use of the fact the
µt’s are absolutely continuous with respect to the Lebesgue measure. We rather follow the
“direct” approach of [13]. We have mentioned this property of the µt’s simply to motivate
some of our definitions. For instance, formally (1.21) is equivalent to the familiar inequality

HF (ρ1) − HF (ρ0) ≥
[ d

dt
HF (ρt)

]
t=0

,
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expressing that t → HF (ρt) is convex. We say that HF is Wc–convex whenever (1.21) holds
(when c(z) = |z|2/2, this is McCann’s displacement convexity). In Lemma 2.3 when V ∈
C1(Rd), we show that the pointwise inequality (1.8) is satisfied if and only if

HV (ρ1) − HV (ρ0) ≥
∫
Rd

∇V · (T − id)ρ0 dx + α0Wc(ρ0, ρ1). (1.23)

Formally (1.23) says that the following second order Taylor expansion holds

HV (ρ1) − HV (ρ0) ≥
[ d

dt
HV (ρt)

]
t=0

+ α0Wc(ρ0, ρ1).

We then say that HV is Wc–semiconvex whenever (1.23) holds. Combining (1.21) and (1.23)
we derive Theorem 2.4 – the central ingredient of this work – which generalizes an inequality
of [13] into:

HF
V (ρ1) − HF

V (ρ0) ≥ α0Wc(ρ0, ρ1) +
∫
Rd

(T − id) · ∇(F ′ ◦ ρ0 − F ′ ◦ ρ∞)ρ0 dx. (1.24)

In other words, HF
V is Wc–semiconvex, and is Wc–convex (resp. uniformly Wc–convex) in the

particular case α0 ≥ 0 (resp. α0 > 0), since (1.24) expresses that

HF
V (ρ1) − HF

V (ρ0) ≥
[ d

dt
HF

V (ρt)
]
t=0

+ α0Wc(ρ0, ρ1).

In Section 3, we obtain the generalized transport inequality (1.25), and the generalized
“logarithmic” (there is more logarithm...) Sobolev inequality (1.28) as direct consequences of
(1.24). Indeed, assume first that the functions ρ and ρ∞ have bounded supports. Whenever
α0 > 0, by substituting the cost function c by α0c if necessary, we may assume without loss
of generality that α0 = 1 in (1.8) and (1.24). By setting ρ0 := ρ∞ and ρ1 := ρ in (1.24) we
obtain that

Wc(ρ, ρ∞) ≤ HF
V (ρ) − HF

V (ρ∞), (1.25)

which is an generalization of the transport inequality. By an approximation argument, we
extend (1.25) to the case where the supports of ρ and ρ∞ are not necessarily bounded.

To obtain a generalized version of the logarithmic Sobolev inequality, we set ρ0 := ρ,
ρ1 := ρ∞ and again α0 = 1 in (1.24) to deduce that

HF
V (ρ) − HF

V (ρ∞) + Wc(ρ, ρ∞) ≤
∫
Rd

(id− T ) · ∇(F ′ ◦ ρ − F ′ ◦ ρ∞)ρ dx. (1.26)

Applying Young’s inequality (1.5) to the right hand side of (1.26) we conclude that

HF
V (ρ) − HF

V (ρ∞) + Wc(ρ, ρ∞) ≤
∫
Rd

c(x − Tx)ρ dx

+
∫
Rd

c∗(∇(F ′ ◦ ρ − F ′ ◦ ρ∞))ρ dx. (1.27)

Using (1.7), (1.11) in (1.27) we obtain

HF
V (ρ) − HF

V (ρ∞) ≤
∫
Rd

c∗(∇(F ′ ◦ ρ + V ))ρ dx ≤ Ic∗(ρ|ρ∞). (1.28)
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When F (t) = t log t − t, and c(z) = λ|z|2/2 (λ > 0), (1.28) is the classical logarithmic
Sobolev inequality, in the form obtained by Bakry and Emery [4]) and the transport inequal-
ity (1.25) is then an extension obtained in [5, 7, 28] of the transport inequality studied by
Talagrand [31] and Marton [23]. Since for general F , (1.28) may have no logarithmic term, it
may seem misleading to refer to it as a ”generalized logarithmic Sobolev inequality”. This is
why we often refer to it as a generalized entropy-information inequality. If c(z) = λ|z|2/2 with
λ > 0 and F that satisfy (H4-H5), (1.28) allows us to recover generalizations of the logarithmic
Sobolev inequality obtained by Arnold, Carrillo, Juengel, Markovich, Toscani and Unterre-
iter [3, 11] with the Bakry-Emery semi-group method, and by Del Pino and Dolbeault [18]
with a method from the calculus of variations. When c is homogeneous of degree p ≥ 2 and
F (t) = t log t − t, (1.25) and (1.28) also recover results of Bobkov and Ledoux [7] obtained
there as consequences of the Prékopa–Leindler inequality.

We stress again that the notion Wc-convexity along paths in the set of probability measures
is mentioned only for the nice interpretation it provides but is not used in the proofs. We can
also mention that for most of the inequalities presented here (in the case α0 > 0) the use of
c-optimal maps is not compulsory: one can for instance work with the more classical “Brenier
map” (which is the optimal map for the quadratic cost).

The present paper is organized as follows: in Section 2, we state inequality (1.21) obtained
in [1] and [26] and we readily derive from it inequality (1.24). This inequality is then used
in Section 3 to generalize the transport and logarithmic Sobolev inequalities. In Section 4
we briefly comment on functionals of the form K(ρ) = HF

V (ρ) +
∫

ρ W ∗ ρ, where a non-local
term is added to HF

V and where V satisfies (1.8) with c(z) := |z|2/2. Convexity properties of
K were studied in details in a recent work of Carrillo, McCann and Villani [12]. We show,
as enquired by these authors, that the method of [13] as extended here, also applies to the
situation where HF

V is replaced by K (c remaining quadratic).
This collaboration was initiated while the first named author was visiting W. Gangbo and

R. McCann at the Georgia Institute of Technology. He wishes to express his gratitude to this
institution for its hospitality.

2 Uniform displacement convexity of generalized en-

tropy

In this section, Ω is an open convex bounded (unless otherwise noted) subset of Rd and Pa(Ω)
denotes the subset of Pa of density functions defined on Ω; that is the set of Borel functions
ρ : Ω → [0, +∞) such that

∫
Ω ρdx = 1. F is also assumed to satisfy (H4-H5). We first state an

“energy inequality” on Pa(Ω), a result obtained by Otto [26] for the so-called Tsallis entropy
functionals [30, 32], and later generalized by Agueh [1] to a wider class of entropy functionals.
This energy inequality is a generalization of the displacement convexity inequality proved by
McCann [25] when c(z) = |z|2/2; it can informally be stated as

∫
F (ρ1)dx −

∫
F (ρ0)dx ≥

[ d

dt

∫
F (ρt)dx

]
t=0

.
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In fact, this generalized version is instrumental in studying existence of solutions of the quasi-
linear elliptic–parabolic-degenerate equations in [1].

Proposition 2.1 (Agueh, Otto) Let ρ0, ρ1 ∈ Pa(Ω) with ρ0 ∈ W 1,∞(Ω) and infΩ ρ0 > 0.
Let also c and F satisfy respectively (H1–H3) and (H4-H5). Then

HF (ρ1) − HF (ρ0) ≥
∫
Ω
(T − id) · ∇(A ◦ ρ0)dx =

∫
Ω
(T − id).∇(F ′ ◦ ρ0) ρ0 dx, (2.1)

where A(0) = 0, and A(t) := tF ′(t) − F (t) for t > 0, and where T is the c–optimal map such
that T#ρ0 = ρ1.

Proof: The proof of Proposition 2.1 can be found in [1]. In Appendix A, we state Proposition
5.1, a variant of Proposition 2.1, for which, we provide a simpler proof than those in [1] and
[26]. The generalized version of the logarithmic Sobolev inequality obtained below can also be
derived from Proposition 5.1. However, the proof of the transport inequality seems to require
rather involved approximation arguments. QED

Remark 2.2 (should one use the c-optimal map?) What is apparent in [1] and from the
proof of Proposition 5.1, is the fact that the energy inequality (2.1) continues to hold if one
substitutes the c-optimal map T by any map S such that its differential ”dS” (possibly defined
in some weak sense) has only real nonnegative eigenvalues and such that S#ρ0 = ρ1. For
exemple, one can use the Brenier map (c(z) = |z|2/2) or the (triangular) Knothe map. We
refer the reader to Remark 2.5 where we mention some advantages of working with the c-
optimal map T instead of any other map S.

Let {ρt} be the displacement interpolant density functions introduced in (1.22). Formally

d

dt
[HV (ρt)]t=0 =

∫
∇V · (T − id)ρ0 dx. (2.2)

Since α0 = 0 in (1.8) means that V is convex, the next lemma can be interpreted as follow:
V is convex if and only if t → ∫

V ρt dx is convex.

Lemma 2.3 Let V ∈ C1(Rd) and let Ω be an open convex subset of Rd. The following
assertions are equivalent:

(i) V satisfies the pointwise inequality (1.8) for all a, b ∈ Ω.
(ii) For ρ0, ρ1 ∈ Pa(Ω) and, T the c–optimal map such that T#ρ0 = ρ1, we have that

HV (ρ1) − HV (ρ0) ≥
∫
Ω
∇V · (T − id)ρ0dx + α0Wc(ρ0, ρ1). (2.3)

Proof: Assume first that (1.8) holds and let ρ0, ρ1 ∈ Pa(Ω). Then

V (Tx) − V (x) ≥ ∇V (x) · (Tx − x) + α0c(x − T (x)),

for ρ0-almost every x ∈ Ω. Now, integrate both sides of the above inequality, use the fact that
T is c-optimal and that T#ρ0 = ρ1 to obtain (2.3).
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Conversely, assume that (2.3) holds for all ρ0, ρ1 ∈ Pa(Ω). Let a, b ∈ Ω. Choose a collection
{ρr

0} ⊂ Pa(Ω) supported in the ball of center a and radius r, and such that {ρr
0} converges

weak-∗ to the Dirac mass at a. Define To : x → x + b − a and the measures

ρr
1 = To#ρr

0.

If T is another Borel map such that ρr
1 = T#ρr

0 then, Jensen’s inequality yields that

∫
Ω

c(x − Tx)ρr
0(x)dx ≥ c

(∫
Ω
(x − Tx)ρr

0(x)dx
)

= c(a − b) =
∫
Ω

c(x − Tox)ρr
0(x)dx.

This proves that To is the c-optimal map that pushes forward ρr
0 to ρr

1. Using ρr
0 (resp. ρr

1) in
place of ρ0 (resp. ρ1) in (2.3) we have that

∫
Ω
(V (x + b − a) − V (x))ρr

0(x)dx ≥
∫
Ω
∇V (x) · (b − a)ρr

0(x)dx + α0

∫
Ω

c(b − a)ρr
0(x)dx. (2.4)

Letting r go to 0 in (2.4) we obtain (1.8). QED

Our next result expresses the Wc–semiconvexity of the generalized entropy functional.

Theorem 2.4 (Evolution of HF
V along c-optimal transport) Let c satisfy (H1–H3) and

let F satisfy (H4-H5). Let also V ∈ C1(Rd) satisfies (1.8), for some α0 ∈ R. Let ρ0, ρ1 ∈
Pa(Ω) be such that ρ0 ∈ W 1,∞(Ω) and infΩ ρ0 > 0. Then if T is the c-optimal transport
pushing ρ0 forward to ρ1 one has:

HF
V (ρ1) − HF

V (ρ0) ≥ α0Wc(ρ0, ρ1) +
∫
Ω
(T − id) · ∇(F ′(ρ0) + V ) ρ0dx. (2.5)

Proof: Combine Proposition 2.1 and Lemma 2.3. QED

Remark 2.5 (why do we use the c-optimal map? (bis)) When α0 < 0, and unlike in
Proposition 2.1, we don’t know how to prove (2.5) without appealing to the c-optimal map T
pushing ρ0 forward to ρ1. Also, it is convenient to use the map T so that one could interpret
(2.5) as a c–displacement convexity as explained in the introduction. Finally, the use of the
map T becomes crucial when studying parabolic-elliptic PDEs as in [1].

Remark 2.6 (Other assumptions) Using Proposition 5.1, Theorem 2.4 can be restated
with slightly different assumptions on ρ0 and ρ1. Inequality (2.5) is then valid if ρ0 and
ρ1 are only assumed to be compactly supported Borel probability densities (no assumption on
Ω is required), but we then ask that ρ0 ∈ W 1,∞(Rd).

Remark 2.7 (Probability densities?) The results clearly remain valid if instead of requir-
ing that

∫
Rd ρi dx = 1 (i = 0, 1) we impose 0 <

∫
Rd ρ0 dx =

∫
Rd ρ1 dx < +∞.
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3 Generalized transport and entropy–information in-

equalities

Throughout this section, we assume that Ω ⊂ Rd is open, convex, and possibly Rd. We denote
as before by Pa(Ω) the set of probability densities on Ω. We assume that V ∈ C1(Rd) and
that (1.8) holds with α0 = 1 (for positive α0, replace, as we already said, the convex function
c by α0c). We assume that F satisfies (H4 − H5) and that there exists ρ∞ ∈ Pa(Ω), such that
ρ∞ > 0 on Ω with also

F ′(ρ∞) + V = 0 on Ω.

To ensure that HF
V (ρ∞) is finite, we assume that F (ρ∞) + ρ∞V is in L1. Our next result,

Corollary 3.1, is a generalization of a transport inequality, due to Talagrand when c(z) =
|z|2/2, F (t) = t log t − t and ρ∞ is the standard Gaussian density in Ω := Rd. In Corollary
3.2, we extend the logarithmic Sobolev inequality to general cost functions c.

Corollary 3.1 (Transport inequality) Let c and F satisfy respectively (H1–H3) and (H4-
H5). Assume that V ∈ C1(Rd) verifies (1.8) for α0 = 1, and that ρ∞ > 0 as above. Then for
every Borel measurable function f : Ω → [0, +∞) such that ρ := fρ∞ ∈ Pa(Ω), we have that

Wc(ρ, ρ∞) ≤ HF
V (ρ) − HF

V (ρ∞). (3.1)

Proof: Recall that F ′(ρ∞)+V = 0, and so, the proof of Corollary 3.1 would be straightforward
if we could set in (2.5), ρ0 := ρ∞ and ρ1 := ρ. Unfortunately, Ω may be unbounded, or
ρ0 := ρ∞ and ρ1 := ρ may not satisfy the assumptions of Theorem 2.4. We further assume
that HF

V (ρ) 6= +∞ since otherwise there will be nothing to prove. In light of (1.12), this
means that F (ρ) + ρV is integrable.

To apply Theorem 2.4, we first assume without loss of generality that f ∈ C(Ω), and that
infΩ f > 0. We approximate ρ and ρ∞ as follows: let {Ωn}∞n=1 be a sequence of open, convex,
bounded subsets of Rd such that Ω̄n ⊂ Ωn+1, and ∪∞

n=1Ωn = Ω. Let χΩn be the characteristic
function of Ωn. Define

ρ0,n := ρ∞χΩn,

and set pn :=
∫
Ωn

ρ∞dx. By Lemma 6.1 there exists a sequence {ρ1,n}∞n=1 such that

∫
Ω

ρ1,ndx =
∫
Ω

ρ0,ndx, and lim
n→+∞HF

V (ρ1,n) = HF
V (ρ). (3.2)

Since F ′(ρ0,n) + V = 0 on Ωn, our main result, Theorem 2.4, gives that

Wc(ρ1,n, ρ0,n) ≤ HF
V (ρ0,n) − HF

V (ρ1,n). (3.3)

We combine (3.3) and (3.2), and use that Wc is lower semicontinuous [29], to conclude the
proof of Corollary 3.1. QED
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Corollary 3.2 (Generalized entropy–information inequality) Assume that c, F sat-
isfy respectively (H1–H3), (H4-H5), and that V ∈ C1(Rd) satisfies (1.8) with α0 = 1. Assume
ρ∞ ∈ C(Ω) is a positive probability density verifying F ′(ρ∞) = −V on Ω. Then for every
positive f ∈ C(Ω) such that ρ := fρ∞ ∈ Pa(Ω) ∩ C1(Ω), we have that

HF
V (ρ) − HF

V (ρ∞) ≤
∫
Rd

c∗(∇[F ′ ◦ ρ + V ])ρ dx ≤ Ic∗(ρ|ρ∞). (3.4)

Proof: Note that since (1.7) gives that c∗(y) ≤ ∇c∗(y) ·y for all y ∈ Rd, the second inequality
in (3.4) is straightforward to obtain. The task is then to establish the first inequality in
(3.4) and, to do so, we assume without loss of generality that

∫
Rd c∗(−∇[F ′ ◦ ρ + V ])ρ dx is

finite. The result would follow easily from Young’s inequality(1.5), if we could set ρ0 := ρ and
ρ1 := ρ∞ in theorem 2.4. As noted in the previous corollary, ρ or ρ∞ may have supports which
are not bounded, and so we will approximate them as follows: let {Ωn}∞n=1 be a sequence of
open, convex, bounded subsets of Rd such that Ω̄n ⊂ Ωn+1, and ∪∞

n=1Ωn = Ω. We denote by
χΩn the characteristic function of Ωn. Define

ρ1,n := ρ∞χΩn,

and set pn :=
∫
Ωn

ρ∞dx. Lemma 6.1 gives the existence of a sequence of positive functions
{ρ0,n}∞n=1 ⊂ C1(Ω̄n) converging to ρ in L1(Ω) as n tends to +∞. Furthermore, ρ0,n = ρ on
Ωn \ Ω1 and

ρ0,n converges strongly to ρ in W 1,∞(Ω1), (3.5)∫
Ω

ρ0,ndx =
∫
Ω

ρ1,ndx, and lim
n→+∞HF

V (ρ0,n) = HF
V (ρ). (3.6)

Denote by Tn the c–optimal such that Tn#ρ0,n = ρ1,n. In light of Theorem 2.4, we have that

HF
V (ρ1,n) − HF

V (ρ0,n) ≥ Wc(ρ1,n, ρ0,n) +
∫
Ω
(Tn − id) · ∇(F ′(ρ0,n) + V ) ρ0,ndx.

This, together with Young’s inequality (1.5) and, the fact that Wc(ρ1,n, ρ0,n) =
∫
Ω c(Tn −

id)ρ0,n dx yields

HF
V (ρ1,n) − HF

V (ρ0,n) ≥ −
∫
Ωn

c∗
(
−∇(F ′(ρ0,n) + V )

)
ρ0,n dx. (3.7)

Finally, observe that∫
Ωn

c∗
(
∇(F ′(ρ0,n) + V )

)
ρ0,n dx

=
∫
Ω1

[
c∗(∇(F ′◦ρ0,n + V ))ρ0,n − c∗(∇(F ′◦ρ + V ))ρ

]
dx +

∫
Ωn

c∗
(
∇(F ′◦ρ + V )

)
ρdx

≤
∫
Ω1

[
c∗(∇(F ′◦ ρ0,n + V ))ρ0,n − c∗(∇(F ′◦ρ + V ))ρ

]
dx +

∫
Ω
c∗
(
∇(F ′◦ρ + V )

)
ρdx,(3.8)

where, in the last inequality, we have used that c∗ is nonnegative. We let n tend to +∞ in
(3.7) and (3.8), we use (3.6) together with the fact that ρ∞ minimizes HF

V to conclude the
proof of the corollary. QED
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Remark 3.3 By standard approximation arguments, one can extend Corollary 3.1 and Corol-
lary 3.2 to a larger class of density functions ρ ∈ Pa(Ω). The reader can also see that the
combination of Lemma 2.3 and Proposition 5.1 yields corollary 3.2, for more general domains
Ω and functions ρ ∈ Pa(Ω) (see Remark 2.6).

Let us write Corollary 3.2 when F (t) = t log t−t. If ρ∞ is a probability density of the form
ρ∞ = e−V , then ρ∞ verifies F ′(ρ∞) + V = 0 and for every non-negative g with

∫
g ρ∞dx = 1

we have that
HF

V (gρ∞) − HF
V (ρ∞) =

∫
Rd

g log(g) ρ∞ dx

is the entropy of g with respect to ρ∞. Thus (3.4) with ρ = fρ∞ gives:

Corollary 3.4 (Log-Sobolev inequality for c-uniformly convex potentials) Let ρ∞ be
a probability density of the form:

ρ∞(x) = e−V (x).

Assume that c satisfies (H1–H3) and that V ∈ C1(Rd) satisfies (1.8) with α0 = 1. Then for
every smooth compactly supported non-negative function f such that

∫
f ρ∞dx = 1 we have:

∫
Rd

f log(f) ρ∞ dx ≤
∫
Rd

c∗
(∇f

f

)
f ρ∞ dx. (3.9)

Note that by approximation (3.9) holds when no other assumptions beyond convexity is
made on c, and when c is not assumed to be even. In that case one needs to replace the
expression c∗

(∇f
f

)
by c∗

(
−∇f

f

)
.

It is interesting to note that when HessV ≥ λId (λ > 0), (1.8) is satisfied with c(z) :=
λ|z|2/2 and the log-Sobolev inequality (3.9) becomes, after setting f = g2,

∫
Rd

g2 log(g2) ρ∞ dx ≤ 2

λ

∫
Rd

|∇g|2 ρ∞ dx, (3.10)

for every smooth compactly supported g with
∫

g2 ρ∞ = 1. This is the classical Bakry–Emery
log-Sobolev inequality [4]. A more general inequality due to Bobkov and Ledoux can also be
recovered.

Example 3.5 (A logarithmic Sobolev inequality of Bobkov and Ledoux) The previ-
ous inequality (3.4), in the form (3.9), extends a result of Bobkov and Ledoux [7]. Let ‖ · ‖
be a norm on Rd and V a convex potential uniformly p-convex with respect to ‖ · ‖ for some
p ≥ 2, ie: there exists a constant δ > 0 such that for every x, y ∈ Rd,

V (x) + V (y) − 2V
(

x + y

2

)
≥ δ

p
‖x − y‖p (3.11)

or equivalently tV (x) + sV (y) − V (tx + sy) ≥ (δ min(t, s)/p)‖x − y‖p, for t + s = 1, t, s ≥ 0
(see [7] for the equivalence). The typical situation is when ‖z‖ := ‖z‖p is the `p-norm on
Rd and V (x) := ‖x‖p

p. Then inequality (3.11) is satisfied with the optimal δ := δp := p2−p.
Denote by q the conjugate number of p, q = p/(p − 1) and by ‖ · ‖∗ the dual norm of ‖ · ‖.
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If ρ∞ := e−V is a probability density with V verifying (3.11), Bobkov and Ledoux proved,
using the Prékopa–Leindler inequality, that for very positive smooth and compactly supported
function f such that

∫
Rd f qρ∞dx = 1, one has

∫
Rd

f q log(f q)ρ∞ dx ≤
(

q

δ

)q−1 ∫
Rd

‖∇f‖q
∗ ρ∞ dx. (3.12)

We will see that this is a particular case of our logarithmic Sobolev inequality. For a, b ∈ Rd,
as mentioned, condition (3.11) reads as, for t ≤ 1/2,

(1 − t)β(0) + tβ(1) − β(t) ≥ δt

p
‖b‖p

where β(t) := V (a + tb) = V ((1 − t)a + t(a + b)). Looking at the first order Taylor expansion
at t = 0 in the previous inequality we obtain

β(1) − β(0) ≥ β ′(0) +
δ

p
‖b‖p.

This is equivalent to saying that V satisfies condition (1.8) with α0 = 1 and c(z) :=
δ

p
‖z‖p.

We next apply Corollary 3.4. Inequality (3.4) applied to ρ = f qρ∞ gives,

∫
Rd

f q log(f q)ρ∞ dx ≤
∫
Rd

c∗ (∇[log f q]) f qρ∞ dx

=
∫
Rd

c∗
(

q∇f

f

)
f qρ∞ dx

Since (‖ · ‖p/p)∗(z) = ‖z‖q
∗/q we have, using the homogeneity of ‖ · ‖q

∗ :

c∗(z) =
1

δq−1 q
‖z‖q

∗

and thus we recover exactly inequality (3.12).

To conclude this section we would like to comment on consequences of our results and
on related problems. We only work out a few applications, others, such as concentration
inequalities, HWI inequalities, etc. are also possible.

Transport implies entropy–information
As in Otto–Villani [28] one can use (2.5) to prove that even when V fails to be convex, a

transport inequality implies a log-Sobolev inequality provided that V satisfies an appropriate
c–semiconvexity property. Our precise statement is the following:

Proposition 3.6 Assume as in Theorem 2.4 that c and F respectively satisfy (H1–H3), and
(H4-H5). Assume that V ∈ C1(Rd) satisfies (1.8) for some α0 ≤ 0, that ρ∞ ∈ C1(Rd), and
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that F ′(ρ∞) + V = 0. Eventually, suppose that ρ∞ satisfies a transport inequality: for every
probability density ρ,

Wc(ρ, ρ∞) ≤ 1

β1
(HF

V (ρ) − HF
V (ρ∞)) (3.13)

for some β1 > 0. If 0 < k < β1 + α0 then ρ∞ satisfies the following log-Sobolev inequality:

HF
V (ρ) − HF

V (ρ∞) ≤ β1

β1 + α0 − k

∫
Rd

C∗(∇[F ′(ρ) + V ])ρdx ≤ β1

β1 + α0 − k
IC∗(ρ|ρ∞),

for all smooth densities ρ. Here, C := kc. When c is homogeneous of degree p > 1, the previous
inequality can be replaced by

HF
V (ρ) − HF

V (ρ∞) ≤ qpq−1β1

(β1 + α0)q

∫
Rd

c∗(∇[F ′(ρ) + V ])ρdx ≤ qpq−1β1

(β1 + α0)q
Ic∗(ρ|ρ∞),

Proof: We use Theorem 2.4, where we substitute the convex function c by the convex function
C. As in the proof of Corollary 3.2, we use an approximation argument and Young’s inequality
to conclude that

HF
V (ρ∞) − HF

V (ρ) ≥ (α0 − k)Wc(ρ, ρ∞) −
∫
Rd

C∗(∇[F ′(ρ) + V ])ρdx (3.14)

In fact, we have used an extension of inequality (2.5) to densities with unbounded supports,
with ρ0 := ρ and ρ1 := ρ∞. We combine (3.13) and (3.14) to conclude that

(
1 − k − α0

β1

)
HF

V (ρ) − HF
V (ρ∞) ≤

∫
Rd

C∗(∇[F ′(ρ) + V ])ρdx.

This, together with the fact that C∗(z) ≤ ∇C∗(z) · z, yields the claimed inequality. When c
is homogeneous of degree p, the result is obtained by optimizing in k. QED

Poincaré type inequalities
It is well known that the linearization of a log-Sobolev type inequality gives a Poincaré type

inequality. This is also true in our general situation. We have in view the quadratic case c(z) =
|z|2/2, but we only assume here that c is homogeneous of degree 2. We assume furthermore
that the conditions of Theorem 3.2 are satisfied. As before, let A(t) = tF ′(t) − F (t). We
apply (3.4) with ρε = (1 + εf)ρ∞ where

∫
fρ∞ = 0. It is easily checked that,

HF
V (ρε) − HF

V (ρ∞) =
ε2

2

∫
Rd

f 2A′(ρ∞)ρ∞dx + o(ε2)

and by homogeneity∫
Rd

c∗(∇[F ′(ρε) + V ])ρεdx = ε2
∫
Rd

c∗(∇[fA′(ρ∞)])ρ∞dx + o(ε2)

when ε → 0. Thus a second order Taylor expansion in (3.4) gives the following Poincaré type
inequality: if f is a smooth compactly supported function such that

∫
fρ∞dx = 0, one has,

under the assumptions of Theorem 3.2 (with c homogeneous of degree 2),∫
Rd

f 2A′(ρ∞)ρ∞dx ≤ 2
∫
Rd

c∗(∇[fA′(ρ∞)])ρ∞dx
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Note that F (t) = t log t− t gives A(t) = t and one then recovers classical Poincaré inequalities
(with c(z) = |z|2/2).

Infimal convolution inequalities
In the classical case, where F (t) = t log t − t and c(z) = |z|2/2, it was noticed by Bobkov

and Götze [6] that transport inequalities are dual version of infimal convolution inequalities.
One can check, that this is still true in our context and that such a duality amounts to
an inequality between Legendre transforms, at least at the formal level. The arguments we
present here are not rigorous although we believe they can be put into a satisfactory abstract
framework.

As earlier, we assume that ρ∞ a Borel probability measure verifying F ′(ρ∞) + V = 0. We
consider functions η that are continuous and compactly supported in Rd. We denote by P
the set of Borel probability measures. As in [17], the c-transform of η is given by the infimal
convolution

ηc(y) := inf
x∈Rd

c(y − x) − η(x).

Introduce the functional
G(η) := −

∫
Rd

ηcρ∞dx.

One can check that, for a Radon measure ν,

G∗(ν) := sup
η

∫
Rd

η dν − G(η) =

{
Wc(ν, ρ∞) if ν ∈ P
+∞ otherwise

Now, for each η there exists λη ∈ R such that ρη := (F ∗)′(η−V −λη) is a probability (ρη ∈ P).
Note that ρ∞ = (F ∗)′(−V ) is recovered for η ≡ 0. Introduce the functional

F(η) := λη +
∫
Rd

F ∗(η − V − λη)dx.

Then, the reader can check that for ρ ∈ Pa one has formally

F∗(ρ) = HF
V (ρ).

Assume that for every η:∫
Rd

ηcρ∞ dx +
∫
Rd

F ∗(η − V − λη)dx + HF
V (ρ∞) + λη ≤ 0. (3.15)

Then this implies F ≤ G − HF
V (ρ∞), and thus we can deduce the transport inequality

Wc(ρ, ρ∞) ≤ HF
V (ρ) − HF

V (ρ∞),

for every ρ ∈ Pa. When F (t) := t log t − t, inequality (3.15) becomes the infimal convolution
inequality for the measure ρ∞ = e−V studied by Bobkov and Götze [6]. Inequality (3.15) is
then closely related to the Prékopa–Leindler inequality, in particular in the form put forward
by Maurey [24] under the name of property (τ). In our general situation, we do not know an
adapted Prékopa–Leindler inequality which would make use of (3.15).
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4 On a question of Carrillo, McCann and Villani

Throughout this section V ∈ C2(Rd) (confinement potential) and, W ∈ C2(Rd) is even
(interaction potential). We assume that the function F as before, satisfies (H4-H5). In [12],
Carrillo, McCann and Villani study the PDE

∂ρ

∂t
= div (ρ∇[ F ′(ρ) + V + W ∗ ρ ]) . (4.1)

To this aim they introduced the energy (or entropy) functional

K(ρ) :=
∫
Rd

[F (ρ) + V ρ +
1

2
(W ∗ ρ)ρ ]dx (4.2)

= HF (ρ) + HV (ρ) + HW (ρ)

where HF and HV are defined as before by (1.9)–(1.10) and HW (ρ) := 1
2

∫
Rd(W ∗ρ)ρdx. Then,

accordingly, the information functional here is

J(ρ) :=
∫
Rd

∣∣∣∇[ F ′(ρ) + V + W ∗ ρ ]
∣∣∣2ρ dx. (4.3)

It is well known, as explained in the introduction, that logarithmic Sobolev type inequalities
linking K and J provide a control on the rates of convergence to the ground state for solutions
of (4.1). In [12], a proof of the logarithmic Sobolev and “HWI” type inequalities was provided
by following the strategy of [27, 28] based, roughly speaking, on interpolation along mass
transport. In [12], the authors made the following statement: “It will be interesting to see
if the argument of [13] can be extended, to provide a simplified proof for the inequalities [...]
which will show up in the present work.” Here, we positively answer that question. Recall
that the Brenier map refers to the unique optimal map (for the quadratic cost c(z) = |z|2/2)
pushing forward a probability density onto another. This map T is the gradient of a convex
function φ, T = ∇φ, and it can be written as T (x) = x+∇θ(x) by setting θ(x) := φ(x)−|x|2/2.

Theorem 4.1 Assume that V and F given above satisfy in addition the following assump-
tions:

HessV ≥ λId, HessW ≥ µId

for some real numbers λ and µ not necessarily nonnegative. Here, Id is the d × d identity
matrix. Let ρ0 and ρ1 be compactly supported probability density functions, and let T (x) =
∇φ(x) = x + ∇θ(x) be the Brenier map pushing ρ0 forward to ρ1. Then,

K(ρ1)−K(ρ0) ≥
∫
Rd

∇θ.∇[ F ′(ρ0)+V +W ∗ρ0 ] ρ0dx +
µ + λ

2

∫
Rd

|∇θ|2ρ0dx− µ

2
|m1(ρ1−ρ0)|.

(4.4)
Here m1(ρ1 − ρ0) stands for

∫
Rd x(ρ1(x)− ρ0(x))dx, the difference between the center of mass

of ρ1 and that of ρ0.

Proof: We could use Proposition 5.1 to conclude that

HF (ρ1) − HF (ρ0) ≥
∫
Rd

∇θ.∇[F ′(ρ)]ρ0 dx. (4.5)
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In the present case, where c(z) = |z|2/2, the proof of (4.5) is however simpler, and there is
no need to make statements as strong as those appearing in Proposition 5.1. Since T is the
gradient of a convex function (the so-called Brenier map) the method used in [13] (to whom
we refer for precise definitions) in the case F (t) = t log(t)− t, applies here. Let us recall again
the ingredients, which are of course basically the same than those used in Proposition 5.1.
The Monge-Ampère equation

ρ0(x) = ρ1(T (x)) det(I + Hessθ) (4.6)

holds ρ0-almost everywhere when Hessθ is understood as the Hessian of θ in the sense of
Aleksandrov. Then, condition (H5) combined with the 1/d concavity of the determinant on
non-negative matrices and (4.6) implies

F (ρ1(T ))/ρ1(T ) − F (ρ0)/ρ0 ≥ −(A′(ρ0)/ρ0)∆Aθ,

where ∆Aθ := tr(Hessθ) and A(t) := tF ′(t) − F (t). We conclude by integrating with respect
to ρ0 and noticing that the distributional Laplacian dominates the Laplacian in the sense of
Aleksandrov ∆A (this allows to integrate by parts).

The analogue of Lemma 2.3 is of course straightforward:

HV (ρ1) − HV (ρ0) =
∫
Rd

[V (x + ∇θ(x)) − V (x)]ρ0 dx ≥
∫
Rd

∇θ.∇V ρ0 dx +
λ

2

∫
Rd

|∇θ|2ρ0 dx.

(4.7)
We now deal with the new term HW . We have

HW (ρ1) =
1

2

∫
Rd×Rd

W (x − y)ρ1(x)ρ1(y) dxdy =
1

2

∫
Rd×Rd

W (T (x) − T (y))ρ0(x)ρ0(y) dxdy

≥ 1

2

∫
Rd×Rd

[
W (x − y) + ∇W (x − y).(∇θ(x) −∇θ(y)) +

µ

2
|∇θ(x) −∇θ(y)|2

]
ρ0(x)ρ0(y) dxdy

= HW (ρ0) +
1

2

∫
Rd×Rd

∇W (x − y).(∇θ(x) −∇θ(y)) ρ0(x)ρ0(y) dxdy +

µ

4

∫
Rd×Rd

|∇θ(x) −∇θ(y)|2ρ0(x)ρ0(y) dxdy.

Using that ∇W is odd one can readily check that

∫
Rd×Rd

∇W (x − y) · (∇θ(x) −∇θ(y)) ρ0(x)ρ0(y) dxdy = 2
∫
Rd

∇θ.∇(W ∗ ρ0) ρ0 dx.

Therefore,

HW (ρ1) − HW (ρ0) ≥
∫
Rd

∇θ.∇(W ∗ ρ0) ρ0 dx +
µ

4

∫
Rd×Rd

|∇θ(x) −∇θ(y)|2ρ0(x)ρ0(y) dxdy.

(4.8)
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Combining (4.5), (4.7) and (4.8) we have that

K(ρ1) − K(ρ0) ≥
∫
Rd

∇θ.∇[ F ′(ρ0) + V + W ∗ ρ0 ]ρ0 dx + (4.9)

λ

2

∫
Rd

|∇θ|2ρ0dx +
µ

4

∫
Rd×Rd

|∇θ(x) −∇θ(y)|2ρ0(x)ρ0(y)dxdy.(4.10)

Note that∫
Rd×Rd

|∇θ(x) −∇θ(y)|2ρ0(x)ρ0(y) dxdy = 2
∫
Rd

|∇θ|2ρ0 dx − 2

∣∣∣∣
∫
Rd

∇θ ρ0 dx

∣∣∣∣2 (4.11)

and so, since T#ρ0 = ρ1 we have that∫
Rd

∇θ ρ0 dx =
∫
Rd

(T (x) − x)ρ0(x) dx =
∫
Rd

yρ1(y)dy −
∫
Rd

xρ0(x) dx. (4.12)

We combine (4.10), (4.10) and (4.12) to conclude the proof of the theorem. QED

With Theorem 4.1 on hand, one can recover several results of [12] such as interpolation
(HWI), logarithmic Sobolev, or transport inequalities, just as we obtained this type of inequal-
ities from Theorem 2.4. For the sake of illustration, let us derive in Corollary 4.2 an extension
of the logarithmic Sobolev inequality. For that, we assume here that ρ∞ is the ground state
for the equation (4.1). In other words, it is the probability density characterized by

F ′(ρ∞) + V + W ∗ ρ∞ = 0 = J(ρ∞).

Corollary 4.2 (Carrillo-McCann-Villani [12]) Assume that as in Theorem 4.1

HessV ≥ λId and HessW ≥ µId

for some real numbers λ and µ. Let ρ be a smooth probability density. Assume moreover that

either µ ≥ 0 or that
∫
Rd

xρ(x)dx =
∫
Rd

yρ∞(y)dy. Set k := λ if µ ≥ 0. When µ < 0 and∫
Rd xρ(x)dx =

∫
Rd yρ∞dy(y), set k := λ + µ. Choose k to be either of these values if both

µ ≥ 0 and
∫
Rd xρ(x)dx =

∫
Rd yρ∞dy(y). Then, if k > 0, one has

K(ρ) − K(ρ∞) := K(ρ|ρ∞) ≤ 1

2k
J(ρ).

Proof: Without loss of generality, we can assume ρ to be compactly supported. Let ρ̃ be any
compactly supported probability density. When m1(ρ1 − ρ0) = 0, (4.4) reads as:

K(ρ1) − K(ρ0) ≥
∫
Rd

∇θ.∇[ F ′(ρ0) + V + W ∗ ρ0 ] ρ0dx +
k

2

∫
Rd

|∇θ|2ρ0dx. (4.13)

When m1(ρ1 − ρ0) 6= 0 but µ ≥ 0, we use (4.12) and the fact that, by Jensen’s inequality,∫
Rd |∇θ|2ρ0dx ≥ | ∫Rd ∇θρ0dx|2, to obtain (4.13). Now, (4.13) and Young’s inequality (1.5)

with c(z) := |z|2/2 yields that

K(ρ̃) − K(ρ) ≥ − 1

2k

∫
Rd

|∇[ F ′(ρ) + V + W ∗ ρ ]|2 ρdx.

We conclude the proof of the theorem by taking the infimum over all ρ̃ and, by using that
inf ρ̃ K(ρ̃) = K(ρ∞). QED
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5 Appendix A: A proof of an energy inequality

Proposition 5.1 Let ρ0, ρ1 be compactly supported probability densities with ρ0 ∈ W 1,∞(Rd).
Let c, and F be such that (H1–H3) and (H4-H5) hold. Then

HF (ρ1) − HF (ρ0) ≥
∫
Rd

(T − id) · ∇(A(ρ0))dx =
∫
Rd

(T − id).∇(F ′(ρ0)) ρ0dx,

where A(0) = 0, and A(t) := tF ′(t) − F (t) ≥ 0, for t > 0, and where T is the c–optimal map
such that T#ρ0 = ρ1.

Proof: We first assume that c and c∗ are C2. Then by [14] we know that for ρ0 almost every
x there exists a linear map denoted by dTx such that

ρ0(x) = ρ1(T (x)) det dTx. (5.14)

Furthermore, dTx has only non-negative real eigenvalues. The map dTx plays the role of the
differential of T and in fact it is the differential of the set valued extension ∂cφ of the Borel
map T (x) = x −∇c∗(φ(x)) = ∂cφ(x) ae., in the sense that for almost every x one has

sup
y∈∂cφ(x+u)

|y − T (x) − dTx(u)| = o(u).

We fix an x ∈ Rd where (5.14) holds. Setting

α(t) := F
(
ρ0(x)/ det(I + t(dTx − id))

)
det(I + t(dTx − id))/ρ0(x)

for t ∈ [0, 1] and using (5.14) we have

F (ρ1(T (x))/ρ1(T (x)) − F (ρ0(x))/ρ0(x) = α(1) − α(0). (5.15)

Since the matrices id and dTx − id commute and id + t(dTx − id) has only non-negative real
eigenvalues, we can combine the 1/d concavity of the determinant (on triangular matrices
with non-negative eigenvalues) with the condition (H5) to conclude that α is convex. Thus

α(1) − α(0) ≥ α′(0) (5.16)

Combining (5.15) and (5.16) we have for ρ0 almost every x,

F (ρ1(T (x))/ρ1(T (x)) − F (ρ0(x))/ρ0(x) ≥ −tr(dTx − I)A(ρ0(x))/ρ0(x).

Integrating with respect to ρ0 we get

HF (ρ1) − HF (ρ0) ≥ −
∫
Rd

tr(dTx − I)A(ρ0(x)) dx.

The conclusion follows from the fact that tr(dT − I) is dominated by the distributional diver-
gence of T −I. This fact is proved in [14]: for non-negative compactly supported test function
g we have ∫

Rd
tr(dT − I)g ≤ −

∫
Rd

(T − I).∇g.
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This achieves the proof for c and c∗ in C2.
To complete the proof of the proposition in the case of non-smooth cost functions, we

approximate c by a sequence cn ∈ C2(Rd) of strictly convex functions converging to c in
C1

loc(R
d), and such that c∗n ∈ C2(Rd) is strictly convex. Let Ω be some open bounded set

containing the support of ρ0 and ρ1. By the above

∫
Ω

(
F (ρ1) − F (ρ0)

)
dx ≥

∫
Ω
(Tn − id) · ∇(A(ρ0))dx, (5.17)

where Tn is the cn–optimal map such that Tn#ρ0 = ρ1. In view of Lemma 5.2, {Tn}∞n=1

converges to T in L1(Ω, ρ0)
d, and so, letting n tends to +∞ in (5.17) concludes the proof.

QED

Lemma 5.2 Let c, cn ∈ C1(Rd) be strictly convex functions, such that {cn}∞n=1 converges to
c in C1

loc(R
d). Assume that Ω ⊂ Rd is a bounded set. Let ρ0, ρ1 ∈ Pa(Ω), and let Tn (resp.

T ) be the unique cn-optimal map (resp. c-optimal map) that pushes forward ρ0 to ρ1. Then,
{Tn}∞n=1 converges to T in L2(Ω, ρ0)

d.

Proof: The existence of T, Tn is obtained in [16, 17] and moreover, the measures γn :=
(id×Tn)#ρ0 and γ̄ := (id×T )#ρ0 are the unique minimizers of the functionals Jn and J over
Γ(ρ0, ρ1); here

Jn(γ) :=
∫
Rd×Rd

cn(x − y)dγ(x, y), J(γ) :=
∫
Rd×Rd

c(x − y)dγ(x, y).

If {γni
}∞i=1 is a subsequence of {γn}∞n=1 that converges weak-∗ to γ̃, then γ̃ ∈ Γ(ρ0, ρ1) and γ̃

minimizes J over Γ(ρ0, ρ1). By the strict convexity of c, infΓ(ρ0,ρ1) J admits a unique minimizer
(see [16]), and so γ̄ = γ̃. The sequence {γn}∞n=1 being precompact for the weak-∗ topology and
every of its subsequences converging weak-∗ to γ̄, we deduce that in fact the whole sequence
{γn}∞n=1 converges weak-∗ to γ̄. Now set

F1(x, y) := |y|2, F2(x, y) := T (x) · y,

for x, y ∈ Ω. Straightforward computations show that

∫
Ω
|Tn(x) − T (x)|2ρ0(x)dx =

∫
Rd×Rd

(F1 − F2)dγn +
∫
Rd×Rd

F1dγ̄ −
∫
Rd×Rd

F2dγn. (5.18)

We let n go to +∞ in (5.18), use the fact that {γn}∞n=1 converges weak-∗ to γ̄ and that F1 = F2

γ̄ almost everywhere to deduce that the expression in the right hand side of (5.18) tends to 0
as n tends +∞. This proves that {Tn}∞n=1 converges to T in L2(Ω, ρ0)

d. QED
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6 Appendix B: An elementary approximation of density

functions

Throughout this section, we assume that Ω ⊂ Rd is nonempty, open, and convex, that F
satisfies (H4-H5). We assume that V ∈ C1(Rd) is convex and that there exists ρ∞ ∈ Pa(Ω)
such that F ′(ρ∞) + V = 0 on Ω. Eventually, we assume that F (ρ∞) + ρ∞V ∈ L1(Ω) so that
(1.12) gives that HF

V (ρ) is well defined for density functions which are absolutely continuous
with respect to ρ∞.

Lemma 6.1 Assume that ρ ∈ Pa(Ω) ∩ C(Ω), that ρ > 0 on Ω, and that {pn}∞n=1 is a non-
decreasing sequence in [0, 1] converging to 1 as n tends to +∞. Let {Ωn}∞n=1 be a sequence
of open, convex, bounded subsets of Rd such that Ω̄n ⊂ Ωn+1, and ∪∞

n=1Ωn = Ω. Then, there
exists a sequence of positive functions {ρn}∞n=1 ⊂ L1(Ωn) ∩ C(Ωn) converging to ρ in L1(Ω)
and satisfying the following properties:

(i) For n large enough, 0 < infΩ̄n
ρn, ρn = ρ on Ωn \ Ω1 and,

∫
Ω ρndx = pn.

(ii) We have that ||ρn − ρ||W 1,∞(Ω1) tends to 0 as n tends to +∞.
(iii) HF

V (ρn) = HF
V (ρ) + o(1).

(iv) Furthermore, if ρ ∈ C1(Ω), we can choose ρn such that ρn + 1
ρn

∈ C1(Ω̄n).

Proof: Because Ω is nonempty, relabelling {Ωn}∞n=1 if necessary, we may assume that Ω1 is
nonempty. We next choose a function ϕ ∈ C∞

c (Ω1) compactly supported inside Ω1 that is not
identically 0 and such that 0 ≤ ϕ. Denote by χΩ̄n

the characteristic function of Ωn and let

ρn := ρχΩ̄n
+ rnϕ, where rn :=

pn − ∫
Ωn

ρdx∫
Ω1

ϕdx
.

Note that
∫
Ω ρndx = pn. Because ϕ ∈ C∞

c (Ω1), we have that ρn = ρ on Ωn \ Ω1. Since Ωn is
bounded and {rn}∞n=1 converges to 0 as n tends to +∞, it is apparent that 0 < infΩ̄n

ρn for n
large enough. This proves (i). Next, (ii) is a direct consequence of the fact that ρn − ρ = rnϕ.

To avoid trivialities, we assume that HF
V (ρ) is finite. By (1.12), we obtain that F (ρ)+ρV ∈

L1(Ω). We use again the fact ϕ is supported inside Ω1 to deduce that

HF
V (ρn) = HF

V (ρ) +
∫
Ω1

(F ((1 + rnϕ)ρ) − F (ρ) + rnρV ϕ)dx −
∫
Ωc

n

(F (ρ) + ρV )dx. (6.19)

The first integrand on the right handside of (6.19) tends to 0 uniformly on Ω1 as n tends
to +∞. The Lebesgue dominated convergence theorem gives that the second integral on the
right handside of (6.19) tends to 0 as n tends to +∞. We obtain (iii). The proof of (iv) is
easy. QED

Note added in proof. Closely related papers have appeared since the achievements of the
present work. We mention for instance:

• M. Agueh, N. Ghoussoub and X. Kang. ”Geometric inequalities via a duality between
certain quasilinear PDEs and Fokker-Planck equations.”
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• M. Agueh, N. Ghoussoub and X. Kang. ”The mother of most Gaussian and Euclidean
inequalities.”

• D. Cordero-Erausquin, B. Nazaret and C. Villani. A mass transportation approach to
sharp Sobolev and Gagliardo-Nirenberg inequalities.
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Faculté des Sciences et Technologies de Paris XII
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