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LOCAL INVERTIBILITY OF SOBOLEV FUNCTIONS"

1. FONSECA! AND W. GANGBO!
Abstract. A local inverse function theorem is established for mappings v € W1 N(Q,R¥),
2 c RY¥ open set, such that det Vv(z) > 0 almost everywhere in z € Q. Regularity of the local

inverse v=1 is obtained provided that |%{Z¥) |+ det Vv € L!(R) for some 1 < s < +00. The local
invertibility property is used to study the weak lower semicontinuity of a functional involving variation
of the domain.

Key words. local invertibility, topological degree, weak lower semicontinuity

AMS subject classification. 49

1. Introduction. The aim of this paper is to give a simple proof of local invert-
ibility of continuous functions v € WV (Q,RV), where 2 C R" is an open set and
det Vu(z) > 0 almost everywhere in £ € Q) (Theorem 3.1). We show that the local
inverse function w is W!! and under suitable hypotheses we improve regularity of
w to Wh* for some s > 1. Precisely, it is shown that v is locally invertible almost
everywhere in the sense that for almost every z € Q, there is an open neighborhood
D of z and there is a function w € W'} (v(D), D) such that v(D) is an open set,

(1) vouw(y) =y ae ye€v(D),

(2) wov(z)=1z ae z €D,

and

(3) Vu(y) = (Vo) (w(y)) ae yev(D),

where (Vv)~!(w(y)) is the inverse matrix of Vu(w(y)). Moreover, if we assume that
|%%_‘3|’ det Vv € L(Q) for some 1 < s < +oc, then, as in [Sv], we prove that
w € W1*(v(D), D). One can then deduce easily that if det Vv(z) > v >0 ae. z €
Q,ve Whi(Q)N, and ¢ > N(N-1), thenv : D — v(D) and w : v(D) —» D
are homeomorphisms, (1) holds for every y € v(D), (2) holds for every z € D,
w € WHN(y(D),D), and v is an open mapping on Q \ L for a suitable L ¢ RV
which has zero measure (see Corollary 3.3). In particular, we conclude that if N = 2,
v € WH2(Q)?, and det Vu(z) > v > 0 ae. z € Q, then w € W'2(y(D), D) and there
is a set of measure zero L C R such that v is an open mapping on 2\ L and a weaker
version of (IS] is obtained. Recently, we became aware of a result by Heinonen and
Koskela [HK], where they show that if a mapping is in W' for some ¢ > N(N - 1),
its jacobian is positive almost everywhere and N > 3, then the mapping is open and
discrete, and so L = 0.

Conversely, if v € W19(Q)N for some ¢ > N, det Vo(z) # 0 a.e. z € Q and if for
almost every xo € v is locally almost invertible in a neighborhood of 4 in the sense
of (1)-(3), then there are open sets Q;,0, C R" and a set of measure zero N ¢ RY
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282 I. FONSECA AND W. GANGBO

The paper is organized as follows: In the second section we fix notation and recall
some definitions and well-known properties related to the Brouwer degree. In the third
section we prove the local invertibility property of the mappings v € W'4(Q, RM), ¢ >
N, under the condition det Vu(z) > 0 ae. z € Q. In view of our applications, in
addition we prove that if v, — v weakly in W9 ¢ > N, det Vu(z) >0ae z€Q
and det Vv,(z) = 1 a.e. € 0 then, up to a subsequence, v, and v are, respectively,
locally invertible on open sets D, (z) and D(z) for almost every z € Q, where D,(z)
and D(z) are neighborhoods of z such that ve(D.(z)) = v(D(z)) does not depend
on ¢. The last section is devoted to the applications, where we obtain the weak lower
semicontinuity for a class of functionals E on By q.

2. Preliminaries. In the sequel we will use the following notation.

For z = (z1,...,zx) € RY, |z| stands for (Iza + - + |zn[*)Y? and |z]o :=
max{ |z,|,...,|zy|}. If AC RN |A| denotes the Lebesgue measure of A, A° denotes
its complement, dist(z, A) is defined by inf{lz —y|: ye A}, and p(a, A) is given
by inf{|lz —yloo: y€ A4}

If @ ¢ RV is an open set, v € WL ()N, then Vv is the N x N matrix of
the distributional derivatives %; If, furthermore, Vv € LV, then det Vv is the
determinant of Vv.

We recall some properties of mappings.

LEMMA 2.1. Let Q be a bounded, open set in RN and v € (WeX ()N such that
det Vu(z) > 0 a.e. z € Q. Then v is a continuous mapping on ). Futhermore, if K is
a compact set and V' is an open set such that K C V cC ), then there is a constant
Cn depending only on N, such that

lv(z) — v(y)] < M¥Cnb(jz - y))

for every z,y € K that verify |z — y| < 6, where

el N
M= /V IVo(z)[Vdz,

6(t) = (ﬁ) '

4r= il {2, %(dist(K, RV \ V))z} :

and

Proof. This lemma is an immediate consequence of Theorem 3.5, p. 294, and
Proposition 3.3, p. 292 in [GR] and Theorem 4.4, P- 339 in [Re] (see also {Manl]). It
can also be shown that, under the above hypotheses, v is a monotonic mapping (see
the definition of monotonic mapping below).

DEFINITION 2.2 ([GR]). Let Q be a bounded, connected, open set in RV and
v e WEN(Q)N. We say that v is monotonic at the point z € Q if there is a number
0 < r(z) < d(z.09) such that for almost every v € (0.r(z}) the pre-image of the
intersection of the set v(B(z,t)) with the unbounded connected component of RN \
v(OB(z.7)) 15 of measure 0 in B(z,r). We say that v is a monotonic mapping in )
if v is monotonic at every point z € ).
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284 I. FONSECA AND w. GANGBO

(iil) IfUcc Q isan open set such that |6U| = ¢ and p € RN\ v(8U), then
(13) d(v,U,p) = / 1(v(z)) det Vo(z)dz
v

for any f nonnegative, continuous real-valued Junction that satisfies [on f(z)dz =
1, with compact support in V, where V' is the connecteq component of RY \ v(8U)
containing p.

Remark 2.5. A function v : ) — R¥ is said to satisfy the N property (Lusin’s
property) if

W(E) =0

whenever £ C Q) is a measurable set such that |El = 0, and v is said to satisfy the
N=! property if

l=i(4) =0

whenever A C R is a measurable set such that [4] = 0.

(a) It is known that if v € WIN(Q)N | det Vo(z) > 0ae z € Q, then v satisfies
the N and the N-! property. (See [GR], pp. 296-297.)

(b) Also, if v € Wh(Q)N with ¢ > N, then v satisfies the N-property. (For
details we refer the reader %o [MM].)

Proof of Lemma 2.4. We refer the reader to [GR], Theorem 1.8, p. 280, Theorem
2.6, p. 288, or also to [Sv] for the proof of (11) and (12) in the case where U is a
domain,

First we prove that (12) is still valid even if U is not connected and (13) is a
by-product of this fact. To achieve this, we remark that by Vitali’s covering theorem

(UiD,') UN=T.

Setting B = U; D;, we have UidD; C 8B. If y ¢ RN \ (v(6B) U v(3U)), then by the
decomposition formula (10)

(14) 2 Xu0)d(v. Diyy) = 3 d(w, Dy, ) = d(v. B.y).

Let K =U\B. As K is a compact set and K C 8U U N, if y € v(K) then, by the
excision property of degree (9), we obtain

(15) dv,U,y) = d(v,U \ K,y) = d(v, B. y).

By using the fact that v has the N property (see Remark 2.5), D; cc Q. ol =
IN[=[8D;| = 0, by (12). (14), and (15) we obtain

/ fov(z)det Vu(z)dz= / fouv(z)det Vu(z)dz
U B

= Z/ fou(z)det Vu(z)dz
i YD
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286 1. FONSECA AND W. GANGBO

If, in addition, | %L | det Vv € L}(Q) for some 1 < s < +00 then w € W(B(yo,
r), D).

Before proving Theorem 3.1, we list some of its consequences.

COROLLARY 3.2. Let Q C RN bea bounded, open set, ¢ > N, and v € wiaQ)¥
be a function such that det Vu(z) # 0 a.e.z € Q.

(a) Assume that Q1,02 C RY are two open sets and N C RV is g set of measure
zero such that @ = QyUQ; UN, detVu(z) >0 ae. 7 € ), and det Vu(z) <
0 ae z € Q. Then for almost every zo € Q v is locally almost invertible in a
neighborhood of £ in the sense above.

(b) Conversely, ifg > N, v e W(Q)N and if for almost every To € Q v is locally
almost invertible in a neighborhood of zo, then there are open sets Q;,Q, C RN and
e null set N C RV such that @ = QUQ UN, detVu(z) > 0ae. z € Q;, and
det Vv(z) < 0a.e. z € .

COROLLARY 3.3. Let ¢ > N, let @ C RY be a bounded, open set and let v €
We(Q)N be a function such that det Vu(z) =1 a.e. z € Q. Then the inverse function
w of Theorem 3.1 is such that

w € WhFS (y(D))N.

If, in addition, ¢ > N(N - 1) then wov(z) = z for everyz € D, vo w(y) =y for
every y € B(yo,r), v is a local homeomorphism and v is an open mapping on Q\ L
for some set L C Q of zero measure. In particular, if N = 2 then NIN-1)=N=2
and v is a local homeomorphism at zy.

We make some remarks and state some lemmas needed for the proofs of Corollaries
3.2 and 3.3, which will appear at the end of this section.

Remark 3.4.

1. As mentioned in the introduction, it has been proven recently by Heinonen
and Koskela [HK, Cor. 1.10] that if a mapping is in W19 for some ¢ > N(N -1) and
if its jacobian is positive and N > 3, then the mapping is open and discrete and so
L=40

2. Recall that v € WV (Q)V is said to be a mapping of bounded distortion (or
usually a quasi-regular mapping) if |Vu(z)|V < K(det Vu(z)) for almost every z € Q
and for some constant K. It is well known that every mapping of bounded distortion
v e WEN(Q)N is locally a homeomorphism at almost every point 79 € Q. (See [Re,
Thm. 6.6, p. 187].) Moreover, mappings of bounded distortion are open mappings or
constant in (2. (See [Re, Thm. 6.4, p. 184].)

3. Note that even if v € C}(Q)" is such that det Vo(z) > v > 0 Vz ¢ Q, we
cannot expect a global invertibility of v without any regularity assumptions on the
trace of v (see [Ba)).

4. Under the assumptions of Theorem 3.1, we cannot expect v to be locally
invertible everywhere (see [Ba)).

5. An example of a mapping v € W*(2)?, (Q C R?), is exhibited in [Ba], with
det Vu(z) = 1 ae. € Q, for which there is no sequence v, € C'(0))? such that
vr — v uniformly and J, (z) > 0 a.e. z € Q. Therefore, to prove Theorem 3.1, one
cannot approximate the function v by a sequence of smooth functions v,, expecting
the functions v, to be locally invertible.

6. Note that for every bounded. open set @ C R¥, there exists a measurable
set E C (2 of nonzero measure and a homeomorphism v € W1=(Q)¥ such that
det Vu(z) = O for every r € E. (See [MZ, Remarks 3.7}.)
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288 . FONSECA AND W. GANGBO
Since y € v(B), there is z € B such that ¥ = v(z). By (6) we have

(22) lim [ pe(v(z) - y) det Vo(2)dz = d(v, B, y)
—~0/p

and by using the continuity of v at z, we deduce that for every € > 0 there is 6§ > 0

such that Ju(z) - y| < 5 for every z € B(z, 6). By recalling that det Vu(z) >0ae z ¢

B(z,6), by (21) and (22) we obtain

(23) d(v,B,y) > 0.

Finally, since the degree d(v,-,y)isa nondecreasing function of the set, by using (19)
and the fact that B C v=1(Cg) N B(zy, R), we obtain

(24) d(‘U, B! y) < d(v! B(IO) R): y) =1,

which, together with (23) and the fact that the degree is an integer number, yields
(20). O

LEMMA 3.8. Let Q, v, Ry and Zo be as in Lemma 3.7, (18), and (19). Let Chr, be
the connected component of RN \v(0B(zo, Ry)) containing yo := v(zy). Then for every
T > 0 such that B(yp,r) CC Cry, if O := v"l(B(yo,r)) N B(zo, Ry) CcC B(zg, Ry)
then

(25) v(0) = B(yo, ), v(80) C 8v(0) = 8B(yp, ).

Proof. 1t is clear that v(0) C B(yp,r). Conversely, if y B(yo,7), by (19)
d(v, B(zo, Ry),y) = 1 and so by (5) there exists z € B(zo, Ry) such that y = v(z),
which implies y € v(0). Let z € 90 and let {en} c O, {b,) ¢ B(zo, Ry) \ O be such
that
o = i b=
We have v(an) € v(0) = v(v™1(B(yo,1))) = B(y,7) and v(b,) € v(0) = B(yo, ).
By using the continuity of v at z, we have

w(z)= lm va.) = lim_u(s,)

which gives z € dv(0). g

LEMMA 3.9. Letv € WLN (N det Vv(z) > 0 ae. z € Q and let 7y €
D be such that v(z) # v(zo) for every z € B(z,. Ry) \ {zo}. Let 0 < R < Ry
and let C be an open set containing yo = v(zo). Then there is r > 0 such that
v~Y(B(yo, 7)) N B(zo, R) CC B(xo, R).

Proof. Define

d(é) =sup{|z-z¢|: z € B(zo, R), [v(z) - v(z)| < 8}.

Since v(z) # v(zq) for every z € B(z¢.R) \ {zo} and v is uniformly continuous on
E’(J:o. R). we have

lim d(6) = 0,

Take now r > 0 such that d(r) < %. We have

v—l(B(yo,r)) N B(zo,R) C B <a:o, g) CC B(zg, R). 0
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290 L. FONSECA AND W. GANGBO

By using the fact that for every n € N, {z € B(zo,Ry): a+n < z <a+n+1}
is a compact set, v is a continuous function, and v(D) \ N is measurable, we obtain
that A, is measurable and we conclude that w € L®(B(yo, r))".

Claim 2.

(34) vow(y) =y forevery y ¢ v(D) = B(yo, 1),
(35) wov(z) =z for every z € D\ v™!(N).

This follows immediately from (32) and (33). One notices that, due to (30) and
Remark 2.5, |v=1(N)| = 0.

Claim 3. f o w is measurable for every f: D — R measurable.

We know that every Lebesgue measurable set is a union of a Borel measurable
set and a set of measure zero. To show that fow is measurable, by Claim 1 it suffices
to show that w™!(R) is measurable for every R C D such that |[R| =0. Let Rbea
subset of D such that |R| = 0. We have by (34) that

w™!(R) C v(R),
and since |R| = 0, by the N property of v, we obtain that lw=!(R)| = 0. Thus w~!(R)
is measurable.

Let g: v(D) = B(yo,r) — R be defined by

|2djVu(w(y))]

9(y) = det Vu(w(y)) °

Claim 4. g € LY (v(D)).
By Claim 3, g is measurable. By Lemma 2.4 and (11), where we set f = Xv(D)
the indicator of the set v(D), and by Claim 2 and (31) we obtain

| lawlay = [ 19 ov(@)] det Vu(z)az = [, 1sdivatzjae.
v(D) D D

Therefore g € L (v(D)).

Claim 5. w € W' (y(D))" and Vu(y) = (e,

To prove Claim 5, we fix ¢ € C§°(v(D)) and set K = supp¢. We show that

8 . (adj Vo(w(y)))?
/U(D) wa(y)—j(y)dy = —_/U(D) et Vew() o(y)dy.

Set 6 = dist(K, v(D)) > 0. By using the uniform continuity of v on D C B(zg, Ry),
we choose € > 0 such that

(36) [v(z) - v(g)| < g for every z,2' € D, |z - 2| < e.
Let {va} C C>(D)" be such that

(37) vn — v in COD)N

and

vp — v in WHN(D)V,
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To see this, we recall that by Lemma 2.7 (iii) v is approximatively differentiable a.e.
in  and by adapting the proof of Lemma 3.5 accordingly, it is possible to show that

d(v, B(zo,7),v(20)) = 1

for some r > 0. Let Cy be the connected component of RV \ v(0B(zp,r)) which
contains v(zo). Then

(39) d(v, B(zq,7),y) =1
for every y € Cy, so if we choose 0 < ' < r such that
B(zo,7') C B(zo,r) N v~ (Cy),
then by (39) (and since det Vv > 0 a.e.) we have
d(v, B(zo,7'),3) < 1

for every y € RV \ v(0B(zo,7')). It suffices now to use the results in [TQ], (1.3)-
(1.5), (2.26), and Theorem 3.7 (i). Note, however, that in [TQ)], it is assumed that
advaeL",rzq—ﬂ—1 andifN—1<q<N,then;ﬂ—l > 5.

As it turns out, [TQ)’s results still hold for r = N> as remarked by [MTY] (see
Theorem 5.3 in [MTY])).

Proof of Corollary 3.2.

Proof of (a). We have

ve WHNQ)Y, detVu(z) >0 ae zeq
and
veE W' N()N, detVu(z) <0 ae. zeq,

It suffices to apply Theorem 3.1 to v and to Rov in Q,, where Ry is a constant rotation
with det Ry = —1.

Proof of (b). We now assume that v € WhaN g > N, det Vu(z) #
0 ae z € Q, and for almost every o € 2, v is locally almost injective in a
neighborhood of zg in the sense that there is an open set D = D(zp) CC 0 and there
is a function w : v(D) — D such that

(40) wov(r)=z ae. r€D.

By Vitali's covering theorem there is a countable family of nonempty, open, mutually
disjoint balls {B;, i € N} and there is a sequence of functions w; : v(B;) —  such
that B; C Q and
IR\ ULTBi| =0,

(41) wov(z) =1z ae. z € B,
The task ahead will be to partition B; into three subsets B!, B2, and N; such that
B!, B? are two open sets. N, is a set of measure zero. and

det Vu(z) > 0 ae. z € B!,

detVu(z) <0 ae. z € B2
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4. Semicontinuity involving variation of the domain. The variational treat-
ment of crystals with defects leads to the study of functionals of the type

E(u,v) = /rz W (Vu(z)(Vo(z))~))dz,

where @ C R¥ is a reference domain, W is the strain energy density, u is the elastic
deformation and v represents the slip (rearrangement) or plastic deformation with
det(Vv(z)) =1 ae. z € Q. The underlying kinematical mode for slightly defective
crystals was introduced by Davini [Dav] and later developed by Davini and Parry
[DP]. As it turns out, matrices of the form

Vu(z)(Vu(z))™?

represent lattice matrices of defect-preserving deformations (neutral deformations)
and by taking the viewpoint that equilibria correspond to a variational principle,
Fonseca and Parry [FP) studied the structure of some kind of generalized minimizers
(the Young measure solutions) for the energy E(.,.). (Related variational problems
were also investigated in [DP).)

Using the div-curl lemma, it follows that if up — u in W1 4 and Un — vin
W1 s, then

Vun(Vu,)™! — Yu(Vo)~! in [y«

Lower semicontinuity and relaxation properties of E(-,-) were addressed only under
additional material Symmetry assumptions on W. Existence and regularity properties
for minimizers of E(-,-) were obtained in (DF}. Following this work, we stress the fact
that the direct methods of the calculus of variations fail to apply to this problem,
as sequential weak lower semicontinuity of E(-,-) is not sufficient to guarantee the
existence of minimizers. Indeed, with W(F) = |F|", it is shown in [DF] that there are
Do minimizers in {(u,v) € W1 x l.00 . u(z) =z on 89, det(Vu(z)) =1 ae.}if
0 <r <N =2, while for r > N existence is obtained for smooth (u,v) (see Theorem
2.3 in [DF)).

It is clear that if {(un,v,)} is a minimizing sequence and if [Vun(Vu,) =" is
bounded in L!, then

Vun(Vun)™' — L in LT, Unlon = ug, det(Vu,) = 1 ace.
and so if some type of lower semicontinuity prevails, then
(44) / W(L)dz < lim inf / W (Vin(Von)~Y)ds.
o] o
It would remain to show that L would still have the same Structure, precisely
L = Vu(Vuv)™!,
where ulaq = ug, det(Vv) =1 a.e. Note that (44) is always satisfied if W is a convex

function. On the other hand, formally, as det(Vv) =1 a.e. and setting w = u(v™!),
the energy becomes

W(Vu(y))dy,
v(Q)

T e e e s
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4. We may ask if these results can be extended to the case NN-%L < g < N, since,
due to Miiller’s result ([Mu]), if we assume that DetVv = 1 a.e. then DetVv = det Vv
a.e. in €.

5. Since lower semicontinuity of the energy is obtained in Theorem 4.1, the ques-
tion now amounts to showing that one can find a minimizing sequence {Vun(Vun)~1}
where {un} is bounded in W'? and {v,} is bounded in W19, Actually, one only needs
to show that there exists a sequence {fn} C W1(Q, Q) such that v, o f, is bounded
in W9 and

1 ae ze€f,

det V fn(z)
T €N

fa(z)

Due to the examples provided in [DF), we know that this may not be possible since the
infimum of E may be zero, which may prevent the existence of minimizing sequences
bounded in WP x W9,

As usual in variational problems for which existence of minimizers is not guar-
anteed (such as variational problems for material that change phase and, here, for
slightly defective materials), we focus on the properties of the minimizing sequences
rather than study the macroscopic limit of Vu,(Vv,)~1.

What follows may help to understand better why boundedness of { Vun(Vv,)"1}
may not entail the boundedness of {Vu,} and {Vv,}. Using Theorem 4.1, we show
that we may construct a minimizing sequence {Vu,(Vv)~!} with |Vu,|, = 0(k),
[Velg = 0(), for any o, > 0.

Consider the “perturbed” family of variational problems

E (u,v) = / W(Vu(Vv)’l)d:c+e°p|Vuelg+e'9"|Vv€|g,
0

where ufpn = ug, det Vv =1 a.e., ﬁ Jq v(z)dz = 0. Using the direct method of the
calculus of variations, Poincaré’s inequality, and Theorem 4.1, it follows immediately
that there exists (u,,v.) € WP x W14 such that

Ee(ue,ve) = inf{Ee(u,v): (u,v) € WP x W detVv =1 a.e.}.
Then, given an admissible pair (u,v)
E(u,v) = GE-I& Ec(u,v)

> lim sup E(u,,v)
e—0+

2 lim sup E(uc. ve),

—

>inf E.

Doing the same with liminf._ o4 E(ue,ve) and taking the infimum in (u,v), we con-
clude that

inf E = lim E(ue. ve)
e—0+

and |Vuelp = 0(Z). [Vvelg = 0(zs).

The following two lemmas will be useful to prove Theorem 4.1.

LEMMA 4.3. Let Q'.Q be two open sets of RN such that @' cC Q: let g > N
and v,v, € WH(Q)V be such that det Vu(z) = det Vin(z) =1 a.e. z € Q. Assume
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298 1. FONSECA AND W. GANGBO

Set D = v~ (B(yo, r0))NB(zo, Ro) CC Q' and Dn = v (B(yo, 70))NB(zo, Ry) cc
V. By using (45)-(47) and arguments similar to the ones of the proof of Theorem 3.1,
together with Corollary 3.3, we deduce that for n 2 ng there is wy, : B(yo, ro) — D,
there is w : B(yp, 7o) — D such that

Wn, w € WHFST (B(yg, ro)) ",
Wpovn(T) =2z ae z€D,,
vnown(y) =y ae. y€ Blyo, o),
wov(z)=z ae. z€D and v(zo) #v(z) for z€ D,z # z,,
vouw(y) =y ae. y€ B(yo,ro).
Finally by Lemma 3.8, v,(D,,) = v(D) = B(yo, o).
Remark 4.4.

1. Tt follows from the proof above that if the conclusion of Lemma 4.3 holds for
r = r(zp) > 0 then it holds also for 0 < ¢ < r. Thus, as v is continuous on D,
v(z) # v(zo) for z € D and z # z¢, we deduce that

}inbmax{l:r -zo|: z€D,v(z)e B(yo,r0)} = 0.

2. It is possible to show that lim,_ 4o |[DAD,| = 0. We divide the proof into
two cases.

Claim 1. lim,_. 400 |D \ Dy| = 0.

Let F. = B(yo,ro — ¢€) and O, = v~(F,) N D. We prove first that for each e fixed
there exists ng = ng(¢) € N such that n > n, implies O, C D,,. Indeed, since {va}
converges to v uniformly, there exists ng = ng(e) € N such that [V = Vnloo < % for
every n > ng. If z € O,, we obtain

[vn(z) — 3ol < v(2) = vo| + [v(z) = va(z)] < 7o
and so z € D,,. As U0, = D and the sequence (O¢) is nonincreasing, we have
lim |D\ O =0
€=0

which, together with the fact that |[D\ D,| < |D \ O| for n > ny, yields Claim 1.
Claim 2. lim,_ ;o |D, \ D} = 0.

For € > 0, take ny = no(e) € N such that |v - Unloo < 5 for every n > ng. For
n > ng, we have

{I € B(zo, Ro) : 7 - % < Jva(z) —wol < 7‘} C {z € B(zo, Ro) : 7—¢ < |u(z)—yo| < r+e}

and since v has the N~! property (see Remark 2.5) we obtain

INe{z € B(zo, Ro) : ¢ < [u(x) 30l < r+e}| = |{z € B(zo, Ro) : [v(z)-y0| = r}| = 0.

To conclude the proof of Claim 2, it suffices to remark that for n > ny we obtain

Do\DcC {z€B(zg,Ry):r—€< [v(z) —yo| < +¢}.

LEMMA 4.5. Letp > 1, ¢ > N, r > 1 be such that L + 221 = L Assume

that Q C RY is an open, bounded set, up,u € WIe(QN o, — y in Wip(Q)N,

Un, v € WY detVu, = det Vv = 1 ae. in O and v, — v in Wha(Q)N. Let

zg € Q, and wy,, w be, respectively, the local inverse function of vn, v, in the open

netghborhoods Dy, D of z, let yo = v(zo) and B(yo.ro) be as in Lemma 4.3 and
Remark 4.4. Then the following conditions hold:
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Also
/ |V o wa(y)|"dy= / [Viun (2)(Vwa(z)) " dz
B(yo.ro) D
SC’[/ qu,.(a:)|sz]5[/ |an(x)|w’—.xdz]-‘—1' o= <C
a Y]

for some constant C which does not depend on Yo, 7, and n. Thus {u,ow,} is bounded
in W (B(yo, o))"
Third step. We prove that, up to a subsequence, u, o wy, converges strongly in

LY(B(yo,ro)) touow. Let f € C(B(yo0,70)). By Remark 4.4, lim,_ 400 |DAD,| =0
and so

XD, (z) = xp(z) ae z Q.

By using the fact that un — u in W'P(Q)¥, v, — v in W'9(Q)" and assuming,
without loss of generality, that u, — u a.e., v, — v a.e., we obtain by (11) and the
Lebesgue dominated convergence theorem that

o -/;(yo,ro) = wn(y)f(y)dy = nll.lilm /;" u"n(z)f(vn(z))d.’t

n—+4o0

- /D u(@) f(u(z))dz
= [ woulsay
B(yo.r0)

Therefore u, ow, converges strongly to uow in measure and by applying the Sobolev
imbedding theorem to the bounded sequence {u, own} in W17(Q), we conclude that,
up to a subsequence, u, o w, converges strongly in L!(B(yo, 7)) to u o w.

Fourth step. Using the second and the third step we conclude that {Vuy, o wn}is
bounded in Wi (Q)V,

Unown, —uow in W (QN if r>1,
and
Unowp, muow in L}V if r=1. O

We now give the proof of Theorem 4.1.
Proof of Theorem 4.1. Without loss of generality (and, if necessary, after extract-
ing a subsequence of {{un,vn)}), we assume that

liminf/nW(Vun(z)(Vv,,(z))-l)dx= lim QW(vun(z)(vvn(z))_l)dz<+oo_

n—+o0 N=— 400

Fix ¢ > 0 and let Q¢ CC N be an open set such that 1N\ Q] < €. By Lemma 2.1 and
the Ascoli-Arze_la theorem, without loss of generality we assume that v, converges to
v uniformly in §2,. Set

C = {z € Q. : vis differentiable and almost invertible at z},

A={D(z):z € C,D(z) is an open set of {, v(D(z)) is an open ball},
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We divide the rest of the proof of Theorem 4.1 into two cases.

First case. We assume that 1 = r = 1 4 iq:l and that there is a constant
C such that 0 < W(F) < C(1 + |F|) for every F € M¥*N_ Since W > 0 and
{D?(n)},{Di(n)} are mutually disjoint for every n € N, we have by [FM]

k

/ W(Vu(@)(Vo) ™M a)dz =3 [ W(Vu(z)(Vv)}(z))dz
k_ Di(n) =1vD’(n)

k .
= W((Vuow’ d
S [ WUTuew )0y

i=1

(52) <Y lminf [ W((Vunowl)(y)dy
j=1 B{y,ri-n)

= liminf [ W(Vuﬂ(z)(an)'l(:r))dz

<hmmf2 / W (Van(2)(Vn) " (z))dz

n— 400

<hm1nf W(Vu,,(a:)(Vv,,) Y(z))dz.

n—<400
By letting 1 go to zero, k go to infinity, and € go to zero, we have

E(u,v) < liminf E(un, v,).
n—+4oo

Second case. We assume that 1 < r = 5 1,81 - L and that there are some constants
C1,C2 > 0,1 < s < rsuch that ~Cy(1 + |F|*) < W(F) < C2(1 + |F|") for every
FeMVN xN . The proof follows as in the first case, where on step (52) we use the lower

semicontinuity results of [Da] instead of [FM]. Since {Vun(z)(Vv,)~1(z)} is weakly
relatively compact in 2, we have

-1 -1
/U oy TSI ez = Z / [ W) )

[
Mn-

/ W ((Vu ou)(y))dy
B(y?,ri 1)

<,
|
—

Ma-

lminf/ W((Vuy 0w’ d
hminf | W(Tun o wh)s)dy

i=1
k

=) liminf W (Vun(z)(Vn)~Yz))dz
j=1 i Di(n)

i
Ma-

hmmf[/ W(Vun(z)(Vv,) " (z))dz

-,
I
-

+

W (Vun(2)(Vun) " (z))dz
Dl (m\D?
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