ON THE WEAK LOWER SEMICONTINUITY OF ENERGIES WITH POLYCONVEX INTEGRANDS

By W. GANGBO

Abstract. Let $f : \Omega \times \mathbb{R}^N \times \mathbb{R}^{N \times N} \to [0, \infty)$ be a Borel measurable function such that $f(x, u, \xi) = a(x, u) g(x, \xi)$ and $g(x, \cdot)$ is polyconvex in the last variable ξ for almost every $x \in \Omega$. It is shown that if f is continuous, if a is bounded away from zero and if $F(u) := \int_\Omega a(x, u) g(x, \nabla u(x)) dx$, $u \in W^{1,N}(\Omega, \mathbb{R}^N)$, then F is weakly lower semicontinuous in $W^{1,p}$, $p > N - 1$, in the sense that $F(u) \leq \liminf_{\nu \to u} F(\nu)$ for u, $\nu \in W^{1,N}(\Omega, \mathbb{R}^N)$ such that $u \to \nu$ in $W^{1,p}$. On the contrary if g is only a Carathéodory function then in general F is not weakly lower semicontinuous in $W^{1,p}$ for $N > p > N - 1$. Precisely, it is shown that if $F(u) := \int_K \det(\nabla u(x)) dx$ where K is a compact set, then F is weakly lower semicontinuous in $W^{1,p}$, $N > p > N - 1$ if and only if $\text{meas}(\partial K) = 0$.

1. Introduction

Let $N \geq 2$ be an integer number, let $\Omega \subset \mathbb{R}^N$ be an open bounded set and let $f : \Omega \times \mathbb{R}^N \times \mathbb{R}^{N \times N} \to [0, \infty)$ be a Borel measurable function. We set

$$ F(u) := \int_\Omega f(x, u(x), \nabla u(x)) dx, \quad u \in W^{1,p}(\Omega, \mathbb{R}^N) := W^{1,p}. $$

If one uses the direct method of the calculus of variations to obtain existence of minima for F, one needs to show that F is weakly lower semicontinuous in $W^{1,p}$. Since Morrey's works ([Mo1], [Mo2]) and later Acerbi-Fusco ([AF], Marcellini [Ma2]) and others, it is well known that if $1 \leq p < \infty$ and if

$$ 0 \leq f(x, u, \xi) \leq a + b |\xi|^p, \quad \forall (x, u, \xi) \in \Omega \times \mathbb{R}^N \times \mathbb{R}^{N \times N} $$

then F is weakly lower semicontinuous in $W^{1,p}$ if only if f is quasiconvex with respect to the last variable ξ. We recall that f is said to be quasiconvex if it verifies the following Jensen's inequality:

$$ \frac{1}{|\Omega|} \int_\Omega f(x_0, u_0, \xi + \nabla u(x)) dx \geq f(x_0, u_0, \xi) $$

for almost every $x_0 \in \Omega$, for every $(u_0, \xi_0) \in \mathbb{R}^N \times \mathbb{R}^{N \times N}$ and for every $\xi \in W^{1,\infty}(\Omega, \mathbb{R}^N)$. As it is very hard to check whether or not a given function is quasiconvex,
We give some definitions relevant for this work.

Definition 1.1. Let $N, M \geq 1$ be two integer numbers and let $\Omega \subset \mathbb{R}^M$ be an open set. A function $f : \Omega \times \mathbb{R}^N \times \mathbb{R}^{N \times M} \to \mathbb{R}$ is said to be a Carathéodory function if $f(\cdot, u, \psi)$ is measurable for every $(u, \psi) \in \mathbb{R}^N \times \mathbb{R}^{N \times M}$ and $f(x, \cdot, \cdot)$ is continuous for almost every $x \in \Omega$.

Definition 1.2. (See [Da].) Let $f : \mathbb{R}^{N \times M} \to \mathbb{R}$ be a Borel measurable function defined on the set of the $N \times M$ real matrices.

- f is said to be **convex** if $f(\lambda \xi + (1 - \lambda) \eta) \leq \lambda f(\xi) + (1 - \lambda) f(\eta)$ for every $\xi, \eta \in \mathbb{R}^{N \times M}$ and every $\lambda \in (0, 1)$.

- f is said to be **polyconvex** if there exists a function $h : \mathbb{R}^r(N, \mathbb{M}) \to \mathbb{R}$ convex such that $f(\xi) = h(T(\xi))$ for every $\xi \in \mathbb{R}^{N \times M}$, where $T(N, \mathbb{M}) = \sum_{1 \leq s \leq \min(N, M)} M_s \mathbb{M}_s$.

Let $T(\xi) = (\text{adj}_1 \xi, \ldots, \text{adj}_{\min(N, M)} \xi)$ and $\text{adj}_s \xi$ stands for the matrix of all $s \times s$ minors of ξ.

When $N = M = 2$ then $T(\xi) = (\xi, \text{det}(\xi))$.

- f is said to be **quasiconvex** if $\frac{1}{|\Omega|} \int_{\Omega} f(\xi + \nabla \phi) \geq f(\xi)$ for every $\xi \in \mathbb{R}^{N \times M}$, for every $\Omega \subset \mathbb{R}^N$ open bounded set and for every $\phi \in W^{1, \infty}(\Omega)^M$ (it is equivalent to assume that the previous inequality holds for any open bounded, $\Omega \subset \mathbb{R}^N$).

For completeness we state the following well known result.

Proposition 1.3. Let $N, M \geq 2$ be two integer numbers, let $\Omega \subset \mathbb{R}^N$ be an open bounded set and let $f : \Omega \times \mathbb{R}^M \times \mathbb{R}^{N \times M} \to \mathbb{R}$ be a continuous function such that $f(x, u, \cdot)$ is quasiconvex for each $(x, u) \in \Omega \times \mathbb{R}^M$. Furthermore assume that f satisfies

$$-\alpha (|u|^p + |\xi|^p) - \gamma (x) \leq f(x, u, \xi) \leq \alpha (|u|^p + |\xi|^p) + \gamma (x),$$

where $\alpha > 0$, $\gamma \in L^1(\Omega)$, $1 \leq q < p < \infty$,

$$|f(x, u, \xi) - f(x, u, \eta)| \leq \beta (1 + |u|^p + |\xi|^p + |u|^{p-1} + |\xi|^{p-1} + |\eta|^{p-1})$$

$$\times (|u - \eta| + |\xi - \eta|)$$

where $\beta > 0$ and

$$|f(x, u, \xi) - f(y, u, \xi)| \leq \nu (|x - y|)(1 + |u|^p + |\xi|^p),$$

where ν is a continuous increasing function with $\nu(0) = 0$. Let

$$F(u) := \int_{\Omega} f(x, u(x), \nabla u(x)) \, dx,$$

$u \in W^{1, p}(\Omega, \mathbb{R}^M)$.

Then F is weakly lower semicontinuous in $W^{1, p}$.

Proof. For the proof we refer the reader to Theorem 2.4 in [Da].

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES
Lemma 1.4. Let $\phi : \mathbb{R} \to \mathbb{R}$ be a bounded Lipschitz function. Let $\Omega \subset \mathbb{R}^N$ be an open bounded set and let $\psi \in C_0^\infty (\Omega, \mathbb{R}^N)$. If $p > N - 1$, if $u_\nu, u \in W^{1,N} (\Omega, \mathbb{R}^N)$ and if $u_\nu \rightharpoonup u$ in $W^{1,p}$ then
\[\lim_{\nu \to \infty} \int_\Omega \phi'(u^\nu) \ldots \phi'(u^\nu_N)(\psi; T(\nabla u_\nu))dx = \int_\Omega \phi'(u^1) \ldots \phi'(u^N)(\psi; T(\nabla u))dx. \]
Moreover the results stands for $p = N - 1, N = 2$. Here $\langle ; , \rangle$ is the scalar product in \mathbb{R}^r and $\tau = \sum_{1 \leq s \leq N} \binom{N}{s}^2$.\\
Proof. Lemma 1.4 is obtained as a slight modification of the proof of Lemma 1 in [DM].

2. The case of continuous integrands

Let us first state the main result of this section.

Theorem 2.1. Let $N \geq 2$ be an integer number, let $\gamma > 0$, let $\Omega \subset \mathbb{R}^N$ be an open bounded set and $\tau = \sum_{1 \leq s \leq N} \binom{N}{s}^2$. Let $a : \Omega \times \mathbb{R}^N \to [0, \infty)$ and $g : \mathbb{R}^N \times \mathbb{R}^r \to [0, \infty)$ be two continuous functions such that $g(x, \cdot)$ is convex for each $x \in \Omega$. Let:
\[F(u) := \int_\Omega a(x, u(x)) g(x, T(\nabla u(x))) dx, \quad u \in W^{1,p} (\Omega, \mathbb{R}^N). \]
Then,
\[F(u) \leq \lim_{\nu \to \infty} \inf F(u_\nu), \]
if $u_\nu, u \in W^{1,N} (\Omega, \mathbb{R}^N)$ and $u_\nu \rightharpoonup u$ in $W^{1,p}$, $p > N - 1$. Moreover, if $N = 2$ the result is true even if $p = N - 1 = 1$.

We recall that $T(\nabla u)$ stands for the matrix of all minors of ∇u.

Remark 2.2. If $p \geq N$ it is easy to prove Theorem 2.1 even in the general case where $F(u) := \int_\Omega f(x, u(x), T(\nabla u(x))) dx, f$ continuous, $f(x, u, T) \geq 0, f(x, u, \cdot)$ convex. Indeed, h being a fixed real number, we truncate the sequence u_ν, u and get a sequence u_ν, v so that $|v_\nu(x)|, |v(x)| < h$ for almost every $x \in \Omega$. As f is convex in the last variable T, using Lemma 2.3 we can approximate f on $\Omega \times [-h, h]^N \times \mathbb{R}^r$ by a non decreasing sequence of smooth functions f_j such that
\[0 \leq f_j(x, u, T) \leq C_j(x, u)(1 + |T|), \]
where $C_j(x, u) = 0$ for every $x \in \Omega$ such that $\text{dist}(x, \partial \Omega) < \frac{1}{l_j}$, for suitable $l_j \in \mathbb{N}$.

Then we apply Proposition 1.3 to $f_j(x, u, T)$ and to the sequence v_ν, v. Letting j go to infinity and then h go to infinity, we obtain
\[F(u) \leq \lim_{\nu \to \infty} \inf F(u_\nu). \]
2. – In the general case \(F(u) := \int_\Omega f(x, u(x), T(\nabla u(x))) \, dx \), (2.2) would be true if we knew that the sequence \(\{\det(\nabla u_\nu)\} \) is bounded in \(L^1 \). Indeed, as indicated above, by De Giorgi’s Lemma, we approximate \(f(x, u, T) \) from below by a function \(g(x, u, T) \) which is smooth and grows linearly in the variable \(T \). We can assume without loss of generality that there exist constants \(h > 0 \) such that \(|u_\nu(x)|, |u(x)| \leq h \) for almost every \(x \in \Omega \). Then, we fix a compact set \(K \) in \(\Omega \times [-h, h]^N \) and by Weierstrass’s Approximation Lemma we obtain:

\[
\begin{align*}
|g(x, u, T) - g_n(x, u, T)| \leq \varepsilon (1 + \max_{(y, v) \in K} g(y, v, T)) \\
\forall T \in \mathbb{R}^r, \quad \forall (x, u) \in K,
\end{align*}
\]

where \(g_n(x, u, T) \) has the form

\[
g_n(x, u, T) = \sum_{k=0}^n a_k^n(u_1) \ldots a_k^n(u_N) h_k^n(x, T).
\]

Then we can show with the relaxed assumptions

\[
a_k^1(u_1), \ldots, a_k^N(u_N), h_k^n(x, T) \geq 0
\]

that if \(F_n(u) := \int_\Omega g_n(x, u(x), T(\nabla u(x))) \, dx \), then,

\[
F_n(u) \leq \lim \inf_{n \to \infty} F_n(u_\nu),
\]

which together with (2.3) and the fact that \(\{\det(\nabla u_\nu)\} \) is bounded in \(L^1 \), yields

\[
F(u) \leq \lim \inf_{n \to \infty} F(u_\nu).
\]

However \(\{\det(\nabla u_\nu)\} \) is not necessarily bounded in \(L^1 \). [DM] provides an example where \(u_\nu \rightharpoonup u \) in \(W^{1,p} \), \(N > p > N - 1 \) and \(\{\det(\nabla u_\nu)\} \) is not bounded in \(L^1 \) (cf. also [BM]). For instance if \(N = 2, \quad \Omega = (0, 1)^2, \quad 1 < p \leq 2, \quad u_\nu \equiv \nu^{p-1} (1-y)^p (\sin \nu x, \cos \nu x) \rightharpoonup (0, 0) \) in \(W^{1,p} \).

Then \(\det(\nabla u_\nu) = -\nu^{p-1} (1-y)^p (\sin \nu x, \cos \nu x) \rightharpoonup (0, 0) \) in \(W^{1,p} \).

3. – The assumption that \(u_\nu \in W^{1,N} \) is important. It can be useful to extend the definition of \(F(u) \) to functions \(u \in W^{1,p} \), \(p < N \) (cf. [Mal]). Also Theorem 2.1 is false if one omits this assumption (cf. [BM]).

4. – If \(1 \leq p < N - 1 \), and if \(N \geq 3 \), then \(F \) is not necessarily weakly lower semicontinuous (cf. [Mal]). But if \(p = N - 1, N \geq 3 \), the question to know whether or not \(F \) is weakly lower semicontinuous is still open. However Malý proved in [Mal] that if \(u, u_\nu \in W^{1,N-1} \) are sense preserving diffeomorphisms such that \(u_\nu \rightharpoonup u \) in \(W^{1,N-1} \), then \(F(u) \leq \lim \inf_{n \to \infty} F(u_\nu) \).

5. – The basic idea to prove Theorem 2.1 is the following: in the first step, we approximate \(f \) from below by a sum of functions of the form \(c(x) b^1(u_1) \ldots b^N(u_N) g(x, T(\nabla u)), \) with \(c(x), b^1(u_1), \ldots, b^N(u_N) \geq 0 \). This can be done using Weierstrass’s Approximation Theorem (see Lemma 2.5). In the second step, changing variables we write \(c(x) b^1(u_1) \ldots b^N(u_N) g(x, T(\nabla u)) \) in the form
$h = h(x, T(\nabla v))$. Then, following the idea of Dacorogna and Marcellini in their study of the integrands of the form $h = h(T(\nabla v))$ (see [DM]), we conclude the Theorem.

Lemma 2.3. (De Giorgi’s Lemma). – Let N, $\tau \geq 1$ be two integer numbers, let $\Omega \in \mathbb{R}^N$ be a open bounded set, and let $g : \Omega \times \mathbb{R}^\tau \to [0, \infty)$ be a continuous function such that $g(x, \cdot)$ is convex for each $x \in \Omega$. There exists a non decreasing sequence of functions $(g_i)_i$ of class $C^\infty(\Omega \times \mathbb{R}^\tau)$ such that:

i) $g_i \geq -1$;

ii) $(g_i)_i$ converges uniformly to g in every compact subset of $\Omega \times \mathbb{R}^\tau$;

iii) $g_i(x, \cdot)$ is convex;

iv) $g_i(x, T) = 0$ if $\text{dist}(x, \partial \Omega) \leq \frac{1}{i}$;

v) On every compact subset K of Ω, $D_T g_i(x, T)$ is bounded in $K \times \mathbb{R}^\tau$ by a constant which depend only on l, g and K, where $D_T g_i = \left(\frac{\partial}{\partial T_1} g_i, \ldots, \frac{\partial}{\partial T_\tau} g_i \right)$.

Proof. – For the proof we refer the reader to [Ma2].

Remark 2.4. – One can deduce from Lemma 2.3 that there exists a constant $C = C(l, g)$ such that $|D_T g_i(x, T)| \leq C$ for every $(x, T) \in \Omega \times \mathbb{R}^\tau$.

Lemma 2.5. – (Weierstrass’s Approximation Theorem)

Let $f : [0, 1] \to \mathbb{R}$ be a continuous function. Then, for every $\varepsilon > 0$, there exists $n_0(\varepsilon) \in \mathbb{N}$ such that $n \geq n_0(\varepsilon)$ implies

$$\left| f(u) - \sum_{0 \leq k \leq n} \binom{n}{k} f\left(\frac{k}{n}\right) u^k (1-u)^{n-k} \right| \leq \varepsilon (1 + \max_{0 \leq t \leq 1} |f(t)|),$$

for every $u \in [0, 1]$.

Proof. – For the proof we refer the reader to [Kl].

Proof of Theorem 2.1. – We give the proof of Theorem 2.1 only in the case where $N > p > N - 1$ since the case $p \geq N$ is easily obtained (see Remark 2.2). In the first step of the proof, we truncate the functions $(u_\nu)_\nu$ and u to get a new sequence which is uniformly bounded in L^∞. Then we write f as a sum of functions of the form $c(x) b_1(u^1) \cdots b_N(u^N) g(x, T(\nabla u))$, where c and b_1, \ldots, b_N are smooth. In the second step we study the particular case where f has the form $c(x) b_1(u^1) \cdots b_N(u^N) g(x, T(\nabla u))$. In the last step we study the general case where f satisfies the hypotheses of Theorem 2.1. Clearly (2.2) is true if

$$\lim \inf_{\nu \to \infty} \int_{\Omega'} a(x, u_\nu) g(x, T(\nabla(u_\nu))) = \infty.$$

Assume that

$$M := \lim \inf_{\nu \to \infty} \int_{\Omega'} a(x, u_\nu) g(x, T(\nabla(u_\nu))) < +\infty.$$

Fix $h > 0$, $E = [-h, h]^N$, $l_0 \in \mathbb{N}$ and $\Omega' = \left\{ x \in \Omega, \text{dist}(x, \partial \Omega) > \frac{1}{l_0 + 1} \right\}$.

TOME 73 – 1994 – N° 5
First step.

a) Factorization of \(a(x, u) \)

Using explicitly Weierstrass’s Approximation Theorem and the fact that \(a(x, u) \geq \gamma > 0 \), it is easy to deduce that there are two sequences \((b_k^n)_{k \leq n}\) and \((c_k^n)_{k \leq n}\) such that for every \(\varepsilon > 0 \), there is \(n(\varepsilon) \in \mathbb{N} \) depending only on \(\varepsilon, \Omega' \) and \(h \) verifying

\[
(2.4) \quad 0 \leq a(x, u) - \sum_{k=0}^{n} c_k^n(x) b_k^n(u) \leq \varepsilon \quad \forall (x, u) \in \Omega' \times E := K, \quad \forall n \geq n(\varepsilon),
\]

\[
b_k^n(x, u_1, \ldots, u_N) = b_k^{1,n}(u_1) \cdots b_k^{N,n}(u_N) \quad k = 1, \ldots, n, \quad n \geq 0.
\]

\[
b_k^n \in C^\infty(\mathbb{R}), \quad b_k^{j,n} \geq 0 \quad j = 1, \ldots, N, \quad k = 1, \ldots, n, \quad n \geq 1,
\]

\[
c_k^n \in C^\infty(\Omega'), \quad c_k^n \geq 0 \quad k = 1, \ldots, n, \quad n \geq 1,
\]

\[
c_0^0(0) = 1, \quad b_0^0(u) = -\varepsilon.
\]

b) Truncation of \(u \) and \(u_0 \).

Fix \(\delta(h) \ll 1 \). Truncate \(u \) and \(u_0 \) by considering \(\phi(u) \) and \(\phi(u_0) \) respectively where \(\phi \) is given by

\[
(2.5) \quad \phi(u) = \prod_{i=1}^{N} \psi(u^i), \quad \phi'(u) = \prod_{i=1}^{N} \psi'(u^i) \quad \text{with} \quad \psi'(t) = \frac{d\psi}{dt}(t),
\]

and \(\psi \in C^\infty(\mathbb{R}, \mathbb{R}) \) is defined in the following way

\[
\psi(t) = \begin{cases}
- h & \text{if } t < -h - \delta(h), \\
\quad t & \text{if } |t| \leq h, \\
\quad h & \text{if } t > h + \delta(h),
\end{cases}
\]

\(0 \leq \psi'(t) \leq 1 \) for every \(t \in \mathbb{R} \) and \(\psi'(t) = 0 \) if and only if \(|t| \geq h + \delta(h) \).

We apply Lemma 2.3 to \(g(x, T) \).

We obtain a sequence \((g_l)_l \) which has properties i), i), v) of Lemma 2.3. Recall that

\[
(2.6) \quad g(x, T) = \lim_{l \to \infty} g_l(x, T) \quad \forall (x, T) \in \Omega \times \mathbb{R}^r.
\]

Since \((g_l)_l \) is uniformly bounded below on \(\Omega \times \mathbb{R}^r \), we can assume without loss of generality that \(g_l \geq 0 \).

Second step. For \(l = l_0, k \geq 1 \) we show that

\[
(2.7) \quad \lim \inf_{l \to \infty} \int_{\Omega'} \phi'(u_0) c_k^n(x) b_k^n(u_0) g_l(x, T(\nabla u_0))
\]

\[
\geq \int_{\Omega'} \phi'(u) c_k^n(x) b_k^n(u) g_l(x, T(\nabla u)).
\]

- If \(\lim \inf_{l \to \infty} \int_{\Omega'} \phi'(u_0) c_k^n(x) b_k^n(u_0) g_l(x, T(\nabla u_0)) = \infty \) then (2.7) is trivial.

Journal de Mathématiques Pures et Appliquées
Assume that \(\inf_{\nu \to \infty} \int_{\Omega^\nu} \phi'(u_\nu) c_k^\nu(x) b_k^\nu(u_\nu) g_l(x, T(\nabla u)) < \infty \). We may assume without loss of generality that
\[
u \in C^\infty(\Omega, \mathbb{R}^N).
\]
If this wasn't the case then it would suffice to replace \(u \) by \(u_\nu \in C^\infty(\Omega, \mathbb{R}^N) \) such that \(\| u_\nu - u \|_{W^{1,N}} \leq \epsilon \), following the proof with necessary modifications. Since
\[
gl(x, \cdot) \equiv 0 \quad \text{if} \quad \text{dist}(x, \partial \Omega) \leq \frac{1}{l},
\]
\[
| D_T g_l(x, T) | \leq C \equiv C(l, h) \quad \text{for every} \quad (x, T) \in \Omega \times \mathbb{R}^r,
\]
gl \(\in C^\infty(\Omega \times \mathbb{R}^r, [0, \infty)) \) and \(gl(x, \cdot) \) is convex,
\[
c_k^\nu \in C^\infty(\tilde{\Omega}^\nu),
\]
\[
b_k^\nu \in C^\infty(\mathbb{R}^N),
\]
and
\[
\phi' \in C^\infty(\mathbb{R}, \mathbb{R})
\]
we deduce that
\[
\liminf_{\nu \to \infty} \int_{\Omega^\nu} c_k^\nu(x) b_k^\nu(u_\nu) \phi'(u_\nu) g_l(x, T(\nabla u))
\geq \liminf_{\nu \to \infty} \int_{\Omega^\nu} c_k^\nu(x) b_k^\nu(u_\nu) \phi'(u_\nu) g_l(x, T(\nabla u))
\]
\[+ \int_{\Omega^\nu} c_k^\nu(x) b_k^\nu(u_\nu) \phi'(u_\nu)(D_T g_l(x, T(\nabla u)); T(\nabla u) - T(\nabla u))
\]\[\geq \int_{\Omega^\nu} c_k^\nu(x) b_k^\nu(u) \phi'(u) g_l(x, T(\nabla u))
\]
\[+ \int_{\Omega^\nu} c_k^\nu(x) b_k^\nu(u_\nu) \phi'(u_\nu)(D_T g_l(x, T(\nabla u)); T(\nabla u) - T(\nabla u)),
\]
where we used Fatou's Lemma and the fact that
\[
c_k^\nu(x) b_k^\nu(u_\nu) \phi'(u_\nu) \to c_k^\nu(x) b_k^\nu(u) \phi'(u) \quad \text{a.e.}
\]
For \(T \in \mathbb{R}^r \), we set \(T = (\bar{T}, t), t \in \mathbb{R} \). For fixed \(x \in \Omega \), let \(D_T g_l(x, \cdot) \) denote the matrix of the partial derivatives of \(g_l(x, \cdot) \) with respect to the \(\tau - 1 \) first variables in \(\mathbb{R}^r \). Let \(H \) be the functional defined on \(\Omega \times \mathbb{R}^N \times \mathbb{R}^{N \times N} \) by
\[
H(x, u, \xi) = c_k^\nu(x) b_k^\nu(u) \phi'(u)(D_T g_l(x, T(\nabla u(x))); \bar{T}(\xi) - \bar{T}(\nabla u)).
\]
It is easy to see that \(H \) and \(-H \) are quasiconvex in the last variable. Using the fact that \(u \in C^\infty(\Omega, \mathbb{R}^N) \), (2.8) and the fact that \(|\phi'(u_\nu)| \leq 1 \), we get that \(H \) and \(-H \) verify the assumptions of Proposition 1.3. We deduce that
\[
\liminf_{\nu \to \infty} \int_{\Omega^\nu} c(x) b_k^\nu(u_\nu) \phi'(u_\nu)(D_T g_l(x, T(\nabla u)); \bar{T}(\nabla u) - \bar{T}(\nabla u)) = 0.
\]
On the other hand, setting
\[u^i = B^i_k (\psi (u^i)) \]
where \(B^i_k (t) = \int_{-h - \delta (h)}^t b^i_k (s) \psi^{-1} (s) ds \), \(|t| \leq h + \delta (h) \),
then we obtain
\[u^i \rightarrow u^i \ \text{in} \ W^{1,p}, \]
\[b^i_k (u^i) \psi' (u^i) \rightarrow b^i_k (u) \psi' (u) \ \text{a.e.} \]
As
\[\frac{\partial}{\partial t} g_i (x, T \nabla u) \in C_{0}^\infty (\Omega), \]
by Lemma 1.4 we obtain:
\[
\lim_{\nu \to \infty} \inf \int_{\Omega'} c^n_k (x) b^n_k (u_\nu) \phi' (u_\nu) \frac{\partial}{\partial t} g_i (x, T (\nabla u)) \left(\det (\nabla u_\nu) - \det (\nabla u) \right)
\]
\[\leq \lim \inf_{\nu \to \infty} \left(\int_{\Omega'} c^n_k (x) \frac{\partial}{\partial t} g_i (x, T \nabla u) \left(\det (\nabla u_\nu) - \det (\nabla u) \right) \right)
\]
\[- \int_{\Omega'} \left(b^n_k (u_\nu) \phi' (u_\nu) - b^n_k (u) \phi' (u) \right) \frac{\partial}{\partial t} g_i (x, T \nabla u) \det (\nabla u) = 0 \]
which together with (2.9), yields (2.7).

Third step. We conclude that
\[
\int_{\Omega} a (x, u (x)) g (x, T (\nabla u (x))) \, dx \leq \lim \inf_{\nu \to \infty} \int_{\Omega} a (x, u_\nu (x)) g (x, T (\nabla u_\nu (x))) \, dx.
\]
Since \(M := \lim \inf_{\nu \to \infty} \int_{\Omega} a (x, u_\nu (x)) g (x, T (\nabla u_\nu (x))) < \infty \) and \(a (x, u) \geq \gamma > 0 \), by steps 1 and 2 we obtain
\[
\lim \inf_{\nu \to \infty} \int_{\Omega} a (x, u_\nu (x)) g (x, T (\nabla u_\nu (x))) \, dx
\]
\[\geq \lim \inf_{\nu \to \infty} \int_{\Omega'} \left(\phi' (u_\nu) \sum_{k=0}^{n (\epsilon)} c^n_k (x) b^n_k (u_\nu (x)) g_i_0 (x, T (\nabla u_\nu)) \right) \, dx
\]
\[\geq \sum_{k=0}^{n (\epsilon)} \int_{\Omega'} \phi' (u) c^n_k (x) b^n_k (u) g_i_0 (x, T (\nabla u)) \, dx - \epsilon S,
\]
where \(S = \frac{M + 1}{\gamma} + 3 \text{ meas } (\Omega) + \int_{\Omega} g_i_0 (x, T (\nabla u)) \, dx \).

In the previous inequalities, we used the second step to prove that
\[
\lim \inf_{\nu \to \infty} \int_{\Omega'} \phi' (u_\nu) c^n_k (x) b^n_k (u_\nu) g_i (x, T (\nabla u_\nu)) \geq \int_{\Omega'} \phi' (u) c^n_k (x) b^n_k (u) g_i (x, T (\nabla u))
\]
for \(k \neq 0 \). For \(k = 0 \), we used the fact that \(a (x, u) \geq \gamma > 0 \), and \(M < \infty \). Letting \(\epsilon \) go to zero, \(i_0 \) go to infinity and then \(h \) go to infinity in the previous inequality we obtain (2.2). \(\blacksquare \)
3. The case of Carathéodory integrands

We state the main result of this section.

Theorem 3.1. Let \(N \geq 2 \) be an integer number, \(N - 1 < p < N \), let \(\Omega \subset \mathbb{R}^N \) be an open bounded set, and let \(K \subset \Omega \) be a compact set. The two following assertions are equivalent:

\[
(3.10) \quad \text{meas}(\partial K) \neq 0,
\]

\[
(3.11) \quad \liminf_{\nu \to \infty} \int_K |\det(\nabla u_\nu(x))| \, dx < \int_K |\det(\nabla u(x))| \, dx
\]

for a suitable \(u_\nu, u \in W^{1,N}(\Omega, \mathbb{R}^N) \) such that \(u_\nu \rightharpoonup u \) in \(W^{1,p} \).

Before proving Theorem 3.1 we begin with some remarks.

Remark 3.2. Let us recall that if \(F(u) = \int_K |\det(\nabla u(x))| \, dx \) and if \(K \) is a compact set then, for \(p \geq N \), \(F \) is weakly lower semicontinuous on \(W^{1,p} \) even if \(\text{meas}(\partial K) \neq 0 \) (see [AFI]). For \(p < N - 1 \) then \(F \) is not weakly lower semicontinuous on \(W^{1,p} \) even if \(\text{meas}(\partial K) = 0 \) (see [Mal]).

The following lemma will be used to prove that (3.10) implies (3.11).

Lemma 3.3. Let \(N, \tau \geq 2 \) be two integer numbers, let \(\Omega \subset \mathbb{R}^N \) be an open bounded set and let \(K \subset \Omega \) be a compact set such that \(\text{meas}(\partial K) > 0 \). Let \(p < N \) be a real number. Then there is a sequence \(u_k \in W^{1,N}(\Omega, \mathbb{R}^N) \) such that

(i) \(u_k \rightharpoonup u = \text{id} \) in \(W^{1,p}(\Omega, \mathbb{R}^N) \) with \(\text{id}(x) = x \),

(ii) \(|\det(\nabla u_k(x))| \leq 1 \) on \(K \),

(iii) \(\text{meas}\{x \in \partial K : \det(\nabla u_k(x)) \neq 0\} < \frac{1}{2^k} \).

Proof. We divide the proof into five steps. We assume without loss of generality that \(\Omega = (0, 1)^N \).

First step. We construct the sequence \(u_k \). Let \(k \in \mathbb{N} \) be fixed. Using Vitali's Covering Theorem we find two sequences \((x^k_i)\), \((\beta^k_i)\) such that

\[
\begin{aligned}
\partial K &\subset \tilde{N}_k \bigcup \left(\bigcup_{i=1}^{k} B(x^k_i, \beta^k_i) \right), \\
B(x^k_i, \beta^k_i) \cap B(x^k_j, \beta^k_j) &= \emptyset \quad \text{for} \quad i \neq j, \quad i, j = 1, \ldots, \infty, \\
\text{meas}(\tilde{N}_k) &\leq \frac{\text{meas}(\partial K)}{2^{k+1}}, \\
\text{meas} \left(\bigcup_{i=1}^{k} B(x^k_i, \beta^k_i) \setminus \partial K \right) &\leq \frac{\text{meas}(\partial K)}{2^{k+1}}, \\
B(x^k_i, \beta^k_i) &\subset \Omega \quad \text{for} \quad i = 1, \ldots, \infty,
\end{aligned}
\]
where \(B(x, \beta) \) stands for the open ball in \(\mathbb{R}^{N} \) with center \(x \) and radius \(\beta \) and \(\tilde{N}_k \) is an open set. Since \(K \) is a compact set we have

\[
\partial K \subset \tilde{N}_k \cup \left(\bigcup_{i=1}^{T(k)} B(x_i^k, \beta_i^k) \right),
\]

where \(T(k) \) is a constant depending on \(k \). Now we want to change the centers \(x_i^k \) by other centers which belong to the complementary of \(K \). Using (3.12), (3.13), (3.14) and the fact that \(x_i^k \in \partial K \), we deduce that there are an open set \(N_k \) and two sequences \(a_i^k \in B(x_i^k, \beta_i^k) \setminus K, \quad 0 < \epsilon_i^k < \beta_i^k \), such that

\[
\left\{ \begin{array}{l}
\partial K \subset N_k \cup \left(\bigcup_{i=1}^{T(k)} B(a_i^k, \epsilon_i^k) \right), \\
B(a_i^k, \epsilon_i^k) \subset B(x_i^k, \beta_i^k) \quad i = 1, \ldots, T(k),
\end{array} \right.
\]

\[
\text{meas}(N_k) \leq \frac{\text{meas}(\partial K)}{2^k},
\]

\[
\text{meas}(\bigcup_{i=1}^{T(k)} B(a_i^k, \epsilon_i^k) \setminus \partial K) \leq \frac{\text{meas}(\partial K)}{2^k}.
\]

Since \(\Omega \setminus K \) is an open set and \(a_i^k \in B(x_i^k, \beta_i^k) \setminus K \), there is \(\delta_i^k > 0 \) such that

\[
\delta_i^k < \left(\frac{1}{T(k)(2^k \cdot \epsilon_i^k)^p} \right)^{\frac{1}{p'}} \quad i = 1, \ldots, T(k)
\]

and

\[
B(a_i^k, \delta_i^k) \subset \Omega \setminus K \quad i = 1, \ldots, T(k).
\]

We define

\[
u_k(x) = \begin{cases}
a_i^k + \frac{\delta_i^k}{\epsilon_i^k} (x - a_i^k) & x \in B(a_i^k, \delta_i^k), \\
a_i^k + \frac{\delta_i^k}{|x - a_i^k|} (x - a_i^k) & x \in B(a_i^k, \epsilon_i^k) \setminus B(a_i^k, \delta_i^k), \\
x & x \in \Omega \setminus \left(\bigcup_{i=1}^{T(k)} B(a_i^k, \epsilon_i^k) \right).
\end{cases}
\]

It is easy to see that \(u_k \) is a diffeomorphism from \(B(a_i^k, \delta_i^k) \) into \(B(a_i^k, \epsilon_i^k) \) and \(u_k \) maps \(B(a_i^k, \epsilon_i^k) \setminus B(a_i^k, \delta_i^k) \) into \(\partial B(a_i^k, \epsilon_i^k) \).

Second step. In this step we show that \(u_k \in W^{1, \infty}(\Omega, \mathbb{R}^{N}) \). As

\[
u_k \in C^1(B(a_i^k, \delta_i^k), \mathbb{R}^{N}),
\]

\[
u_k \in C^1(B(a_i^k, \epsilon_i^k) \setminus B(a_i^k, \delta_i^k), \mathbb{R}^{N})
\]

REFERENCE

JOURNAL DE MATÉMATIQUES PURES ET APPLIQUEES
and u_k is continuous on $B(a_i^k, \varepsilon_i^k)$, we have

$$u_k \in W^{1, \infty}(B(a_i^k, \varepsilon_i^k), \mathbb{R}^N)$$ \hspace{1cm} (3.20)

and since

$$u_k(x) = x \quad \text{on} \quad \partial B(a_i^k, \varepsilon_i^k)$$ \hspace{1cm} (3.21)

we conclude that

$$u_k \in C^0(\Omega, \mathbb{R}^N).$$ \hspace{1cm} (3.22)

Using the definition of u_k on $\Omega \setminus \left(\bigcup_{i=1}^{T(k)} B(a_i^k, \varepsilon_i^k) \right)$ it is obvious that

$$u_k \in W^{1, \infty}\left(\Omega \setminus \bigcup_{i=1}^{T(k)} B(a_i^k, \varepsilon_i^k) \right),$$ \hspace{1cm} (3.23)

which together with (3.20) and (3.22) yields

$$u_k \in W^{1, \infty}(\Omega, \mathbb{R}^N).$$ \hspace{1cm} (3.24)

\textbf{Third step.} We show that, up to a subsequence, $u_k \rightharpoonup u = \text{id}$ in $W^{1,p}(\Omega, \mathbb{R}^N)$. Using the definition of u_k, we obtain:

$$|u_k(x) - x| \leq \frac{1}{2k} \quad \text{for every} \quad x \in \Omega$$ \hspace{1cm} (3.25)

and

$$\nabla u_k(x) = \begin{cases} \frac{\varepsilon_i^k}{\delta_i^k} I_N & x \in B(a_i^k, \delta_i^k), \\ I_N & x \in \Omega \setminus \left(\bigcup_{i=1}^{T(k)} B(a_i^k, \varepsilon_i^k) \right), \\ \end{cases} \hspace{1cm} (x - a_i^k) \otimes (x - a_i^k)$$

where I_N is the identity matrix in $\mathbb{R}^{N \times N}$. If $a, b \in \mathbb{R}^N, a \otimes b$ denotes the $N \times N$ matrix with component $a_i b_j$ and $|a| = \sqrt{a_1^2 + \cdots + a_N^2}$. Clearly, there exists a constant $C = C(N)$ such that

$$|\nabla u_k(x)| \leq \begin{cases} C \frac{\varepsilon_i^k}{\delta_i^k} & x \in B(a_i^k, \delta_i^k), \\ C & x \in \Omega \setminus \left(\bigcup_{i=1}^{T(k)} B(a_i^k, \varepsilon_i^k) \right), \\ \end{cases} \hspace{1cm} (3.26)$$
Thus by (3.17) and (3.18) we have:

\[
\int_{\Omega} |\nabla u_k(x)|^p \, dx \leq C_p \left(1 + \sum_{i=1}^{T(k)} \left(\int_{B(a_i^k, \epsilon_i^k)} \left(\frac{\epsilon_i^k}{|x - a_i^k|} \right)^p \, dx \right) + \int_{B(a_i^k, \delta_i^k)} \left(\frac{\epsilon_i^k}{\delta_i^k} \right)^p \, dx \right)
\]

\[
\leq w_N C_p \left(1 + \sum_{i=1}^{T(k)} N \left(\frac{\epsilon_i^k}{N-p} + \frac{1}{2k} \right) \right),
\]

where \(w_N = \text{meas} B(0,1) \). Recalling that \(B(a_i^k, \epsilon_i^k) \) does not intersect \(B(a_j^k, \epsilon_j^k) \) for \(i \neq j \) and \(B(a_i^k, \epsilon_i^k) \subset \Omega = (0,1)^N \) we conclude that

\[
(3.26) \quad \int_{\Omega} |\nabla u_k(x)|^p \, dx \leq w_N C_p \left(1 + \frac{N}{w_N(N-p) + \frac{1}{2k}} \right).
\]

Therefore \((u_k)_k \) is bounded in \(W^{1,p} \) and by (3.25) we deduce that, up to a subsequence,

\[
u_k \rightharpoonup u = \text{id} \quad \text{in} \quad W^{1,p}(\Omega, \mathbb{R}^N).
\]

Fourth step. We show that \(|\det(\nabla u_k(x))| \leq 1 \) a.e. on \(K \). Indeed (\(\Sigma \)) implies that

\[
(3.27) \quad \det(\nabla u_k(x)) = 1 \quad \text{a.e.} \quad x \in \Omega \setminus \bigcup_{i=1}^{T(k)} B(a_i^k, \epsilon_i^k).
\]

We know that \(u_k \in C^1(\bar{B}(a_i^k, \epsilon_i^k) \setminus B(a_i^k, \delta_i^k), \mathbb{R}^N) \) and

\[
|u_k(x) - a_i^k| = \epsilon_i^k \quad \forall x \in \bar{B}(a_i^k, \epsilon_i^k) \setminus B(a_i^k, \delta_i^k).
\]

As \(u_k \) is the identity on \(\partial B(a_i^k, \epsilon_i^k) \) we obtain

\[
u_k(\bar{B}(a_i^k, \epsilon_i^k) \setminus B(a_i^k, \delta_i^k)) = \partial B(a_i^k, \epsilon_i^k).
\]

Therefore \(u_k \) is not locally invertible at any point \(x \in B(a_i^k, \epsilon_i^k) \setminus B(a_i^k, \delta_i^k) \). We conclude that

\[
(3.28) \quad \det(\nabla u_k(x)) = 0 \quad \text{a.e.} \quad x \in B(a_i^k, \epsilon_i^k) \setminus B(a_i^k, \delta_i^k),
\]

which, together with (3.19) and (3.27) implies that

\[
(3.29) \quad 0 \leq \det(\nabla u_k(x)) \leq 1 \quad \text{a.e.} \quad x \in K.
\]

Fifth step. We claim that \(\text{meas} \{ x \in \partial K : \det(\nabla u_k(x)) \neq 0 \} \leq \frac{\text{meas}(\partial K)}{2^k} \).

By (3.15), (3.19), (3.27) and (3.28) we have

\[
(3.30) \quad \{ x \in \partial K : \det(\nabla u_k(x)) \neq 0 \} \subset N_k
\]

and the result follows now from (3.16).

Proof of Theorem 3.1. – We prove that (3.10) implies (3.11). Assume that \(\text{meas}(\partial K) \neq 0 \). By Lemma 3.3 there exists a sequence \(u_k \in W^{1,N}(\Omega, \mathbb{R}^N) \) such that:

(i) \(u_k \rightharpoonup u \quad \text{in} \quad W^{1,p}(\Omega, \mathbb{R}^N), \quad u(x) := x \),

(ii) \(|\det(\nabla u_k(x))| \leq 1 \quad \text{a.e.} \quad \text{on} \quad K \),

\]

JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES
(3.32) \[\text{mes}(\{ x \in \partial K : \det(\nabla u_k(x)) \neq 0 \}) < \frac{1}{2^k}. \]

Then (3.31) and (3.32) imply that
\[
\int_K |\det(\nabla u_k(x))| \, dx = \int_{\partial K} |\det(\nabla u_k(x))| \, dx + \int_{K \setminus \partial K} |\det(\nabla u_k(x))| \, dx \leq \frac{\text{mes}(\partial K)}{2^k} + \text{mes}(K \setminus \partial K)
\]

and so
\[
\liminf_{k \to \infty} \int_K |\det(\nabla u_k(x))| \, dx \leq \text{mes}(K \setminus \partial K) < \text{mes}(K) = \int_K |\det(\nabla u(x))| \, dx
\]

and we conclude (3.11).

In order to prove that (3.11) implies (3.10), we assume that \(\text{mes}(\partial K) = 0 \). It is easy to construct a sequence \(a_n \in C^0(\Omega, \mathbb{R}^N) \) such that (see [Ga])
\[
(3.33) \quad a_n(x) \to 1_K(x) \text{ a.e. } x \in \Omega,
\]
\[
(3.34) \quad 0 \leq a_n(x) \leq a_{n+1}(x) \leq 1_K(x) \text{ a.e. } x \in \Omega.
\]

Let \(u_k, u \in W^{1,N}(\Omega, \mathbb{R}^N) \) be such that \(u_k \to u W^{1,p}(\Omega, \mathbb{R}^N) \). Setting in Theorem 2.1
\[
a(x, u) \equiv 1, \quad g(x, \bar{T}, \bar{t}) = a_n(x) |\bar{t}|,
\]
we obtain
\[
\int_{\Omega} a_n(x) |\det(\nabla u(x))| \, dx \leq \liminf_{k \to \infty} \int_{\Omega} a_n(x) |\det(\nabla u_k(x))| \, dx \leq \liminf_{k \to \infty} \int_K |\det(\nabla u_k(x))| \, dx,
\]
for each fixed \(n \). Using (3.33), (3.34) and Fatou’s Lemma we conclude that
\[
\int_K |\det(\nabla u(x))| \, dx \leq \liminf_{k \to \infty} \int_K |\det(\nabla u_k(x))| \, dx.
\]

Acknowledgements.

This work was supported by the Army Research office and the National Foundation through the Center for Nonlinear Analysis at Carnegie Mellon University. I would like to thank Stefan Müller for the helpfull discussion we had while he visited Carnegie Mellon University. I would like also to thank Irene Fonseca for her comments on the original manuscript.
REFERENCES

(Manuscript received December 1992.)

W. Gangbo
Carnegie Mellon University,
Department of Mathematics,
Pittsburgh PA 15213-3890, USA.