ON THE WEAK LOWER SEMICONTINUITY OF ENERGIES WITH POLYCONVEX INTEGRANDS

By W. GANGBO

ABSTRACT. – Let $f: \Omega \times \mathbf{R}^N \times \mathbf{R}^{N \times N} \to [0, \infty)$ be a Borel measurable function such that $f(x, u, \xi) = a(x, u) g(x, \xi)$ and $g(x, \cdot)$ is polyconvex in the last variable ξ for almost every $x \in \Omega$. It is shown that if f is continuous, if a is bounded away from zero and if $F(u) := \int_{\Omega} a(x, u) g(x, \nabla u(x)) dx$, $u \in W^{1,N}(\Omega, \mathbf{R}^N)$, then F is weakly lower semicontinuous in $W^{1,p}$, p > N-1, in the sense that $F(u) \leq \lim_{\nu \to \infty} \inf_{x \to \infty} F(u_{\nu})$ for u_{ν} , $u \in W^{1,N}(\Omega, \mathbf{R}^N)$ such that $u_{\nu} \to u$ in $W^{1,p}$. On the contrary if g is only a Carathéodory function then in general F is not weakly lower semicontinuous in $W^{1,p}$ for N > p > N-1. Precisely, it is shown that if $F(u) := \int_K |\det(\nabla u(x))| dx$ where K is a compact set, then F is weakly lower semicontinuous in $W^{1,p}$, N > p > N-1 if and only if $meas(\partial K) = 0$.

1. Introduction

durated in

Let $N \geq 2$ be an integer number, let $\Omega \subset \mathbb{R}^N$ be an open bounded set and let $f \colon \Omega \times \mathbb{R}^N \times \mathbb{R}^{N \times N} \to [0, \infty)$ be a Borel measurable function. We set

$$F\left(u\right) := \int_{\Omega} f\left(x, \, u\left(x\right), \, \nabla \, u\left(x\right)\right) dx, \qquad u \in W^{1, \, p}\left(\Omega, \, \mathbf{R}^{N}\right) := W^{1, \, p}.$$

If one uses the direct method of the calculus of variations to obtain existence of minima for F, one needs to show that F is weakly lower semicontinuous in $W^{1,p}$. Since Morrey's works ([Mo1], [Mo2]) and later Acerbi-Fusco ([AF], Marcellini [Ma2]) and others, it is well known that if $1 \le p < \infty$ and if

$$(1.1) 0 \le f(x, u, \xi) \le a + b |\xi|^p, \forall (x, u, \xi) \in \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times N \times N} \text{ temperators}$$

then F is weakly lower semicontinuous in $W^{1,p}$ if only if f is quasiconvex with respect to the last variable ξ . We recall that f is said to be quasiconvex if it verifies the following Jensen's inequality

$$\frac{1}{\Omega} \int_{\Omega} f(x_0, u_0, \xi + \nabla u(x)) dx \ge f(x_0, u_0, \xi_0)$$

for almost every $x_0 \in \Omega$, for every $(u_0, \xi_0) \in \mathbb{R}^N \times \mathbb{R}^{N \times N}$ and for every $u \in W_0^{1,\infty}(\Omega, \mathbb{R}^N)$. As it is very hard to check whether or not a given function is quasiconvex, JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. – 0021-7824/1994/05/\$ 4.00 © Gauthier-Villars

We give some definitions relevant for this work.

DEFINITION 1.1. – Let $N, M \ge 1$ be two integer numbers and let $\Omega \subset \mathbb{R}^M$ be an open set. A function $f: \Omega \times \mathbb{R}^N \times \mathbb{R}^{N \times M} \to \mathbb{R}$ is said to be a Carathéodory function if $f(\cdot, u, \psi)$ is measurable for every $(u, \psi) \in \mathbb{R}^N \times \mathbb{R}^{N \times M}$ and $f(x, \cdot, \cdot)$ is continuous for almost every $x \in \Omega$.

Definition 1.2. - (See [Da]).

Let $f: \mathbb{R}^{N \times M} \to \mathbb{R}$ be a Borel measurable function defined on the set of the $N \times M$ real matrices.

• f is said to be **convex** if $f(\lambda \xi + (1 - \lambda) \eta) \leq \lambda f(\xi) + (1 - \lambda) f(\eta)$ for every $\xi, \eta \in \mathbb{R}^{N \times M}$ and every $\lambda \in (0, 1)$.

• f is said to be **polyconvex** if there exists a function h: $\mathbb{R}^{\tau(N,M)} \to \mathbb{R}$ convex such that $f(\xi) = h(T(\xi))$ for every $\xi \in \mathbb{R}^{N \times M}$, where $\tau(N,M) = \sum_{1 \le s \le \min(N,M)} \binom{M}{s} \binom{N}{s}$.

 $T(\xi) = (adj_1 \xi, ..., adj_{\min(N, M)} \xi)$ and $adj_s \xi$ stands for the matrix of all $s \times s$ minors of ξ . When N = M = 2 then $T(\xi) = (\xi, \det(\xi))$.

• f is said to be quasiconvex if $\frac{1}{|\Omega|} \int_{\Omega} f(\xi + \nabla \phi) \ge f(\xi)$ for every $\xi \in \mathbb{R}^{N \times M}$, for

every $\Omega \subset \mathbb{R}^N$ open bounded set and for every $\phi \in W_0^{1,\infty}(\Omega)^M$ (it is equivalent to assume that the previous inequality holds for one fixed open, bounded, $\Omega \subset \mathbb{R}^N$).

For completeness we state the following well known result.

PROPOSITION 1.3. – Let $N, M \geq 2$ be two integer numbers, let $\Omega \subset \mathbb{R}^N$ be an open bounded set and let $f: \Omega \times \mathbb{R}^{\overline{M}} \times \mathbb{R}^{N \times M} \to \mathbb{R}$ be a continuous function such that $f(x, u, \cdot)$ is quasiconvex for each $(x, u) \in \Omega \times \mathbb{R}^M$. Furthermore assume that f satisfies

$$-\alpha \left(\left| \, u \, \right|^q + \, \left| \, \xi \, \right|^q \right) - \gamma \left(x \right) \leqq f \left(x, \, u, \, \xi \right) \leqq \alpha \left(\left| \, u \, \right|^p + \, \left| \, \xi \, \right|^p \right) + \gamma \left(x \right),$$

where $\alpha > 0$, $\gamma \in L^1(\Omega)$, $1 \leq q ,$

$$|f(x, u, \xi) - f(x, v, \eta)| \le \beta (1 + |u|^{p-1} + |v|^{p-1} + |\xi|^{p-1} + |\eta|^{p-1}) \times (|u - v| + |\xi - \eta|)$$

where $\beta > 0$ and

$$|f(x, u, \xi) - f(y, u, \xi)| \le \nu (|x - y|) (1 + |u|^p + |\xi|^p),$$

where ν is a continuous increasing function with $\nu(0) = 0$. Let

$$F(u) := \int_{\Omega} f(x, u(x), \nabla u(x)) dx, \qquad u \in W^{1, p}(\Omega, \mathbb{R}^{M}).$$

Then F is weakly lower semicontinuous in $W^{1,p}$.

Proof. – For the proof we refer the reader to Theorem 2.4 in [Da].

JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES

LEMMA 1.4. – Let $\phi: \mathbb{R} \to \mathbb{R}$ be a bounded Lipschitz function. Let $\Omega \subset \mathbb{R}^N$ be an open bounded set and let $\psi \in C_0^{\infty}(\Omega, \mathbb{R}^{\tau})$. If p > N - 1, if u_{ν} , $u \in W^{1, N}(\Omega, \mathbb{R}^N)$ and if $u_{\nu} \to u$ in $W^{1, p}$ then

$$\lim_{\nu \to \infty} \int_{\Omega} \phi'(u_{\nu}^{1}) \dots \phi'(u_{\nu}^{N}) \langle \psi; T(\nabla u_{\nu}) \rangle dx = \int_{\Omega} \phi'(u^{1}) \dots \phi'(u^{N}) \langle \psi; T(\nabla u) \rangle dx.$$

Moreover the results stands for p=N-1, N=2. Here $\langle \; ; \; \rangle$ is the scalar product in \mathbb{R}^{τ} and $\tau=\sum\limits_{1\leq s\leq N}{N\choose s}^2$.

Proof. – Lemma 1.4 is obtained as a slight modification of the proof of Lemma 1 in [DM].

2. The case of continuous integrands

Let us first state the main result of this section.

THEOREM 2.1. – Let $N \geq 2$ be an integer number, let $\gamma > 0$, let $\Omega \subset \mathbb{R}^N$ be an open bounded set and $\tau = \sum_{1 \leq s \leq N} \binom{N}{s}^2$. Let $a \colon \Omega \times \mathbb{R}^N \to [0, \infty)$ and $g \colon \mathbb{R}^N \times \mathbb{R}^\tau \to [0, \infty)$

be two continuous functions such that $g(x,\cdot)$ is convex for each $x\in\Omega$. Let:

$$F\left(u\right) := \int_{\Omega} a\left(x,\,u\left(x\right)\right)g\left(x,\,T\left(\nabla\,u\left(x\right)\right)\right)dx, \qquad u \in W^{1,\,p}\left(\Omega,\,\mathbb{R}^{N}\right).$$

Then,

(2.2)
$$F(u) \leq \lim \inf_{\nu \to \infty} F(u_{\nu}),$$

if u_{ν} , $u \in W^{1,N}(\Omega, \mathbb{R}^N)$ and $u_{\nu} \rightharpoonup u$ in $W^{1,p}$, p > N-1. Moreover, if N=2 the result is true even if p = N-1 = 1.

We recall that $T(\nabla u)$ stands for the matrix of all minors of ∇u .

Remark 2.2. -1. - If $p \ge N$ it is easy to prove Theorem 2.1 even in the general case where $F(u) := \int_{\Omega} f(x, u(x), T(\nabla u(x))) \, dx$, f continuous, $f(x, u, T) \ge 0$, $f(x, u, \cdot)$ convex. Indeed, h being a fixed real number, we truncate the sequence u_{ν} , u and get a sequence v_{ν} , v so that $|v_{\nu}(x)|$, |v(x)| < h for almost every $x \in \Omega$. As f is convex in the last variable T, using Lemma 2.3 we can approximate f on $\Omega \times [-h, h]^N \times \mathbb{R}^{\tau}$ by a non decreasing sequence of smooth functions f_j such that

$$0 \le f_j(x, u, T) \le C_j(x, u) (1 + |T|),$$

where $C_{j}\left(x,\,u\right)=0$ for every $x\in\Omega$ such that $dist\left(x,\,\partial\Omega\right)<\frac{1}{l_{j}}$, for suitable $l_{j}\in\mathbb{N}$.

Then we apply Proposition 1.3 to $f_j(x, u, T)$ and to the sequence v_{ν} , v. Letting j go to infinity and then h go to infinity, we obtain

$$F(u) \leq \lim \inf_{\nu \to \infty} F(u_{\nu}).$$

2. – In the general case $F(u):=\int_{\Omega}f(x,u(x),T(\nabla u(x)))\,dx$, (2.2) would be true if we knew that the sequence $\{\det(\nabla u_{\nu})\}_{\nu}$ is bounded in L^1 . Indeed, as indicated above, by De Giorgi's Lemma, we approximate f(x,u,T) from below by a function g(x,u,T) which is smooth and grows lineary in the variable T. We can assume without loss of generality that there eixsts a constant h>0 such that $\|u_{\nu}(x)\|,\|u(x)\| \leq h$ for almost every $x\in\Omega$. Then, we fix a compact set K in $\Omega\times[-h,h]^N$ and by Weierstrass's Approximation Lemma we obtain:

(2.3)
$$\begin{cases} |g(x, u, T) - g_n(x, u, T)| \leq \varepsilon \left(1 + \max_{(y, v) \in K} g(y, v, T)\right) \\ \forall T \in \mathbb{R}^{\tau}, \quad \forall (x, u) \in K, \end{cases}$$

where $g_n(x, u, T)$ has the form

$$g_n(x, u, T) = \sum_{k=0}^{n} a_k^{1, n}(u_1) \dots a_k^{N, n}(u_N) h_k^n(x, T).$$

Then we can show with the relaxed assumptions

$$a_k^{1,n}(u_1), \ldots, a_k^{N,n}(u_N), h_k^n(x, T) \ge 0$$

that if
$$F_n(u) := \int_{\Omega} g_n(x, u(x), T(\nabla u)(x)) dx$$
, then,
$$F_n(u) \leq \lim \inf_{\nu \to \infty} F_n(u_{\nu}),$$

which together with (2.3) and the fact that $\{\det (\nabla u_{\nu})\}_{\nu}$ is bounded in L^1 , yields

$$F(u) \leq \lim \inf_{\nu \to \infty} F(u_{\nu}).$$

However $\{\det(\nabla u_{\nu})\}_{\nu}$ is not necessarily bounded in L^{1} . [DM] provides an example where $u_{\nu} \rightharpoonup u$ in $W^{1,\,p}$, N>p>N-1 and $\{\det(\nabla u_{\nu})\}_{\nu}$ is not bounded in L^{1} (cf. also [BM]). For instance if N=2, $\Omega=(0,\,1)^{2}$, 1,

$$u_{\nu} \equiv \nu^{\frac{1}{p}-1} (1-y)^{\nu} (\sin \nu x, \cos \nu x) \rightarrow (0, 0) \text{ in } W^{1, p}.$$

Then $\det (\nabla u_{\nu}) = -\nu^{\frac{2}{p}} (1-y)^{2\nu-1}$ is not bounded in L^1 if p < 2.

- 3. The assumption that u_{ν} , $u \in W^{1, N}$ is important. It can be useful to extend the definition of F(u) to functions $u \in W^{1, p}$, p < N (cf. [Ma1]). Also Theorem 2.1 is false if one omits this assumption (cf. [BM]).
- 4. If $1 \leq p < N-1$, and if $N \geq 3$, then F is not necessarily weakly lower semicontinuous (cf. [Mal]). But if p = N-1, $N \geq 3$, the question to know whether or not F is weakly lower semicontinuous is still open. However Malý proved in [Mal] that if $u, u_{\nu} \in W^{1, N-1}$ are sense preserving diffeomorphisms such that $u_{\nu} \rightharpoonup u$ in $W^{1, N-1}$, then $F(u) \leq \lim_{\nu \to \infty} \inf F(u_{\nu})$.
- 5. The basic idea to prove Theorem 2.1 is the following: in the first step, we approximate f from below by a sum of functions of the form $c(x) \, b^1(u^1) \cdots b^N(u^N) \, g(x, T(\nabla u))$, with $c(x), \, b^1(u^1), \ldots, \, b^N(u^N) \geqq 0$. This can be done using Weierstrass's Approximation Theorem (see Lemma 2.5). In the second step, changing variables we write $c(x) \, b^1(u^1) \cdots b^N(u^N) \, g(x, T(\nabla u))$ in the form

 $h = h\left(x, T\left(\nabla v\right)\right)$. Then, following the idea of Dacorogna and Marcellini in their study of integrands of the form $h = h\left(T\left(\nabla v\right)\right)$ (see [DM]), we conclude the Theorem.

Lemma 2.3. (De Giorgi's Lemma). – Let $N, \tau \ge 1$ be two integer numbers, let $\Omega \in \mathbb{R}^N$ be a open bounded set, and let $g: \Omega \times \mathbb{R}^{\tau} \to [0, \infty)$ be a continuous function such that $g(x, \cdot)$ is convex for each $x \in \Omega$. There exists a non decreasing sequence of functions $(g_l)_l$ of class $C^{\infty}(\Omega \times \mathbb{R}^{\tau})$ such that:

- $i) g_l \geq -1;$
- ii) $(g_l)_l$ converges uniformly to g in every compact subset of $\Omega \times \mathbb{R}^{\tau}$;
- iii) $g_l(x, \cdot)$ is convex;
- iv) $g_l(x, T) = 0$ if $dist(x, \partial\Omega) \leq \frac{1}{l}$;
- v) On every compact subset K of Ω , $D_T g_l(x, T)$ is bounded in $K \times \mathbb{R}^{\tau}$ by a constant which depend only on l, g and K, where $D_T g_l = \left(\frac{\partial}{\partial T_1} g_1, \ldots, \frac{\partial}{\partial T_r} g_l\right)$.

Proof. - For the proof we refer the reader to [Ma2].

Remark 2.4. – One can deduce from Lemma 2.3 that there exists a constant $C \equiv C(l, g)$ such that $|D_T g_l(x, T)| \leq C$ for every $(x, T) \in \Omega \times \mathbb{R}^{\tau}$.

LEMMA 2.5. - (Weierstrass's Approximation Theorem)

Let $f:[0,1]\to\mathbb{R}$ be a continuous function. Then, for every $\varepsilon>0$, there exists $n_0\left(\varepsilon\right)\in\mathbb{N}$ such that $n\geqq n_0\left(\varepsilon\right)$ implies

$$\left| f\left(u\right) - \sum_{0 \le k \le n} {n \choose k} f\left(\frac{k}{n}\right) u^{k} \left(1 - u\right)^{n-k} \right| \le \varepsilon \left(1 + \max_{0 \le t \le 1} \left| f\left(t\right) \right|\right),$$

for every $u \in [0, 1]$.

Proof. - For the proof we refer the reader to [Kl]).

Proof of Theorem 2.1. – We give the proof of Theorem 2.1 only in the case where N>p>N-1 since the case $p\geq N$ is easily obtained (see Remark 2.2). In the first step of the proof, we truncate the functions $(u_{\nu})_{\nu}$ and u to get a new sequence which is uniformly bounded in L^{∞} . Then we write f as a sum of functions of the form $c(x)b^1(u^1)\cdots b^N(u^N)g(x,T(\nabla u))$, where c and b^1,\ldots,b^N are smooth. In the second step we study the particular case where f has the form $c(x)b^1(u^1)\cdots b^N(u^N)g(x,T(\nabla u))$. In the last step we study the general case where f satisfies the hypotheses of Theorem 2.1. Clearly (2.2) is true if

$$\lim\inf_{\nu\to\infty}\int_{\Omega'}a\left(x,\,u_{\nu}\right)g\left(x,\,T\left(\nabla\left(u_{\nu}\right)\right)\right)=\infty.$$

Assume that

$$M:=\lim\inf_{\nu\to\infty}\,\int_{\Omega'}\,a\left(x,\,u_{
u}
ight)g\left(x,\,T\left(
abla\left(u_{
u}
ight)
ight)
ight)<+\infty.$$

$$\mathrm{Fix}\ h>0,\ E=[-h,\,h]^N,\ l_0\in \mathbf{N}\ \mathrm{and}\ \Omega'=\bigg\{x\in\Omega,\ dist\,(x,\,\partial\Omega)>\frac{1}{l_0+1}\bigg\}.$$

First step.

a) Factorization of a(x, u)

Using explicitly Weierstrass's Approximation Theorem and the fact that $a(x, u) \ge \gamma > 0$, it is easy to deduce that there are two sequences $(b_k^n)_{k \le n}$ and $(c_k^n)_{k \le n}$ such that for every $\varepsilon > 0$, there is $n(\varepsilon) \in \mathbb{N}$ depending only on ε , Ω' and h verifying

$$(2.4) \quad 0 \leq a(x, u) - \sum_{k=0}^{n} c_{k}^{n}(x) b_{k}^{n}(u) \leq \varepsilon \quad \forall (x, u) \in \bar{\Omega}' \times E := K, \qquad \forall n \geq n (\epsilon),$$

$$b_{k}^{n}(x, u_{1}, \dots, u_{N}) = b_{k}^{1, n}(u_{1}) \cdots b_{k}^{N, n}(u_{N}) \quad k = 1, \dots, n, \qquad n \geq 0.$$

$$b_{k}^{j, n} \in C^{\infty}(\mathbb{R}), \qquad b_{k}^{j, n} \geq 0 \quad j = 1, \dots, N \quad k = 1, \dots, n, \quad n \geq 1,$$

$$c_{k}^{n} \in C^{\infty}(\bar{\Omega}'), \qquad c_{k}^{n} \geq 0 \quad k = 1, \dots, n, \quad n \geq 1.$$

$$c_{0}^{n}(0) = 1, \qquad b_{0}^{n}(u) = -\epsilon.$$

b) Truncation of u and u_{ν} .

Fix $\delta(h) \ll 1$. Truncate u and u_{ν} by considering $\phi(u)$ and $\phi(u_{\nu})$ respectively where ϕ is given by

$$(2.5) \qquad \phi\left(u\right) = \prod_{i=1}^{N} \psi\left(u^{i}\right), \qquad \phi'\left(u\right) = \prod_{i=1}^{N} \psi'\left(u^{i}\right) \qquad \text{with} \quad \psi'\left(t\right) = \frac{d\psi}{dt}\left(t\right),$$

and $\psi \in C^{\infty}(\mathbb{R}, \mathbb{R})$ is defined in the following way

$$\psi(t) = \begin{cases} -h & \text{if} \quad t < -h - \delta(h), \\ t & \text{if} \quad |t| \leq h, \\ h & \text{if} \quad t > h + \delta(h), \end{cases}$$

 $0 \le \psi'(t) \le 1$ for every $t \in \mathbb{R}$ and $\psi'(t) = 0$ if and only if $|t| \ge h + \delta(h)$.

c) Regularization of g(x, T).

We apply Lemma 2.3 to $g: \Omega \times \mathbb{R}^r \to [0, \infty)$. We obtain a sequence $(g_l)_l$ which has properties i, \ldots, v) of Lemma 2.3. Recall that

(2.6)
$$g(x, T) = \lim_{l \to \infty} g_l(x, T) \qquad \forall (x, T) \in \Omega \times \mathbf{R}^{\tau}.$$

Since $(g_l)_l$ is uniformly bounded below on $\Omega \times \mathbb{R}^{\tau}$, we can assume without loss of generality that $g_l \geq 0$.

Second step. For $l = l_0$, $k \ge 1$ we show that

(2.7)
$$\lim \inf_{\nu \to \infty} \int_{\Omega'} \phi'(u_{\nu}) c_k^n(x) b_k^n(u_{\nu}) g_l(x, T(\nabla u_{\nu}))$$

$$\geq \int_{\Omega'} \phi'(u) c_k^n(x) b_k^n(u) g_l(x, T(\nabla u)).$$

- If
$$\lim_{\nu\to\infty} \int_{\Omega'} \phi'(u_{\nu}) c_k^n(x) b_k^n(u_{\nu}) g_l(x, T(\nabla u_{\nu})) = \infty$$
 then (2.7) is trivial.

– Assume that $\inf_{\nu\to\infty}\int_{\Omega'}\phi'\left(u_{\nu}\right)c_{k}^{n}\left(x\right)b_{k}^{n}\left(u_{\nu}\right)g_{l}\left(x,\,T\left(\nabla\,u\right)\right)<\infty.$ We may assume without loss of generality that

$$u \in C^{\infty}(\Omega, \mathbb{R}^N).$$

If this wasn't the case then it would suffice to replace u by $u_{\varepsilon} \in C^{\infty}(\Omega, \mathbb{R}^N)$ such that $\|u_{\varepsilon} - u\|_{W^{1,N}} \leq \epsilon$, following the proof with necessary modifications. Since

$$(2.8) \hspace{1cm} g_l\left(x,\cdot\right) \equiv 0 \hspace{1cm} \text{if} \hspace{1cm} dist\left(x,\partial\Omega\right) \leqq \frac{1}{l},$$

$$|D_T g_l\left(x,T\right)| \leqq C \equiv C\left(l,h\right) \hspace{1cm} \text{for every} \hspace{1cm} (x,T) \in \Omega \times \mathbf{R}^\tau,$$

$$g_l \in C^\infty\left(\Omega \times \mathbf{R}^\tau, \hspace{1cm} [0,\infty)\right) \hspace{1cm} \text{and} \hspace{1cm} g_l\left(x,\cdot\right) \hspace{1cm} \text{is convex},$$

$$c_k^n \in C^\infty\left(\bar{\Omega}'\right),$$

$$b_k^n \in C^\infty\left(\mathbf{R}^N\right),$$
 and
$$\phi' \in C^\infty\left(\mathbf{R},\mathbf{R}\right)$$

we deduce that

$$\lim \inf_{\nu \to \infty} \int_{\Omega'} c_k^n(x) b_k^n(u_{\nu}) \phi'(u_{\nu}) g_l(x, T(\nabla u_{\nu}))$$

$$\geq \lim \inf_{\nu \to \infty} c_k^n(x) b_k^n(u_{\nu}) \phi'(u_{\nu}) g_l(x, T(\nabla u))$$

$$+ \lim \inf_{\nu \to \infty} \int_{\Omega'} c_k^n(x) b_k^n(u_{\nu}) \phi'(u_{\nu}) \langle D_T g_l(x, T(\nabla u)); T(\nabla u_{\nu}) - T(\nabla u) \rangle$$

$$\geq \int_{\Omega'} c_k^n(x) b_k^n(u) \phi'(u) g_l(x, T(\nabla u))$$

$$+ \lim \inf_{\nu \to \infty} \int_{\Omega'} c_k^n(x) b_k^n(u_{\nu}) \phi'(u_{\nu}) \langle D_T g_l(x, T(\nabla u)); T(\nabla u_{\nu}) - T(\nabla u) \rangle,$$

where we used Fatou's Lemma and the fact that

$$c_k^n\left(x\right)b_k^n\left(u_\nu\right)\phi'\left(u_v\right)
ightarrow c_k^n\left(x\right)b_k^n\left(u\right)\phi'\left(u\right) \quad \text{a.e.}$$

For $T \in \mathbf{R}^{\tau}$, we set $T = (\bar{T}, t)$, $t \in \mathbf{R}$. For fixed $x \in \Omega$, let $D_{\bar{T}} g_l(x, \cdot)$ denote the matrix of the partial derivatives of $g_l(x, \cdot)$ with respect to the $\tau - 1$ first variables in \mathbf{R}^{τ} . Let H be the functional defined on $\Omega \times \mathbf{R}^N \times \mathbf{R}^{N \times N}$ by

$$H\left(x,\,v,\,\xi\right)=c_{k}^{n}\left(x\right)b_{k}^{n}\left(v\right)\phi'\left(v\right)\langle D_{\bar{T}}\,g_{l}\left(x,\,T\left(\nabla\,u\left(x\right)\right)\right);\ \bar{T}\left(\xi\right)-\bar{T}\left(\nabla\,u\right)\rangle.$$

It is easy to see that H and -H are quasiconvex in the last variable. Using the fact that $u \in C^{\infty}(\Omega, \mathbb{R}^N)$, (2.8) and the fact that $|\phi'(u_{\nu})| \leq 1$, we get that H and -H verify the assumptions of Proposition 1.3. We deduce that

$$(2.9) \lim_{\nu \to \infty} \inf_{\Omega'} c(x)_k^n b_k^n(u_\nu) \phi'(u_\nu) \langle D_{\bar{T}} g_l(x, T(\nabla u)); \bar{T}(\nabla u_\nu) - \bar{T}(\nabla u) \rangle = 0.$$

On the other hand, setting

$$\begin{split} v_{\nu}^{i} &= B_{k}^{i}\left(\psi\left(u_{\nu}^{i}\right)\right), \qquad v^{i} = B_{k}^{i}\left(\psi\left(u^{i}\right)\right), \\ \text{where } B_{k}^{i}\left(t\right) &= \int_{-h-\delta\left(h\right)}^{t} b_{k}^{i,\,n} \circ \psi^{-1}\left(s\right) ds,, \; \left|\,t\,\right| \; \leqq \; h + \delta\left(h\right), \end{split}$$

then we obtain

$$\begin{split} v_{\nu}^{i} &\rightarrow v^{i} \quad \text{in } W^{1,\,p}, \\ b_{k}^{i,\,n}\left(u_{\nu}^{i}\right) \psi'\left(u_{\nu}^{i}\right) &\rightarrow b_{k}^{i,\,n}\left(u^{i}\right) \psi'\left(u^{i}\right) \text{ a.e.} \end{split}$$

As

$$\frac{\partial}{\partial t} g_l(x, T \nabla u) \in C_0^{\infty}(\Omega),$$

by Lemma 1.4 we obtain:

$$\lim \inf_{\nu \to \infty} \int_{\Omega'} c_k^n(x) \, b_k^n(u_\nu) \, \phi'(u_\nu) \, \frac{\partial}{\partial t} \, g_l(x, T(\nabla u)) \left(\det (\nabla u_\nu) - \det (\nabla u) \right)$$

$$= \lim \inf_{\nu \to \infty} \left(\int_{\Omega'} c_k^n(x) \, \frac{\partial}{\partial t} \, g_l(x, T \nabla u) \left(\det (\nabla v_\nu) - \det (\nabla v) \right) \right)$$

$$- \int_{\Omega'} c_k^n(x) \left(b_k^n(u_\nu) \, \phi'(u_\nu) - b_k^n(u) \, \phi'(u) \right) \frac{\partial}{\partial t} \, g_l(x, T \nabla u) \, \det (\nabla u) \right) = 0$$

which together with (2.9), yields (2.7).

Third step. We conclude that

$$\int_{\Omega} a\left(x,\,u\left(x\right)\right)g\left(x,\,T\left(\nabla\,u\left(x\right)\right)\right)dx \leqq \lim\inf_{\nu\to\infty}\int_{\Omega} a\left(x,\,u_{\nu}\left(x\right)\right)g\left(x,\,T\left(\nabla\,u_{\nu}\left(x\right)\right)\right)dx.$$
 Since $M:=\lim\inf_{\nu\to\infty}\int_{\Omega'} a\left(x,\,u_{\nu}\right)g\left(x,\,T\left(\nabla\,u_{\nu}\right)\right)<\infty$ and $a\left(x,\,u\right)\geqq\gamma>0$, by steps 1 and 2 we obtain

$$\lim \inf_{\nu \to \infty} \int_{\Omega} a(x, u_{\nu}(x)) g(x, T(\nabla u_{\nu}(x))) dx$$

$$\geq \lim \inf_{\nu \to \infty} \int_{\Omega'} \left(\phi'(u_{\nu}) \sum_{k=0}^{n(\varepsilon)} c_{k}^{n(\varepsilon)}(x) b_{k}^{n(\varepsilon)}(u_{\nu}(x)) g_{l_{0}}(x, T(\nabla u_{\nu})) \right) dx$$

$$\geq \sum_{k=0}^{n(\varepsilon)} \int_{\Omega'} \phi'(u) c_{k}^{n(\varepsilon)}(x) b_{k}^{n(\varepsilon)}(u) g_{l_{0}}(x, T(\nabla u)) dx - \varepsilon S,$$

where
$$S = \frac{M+1}{\gamma} + 3 \operatorname{meas}\left(\Omega\right) + \int_{\Omega} g_{l_0}\left(x, T\left(\nabla u\right)\right) dx.$$

In the previous inequalities, we used the second step to prove that

$$\lim \inf_{\nu \to \infty} \int_{\Omega'} \phi'\left(u_{\nu}\right) c_{k}^{n}\left(x\right) b_{k}^{n}\left(u_{\nu}\right) g_{l}\left(x, T\left(\nabla u_{\nu}\right)\right) \geq \int_{\Omega'} \phi'\left(u\right) c_{k}^{n}\left(x\right) b_{k}^{n}\left(u\right) g_{l}\left(x, T\left(\nabla u\right)\right)$$

for $k \neq 0$. For k = 0, we used the fact that $a(x, u) \geq \gamma > 0$, and $M < \infty$. Letting ε go to zero, l_0 go to infinity and then h go to infinity in the previous inequality we obtain (2.2).

3. The case of Carathéodory integrands

We state the main result of this section.

THEOREM 3.1. – Let $N \ge 2$ be an integer number, $N-1 , let <math>\Omega \subset \mathbb{R}^N$ be an open bounded set, and let $K \subset \Omega$ be a compact set. The two following assertions are equivalent:

$$(3.10) meas(\partial K) \neq 0,$$

(3.11)
$$\lim \inf_{\nu \to \infty} \int_{K} |\det (\nabla u_{\nu}(x))| dx < \int_{K} |\det (\nabla u(x))| dx$$

for a suitable u_{ν} , $u \in W^{1,N}(\Omega, \mathbb{R}^N)$ such that $u_{\nu} \to u$ in $W^{1,p}$. Before proving Theorem 3.1 we begin with some remarks.

Remark 3.2. – Let us recall that if $F(u) = \int_K |\det(\nabla u(x))| dx$ and if K is a compact set then, for $p \ge N$, F is weakly lower semicontinuous on $W^{1,p}$ even if $meas(\partial K) \ne 0$ (see [AF]). For p < N - 1 then F is not weakly lower semicontinuous on $W^{1,p}$ even if $meas(\partial K) = 0$ (see [Mal]).

The following lemma will be used to prove that (3.10) implies (3.11).

LEMMA 3.3. – Let $N, \tau \geq 2$ be two integer numbers, let $\Omega \subset \mathbb{R}^N$ be an open bounded set and let $K \subset \Omega$ be a compact set such that meas $(\partial K) > 0$. Let p < N be a real number. Then there is a sequence $u_k \in W^{1,N}(\Omega, \mathbb{R}^N)$ such that

- (i) $u_k \rightarrow u = id$ in $W^{1,p}(\Omega, \mathbb{R}^N)$ with id(x) := x,
- (ii) $|\det(\nabla u_k(x))| \leq 1$ on K,
- (iii) $meas \{x \in \partial K : \det (\nabla u_k(x)) \neq 0\} < \frac{1}{2^k}$

Proof. – We divide the proof into five steps. We assume without loss of generality that $\Omega = (0, 1)^N$.

First step. We construct the sequence u_k . Let $k \in \mathbb{N}$ be fixed. Using Vitali's Covering

Theorem we find two sequences $(x_i^k)_i\subset\partial K,\,(eta_i^k)_i\subset\left(0,\,rac{1}{2^k}
ight)$ such that

(3.12)
$$\begin{cases} \partial K \subset \tilde{N}_k \bigcup (\bigcup_{i=1}^{k} B(x_i^k, \beta_i^k)), \\ B(x_i^k, \beta_i^k) \cap B(x_j^k, \beta_j^k) = \emptyset & \text{for } i \neq j, \quad i, j = 1, \dots, \infty, \\ meas(\tilde{N}_k) \leq \frac{meas(\partial K)}{2^{k+1}}, \end{cases}$$

(3.13)
$$\begin{cases} meas\left(\bigcup_{i=1}^{k} B\left(x_{i}^{k}, \beta_{i}^{k}\right) \backslash \partial K\right) \leq \frac{meas\left(\partial K\right)}{2^{k+1}}, \\ B\left(x_{i}^{k}, \beta_{i}^{k}\right) \subset \Omega \quad \text{for } i = 1, \dots, \infty, \end{cases}$$

where $B(x, \beta)$ stands for the open ball in \mathbb{R}^N with center x and radius β and \tilde{N}_k is an open set. Since K is a compact set we have

(3.14)
$$\partial K \subset \tilde{N}_k \cup \left(\bigcup_{i=1}^{T(k)} B(x_i^k, \beta_i^k)\right),$$

where T(k) is a constant depending on k. Now we want to change the centers x_i^k by other centers which belong to the complementary of K. Using (3.12), (3.13), (3.14) and the fact that $x_i^k \in \partial K$, we deduce that there are an open set N_k and two sequences $a_i^k \in B(x_i^k, \beta_i^k) \setminus K$, $0 < \varepsilon_i^k < \beta_i^k$, such that

(3.15)
$$\begin{cases} \partial K \subset N_k \bigcup \left(\bigcup_{i=1}^{T(k)} B\left(a_i^k, \varepsilon_i^k\right) \right), \\ B\left(a_i^k, \varepsilon_i^k\right) \subset B\left(x_j^k, \beta_j^k\right) & i = 1, \dots, T(k), \end{cases}$$

(3.16)
$$meas(N_k) \leq \frac{meas(\partial K)}{2^k},$$

$$(3.17) meas\left(\bigcup_{i=1}^{T(k)} B\left(a_{i}^{k}, \varepsilon_{i}^{k}\right) \backslash \partial K\right) \leqq \frac{meas\left(\partial K\right)}{2^{k}}.$$

Since $\Omega \setminus K$ is an open set and $a_i^k \in B(x_i^k, \beta_i^k) \setminus K$, there is $\delta_i^k > 0$ such that

(3.18)
$$\delta_{i}^{k} < \left(\frac{1}{T(k)\left(2^{k} \cdot \varepsilon_{i}^{k}\right)^{p}}\right)^{\frac{1}{N-p}} \quad i = 1, \dots, T(k)$$

and

(3.19)
$$B(a_i^k, \delta_i^k) \subset \Omega \backslash K \quad i = 1, \dots, T(k).$$

We define

$$u_{k}\left(x\right) = \begin{cases} a_{i}^{k} + \frac{\varepsilon_{i}^{k}}{\delta_{i}^{k}}\left(x - a_{i}^{k}\right) & x \in B\left(a_{i}^{k}, \delta_{i}^{k}\right), \\ a_{i}^{k} + \frac{\varepsilon_{i}^{k}}{\left|x - a_{i}^{k}\right|}\left(x - a_{i}^{k}\right) & x \in B\left(a_{i}^{k}, \varepsilon_{i}^{k}\right) \backslash B\left(a_{i}^{k}, \delta_{i}^{k}\right), \\ x & x \in \Omega \backslash \left(\bigcup_{i=1}^{T\left(k\right)} B\left(a_{i}^{k}, \varepsilon_{i}^{k}\right)\right). \end{cases}$$

It is easy to see that u_k is a diffeomorphism from $B(a_i^k, \delta_i^k)$ into $B(a_i^k, \varepsilon_i^k)$ and u_k maps $B(a_i^k, \varepsilon_i^k) \setminus B(a_i^k, \delta_i^k)$ into $\partial B(a_i^k, \varepsilon_i^k)$.

Second step. In this step we show that $u_k \in W^{1,\infty}(\Omega, \mathbf{R}^N)$. As

$$u_k \in C^1(\bar{B}(a_i^k, \delta_i^k), \mathbf{R}^N),$$

$$u_k \in C^1\left(\bar{B}\left(a_i^k,\,\varepsilon_i^k\right) \middle\backslash B\left(a_i^k,\,\delta_i^k\right),\,\mathbb{R}^N\right)$$

and

 u_k is continuous on $\bar{B}(a_i^k, \varepsilon_i^k)$,

we have

$$(3.20) u_k \in W^{1,\infty}(B(a_i^k, \varepsilon_i^k), \mathbb{R}^N)$$

and since

(3.21)
$$u_k(x) = x \quad \text{on } \partial B(a_i^k, \varepsilon_i^k)$$

we conclude that

$$(3.22) u_k \in C^0(\Omega, \mathbb{R}^N).$$

Using the definition of u_k on $\Omega \setminus \left(\bigcup_{i=1}^{T(k)} B\left(a_i^k, \varepsilon_i^k\right)\right)$ it is obvious that

$$(3.23) u_k \in W^{1,\infty}\left(\Omega \setminus \bigcup_{i=1}^{T(k)} \bar{B}\left(a_i^k, \varepsilon_i^k\right)\right),$$

which together with (3.20) and (3.22) yields

$$(3.24) u_k \in W^{1,\infty}(\Omega, \mathbf{R}^N).$$

Third step. We show that, up to a subsequence, $u_k \to u = \mathrm{id}$ in $W^{1,p}(\Omega, \mathbb{R}^N)$. Using the definition of u_k , we obtain:

(3.25)
$$|u_k(x) - x| \le \frac{1}{2^k} \text{ for every } x \in \Omega$$

and

$$\nabla \, u_k \left(x \right) = \begin{cases} \frac{\varepsilon_i^k}{\delta_i^k} \, I_N & x \in B \left(a_i^k, \, \delta_i^k \right), \\ \frac{\varepsilon_i^k}{|x - a_i^k|} \left(I_N - \frac{(x - a_i^k) \otimes (x - a_i^k)}{|x - a_i^k|^2} \right) & x \in B \left(a_i^k, \, \varepsilon_i^k \right) \backslash B \left(a_i^k, \, \delta_i^k \right), \\ I_N & x \in \Omega \backslash \left(\bigcup_{i=1}^{T \left(k \right)} B \left(a_i^k, \, \varepsilon_i^k \right) \right), \end{cases}$$

where I_N is the identity matrix in $\mathbb{R}^{N\times N}$. If $a, b\in \mathbb{R}^N$, $a\otimes b$ denotes the $N\times N$ matrix with component $a_i\,b_j$ and $|a|=\sqrt{a_1^2+\cdots+a_N^2}$. Cleary, there exists a constant C=C(N) such that

$$|\nabla u_{k}(x)| \leq \begin{cases} C\frac{\varepsilon_{i}^{k}}{\delta_{i}^{k}} & x \in B(a_{i}^{k}, \delta_{i}^{k}), \\ C\frac{\varepsilon_{i}^{k}}{|x-a_{i}^{k}|} & x \in B(a_{i}^{k}, \varepsilon_{i}^{k}) \backslash B(a_{i}^{k}, \delta_{i}^{k}), \\ C & x \in \Omega \backslash \left(\bigcup_{i=1}^{T(k)} B(a_{i}^{k}, \varepsilon_{i}^{k})\right). \end{cases}$$

Thus by (3.17) and (3.18) we have:

$$\int_{\Omega} |\nabla u_{k}(x)|^{p} dx \leq C^{p} \left(1 + \sum_{i=1}^{T(k)} \left(\int_{B(a_{i}^{k}, \varepsilon_{i}^{k})} \left(\frac{\varepsilon_{i}^{k}}{|x - a_{i}^{k}|} \right)^{p} dx + \int_{B(a_{i}^{k}, \delta_{i}^{k})} \left(\frac{\varepsilon_{i}^{k}}{\delta_{i}^{k}} \right)^{p} dx \right) \\
\leq w_{N} C^{p} \left(1 + \sum_{i=1}^{T(k)} N \frac{(\varepsilon_{i}^{k})^{N}}{N - p} + \frac{1}{2^{k}} \right),$$

where $w_N = meas\, B\,(0,\,1)$. Recalling that $B\,(a_i^k,\,\varepsilon_i^k)$ does not intersect $B\,(a_j^k,\,\varepsilon_j^k)$ for $i\neq j$ and $B\,(a_i^k,\,\varepsilon_i^k)\subset\Omega=(0,\,1)^N$ we conclude that

(3.26)
$$\int_{\Omega} |\nabla u_k(x)|^p dx \leq w_N C^p \left(1 + \frac{N}{w_N(N-p)} + \frac{1}{2^k}\right).$$

Therefore $(u_k)_k$ is bounded in $W^{1,p}$ and by (3.25) we deduce that, up to a subsequence, $u_k \rightharpoonup u = \mathrm{id}$ in $W^{1,p}(\Omega, \mathbb{R}^N)$.

Fourth step. We show that $|\det(\nabla u_k(x))| \leq 1$ a.e. on K. Indeed (Σ) implies that

(3.27)
$$\det \left(\nabla u_k \left(x \right) \right) = 1 \text{ a.e. } x \in \Omega \backslash \left(\bigcup_{i=1}^{T(k)} B\left(a_i^k, \, \varepsilon_i^k \right) \right).$$

We know that $u_k \in C^1(\bar{B}(a_i^k, \varepsilon_i^k) \setminus B(a_i^k, \delta_i^k), \mathbb{R}^N)$ and

$$|u_k(x) - a_i^k| = \varepsilon_i^k \quad \forall x \in \bar{B}(a_i^k, \varepsilon_i^k) \backslash B(a_i^k, \delta_i^k).$$

As u_k is the identity on $\partial B(a_i^k, \varepsilon_i^k)$ we obtain

$$u_k(\bar{B}(a_i^k, \varepsilon_i^k)\backslash B(a_i^k, \delta_i^k)) = \partial B(a_i^k, \varepsilon_i^k).$$

Therefore u_k is not locally invertible at any point $x \in B(a_i^k, \varepsilon_i^k) \setminus B(a_i^k, \delta_i^k)$. We conclude that

(3.28)
$$\det \left(\nabla u_k \left(x \right) \right) = 0 \text{ a.e. } x \in B\left(a_i^k, \, \varepsilon_i^k \right) \setminus B\left(a_i^k, \, \delta_i^k \right),$$

which, together with (3.19) and (3.27) implies that

$$(3.29) 0 \leq \det \left(\nabla u_k \left(x \right) \right) \leq 1 \text{ a.e. } x \in K.$$

Fifth step. We claim that $meas(x \in \partial K)$: $\det(\nabla u_k(x)) \neq 0\} \leq \frac{meas(\partial K)}{2^k}$. By (3.15), (3.19), (3.27) and (3.28) we have

(3.30)
$$\{x \in \partial K \colon \det(\nabla u_k(x)) \neq 0\} \subset N_k$$

and the result follows now from (3.16).

Proof of Theorem 3.1. – We prove that (3.10) implies (3.11). Assume that $meas(\partial K) \neq 0$. By Lemma 3.3 there exists a sequence $u_k \in W^{1,N}(\Omega, \mathbb{R}^N)$ such that:

(i)
$$u_k \rightarrow u$$
 in $W^{1,p}(\Omega, \mathbb{R}^N)$, $u(x) := x$,

(3.31) (ii)
$$|\det(\nabla u_k(x))| \leq 1$$
 a.e. on K ,

JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES

(3.32) (iii)
$$meas\{x \in \partial K: \det(\nabla u_k(x)) \neq 0\} < \frac{1}{2^k}$$

Then (3.31) and (3.32) imply that

$$\begin{split} \int_{K} \mid \det\left(\nabla u_{k}\left(x\right)\right) \mid dx &= \int_{\partial K} \mid \det\left(\nabla u_{k}\left(x\right)\right) \mid dx + \int_{K \setminus \partial K} \mid \det\left(\nabla u_{k}\left(x\right)\right) \mid dx \\ &\leq \frac{meas\left(\partial K\right)}{2^{k}} + meas\left(K \setminus \partial K\right) \end{split}$$

and so

$$\lim \inf_{k \to \infty} \int_{K} |\det (\nabla u_{k}(x))| dx \leq meas(K \setminus \partial K)$$

$$< meas(K) = \int_{K} |\det (\nabla u(x))| dx$$

and we conclude (3.11).

In order to prove that (3.11) implies (3.10), we assume that $meas(\partial K) = 0$. It is easy to construct a sequence $a_n \in C^0(\Omega, \mathbb{R}^N)$ such that (see [Ga])

$$(3.33) a_n(x) \to 1_K(x) \text{ a.e. } x \in \Omega,$$

$$(3.34) 0 \leq a_n(x) \leq a_{n+1}(x) \leq 1_K(x) \text{ a.e. } x \in \Omega.$$

Let u_k , $u \in W^{1,N}(\Omega, \mathbb{R}^N)$ be such that $u_k \to u W^{1,p}(\Omega, \mathbb{R}^N)$. Setting in Theorem 2.1

$$a(x, u) \equiv 1,$$
 $g(x, \bar{T}, t) = a_n(x) |t|,$

we obtain

$$\int_{\Omega} a_{n}(x) | \det (\nabla u(x)) | dx \leq \lim \inf_{k \to \infty} \int_{\Omega} a_{n}(x) | \det (\nabla u_{k}(x)) | dx$$

$$\leq \lim \inf_{k \to \infty} \int_{K} | \det (\nabla u_{k}(x)) | dx,$$

for each fixed n. Using (3.33), (3.34) and Fatou's Lemma we conclude that

$$\int_{K} |\det (\nabla u(x))| dx \leq \lim \inf_{k \to \infty} \int_{K} |\det (\nabla u_{k}(x))| dx. \quad \blacksquare$$

Acknowledgements.

This work was supported by the Army Research office and the National Foundation through the Center for Nonlinear Analysis at Carnegie Mellon University. I would like to thank Stefan Müller for the helpfull discussion we had while he visited Carnegie Mellon University. I would like also to thank Irene Fonseca for her comments on the original manuscript.

REFERENCES

- [AF] E. ACERBI, N. FUSCO, Semicontinuity problems in the calculus of variations, Arch. Rat Mech. Anal., 86, 1984, pp. 125-145.
- [BM] J. M. Ball, F. Murat, Quasiconvexity and variational problems for multiple integrals, *J. Funct. Anal.*, 58, 1984, pp. 337-403.
- [Da] B. DACOROGNA, Direct methods in the calculus of variations, Springer-Verlag, 1989.
- [DM] B. DACOROGNA, P. MARCELLINI, Semicontinuité pour des intégrandes polyconvexes sans continuité des déterminants, C. R. Acad. Sci. Paris, t. 311, Série I, 1990, pp. 393-396.
- [Ga] W. GANGBO, Thesis, Swiss Federal Institute of Technology, 1992.
- [Kl] G. KLAMBAUER, Real analysis, Elsevier.
- [Mal] J. Maly, Weak lower semicontinuity of polyconvex integrals, to appear.
- [Ma1] P. MARCELLINI On the definition and the lower semicontiuity of certain quasiconvex integrals, Ann. Inst. H Poincaré, Anal. Non lin., 3, 1986, pp. 385-392.
- [Ma2] P. MARCELLINI, Approximation of quasiconvex functions and lower semicontinuity of multiple integrals, Manus. math., 51, 1985, pp. 1-28.
- [Mo1] C. B. Morrey, Quasiconvexity and semicontinuity of multiple integrales, Pacific J. Math., 2, 1952, pp. 25-53.
- [Mo2] C. B. Morrey, Multiple integrals in the calculus of variations, Springer, 1966.

(Manuscript received December 1992.)

W. GANGBO Carnegie Mellon University, Department of Mathematics, Pittsburgh PA 15213-3890, USA.