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Abstract

We revisit studies on extension of Lipschitz maps and obtain new re-
sults about extension of displacements of bounded strain tensors. These
questions are of interest in elasticity theory, optimal designs, as well as in
functional analysis.

Résumé

Nous discutons l’extension d’applications Lipschitziennes et donnons, entre autres,

une nouvelle démonstration d’un théorème de Schönbeck. Puis nous étudions le

problème d’extension de déplacements dont le tenseur des déformations est borné.

Ces questions sont intéréssantes en élasticité (cf. le problème de Michell) aussi bien

qu’en analyse fonctionnelle.

Key words: Extension of Lipschitz maps, Kirszbraun theorem, Michell prob-
lem.

Mots clés: Extension d’applications Lipschitziennes, théorème de Kirszbraun,
problème de Michell.

1 Introduction

1.1 Statement of the problem

In this article we deal with essentially two types of extension of vector valued
maps.

Extension of Lipschitz maps. We consider two Banach spaces (E, ‖.‖E)
and (F, ‖.‖F ). We ask whenever a map u : D ⊂ E → F satisfying

‖u (x) − u (y)‖F ≤ ‖x − y‖E , x, y ∈ D (1)
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can be extended to the whole of E so as to preserve the inequality.
This is by now a classical problem and we revisit this question in Section 2.

Extension of maps and Michell trusses. The second problem, that we
consider, concerns maps u : D ⊂ R

d → R
d satisfying

|〈u (x) − u (y) ; x − y〉| ≤ ‖x − y‖2
, x, y ∈ D (2)

where 〈.; .〉 denotes the scalar product in R
d and ‖.‖ the Euclidean norm. We

ask the same question as before, namely, when can we extend u from D to R
d

so as to preserve inequality (2). This question will be dealt with in Section 3.

1.2 A motivation for studying extension maps

We now motivate these two questions by considerations of optimal design.
One of the basic problem in optimal design, which has received a lot of

attention (see [2], [3], [35], [36]), is the study of the variational problem

inf
σ
{I [σ] :=

∫

Ω

ρ̂(σ) : σ ∈ ΣF (Ω)}. (3)

Here, ρ̂ : R
d×d → [0, +∞] is a prescribed function, homogeneous of degree 1, so

that
∫
Ω

ρ̂(σ) is well defined even if σ is a measure whose support is in Ω ⊂ R
d.

Also, F = (F1, · · · , Fd) is a system of forces in Ω that is in equilibrium. This
means that F1, · · · , Fd are signed measures of null average and moments

∫

Rd

(xjdFi(x) − xidFj(x)) = 0, i, j = 1, · · · , d. (4)

Furthermore Ω contains the support of the Fis. The unknown in (3) is a sym-
metric stress tensor σ such that σij = σji are Radon measures supported on Ω.
It represents a frame to be designed and satisfies the equation

−div(σ) = F in Ω, (5)

which prevents overall motion of the structure. We have denoted by ΣF (Ω) the
set of σ satisfying these conditions.

In the cases we are interested in, one can introduce a more tractable problem,
dual to (3) of the form:

sup
u
{
∫

Ω

〈F; u〉 : u ∈ LipΨ(Ω)}. (6)

Here, Ψ : R
d×R

d → R which can be explicitly written in term of ρ̂ and LipΨ(Ω)
is the set of u : Ω̄ → R

d such that Ψ(x − y, u(x) − u(y)) ≤ 0 for all x, y ∈ Ω. In
this study we keep our focus on the following two cases which have attracted a
lot of attention.

• Case 1. We assume that

ρ̂(η) = sup
ξ∈Rd×d

{| 〈η; ξ〉 | : ρ(ξ) ≤ 1}, ρ(ξ) = sup
b∈Rd

{| 〈ξb; b〉 | : |b| = 1} (7)
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which is the Michell case [25], referred to as the fictive materials or light struc-
tures case (see also [7]). Let 〈·; ·〉 and ‖·‖ be respectively the Euclidean scalar
product and the associated Euclidean norm on R

d. Then

Ψ(a, b) := |〈a; b〉| − ‖a‖2

is such that the values in (3) and (6) agree.

• Case 2. Let || · ||E and || · ||F be two norms on R
d and define

ρ̂(ξ) = sup
a∈Rd

{||ξa||F : ||a||E ≤ 1}.

Then
Ψ(a, b) = ||b||F − ||a||E

is such that the values in (3) and (6) agree. This case has been intensively
studied (see [5], [6] and [7] for additional references). When the dimension
d ≥ 2 and the set

{
b ∈ R

d : ||b||F = 1
}

is strictly convex then Theorem 11 gives
a necessary and sufficient condition for LipΨ(Ω) and LipΨ(Rd) to coincide.

We next assume that Ω is a connected set with Lipschitz boundary or Ω
is the whole space. For the class of Ψ we have considered above, the duality
relation holds

sup
u
{
∫

Ω

〈F; u〉 : u ∈ LipΨ(Ω)} = inf
σ
{
∫

Ω

ρ̂(σ) : −div(σ) = F in Ω}. (8)

The inclusion LipΨ(Rd) ⊂ LipΨ(Ω) and the fact that F is supported by Ω yield
that

sup
u
{
∫

Ω

〈F; u〉 : u ∈ LipΨ(Ω)} ≥ sup
u
{
∫

Rd

〈F; u〉 : u ∈ LipΨ(Rd)}. (9)

In case every map u ∈ LipΨ(Ω) admits an extension ũ ∈ LipΨ(Rd), we write
LipΨ(Ω) = LipΨ(Rd) and observe that the two expressions in (9) coincide. This,
together with the fact that (8) holds also for Ω = R

d would yield that

inf
σ
{
∫

Ω

ρ̂(σ) : −div(σ) = F in Ω} = inf
σ
{
∫

Rd

ρ̂(σ) : −div(σ) = F in R
d}. (10)

For example when Ψ(a, b) = ||b||F − ||a||E , where || · ||E and || · ||F are norms
induced by a scalar product on R

d then LipΨ(Ω) = LipΨ(Rd).

In case Ψ(a, b) = |〈a, b〉| − ‖a‖2
, we prove that for a class of D ⊂ R

d, there
are maps u ∈ LipΨ(D) which do not admit any extension ũ ∈ LipΨ(Rd). This
class includes the convex sets D ⊂ R

d of non empty interior.

1.3 Notation

- If a, b ∈ R
d we denote by 〈a; b〉 the standard scalar product between a and b.
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- We denote by R
d×d the set of d×d matrices. If ξ = (ξij)

d
i,j=1 and η = (ηij)

d
i,j=1

then

ξT = (ξji)
d
i,j=1, 〈ξ; η〉 =

d∑

i,j=1

ξijηij , ‖ξ‖2 = 〈ξ; ξ〉

denote respectively, the transposed of ξ, the trace of ξηT and the square norm
of ξ. We denote by Id the d × d identity matrix.

- Hl denotes the l–dimensional Hausdorff measure.

- If X is a metric space, M(X) denotes the set of Borel signed-measures on
X. The set of (nonnegative) Borel measures on X is denoted by M+(X).

- When Ω ⊂ R
d and {Fi}d

i=1 ⊂ M(Ω), we set F = (F1, F2, · · · , Fd). The mo-
ments of the force F is the skew-symmetric matrix

∫

Rd

F ∧ x =

(∫

Rd

xjdFi(x) −
∫

Rd

xidFj(x)

)d

i,j=1

.

- If u : Ω ⊂ R
d → R

d is Borel-measurable, set

∫

Ω

〈F; u〉 =
d∑

i=1

∫

Ω

ui(x)dFi(x),

and
||u||∗Ω = sup

x,y∈Ω
{(| 〈u(x) − u(y); x − y〉 |)/ ‖x − y‖2

: x 6= y}.

If in addition Ω is open and u is differentiable almost everywhere, we define e(u)
to be the symmetric part of the gradient of u :

e(u) =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)d

i,j=1

.

- When ξ ∈ R
d×d, we define

ρ(ξ) = sup
b∈Rd

{|〈ξb; b〉| / ‖b‖2
: b 6= 0}. (11)

It is easily checked that

ρ(ξ) = max
1≤i≤d

|λi(
ξ + ξT

2
)|, (12)

where λ1(ξ), · · · , λd(ξ) are the eigenvalues of ξ. If we denote by ρo the polar
conjugate of ρ, then a simple computation leads to

ρo(ξ̂) =






∑d
i=1 |λi(ξ̂)| if ξ̂ ∈ Sd×d

+∞ if ξ̂ 6∈ Sd×d

(13)
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where Sd×d is the subset of R
d×d that consists of symmetric matrices.

Clearly, ρ is a convex, lower semicontinuous function, and is a semi-norm on
the set R

d×d. Since ρo is the supremum of the linear functions lξ : η → 〈ξ; η〉
over the set of ξ satisfying ρ(ξ) ≤ 1, one concludes that ρo is also convex, ho-
mogeneous of degree one and lower semicontinuous.

- It is easily seen that if ||u||∗Ω ≤ 1, then the map u + id (as well as −u + id) is
monotone over Ω. Moreover if Ω ⊂ R

d is open and connected then u is differen-
tiable everywhere, except on a (d − 1)-dimensional Hausdorff set (see [1]), and
ρ(e(u)) ≤ 1. The well-known Korn inequality also ensures that u is continuous
and so, is locally bounded (see [29]).

- If Ω ⊂ R
d is a convex set containing 0 in its interior, we define the Minkowski

function (or the gauge) associated to Ω to be

ρΩ(x) = inf
t>0

{t : x/t ∈ Ω}.

Acknowledgements. It is a pleasure to express our gratitude to the following
people for the fruitful discussions we benefited from: G. Bouchitté, G. Buttazzo,
K.D. Semmler, P. Seppecher and L. Tartar. W.G. gratefully acknowledges the
support of National Science Foundation grants DMS-00-74037, and DMS-02-
00267.

2 Extension of Lipschitz functions on Banach

spaces revisited

Throughout this section (E, ‖.‖E) and (F, ‖.‖F ) are normed spaces. We denote
by SE the unit sphere in E, namely the set of x ∈ E such that ‖x‖E = 1. The

convex hull of SE is the closed ball B
E

of interior BE .

Definition 1 (i) We say that u : E → F is a contraction on D or u is 1–
Lipschitz on D if

‖u(x) − u(y)‖F ≤ ‖x − y‖E for all x, y ∈ D.

In this case, we write that u ∈ Lip1(D, F ).

(ii) When u ∈ Lip1(E, F ), we simply say that u is a contraction.

Definition 2 We say that [E; F ] has the extension property for contractions
on D if every u ∈ Lip1(D, F ) has an extension ũ ∈ Lip1(E, F ). If [E; F ] has the
extension property for contractions for every D ⊂ E, we simply say that [E; F ]
has the extension property for contractions.

In the present section we discuss some necessary and sufficient conditions
on the spaces E and F , which in most of our analysis will be Banach spaces,
ensuring that [E; F ] has the extension property for contractions.
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The earliest result in this direction is the celebrated Mac Shane lemma [24]
asserting that if dimF = 1, then [E; F ] has the extension property for contrac-
tions for any E. It turns out that this is also true for any F , if dimE = 1.

At the same time Kirszbraun [21] proved that if E and F are both finite
dimensional spaces whose norms are induced by a scalar product, then [E; F ]
has the extension property for contractions. This result, known as Kirszbraun
theorem, has been proved, and at the same time extended to Hilbert spaces, in
several different ways, notably by Valentine [38], [39], Grünbaum [18], Minty [27]
and others; one could also consult textbooks such as Federer [16] or Schwartz
[34].

When turning to necessary conditions, it was established by Schönbeck [31]
that if dimE, dimF ≥ 2 and if the unit sphere SF of F is strictly convex (see
below for a precise definition), then [E; F ] has the extension property for con-
tractions if and only if both E and F are Hilbert spaces. It can also be shown
that [E; F ] has the extension property for contractions if and only if for every
set D ⊂ D′ of respective cardinality 3, 4, every map u ∈ Lip1(D, F ) admits
an extension ũ ∈ Lip1(D

′, F ). When E = F, one can prove some stronger re-
sults, see Edelstein and Thompson [15], Schönbeck [32] and DeFigueiredo and
Karlovitz [13], [14].

It is one of our goals to give a still different, and somehow more elementary
and more self contained, proof of the result of Schönbeck (see Theorem 11).
The approach used to obtain this result involves the smallest norm above ‖.‖E

which is induced by an inner product. This norm is precisely the Minkowski
function ρΣE

max
of the ellipse ΣE

max of maximal volume, inscribed in SE. Similarly,
one also considers the largest norm below ‖.‖E which is induced by an inner
product. This norm turns out to be the Minkowski function ρΣE

min
of the ellipse

of minimal volume, circumscribed about SE. One seeks for conditions under
which ρΣE

max
= ‖.‖E = ρΣE

min
and ρΣF

max
= ‖.‖F = ρΣF

min
.

2.1 Norms induced by an inner product

We start by collecting some well known facts about inner product spaces.
One can consult, as a general reference, Amir [4]. Only Lemma 6 and Lemma
8 will be used in the proofs of the next sections, we have however incorporated
some other results for the sake of giving a broader panorama.

Definition 3 An ellipse centered at 0 in R
d is a set

Σα := {x ∈ R
d :

d∑

i=1

α2
i x

2
i = 1},

where α = (α1, · · · , αd) ∈ (0, +∞)d. We refer to the convex hull of Σα as the
region enclosed by Σα and we denote it by Bα.

The next lemma is due to Löwner in an apparently unpublished work.
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Lemma 4 (Löwner) Assume that d ≥ 2 and that E = R
d. Then there exist

a unique ellipse Σmax of maximal volume inscribed in SE and a unique ellipse
of minimal volume Σmin circumscribed about SE. Furthermore both Σmax ∩ SE

and Σmin ∩ SE contain at least 2d distinct points.

Proof. Existence of ellipses of maximal volume. If Σα is inscribed in BE , then

d∑

i=1

α2
i x

2
i ≥ ‖x‖2

E , (14)

for all x ∈ R
d. Assume that for some ε > 0, we have

ε ≤ vol(Bα) =
ωd∏
αi

, (15)

where ωd is the volume of the unit Euclidean ball. The set of α such that αi > 0,
and (14)–(15) hold is a compact subset Kε ⊂ R

d. Every maximizing sequence of
the set of ellipses inscribed in BE , of maximal volume, has their accumulation
points in Kε for some small ε > 0. This shows that there exists an ellipse Σmax

inscribed in SE and of maximal volume. Similarly, one obtains an ellipse Σmin

circumscribed about SE and of minimal volume.
Uniqueness of ellipses of maximal volume. Assume that Σa, Σc are two el-

lipses inscribed in SE and of maximal volume. By an affine transformation, we
may assume that c = (1, · · · , 1) so that the volume of these two regions are

ωd = vol(Bc) = vol(Ba) = vol(Bc)

d∏

i=1

1/ai.

We therefore deduce that
∏d

i=1 ai = 1.
Let ‖.‖o

E be the polar conjugate of ‖.‖E defined by

‖z‖o
E = sup

x
{〈x; z〉 : ‖x‖E ≤ 1}.

Denote by ρΣa (respectively ρΣc) the Minkowski function associated to Ba (re-
spectively Bc) and ρo

Σa (respectively ρo
Σc) be its polar. Since Σa, Σc are inscribed

in SE we have that ‖.‖E ≤ ρΣa , ρΣc and so, ρo
Σa , ρo

Σc ≤ ‖.‖o
E . Hence,

ρo(z)2 :=

d∑

i=1

1 + 1/a2
i

2
z2

i =
1

2

(
d∑

i=1

z2
i

a2
i

+

d∑

i=1

z2
i

)

=
1

2
(ρo

Σa(z)2 + ρo
Σc(z)2) ≤ (‖z‖o

E)
2
,

holds for all z ∈ R
d. The previous inequality yields that ρ2 ≥ ‖.‖2

E , which
means that

d∑

i=1

2

1 + 1/a2
i

x2
i ≥ ‖x‖2

E . (16)
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Letting b2
i = 2

1+1/a2
i

, b = (b1, ..., bd) , we find from (16) that Σb is inscribed in

SE .
We now show that Σa and Σc coincide and we proceed by contradiction

assuming that they are distinct. Then, ai 6= 1 for at least one i = 1, · · · d. The
volume of the region enclosed by Σb is

vol(Bb) = ωd(

d∏

i=1

1 + 1/a2
i

2
)

1
2

= ωd(

d∏

i=1

[
(1 − 1/ai)

2

2
+ 1/ai])

1
2 > ωd(

d∏

i=1

1/ai)
1
2 = ωd.

This contradicts the maximality of the volume of Σc. Thus, Σc = Σa and so,
we have a unique ellipse of maximal volume in SE . Replacing ρΣ and ‖.‖E by
their polar conjugates we conclude that Σmin is unique.

Intersection of the maximal ellipse with SE . As before, we assume that Σmax

= Σα where α = (1, · · · , 1). Since Σmax and SE are compact sets, they have
a non empty intersection otherwise the maximality of Σmax would be contra-
dicted. By symmetry there are therefore at least 2 points in SE ∩Σmax. Let us
show that if we have 2s points in SE ∩ Σmax, 1 ≤ s < d, then in fact we have
at least 2 (s + 1) points in the intersection, showing therefore the claim. Up
to a rotation, we may assume that the points ±p1, ...,±ps ∈ SE ∩ Σmax lie in
the subspace generated by the first s elements {e1, ..., es} of the standard basis,
which means that for every j = 1, ..., s, we have

pj
i = 0, for every i ≥ s + 1.

For ε ∈ (0, 1), define αε = ( 1
1−ε , ...,

1
1−ε , (1 − ε)s , 1, · · · , 1). Since Σmax is unique

and
vol(Σαε) = ωd = vol(Σmax),

we conclude that Σαε is not inscribed in SE . Consequently, there exists pε =
(pε

1, ..., p
ε
d) 6∈ B̄E which is in Bαε , the region enclosed by Σαε , and hence we

have
‖pε‖E > 1 (17)

and

1 ≥ ρ2
Σαε (p

ε) = ρ2
Σmax

(pε) + (
1

(1 − ε)
2 − 1)

s∑

i=1

(pε
i)

2 − (1 − (1 − ε)
2s

)
(
pε

s+1

)2
.

(18)
Because pε 6∈ Σmax ⊂ B̄E , (18) implies that

(
1

(1 − ε)
2 − 1)

s∑

i=1

(pε
i)

2 ≤ (1 − (1 − ε)
2s

)
(
pε

s+1

)2
.
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Dividing both sides of the previous inequality by ε we get

2 − ε

(1 − ε)
2

s∑

i=1

(pε
i)

2 ≤ 1 − (1 − ε)
2s

ε

(
pε

s+1

)2
. (19)

Let {pεn}∞n=1 be a subsequence of {pε}∞0<ε<1 converging, as εn → 0, to some
p ∈ E. We use (17)–(19) to obtain that

ρΣmax
(p) ≤ 1 ≤ ‖p‖E , and

s∑

i=1

p2
i ≤ s p2

s+1. (20)

The first two inequalities in (20) and the fact that ρΣmax
≥ ‖.‖E yield that

p ∈ SE ∩ Σmax. The last inequality in (20) gives that p /∈ span {e1, ..., es} (in
particular, p 6= ±p1, ...,±ps) and thus by symmetry, ±p ∈ SE ∩ Σmax . This
proves that SE∩Σmax has at least 2 (s + 1) distinct points, if s < d. Iterating the
process we have indeed shown that SE ∩ Σmax has at least 2d distinct points.
Existence of at least 2d distinct points in SE ∩ Σmin is obtained in a similar
manner.

In [19] Jordan and von Neumann gave a condition which characterizes the
norm induced by an inner product.

Lemma 5 (Jordan-von Neumann) Assume that dimE ≥ 2. Then, the norm
‖.‖E is induced by an inner product if and only if the parallelogram rule holds
for all x, y ∈ E, namely

2(‖x‖2
E + ‖y‖2

E) = ‖x + y‖2
E + ‖x − y‖2

E . (21)

Proof. The fact that every norm induced by an inner product satisfies (21) can
be checked by direct computation. Conversely, if (21) holds, one defines

〈x; y〉 =
‖x + y‖2

E − ‖x − y‖2
E

4

and check that, for every x, y ∈ E, we have

〈x; y〉 = 〈y; x〉 , 〈x; x〉 = ‖x‖2
E , 〈x; 0〉 = 0, 〈−x; y〉 = −〈x; y〉

Direct computations give that if x, y, z ∈ E then

〈x + y; z〉 + 〈x − y; z〉 = 2 〈x; z〉 . (22)

In particular, if we set x = y, x̄ = x + y and ȳ = x − y in (22), we obtain that

〈2x; z〉 = 2 〈x; z〉 , 〈x̄ + ȳ; z〉 = 〈x̄; z〉 + 〈ȳ; z〉 .

By induction, if m is an integer, we get

〈mx; z〉 = m 〈x; z〉 and
〈 x

m
; z
〉

=
1

m
〈x; z〉 .
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We conclude that 〈m

n
x; z
〉

=
m

n
〈x; z〉

for all m, n integers. By continuity of ‖.‖E we conclude that 〈tx; z〉 = t 〈x; z〉
for all t ∈ R. Thus, 〈·; ·〉 is an inner product that induces ‖.‖E .

The following lemma, which is a corollary of Lemma 4, will be directly used
in the proof of Theorem 11.

Lemma 6 Assume that dimE ≥ 2. If ‖.‖E is not induced by an inner product,
then there exist x, y, X, Y ∈ SE so that

‖x + y‖2
E + ‖x − y‖2

E < 4 < ‖X + Y ‖2
E + ‖X − Y ‖2

E .

Proof. As usual it is enough to establish the result for E = R
2. Let us show

the first inequality, the second one being obtained dually by replacing Σmax by
Σmin. Since Σmax is inscribed in SE, we have

‖z‖E ≤ ρΣmax
(z) for every z ∈ E.

It is also clear that we cannot have (see below)

‖x + y‖E = ρΣmax
(x + y) (23)

for every x, y ∈ Σmax ∩ SE . Therefore choose x, y ∈ Σmax ∩ SE such that

‖x + y‖E < ρΣmax
(x + y) .

Since we always have ‖x − y‖E ≤ ρΣmax
(x − y) and ρΣmax

satisfies the parallel-
ogram rule, we have indeed established the claimed inequality.

We now show, by contradiction, that (23) does not hold. Up to an affine
transformation, we may assume that Σmax is the Euclidean disk:

Σmax = {(x1, x2)| x2
1 + x2

2 = 1}.

By Lemma 4, Σmax ∩ SE contains at least four distinct points p1
1, p

1
2, p

1
3, p

1
4

(ordered in the clockwise direction, in particular p1
3 = −p1

1 and p1
4 = −p1

2) and
we denote by F1 = {p1

1, p
1
2, p

1
3, p

1
4}. Note that ρΣmax

(p1
i+1 − p1

i ) ≤ π (with the
convention that p1

5 = p1
1) for every point in F1.

We next use (23) for every x, y ∈ F1 to obtain a family F2 ⊂ Σmax ∩ SE of
eight distinct points that contains F1. More precisely we set

p2
1 = p1

1, p2
3 = p1

2, p2
5 = p1

3, p2
7 = p1

4

p2
2 =

p1
1 + p1

2

ρΣmax
(p1

1 + p1
2)

, p2
4 =

p1
2 + p1

3

ρΣmax
(p1

2 + p1
3)

,

p2
6 =

p1
3 + p1

4

ρΣmax
(p1

3 + p1
4)

, p2
8 =

p1
4 + p1

1

ρΣmax
(p1

4 + p1
1)

.
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We clearly have that ρΣmax
(p2

i+1−p2
i ) ≤ π/2 (with the convention that p2

9 = p2
1).

We iterate this process to inductively obtain families

Fn ⊂ Fn+1 ⊂ Σmax ∩ SE

such that Fn = {pn
i }2n+1

i=1 has 2n+1 distinct points and ρΣmax
(pn

i+1−pn
i ) ≤ π/2n−1

(with the convention that pn
2n+1+1 = pn

1 ). This gives that ∪∞
n=1Fn is dense in

Σmax and in SE . Consequently, Σmax = SE and thus ‖.‖E is induced by an
inner product, which is the desired contradiction.

We immediately obtain as a corollary the following result established by Day
[9], which is a refinement of the lemma of Jordan-von Neumann.

Corollary 7 Assume that dimE ≥ 2. Then the norm ‖.‖E is induced by an
inner product if and only if

‖x + y‖2
E + ‖x − y‖2

E = 4 (24)

for all x, y ∈ SE.

Proof. The fact that (24) is a necessary condition for ‖.‖E to be induced by an
inner product is a by-product of the parallelogram rule (21) proved in Lemma
5. Conversely we proceed by contradiction and assume that the norm ‖.‖E is
not induced by an inner product. By Lemma 6 we have that (24) does not hold
and thus the claim.

We conclude with Nordlander inequality [30].

Lemma 8 (Nordlander) Assume that dimE ≥ 2 and that 0 < t < 1. Then

inf{‖x + y‖E : (x, y) ∈ St} ≤ 2
√

1 − t2 ≤ sup{‖x + y‖E : (x, y) ∈ St} (25)

where
St =

{
(x, y) ∈ SE × SE : ‖x − y‖E = 2t

}
.

Proof. Observe that it suffices to prove that (25) holds on a subspace of E of
dimension 2. For that we may assume without loss of generality that dimE = 2.

We first parametrize SE in the counterclockwise direction by s → u(s) =
(u1(s), u2(s)). Since ‖.‖E is Lipschitz, we obtain that u is Lipschitz too. For each
s the circle of center u(s) and radius 2t intersects SE at two distinct points. Let
v(s) = (v1(s), v2(s)) be the ”nearest point in the counterclockwise direction”.
One can check that v is Lipschitz. By Green formula

area(BE) =

∫

SE

u1du2 =

∫

SE

v1dv2. (26)

Let Et be the region enclosed by the curve s → (u(s) + v(s))/2 . The curve
Ct : s → (u(s) − v(s))/2 is a closed curve contained in tSE. Hence, it coincides
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with tSE and so, the region enclosed by Ct is tBE . We use again Green formula
and (26) to obtain that

area(tBE) =

∫

SE

(u1 − v1)

2
d
(u2 − v2)

2
=

1

2
area(BE) − 1

4

∫

SE

(v1du2 + u1dv2)

(27)
and

area(Et) =

∫

SE

(u1 + v1)

2
d
(u2 + v2)

2
=

1

2
area(BE) +

1

4

∫

SE

(v1du2 + u1dv2).

(28)
We add up both sides of the equalities in (27) and (28) to conclude that

area(Et) = (1 − t2)area(BE).

This last identity implies that Et neither strictly contains nor is strictly con-
tained in the ball of radius

√
1 − t2 as asserted either in the left-hand side or in

the right-hand side of (25).

2.2 Extension from a general subset of E to E

We start with a definition that will be used in the main theorem.

Definition 9 The unit sphere SF is said to be strictly convex if it has no flat
part, meaning that

‖(1 − t)x + ty‖F < (1 − t) ‖x‖F + t ‖y‖F = 1

for all t ∈ (0, 1) and all x, y ∈ SF such that x 6= y.

Let us recall that for 1 ≤ p ≤ ∞, the Hölder norms |x|p over R
d are defined

as

|x|p =






[∑d
i=1 |xi|p

]1/p

if 1 ≤ p < ∞

max1≤i≤d {|xi|} if p = ∞.

When d ≥ 2, the unit sphere for | · |p is strictly convex if and only if 1 < p < ∞.

We now can state our main theorems. First we start with the scalar case.

Theorem 10 (i) Let (E, ‖.‖E) be a normed space, then, [E; R] has the exten-
sion property for contractions.

(ii) Let (F, ‖.‖F ) be a Banach space, then, [R; F ] has the extension property
for contractions.

We now give a theorem which characterizes the Banach spaces for which
[E, F ] has the extension property for contractions.

12



Theorem 11 Assume that (E, ‖.‖E) and (F, ‖.‖F ) are Banach spaces such that
dimE, dimF ≥ 2 and that the unit sphere in F is strictly convex. Then, the
three following properties are equivalent:

(i) ‖.‖E and ‖.‖F are induced by an inner product;

(ii) [E; F ] has the extension property for contractions;

(iii) for every x̄ ∈ E and every S := {x1, x2, x3}, every u ∈ Lip1(S, F ) has
an extension ũ ∈ Lip1(S ∪ {x̄}, F ).

Remark 12 (i) We should point out that if S consists of only two points x, y ∈
E, x 6= y, then the extension to any third point is always possible. Indeed assume
that

‖u (x) − u (y)‖F ≤ ‖x − y‖E .

Let then z ∈ E and define

t = min

{
1,

‖z − y‖E

‖x − y‖E

}
and u (z) = tu (x) + (1 − t) u (y) .

It is immediate to check that

‖u (x) − u (z)‖F ≤ ‖x − z‖E and ‖u (z) − u (y)‖F ≤ ‖z − y‖E

as wished.

(ii) Interestingly enough, if one drops the assumption that SF is strictly con-
vex, the extension property for contractions may hold for [E; F ] even if none of
the norm is induced by an inner product. Indeed, if F = R

2 (or R
d, d ≥ 2) and

‖.‖F = | · |∞, Mac Shane lemma (Theorem 10) applied to each component of
a vector valued map ensures that [E; F ] has the extension property for contrac-
tions. It is then immediate that if F = R

2 and that ‖.‖F = | · |1 then [E; F ] has
the extension property for contractions for any normed space E. This follows
from the simple observation that if

R = 1/2

(
1 −1
1 1

)

then |Ry|1 = |y|∞ for any y ∈ R
2. This, together with the above argument for

the | · |∞ norm gives that [E; R2] has the extension property for contractions for
any normed space E.

(iii) Proceeding by contradiction in the proof that iii) =⇒ i), we will find
S := {x1, x2, x3}, x ∈ (x1, x2) and u ∈ Lip1(S, F ) so that there is no extension
ũ ∈ Lip1(S ∪ {x̄}, F ). A continuity argument can show that there is also no
extension ũ ∈ Lip1(S ∪ {x̄δ}, F ) where for δ > 0 small enough

x̄δ = x̄ + δ (x3 − x̄) .

Observe that therefore x̄δ ∈ int conv{x1, x2, x3}.

In the proof of Theorem 11, we will need the following lemma.

13



Lemma 13 Assume that dimE, dimF ≥ 2 and that at least one of these norms
is not induced by an inner product, then there exist y1, y2 ∈ F and x1, x2 ∈ E
so that

‖x1‖E = ‖x2‖E = ‖y1‖F = ‖y2‖F = 1 and ‖y1 ± y2‖F < ‖x1 ± x2‖E .

Proof. It is enough to prove the lemma when dimE = dimF = 2. We assume
that ‖.‖F is not induced by a scalar product; a similar argument holds if ‖.‖E is
not induced by a scalar product. By Lemma 6, we can therefore find y1, y2 ∈ R

2

so that
‖y1‖F = ‖y2‖F = 1 and ‖y1 − y2‖2

F + ‖y1 + y2‖2
F < 4.

Let

s =
1

2
‖y1 − y2‖F

and use the triangle inequality to see that 0 < s < 1. We therefore have

‖y1 + y2‖F < 2
√

1 − s2.

We next choose t ∈ (s, 1) so that

‖y1 + y2‖F < 2
√

1 − t2 < 2
√

1 − s2.

We then apply Nordlander inequality (25) to get that there exist x1, x2 ∈ R
2 so

that

‖x1‖E = ‖x2‖E = 1 and ‖x1 − x2‖E = 2t, ‖x1 + x2‖E ≥ 2
√

1 − t2.

Combining all these results we have indeed found y1, y2 ∈ F and x1, x2 ∈ E
satisfying

‖y1‖F = ‖y2‖F = ‖x1‖E = ‖x2‖E = 1,

‖y1 − y2‖F = 2s < 2t = ‖x1 − x2‖E and ‖y1 + y2‖F < 2
√

1 − t2 ≤ ‖x1 + x2‖E ,

as claimed in the lemma.

It is interesting to see how to construct elements satisfying the conclusions
of Lemma 13 in the case of Hölder norms.

Example 14 Assume that E = F = R
2, that ‖.‖F = | · |q and ‖.‖E = | · |p,

where 1 < p, q < ∞. Denote also by p′ and q′ the conjugate exponents of p and
q. We set

e1 = (1, 0), e2 = (0, 1), f1 = e1 + e2, f2 = e1 − e2.

Case 1. If q > p, we set x1 = y1 = e2, x2 = y2 = e1 and observe that

|y1 − y2|q = |y1 + y2|q = 21/q < |x1 − x2|p = |x1 + x2|p = 21/p.
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Case 2. If p > q, we set x1 = 2−1/pf1, x2 = 2−1/pf2, y1 = 2−1/qf1, y2 = 2−1/qf2
and observe that

|y1 − y2|q = |y1 + y2|q = 21/q′

< |x1 − x2|p = |x1 + x2|p = 21/p′

.

Case 3. We assume here that p = q.
(i) If q > p′, we set x1 = 2−1/pf1 x2 = 2−1/pf2, y1 = e1, y2 = e2 and observe

that

|y1 − y2|q = |y1 + y2|q = 21/q < |x1 − x2|p = |x1 + x2|p = 21/p′

.

(ii) If q < p′ we let x1 = e1, x2 = e2, y1 = 2−1/qf1, y2 = 2−1/qf2 to obtain
that

|y1 − y2|q = |y1 + y2|q = 21/q′

< |x1 − x2|p = |x1 + x2|p = 21/p.

We can now proceed with the proofs of the theorems stated above.

Proof. (Theorem 10). (i) In fact, the reader could notice that arguments used
in the proof of this part of the theorem are still valid in metric spaces. The fact
that [E, R] has the extension property for contractions is, as already discussed,
Mac Shane lemma. We recall that if D ⊂ E and u ∈ Lip1(D, R) then both of
the functions below are extensions of u that belong to Lip1(E, R) :

u+(x) = inf
y∈D

{u(y) + ‖x − y‖E} , u−(x) = sup
y∈D

{u(y) − ‖x − y‖E} .

Furthermore, if ũ ∈ Lip1(E, R) is another extension of u then u− ≤ ũ ≤ u+.

(ii) We now check that [R, F ] has the extension property for contractions.
So we assume that we have D ⊂ R and u : D → F satisfying

‖u(x) − u(y)‖F ≤ |x − y| for all x, y ∈ D.

We wish to show that we can find ũ : R → F , an extension of u, satisfying

‖ũ(x) − ũ(y)‖F ≤ |x − y| for all x, y ∈ R.

We proceed into two steps.

Step 1. If D is not closed, we extend ũ to D by continuity. More precisely let
x ∈ D and xn ∈ D converging to x. Observe that {u(xn)} is a Cauchy sequence,
since

‖u(xn) − u(xm)‖F ≤ |xn − xm| .
It therefore converges to an element of F, independent of the choice of the
sequence, denoted by ũ(x). With this definition we clearly deduce that

‖ũ(x) − ũ(y)‖F ≤ |x − y| for all x, y ∈ D.

Step 2. From now on we assume that D is closed. Let

α = inf {x : x ∈ D} and β = sup {x : x ∈ D} .
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then
int conv D = (α, β) .

For x ∈ R, we define

x+ = inf {y : y ∈ D and y ≥ x} and x− = sup {y : y ∈ D and y ≤ x} .

Since D is closed, if x ∈ int conv D, we deduce that x± ∈ D. Moreover if x ∈ D,
we have that x± = x; while if x ∈ int conv D but x /∈ D, we find x− < x < x+.
If α < x < β, then −∞ < x− ≤ x ≤ x+ < +∞ and therefore there exists a
unique t = t (x) ∈ [0, 1] such that

x = tx+ + (1 − t) x−.

We are now in a position to define ũ : R → F through

ũ (x) =






u (α) if x ≤ α

tu (x+) + (1 − t) u (x−) if α < x < β

u (β) if x ≥ β.

In the above definition it is understood that if α = −∞ (respectively β = +∞),
then the first (respectively the third) possibility does not happen. Furthermore,
since when x ∈ D, we have that x± = x, we deduce that ũ is indeed an extension
of u. The fact that ũ ∈ Lip1(R, F ) is easily checked.

We continue with the proof of Theorem 11.

Proof. (Theorem 11). (i) =⇒ (ii). When E and F are finite dimensional
spaces, the fact that (i) implies (ii) is Kirszbraun theorem. For the sake of
completeness, we provide a proof based on arguments due to Minty [27]. In the
light of Remark 24 and Proposition 26, it is sufficient to prove that [E; F ] has
the extension property for contractions for finitely many points. Without any
loss of generality, we may assume that both norms are the same, denoted by ‖.‖.
Clearly, since the norm is induced by an inner product, we deduce that E, F,
(a, b) → Ψ(a, b) = ||b||2 − ||a||2 satisfy the assumptions of Proposition 26. The
remaining task is to check that condition (45) of Proposition 25 holds, namely

k∑

i=1

λi||yi −
k∑

j=1

λjyj ||2 −
k∑

i=1

λi||xi − x||2 ≤ 0, for every λ ∈ Λk

where

Λk = {(λ1, · · · , λk) ∈ [0, 1]k :

k∑

i=1

λi = 1}.

So, assume that x, x1, · · · , xk ∈ E, y1, · · · , yk ∈ F and

||yi − yj || ≤ ||xi − xj ||, (29)
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for all i, j = 1, · · · , k. One easily checks, since the norm is induced by an inner
product, the following identity

k∑

i,j=1

λiλj ||yi − yj ||2 = 2

k∑

i=1

λi||yi −
k∑

j=1

λjyj ||2, (30)

for all λ ∈ Λk. Similarly, the inequality

k∑

i,j=1

λiλj ||xi − xj ||2 ≤ 2

k∑

i=1

λi||xi − x||2, (31)

holds for all x ∈ E and all λ ∈ Λk. In fact, the right-hand side of (31) is

minimized by the average value x̄ =
∑k

i=1 λixi. We combine (29), (30) and (31)
to conclude that (45) holds.

(ii) =⇒ (iii). This implication is obvious.

(iii) =⇒ (i). We proceed by contradiction assuming that either ‖.‖E or
‖.‖F is not induced by an inner product. We will construct

u : S := {x1, x2, x3} ⊂ E → {u (x1) = y1, u (x2) = y2, u (x3) = y3} ⊂ F

so that u ∈ Lip1(S, F ), but there is no extension ũ ∈ Lip1(S ∪ {x̄ = 0}, F ).
We will proceed into two steps.

Step 1. From Lemma 13 there exist y1, ỹ3 ∈ F and x1, x3 ∈ E so that

‖y1‖F = ‖ỹ3‖F = ‖x1‖E = ‖x3‖E = 1 and ‖y1 ± ỹ3‖F < ‖x1 ± x3‖E .

We can therefore find ε > 0 sufficiently small so that if

y3 = (1 + ε)ỹ3

we still have
‖y1 ± y3‖F ≤ ‖x1 ± x3‖E .

Letting y2 = −y1 and x2 = −x1 we find that

‖y1‖F = ‖y2‖F = 1, ‖y3‖F = 1 + ε, ‖x1‖E = ‖x2‖E = ‖x3‖E = 1,

‖y1 − y2‖F = ‖2y1‖F = 2 = ‖2x1‖E = ‖x1 − x2‖E ,

‖y1 − y3‖F ≤ ‖x1 − x3‖E ,

‖y2 − y3‖F = ‖y1 + y3‖F ≤ ‖x1 + x3‖E = ‖x2 − x3‖E .

Hence u ∈ Lip1(S, F ), meaning that

‖yi − yj‖F ≤ ‖xi − xj‖E , ∀i, j = 1, 2, 3. (32)
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Step 2. The claim that there is no extension ũ ∈ Lip1(S ∪ {x̄ = 0}, F ), will
follow if we can show that no y ∈ F can verify

‖y − yj‖F ≤ ‖xj‖E = 1, ∀j = 1, 2, 3,

which is equivalent to showing that

A = {y ∈ F : ‖y − yj‖F ≤ 1, ∀j = 1, 2, 3} = ∅.

To prove this we only need to show that

B ={y ∈ F : ‖y − y1‖F , ‖y − y2‖F = ‖y + y1‖F ≤ 1} = {0},

and use that ‖y3‖F = 1 + ε to obtain the claim. If y ∈ B, we obtain

1 = ‖y1‖F =

∥∥∥∥
1

2
(y1 − y) +

1

2
(y1 + y)

∥∥∥∥
F

≤ 1

2
‖y1 − y‖F +

1

2
‖y1 + y‖F ≤ 1

and consequently

‖y1‖F =
1

2
‖y1 − y‖F +

1

2
‖y1 + y‖F = 1.

Since y ∈ B, we get that

‖y1‖F = ‖y1 − y‖F = ‖y1 + y‖F = 1.

Since the unit sphere SF is strictly convex we obtain

y1 − y = y1 + y ⇒ y = 0

as wished.

2.3 Extension from a convex subset of E to E

In many applications, such as in Browder-Petryshyn [8], Moreau [28], Lions-
Stampacchia [23], Zabreiko-Kachurovsky-Krasnoselsky [40] –to cite few of them–
it is important to know if for every closed convex set Ω ⊂ E, every 1–Lipschitz
map u : Ω → F admits a 1–Lipschitz extension over E. These questions have
been investigated by DeFigueiredo and Karlovitz in [12], [13] and [14] in the
case E = F and ‖.‖E = ‖.‖F . The general case which still remains open,
is apparently closely related to whether or not projections on convex sets are
contractions. In this section, we address the extension property for contractions
for convex sets in simple cases where E is a Hilbert space.

Throughout this subsection, we assume that E is a reflexive Banach space,
and that Ω ⊂ E is a closed convex set. We will specify it, when we need
to impose that ∂Ω, the boundary of Ω, is strictly convex. This means that
(1 − t)x + ty ∈ intΩ whenever t ∈ (0, 1) and x, y ∈ ∂Ω, x 6= y. Here, intΩ
denotes the interior of Ω.
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Lemma 15 (i) For each x ∈ E, there exists z∞ ∈ Ω minimizing z → ‖x − z‖E

over Ω. Moreover if x /∈ intΩ, then z∞ ∈ ∂Ω.

(ii) If in addition either SE is strictly convex or ∂Ω is strictly convex, then
z∞ is uniquely determined. In that case, the map x → pΩ(x) := z∞ is well-
defined and is referred to it as the projection map onto Ω.

Proof. (i) Let x ∈ E and let {zn}∞n=1 ⊂ Ω be such

lim
n→+∞

‖x − zn‖E = inf
z∈Ω

‖x − z‖E . (33)

The set {zn}∞n=1 being bounded, it is weakly precompact and so, has a subse-
quence that we still label {zn}∞n=1, converging weakly to some z∞ ∈ Ω. Since
‖.‖E is convex, we conclude that ‖.‖E is weakly lower semicontinuous and hence,

‖x − z∞‖E ≤ lim
n→+∞

‖x − zn‖E .

This, together with (33) yields that z∞ is a minimizer of ‖x − z‖E over Ω.
Let us show that if x /∈ intΩ, then z∞ ∈ ∂Ω. By contradiction if z∞ ∈ intΩ,

we would have for t ∈ (0, 1) small enough that

zt = (1 − t) z∞ + tx ∈ Ω

and thus
‖x − zt‖E = (1 − t) ‖x − z∞‖E < ‖x − z∞‖E

contradicting the definition of z∞.

(ii) Let x /∈ Ω and z∞, z̄∞ ∈ Ω be two minimizers of ‖x − z‖E over Ω. Since,
z∞, z̄∞ ∈ ∂Ω, we find that zo := (z∞ + z̄∞)/2 ∈ Ω is another minimizer of
‖x − z‖E . Assume for the sake of contradiction that z∞ 6= z̄∞. If ∂Ω is strictly
convex then zo 6∈ ∂Ω, which yields a contradiction. On the other hand if SE is
strictly convex, we have from the fact that r = ‖x − z∞‖E = ‖x − z̄∞‖E > 0,
that ‖x − zo‖E < r, which yields also a contradiction. This proves that the
minimizer of ‖x − z‖E over Ω is unique.

Lemma 16 If ‖.‖E is induced by an inner product 〈·; ·〉 then pΩ : E → E is a
contraction.

Proof. Since for every t ∈ [0, 1] and z ∈ Ω, we have

‖x − pΩ(x)‖2
E ≤ g (t) := ‖x − [(1 − t) pΩ(x) + tz]‖2

E ,

we find, from the fact that g′ (0) ≥ 0, that pΩ(x) should satisfy

〈x − pΩ(x); z − pΩ(x)〉 ≤ 0, for every z ∈ Ω. (34)

If x1, x2 ∈ E, we use (34), once with z = pΩ(x2) and once with z = pΩ(x1), to
obtain that

〈x1 − pΩ(x1); pΩ(x2) − pΩ(x1)〉 ≤ 0 and 〈x2 − pΩ(x2); pΩ(x1) − pΩ(x2)〉 ≤ 0.
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Adding up these two inequalities yields that

‖pΩ(x1) − pΩ(x2)‖2
E ≤ 〈pΩ(x1) − pΩ(x2); x1 − x2〉 .

This, together with Schwarz inequality, leads to the claim, namely

‖pΩ(x1) − pΩ(x2)‖E ≤ ‖x1 − x2‖E .

Corollary 17 Assume that E is a Hilbert space and F is a normed space. Then
every contraction u : Ω ⊂ E → F has an extension ũ : E → F that is still a
contraction.

Proof. Every Hilbert space is reflexive. Furthermore, the parallelogram rule
(21) gives that SE is strictly convex. Hence by Lemma 16, pΩ is a contraction.
The map ũ := u ◦ pΩ is a contraction as a composition of two contractions.

Remark 18 We assume that E is merely a normed space and consider the
radial map x → pE(x) = x/ max{1, ‖x‖E}.

(i) In [12], under the assumption that dimE ≥ 3, DeFigueiredo–Karlovitz,
proved the following surprising result: pE ∈ Lip1(E, E) if and only if ‖.‖E is
induced by an inner product.

(ii) As it is well-known, we verify next that pE satisfies

‖x − pE(x)‖E ≤ ‖x − z‖E , for every z ∈ B̄E . (35)

Since the result is trivial if x ∈ B̄E , we assume that x ∈ E \ B̄E . We then let
ρ = ‖.‖E and observe that it trivially is the Minkowski function of BE. Let ρo

be its polar; it is then an easy exercise to see that

p ∈ ∂ρ(x) =⇒ ρo (p) ≤ 1

where ∂ρ(x) denotes the subgradient of ρ at x. So let p ∈ ∂ρ(x) and z ∈ B̄E ; we
then have

‖x − z‖E ≥ ‖x‖E − 〈p; z〉 ≥ ‖x‖E − ρo (p) ‖z‖E ≥ ‖x‖E − 1 = ‖x − pE(x)‖E

as claimed in (35).

3 Lack of extension of maps of bounded strains

We start with the following definition.

Definition 19 Assume that Ω ⊂ R
d and let ‖.‖ be the Euclidean norm.

(i) We define U1(Ω) to be the set of u : Ω → R
d such that ||u||∗Ω ≤ 1 where

||u||∗Ω = sup
x,y∈Ω

{(| 〈u(x) − u(y); x − y〉 |)/ ‖x − y‖2
: x 6= y}.

(ii) We say that Ω has the extension property for displacements of bounded
strains, if every u ∈ U1(Ω) admits an extension ũ ∈ U1(R

d).
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Throughout this section, unless otherwise stated, we assume that d is an
integer greater than or equal to 2. We discuss the following problem. Given
X ⊂ Y ⊂ R

d and u : X → R
d with ||u||∗X = 1, we investigate the possibility

of extending u to Y in such a way that ||u||∗Y = 1. In Theorem 20 we show
that if d = 2 and X, Y consist of two, respectively three points the extension
preserving the norm of u is always possible. However, we can always choose a
set X of three points, a set Y of four points and a map u for which there is
no extension preserving the norm of u. Thus a similar phenomenon as that of
Theorem 11 happens also here.

Exhibiting counterexamples of extensions becomes much more trickier when
the interior of X in R

d is non-empty. For instance, we prove that any convex set
of non empty interior does not have the extension property for displacements
of bounded strains. It suffices to show this result in R

2 and this is achieved in
Theorem 22. Our proof does not exhibit an explicit counter example. It exploits
the study of Michell trusses done in [17].

Throughout this section, we set e1 = (1, 0), ~0 = (0, 0), and e2 = (0, 1).

Theorem 20 (i) Assume that X = {a, b} ⊂ R
2, c ∈ R

2, and u : X → R
2

satisfies ||u||∗X = 1. Then, u admits an extension ū : Y = {a, b, c} → R
2

satisfying ||ū||∗Y = 1.

(ii) Let X = {a, b, c}, where a = −e1, b = ~0, and c = e1. Assume that
N /∈ [−2, 4] and define u : X → R

2 by

u(a) = a + Ne2, u(b) = b − Ne2, u(c) = c − Ne2.

Then ||u||∗X = 1 and ||ū||∗Y ≥ |N − 1|/3 > 1 for every ū : Y := X ∪ {e2} → R
2

which is an extension of u.

Proof. (i) It is not a loss of generality to assume that a, b and c are distinct.
Translating and rotating the plane, we may assume that b = 0 and that a =
(a1, 0). Since if necessary we could substitute u by u−u(b), we may also assume
without loss of generality that u(b) = b = 0. If c = λa for some λ 6= 0 we check
that setting ū(c) = λu(a), we have that ||ū||∗Y ≤ 1. Assume next that span{a, c}
is of dimension 2. We write c = (c1, c2), so that c2 6= 0. We define

ū(c) = β(c1, c2) + α(c2,−c1),

where β ∈ [−1, 1] and

α =
β ‖c‖2

+ 〈u(a); a − c〉 − a1βc1

a1c2
.

Note that

| 〈ū(c); c〉 | = |β| ‖c‖2 ≤ ‖c‖2
, |〈ū(a) − ū(c); a − c〉| = 0.

This proves (i).
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(ii) Direct computations show that

|〈u(x) − u(z); x − z〉| = ‖x − z‖2 ,

for all x, z ∈ X and so, ||u||∗X = 1. For y = (y1, y2) ∈ R
2 we set

f(y) = max

{
| 〈u(a) − y; a − e2〉 |

‖a − e2‖2 ,
| 〈u(b) − y; b− e2〉 |

‖b − e2‖2 ,
| 〈u(c) − y; c − e2〉 |

‖c − e2‖2

}

= max

{ |y1 + y2 + 1 − N |
2

, |y2 + N |, | − y1 + y2 + 1 + N |
2

}
.

Observe that

||ū||∗Y = max{||u||∗X , f(y)} = max{1, f(y)}. (36)

The triangle inequality trivially leads

3f(y) ≥ |y1 + y2 + 1 − N |
2

+ |y2 + N | + | − y1 + y2 + 1 + N |
2

≥ |y1 + y2 + 1 − N

2
− (y2 + N) +

−y1 + y2 + 1 + N

2
|

= |N − 1|.

This, together with (36) yields the proof of (ii).

Lemma 21 Assume that Ω ⊂ R
2 is an open, bounded, convex set of non-empty

interior and that a ∈ (0, 1). Then there exist a rotation matrix R, a vector
zo ∈ R

2 and a number ε > 0 such that for T : R
2 → R

2 defined by Tx = εRx+zo,
we have

±e1 ∈ TΩ ⊂ {(x1, x2) : x2 < a}.

Proof. Up to a translation, we can assume that (0, 0) ∈ Ω. We then define the
Minkowski function

ρ(x) = inf
t>0

{t : x/t ∈ Ω}.

Because Ω is convex, not only its boundary is Lipschitz but, the set of points
where ∂Ω is not twice differentiable in the sense of Alexandroff, is of measure
zero with respect to the 1–dimensional Hausdorff measure. Let xo ∈ ∂Ω be such
a point, meaning that ∇ρ(xo) is well defined and that there exists a symmetric
nonnegative matrix A such that

ρ(xo + h) = ρ(xo) + 〈∇ρ(xo); h〉 + 1/2 〈Ah; h〉 > +o(|h|2). (37)

Rotating and rescaling coordinates if necessary, we may also assume that

xo = e2 and ∇ρ(xo) = λe2

for some λ > 0.
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Claim 1. We claim that x±
ε := (1 − ε2)e2 ± ε3/2e1 ∈ Ω for 0 < ε << 1.

Indeed, using (37), the fact that ρ(xo) = 1 and that ∇ρ(xo) = λe2, we have
that

ρ(x±
ε ) = 1 − λε2 + o(ε2) < 1

for 0 < ε << 1, which proves the claim.

We next use that ρ is convex and again the fact that ρ(xo) = 1 and that
∇ρ(xo) = λe2 to obtain that if x = (x1, x2) and x2 ≥ 1 then ρ(x) ≥ 1 + λ(x2 −
1) ≥ 1. This proves that

Ω ⊂ {(x1, x2) : x2 < 1}.

and so, for r > 0 we have that

Ωr := {x = (x1, x2) : ρ(x) < r} ⊂ {(x1, x2) : x2 < r}. (38)

Claim 2. We claim that if r > 1/a3 is large enough then u± = (r−a)e2±e1 ∈
Ωr.
Indeed, setting

ε2 =
a

r
, t = 1 − 1

(ra3)1/4
, z = (1 − ε2)e2

we have that t ∈ (0, 1), z, x±
ε ∈ Ω and so, the convexity of Ω yields that

u±/r = x±
ε + t(z − x±

ε ) ∈ Ω.

Thus, u± ∈ Ωr, which proves the claim.

Fix r > 1/a3 large enough as before. One can readily check that we have
proven that there is a transformation T, as in the statement, such that

TΩ = Ωr − (r − a)e2.

By (38), TΩ ⊂ {(x1, x2) : x2 < a} and by Claim 2, ±e1 ∈ TΩ.

There is a large class C of open sets Ω ⊂ R
2 with Lipschitz boundary on

which there is a map u : Ω̄ → R
2 such that ||u||∗Ω ≤ 1 and ||ũ||∗

Rd > 1 for
any extension ũ of u. The next theorem asserts that C contains the non empty
convex bounded sets.

Theorem 22 Assume that Ω ⊂ R
2 is an open, bounded, convex set of non-

empty interior. Then Ω does not have the extension property for displacements
of bounded strains.

Proof. Observe that if T is as in Lemma 21, then Ω has the extension prop-
erty for displacements of bounded strains if and only if T (Ω) has the extension
property for displacements of bounded strains. Thus, by Lemma 21, we may
assume without loss of generality that

±e1 ∈ Ω ⊂ {(x1, x2) : x2 < 1/3}. (39)
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We first introduce a system F = (δe1
+ δ−e1

− 2δO)e2 of equilibrated forces:

∫

R2

dF1(x) =

∫

R2

dF2(x) =

∫

R2

x2dF1(x) −
∫

R2

x1dF2(x) = 0.

Assume, for the sake of contradiction, that Ω does have the extension prop-
erty for displacements of bounded strains, i.e. U1(Ω) = U1(R

2). From the fact
that ±e1 = (±1, 0) ∈ Ω implies (0, 0) ∈ Ω, we can conclude that F is supported
in Ω. Hence, by absurd hypothesis,

sup
u∈U1(Ω)

∫

Ω

〈F; u〉 = sup
u∈U1(R2)

∫

R2

〈F; u〉 . (40)

As in [17], we conclude that for every open convex set O ⊂ R
2, containing the

support of F, we have that

sup
u∈U1(O)

∫

O

〈F; u〉 = inf
σ∈ΣF (O)

∫

O

ρo[σ], (41)

where ΣF (O) is the set of matrices σ = (σij) such that σij = σji is a measure
supported by O, ρo : R

2×2 → [0, +∞] is the convex function defined in (13) and

∫

R2

〈σ;∇u〉 =

∫

R2

〈F; u〉

for all u ∈ C1(R2; R2).
Since (41) holds for O = Ω and O = R

2, we use (40) to conclude that

inf
σ∈ΣF (Ω)

∫

Ω

ρo[σ] = sup
u∈U1(Ω)

∫

Ω

〈F; u〉 = sup
u∈U1(R2)

∫

R2

〈F; u〉 = inf
σ∈ΣF (R2)

∫

R2

ρo[σ].

(42)
Let then σΩ be a minimizer, which exists cf. [17], of

∫
Ω

ρo[σ] over ΣF (Ω). Since
ΣF (Ω) ⊂ ΣF (R2), we deduce, from (42), that σΩ is also a minimizer of

∫
R2 ρo[σ]

over ΣF (R2). But, by [17] Theorem 5.2, σΩ is uniquely determined and satisfies

{(x1, x2) ∈ R
2 : x2

1 + x2
2 ≤ 1, x2 ≥ 1/2} ⊂ sptσΩ ⊂ Ω,

which is at variance with (39).

4 Appendix

4.1 Ingredients for extension property from finite to infi-

nite sets

In this subsection, we assume that (E, ‖.‖E) is a Banach space such that every
closed set D ⊂ E contains a countable set Dc ⊂ D whose closure is D. For
instance, every Banach space that is union of compact sets satisfies this property.
We assume that (F, ‖.‖F ) is a Banach space.
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Definition 23 Let E and F be Banach spaces and assume that Ψ : E×F → R

is continuous.

(i) We say that [E; F ] has the Ψ–extension property for finite sets if for any
finite set D ⊂ E, any x̄ ∈ E \ D and any map u : D → F satisfying

Ψ(x − y, u(x) − u(y)) ≤ 0, (43)

for all x, y ∈ D, there exists an extension ū : D ∪ {x̄} → F of u, such that

Ψ(x − y, ū(x) − ū(y)) ≤ 0, (44)

for all x, y ∈ D ∪ {x̄}.
(ii) We simply say that [E; F ] has the Ψ–extension property if for every

D ⊂ E and any map u : D → F satisfying (43), there exists an extension
ū : E → F of u satisfying (44) for all x, y ∈ E.

Remark 24 Observe that [E; F ] has the extension property for contractions for
finite sets if and only if [E; F ] has the Ψ–extension property for finite sets, for

Ψ(a, b) = ‖b‖F − ‖a‖E .

Many extension theorems of Lipschitz maps can be derived from a principle
we state in Proposition 25. It states a sufficient condition for extending Lipschitz
maps from sets of cardinality k into sets of cardinality k + 1. For completeness
of the manuscript, we incorporate a proof due to Minty [27]. The following
notation is needed later. When k is an integer, we define the convex set

Λk = {(λ1, · · · , λk) ∈ [0, 1]k :
k∑

i=1

λi = 1}.

We denote the elements of Λk by λ = (λ1, · · · , λk). We next need the function
F : Λk × Λk → R defined by

F (λ, µ) =
k∑

i=1

λiΨ


xi − x, yi −

k∑

j=1

µjyj


 ,

where x, x1, · · · , xk ∈ E, y1, · · · , yk ∈ F are kept fixed.

Proposition 25 Assume that Ψ : E × F → R is continuous and that b →
Ψ(a, b) is convex for every a ∈ E. Assume that we are given k + 1 points
x, x1, · · · , xk ∈ E and k points y1, · · · , yk ∈ F such that

F (λ, λ) ≤ 0, (45)

for all λ ∈ Λk. Then there exists y ∈ conv{y1, · · · , yk} such that

Ψ(xi − x, yi − y) ≤ 0,

for all i = 1, · · · , k.
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Proof. Clearly, λ → F (λ, µ) is concave for all µ. Also, by assumption, Ψ(a, ·)
is convex and so, µ → F (λ, µ) is convex for every λ. Since Λk is a convex
compact set, the minimax theorem holds (see [41] pp. 458) and there exists
(λ̄, µ̄) ∈ Λk × Λk such that

min
µ∈Λk

max
λ∈Λk

F (λ, µ) = F (λ̄, µ̄) = max
λ∈Λk

min
µ∈Λk

F (λ, µ). (46)

One can readily conclude from (46) that (λ̄, µ̄) is a saddle point in the sense
that

F (λ, µ̄) ≤ F (λ̄, µ̄) ≤ F (λ̄, µ), (47)

for all λ, µ ∈ Λk. Setting µ = λ̄ in (47) and using (45) we obtain that

F (λ, µ̄) ≤ F (λ̄, µ̄) ≤ F (λ̄, λ̄) ≤ 0,

for all λ ∈ Λk. We set y =
∑k

j=1 µ̄jyj and choose λi such that λi
j = 0 for j 6= i

and λi
i = 1. Note that F (λi, µ̄) ≤ 0 is equivalent to Ψ(xi − x, yi − y) ≤ 0.

We now use Zorn lemma to extend functions from finite to infinite sets.

Proposition 26 Let E be a Banach space such that every closed set D ⊂ E
contains a countable subset whose closure is D. Let F be a reflexive Banach
space. Let Ψ : E × F → R be continuous and such that

b → Ψ(a, b) is convex for every a ∈ E

and

lim
‖b‖

F
→+∞

Ψ(a, b) = +∞ uniformly for a in a bounded set of E. (48)

Assume that [E, F ] has the Ψ-extension property for finite sets, that D ⊂ E and
that u : D → F satisfies

Ψ(x − y, u(x) − u(y)) ≤ 0, (49)

for all x, y ∈ D. Then, u has an extension ū : E → F such that

Ψ(x − y, ū(x) − ū(y)) ≤ 0,

for all x, y ∈ E.

Remark 27 Theorem 20 (ii) shows that if E = F = R
d and

Ψ1(a, b) = |〈b; a〉| − ‖a‖2

then, [E; F ] does not have the Ψ1–extension property for finite sets. In contrast,
if we substitute Ψ1 by

Ψ2(a, b) = 〈b; a〉 − ‖a‖2

then as shown in Proposition 28 below, [E, F ] has the Ψ2–extension property
for finite sets but fails to have the Ψ2–extension property for general sets. This
shows that it is essential to have condition (48) in Proposition 26.
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Proof. (Proposition 26). Let D0 ⊂ E and any map u0 : D0 → F satisfying
(49). We define

P = {(D, uD) : D0 ⊂ D ⊂ E, uD satisfies (49)}.

We next define a partial order on P , namely

(D1, uD1
) ≤ (D2, uD2

) ⇔ D1 ⊂ D2 and uD2
|D1

= uD1
.

The lemma will follow from the three following claims.

Claim 1. We claim that (P,≤) admits a maximal element (umax, Dmax).
In view of Zorn lemma, it suffices to show that any totally ordered set Q ⊂ P

possesses a maximal element. Let then Q be a totally ordered set. Define

Dm = ∪(D,uD)∈QD and um(x) = uD(x)

for x ∈ D. Since Q is totally ordered, um is well defined and hence (Dm, um) is
a maximal element.

Claim 2. We claim that Dmax is closed.
Assume on the contrary that there exists a sequence {xn}∞n=1 ⊂ Dmax, an

element x̄ ∈ E \ Dmax such that xn → x̄. We set yn = umax(xn). Using the
coercivity assumption (48) on Ψ, we find that the sequence {yn}∞n=1 is bounded.
Since F is a reflexive Banach space, we may extract a weakly convergent sub-
sequence still labeled {yn}, that converges weakly to some ȳ ∈ F. We next set
D = Dmax ∪ {x̄} and define

u(x) =





umax(x) if x ∈ Dmax

ȳ if x = x̄ .

In order to prove that (umax, Dmax) ≤ (u, D) which will contradict the fact that
(umax, Dmax) is maximal, we fix ε > 0 arbitrary. Since Ψ is continuous, we
deduce that for any x ∈ Dmax

Ψ(x̄ − x, umax(xn) − umax(x)) ≤ ε + Ψ(xn − x, umax(xn) − umax(x)) ≤ ε;

the second inequality being true since (umax, Dmax) ∈ P and x, xn ∈ Dmax.
Note that Ψ(x̄−x, ·) is convex and so, it is weakly lower semicontinuous. Hence
for n sufficiently large we have that

Ψ(x − x, y − umax(x)) ≤ ε + Ψ(x − x, umax(xn) − umax(x)).

Combining the last two inequalities with the fact that ε is arbitrary, we obtain
that (u, D) ∈ P, (umax, Dmax) ≤ (u, D) and (umax, Dmax) 6= (u, D). This con-
tradicts the fact that (umax, Dmax) is maximal. Consequently, Dmax is closed.

Claim 3. We claim that Dmax = E.

27



The proof of this claim is very similar to the proof of Claim 2. Assume on
the contrary that E \ Dmax is non empty and so, it contains an element z. Let
Dc = {xn}∞n=1 ⊂ E \ {z} be a set whose closure is Dmax. Set

DN
c = {xn}N

n=1, uN = umax|DN
c

.

Since [E; F ] has the Ψ–extension property for finite sets, we conclude that uN

admits an extension uN : DN
c ∪ {z} → F such that

Ψ(z − x, ūN(z) − uN(x)) ≤ 0,

for all x ∈ DN
c . By the coercivity assumption on Ψ, the sequence {ūN(z) =

eN}∞N=1 is bounded. As F is reflexive, we may extract from {eN}∞N=1 a weakly
convergent subsequence, still labeled {eN}∞N=1. Let us denote by e the weak
limit of that subsequence. Letting D = Dmax ∪ {z} and

v(x) =






umax(x) if x ∈ Dmax

e if x = z,

as in the proof of the previous claim, we readily conclude that (v, Dmax∪{z}) ∈
P. This, contradicts the fact that (umax, Dmax) is maximal. Hence, Dmax = E.

4.2 Non extension property from finite to infinite sets

Proposition 28 Assume that E = F = R
d and

Ψ : (a, b) → 〈b; a〉 − ‖a‖2 .

Then

(i) [E; F ] has the Ψ–extension property for finite sets;

(ii) there exist a set D ⊂ R
d and a function u : D → R

d such that

Ψ(x − y, u(x) − u(y)) ≤ 0 for every (x, y) ∈ D × D,

and every extension of u to R
d fails to preserve that property.

Proof. (i) In order to prove (i), we verify that (45), Minty condition, holds.
Assume that x1, · · · , xk , y1, · · · , yk ∈ R

d satisfy

Ψ(xi − xj , yi − yj) ≤ 0 ⇐⇒ 〈yi − yj ; xi − xj〉 ≤ ||xi − xj ||2, (50)

for all i, j = 1, ..., k. We are to show that for every x ∈ R
d and every λ ∈ Λk,

2

k∑

i=1

λiΨ(xi − x, yi −
k∑

j=1

λjyj) ≤
k∑

i,j=1

λiλjΨ(xi − xj , yi − yj). (51)
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This together with (50) implies (45).
We first note that for any x ∈ R

d we have

k∑

i,j=1

λiλj 〈yi − yj ; xi − xj〉 = 2
k∑

i=1

λi

〈
yi −

k∑

j=1

λjyj ; xi − x

〉
. (52)

In other words, the expression at the right-hand side of (52) is independent of
x. We combine (31), namely

k∑

i,j=1

λiλj ||xi − xj ||2 ≤ 2

k∑

i=1

λi||xi − x||2

with (50) and (52) to obtain (51).

(ii) Note that if D ⊂ R
d and u, v : D → R

d are two functions such that
u = −v + id then

Ψ(x − y, u(x) − u(y)) ≤ 0 ⇔ 〈v(x) − v(y); x − y〉 ≥ 0

To prove (ii), we can assume without loss of generality that d = 1, and choose
v : D = (0, +∞) → R to be defined by

v(x) = log x.

The map v is monotone but cannot be extended in a monotone way to D̄ =
[0, +∞). This proves that [E, F ] does not have the Ψ–extension property.
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