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ON THE WEAK LOWER SEMICONTINUITY
OF ENERGIES WITH POLYCONVEX INTEGRANDS

By W. GANGBO

ABSTRACT. — Let f : Q@ x RY x RN*¥ [0, co0) be a Borel measurable function such that
flz,u, &) = a(x, u)g(z, &) and g(z, -) is polyconvex in the last variable £ for almost every x € €. It is

shown that if f is continuous, if a is bounded away from zero and if F (u):= / a(z, u)g(z, Vu(z))dr
Q

u € WHN(Q,RV), then F is weakly lower semicontinuous in WL, p > N — 1, in the sense that
F(u) £lm inf F(u,) for u,, u € W1V (Q, RY) such that v, — u in WP, On the contrary if g is only
V=00

a Carathéodory function then in general F is not weakly lower semicontinuous in WP for N > p > N — 1.
Precisely, it is shown that if F' (u):= / | det (Vu(z))|dz where K is a compact set, then F is weakly lower
K

semicontinuous in W1:P, N > p > N — 1 if and only if meas (0K) = 0.

1. Introduction

Let N 2 2 be an integer number, let & C RY be an open bounded set and let
fi QxRY x R¥*N [0, o) be a Borel measurable function. We set

F(u)::/n f(z,u(z), Vu(@)ds, ueWh?(QRY):= Wi,

If one uses the direct method of the calculus of variations to obtain existence of minima
for F, one needs to show that F' is weakly lower semicontinuous in W?!:?.-Since Morrey’s
works ([Mol], [Mo2]) and later Acerbi-Fusco ([AF] Marcellini [Ma2]) and others it is
wellknownthat1f1<p<ooand1f ;

(1.1) o<;f('¢,a<,g')"<a4ib.|§|z’ V(a: o & )eananN*N\ﬁ‘ e

x.l‘f(-.u i

then F is weakIy lower semicontinuous in Wl"’ 1f only if f is quasiconvex with respcét
to the last variable .. We recall that f is said tolbe quasmonvex if it verifies the following
Jensen’s inequality ‘- ' 0

,.1

f(;ﬂo, ’U-o, St Vu(a:))dx > f(-Z‘o, Yo, Eo)

for almost every To € Q for every (uo, &) e RN RN xN and for every''u €
*(Q, RY). Asit is very hard to check whether or not-a-given function is quasiconvex,
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ON THE WEAK LOWER SEMICONTINUITY OF ENERGIES WITH POLYCONVEX INTEGRANDS 457

We give some definitions relevant for this work.

DEFINITION 1.1. — Let N, M > 1 be two integer numbers and let Q°C RM be an open
set. A function f: Q x RY x RV*M _ R is said to be a Carathéodory function if
f (-, u, ¥) is measurable for every (u, ) € RY x RNXM and f(x, -, -) is continuous
for almost every z € S

DEerFNITION 1.2. — (See [Da]).

Let f: RN*M _ R be a Borel measurable function defined on the set of the N x M
real matrices.

o [ is said to be convex if f(A(+(1—N)n) S Af(&) + (1 —A)f(n) for every
& n € RV*M gnd every A € (0, 1).

e f is said to be polyconvex if there exists a function h: R™MM) R convex such
that f (&) = h(T (£)) for every € € RN*M  ywhere T (N, M) = Z (’;‘[) (ZZ)
1€3€min (N, M)
T (&) =(adj1 &, ..., adjmin (v, ar) &) and adjs € stands for the matrix of all s X s minors of €.
When N = M = 2 then T (§) = (&, det (£)).

e f is said to be quasiconvex if ﬁ/ FE+YV @) = f(E) for every £ € RNXM | for
Q

every ) C RY open bounded set and for every ¢ € WO1 e (Q)M (it is equivalent to assume
that the previous inequality holds for one fixed open, bounded, Q! C RV ).

For completeness we state the following well known result.

ProposITION 1.3. — Let N, M 2> 2 be two integer numbers, let Q@ C RN be an open
bounded set and let f: QU xRBM x RN*M _ R be a continuous function such that
f(x, u, -) is quasiconvex for each (z, u) € Q x RM. Furthermore assume that f satisfies

—a(lul"+ [§19) —v(z) £ f =z, u, ) S a(|uff + [£F) +7(2),
where o > 0, vy € L' (Q), 1 £ ¢ < p < o0,
|f(zyu, &) = flz,v,m)| SBA+ [ulf™ 4+ [oP7H+ [P+ [P
X (u—v]+[£-n])
where 3 > 0 and
| f(@u, &) = fly,uw, O sv(le—y) A+ [ul + [£F),
where v is a continuous increasing function with v (0) = 0. Let

F(u):= /Q fz, u(x), Vu(x))dr, u€ Whe(Q, RM),

Then F is weakly lower semicontinuous in WP,

Proof. — For the proof we refer the reader to Theorem 2.4 in [Da].
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458 W. GANGBO

LEmMMA 1.4. — Let ¢: R — R be a bounded Lipschitz function. Let Q c RY be an
open bounded set and let € C° (U, R™). Ifp> N -1, ifu,, u € WL (Q, RN) and
if u, — u in WUP then

lim [ ¢ (w).. ¢ (W)W T(Vw))dz =/ ¢ (u')...¢" (u) (¢ T (Vu))da.
Q Q

Moreover the results stands for p = N — 1, N = 2. Here (; ) is the scalar product in
N2
Rrand 7= % (7))~

1SsEN

Proof. — Lemma 1.4 is obtained as a slight modification of the proof of Lemma 1
in [DM].

2. The case of continuous integrands

Let us first state the main result of this section.
THEOREM 2.1. — Let N 2 2 be an integer number, let v > 0, let Q C RY be an open
N
bounded set and T = Z ( : ) . Leta: QxRN —[0,00)andg: RN xR™ — [0, o0)

18sSN

be two continuous functions such that g (z, -) is convex for each z € Q. Let:
F(u):= / a(z, u(x)) g (z, T(Vu(z)))dr, u € WhP(Q, RY).
Q

Then,
(2.2) F(u) £lim inf F(u,),

if uy, u € Wh¥ (Q, RY) and u, — v in wbLr p > N — 1. Moreover, if N = 2 the
result is true even if p = N —1 = 1.
We recall that T (V ) stands for the matrix of all minors of V w.

Remark2.2. — 1. - If p = N it is easy to prove Theorem 2.1 even in the general case

where F (u):= / f(z, u(z), T (Vu(z)))ds, f continuous, f(z,u, T) 20, f(z,u,-)
Q

convex. Indeed, h being a fixed real number, we truncate the sequence u,, u and get a

sequence v,, v so that |v, (z)|, |v(z)| < h for almost every = € Q. As f is convex

in the last variable T, using Lemma 2.3 we can approximate f on {2 X [—h, RIY x R™ by
a non decreasing sequence of smooth functions f; such that

0L fi(z,u, T) £ Cj(z, uw) 1+ [T]),

1
where C; (z, u) = 0 for every = € Q such that dist (z, O0) < o for suitable [; € N.
J

Then we apply Proposition 1.3 to f; (x, u, T') and to the sequence v,, v. Letting 7 go to
infinity and then h go to infinity, we obtain

F(u) Llim inf F(u,).
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2. — In the general case F (u):= [, f(z, u(z), T (Vu(z)))dr, (2.2) would be true if
| we knew that the sequence {det (V u,)}, is bounded in L!. Indeed, as indicated above,
by De Giorgi's Lemma, we approximate f (z, u, T') from below by a function g (z, u, T')
which is smooth and grows lineary in the variable T. We can assume without loss of
generality that there eixsts a constant A > 0 such that |u, (z)]|, |u(z)| £ h for almost
every z € 2. Then, we fix a compact set K in Q x [—h, h]Y and by Weierstrass’s
Approximation Lemma we obtain:

{lg(x,u,T)—gn(x,u,TM Se(l+ max g(y, v, T))
(v, v)EK

(2.3)
VT eR™, V(z,u)eK,

where g, (z, u, T') has the form

gn (z,u, T) = a,lc’”(ul)...akN‘"(uN)hZ (z, T).
k=0

Then we can show with the relaxed assumptions

ap™ ()., ap " (un), b (z, T) 20

that i F (u) := / 0n (3, u (), T (V) (z))) dz, then,
" Fo(u) S lim inf F, (u),
which together with (2.3) and the fact that {det (V u,)}, is bounded in L!, yields
F(u) £lim ul_r’1£o F(u,).

However {det(V u,)}, is not necessarily bounded in L!. [DM] provides an example
where u, — uwin W42, N > p > N —1 and {det (V u,)}, is not bounded in L (cf. also
[BM]). For instance if N = 2, @ = (0, 1), 1 < p £ 2,

u, =v* ' (1—y)’ (sin vz, cos va) — (0,0) in WhP,

Then det (Vu,) = —v# (1 —3)**"" is not bounded in L' if p < 2.

3. — The assumption that u,, u € WLN s important. It can be useful to extend the
definition of F (u) to functions u € WP, p < N (cf. [Mal]). Also Theorem 2.1 is false
if one omits this assumption (cf. [BM]).

4 -If1 £p < N-1, and if N = 3, then F is not necessarily weakly lower
semicontinuous (cf. [Mal]). Butif p = N — 1, N 2 3, the question to know whether or
not F' is weakly lower semicontinuous is still open. However Maly proved in [Mal] that
if u, u, € WHN-1 are sense preserving diffeomorphisms such that u, — « in Wh -1,
then F'(u) £ lim Vlilgo F(u,).

5. - The basic idea to prove Theorem 2.1 is the following: in the first
step, we approximate f from below by a sum of functions of the form
c(z) b (ul)--- N (uV) g (z, T(Vu)), with c(z), b' (ul),..., b" (v/V) Z 0. This can
be done using Weierstrass’s Approximation Theorem (see Lemma 2.5). In the second
step, changing variables we write c(z)b! (ul)---b" () g(x, T (Vu)) in the form
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460 W. GANGBO

h = h(z, T (Vv)). Then, following the idea of Dacorogna and Marcellini in their study
of integrands of the form h = h (T (V v)) (see [DM]), we conclude the Theorem.

Lemma 2.3. (De Giorgi's Lemma). — Let N, 7 2 1 be two integer numbers, let () € RY
be a open bounded set, and let g: 2 x R™ — [0, 00) be a continuous function such that
g(z, ) is convex for each x € . There exists a non decreasing sequence of functions
(g1), of class C*° (2 x RT) such that:

gz L

ii) (gi), converges uniformly to g in every compact subset of Q@ X R";

iii) g, (z, ) is convex;

1

v) g (z, T) = 0 if dist(z, 0Q) = 7

v) On every compact subset K of Q, Dy g (z, T') is bounded in K x R” by a constant

g
which depend only on l, g and K, where Dr g1 = <—8T Glye- -y % gz)-
1 r

Proof. — For the proof we refer the reader to [Ma2].

Remark 2.4. — One can deduce from Lemma 2.3 that there exists a constant C = C (I, g)
such that | Drg;(z, T)| £ C for every (z, T) € Q x R".

LEmMMA 2.5. — (Weierstrass’s Approximation Theorem)

Let f: [0,1] — R be a continuous function. Then, for every € > 0, there exists
ng (¢) € N such that n 2 ng (€) implies

\ rw- % (3)s (5)wa-w

for every u € [0, 1].

§6(1+g§1g1|f(t)l),

Proof. — For the proof we refer the reader to [KIl]).

Proof of Theorem 2.1. — We give the proof of Theorem 2.1 only in the case where
N > p > N — 1 since the case p = N is easily obtained (see Remark 2.2). In
the first step of the proof, we truncate the functions (u,), and u to get a new
sequence which is uniformly bounded in L*. Then we write f as a sum of
functions of the form c ()bt (u!)---bY (u¥) g(z, T(Vu)), where c and b',..., b"
are smooth. In the second step we study the particular case where f has the form
c(z) b (ut)--- N (uV) g (z, T(Vu)). In the last step we study the general case where
f satisfies the hypotheses of Theorem 2.1. Clearly (2.2) is true if

lim inf a(z, u,) g (z, T(V(w))) = 0.

v—00 QI
Assume that
M:=lim inf a(z, u,)g(z, T(V(w))) < +oo.
V=00 Q’
1
Fix h > 0, E = [-h, h]N, lp eNand Q = {m € Q, dist(z, 0N) > m}
0 .
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ON THE WEAK LOWER SEMICONTINUITY OF ENERGIES WITH POLYCONVEX INTEGRANDS 461

First step.

a) Factorization of a (z, u)
Using explicitly Weierstrass’s Approximation Theorem and the fact that a (z, u) 2 v > 0,
it is easy to deduce that there are two sequences (b} )r<n and (c})r<n such that for every
e > 0, there is n(¢) € N depending only on &, Q' and h verifying

n

(2.4) 0L a(x, u)—z g (x)bR(u)Se VY(z,u)e x E:=K, Vn 2 n(e),

k=0
WP (2, ur,- oy un) = b (ug) b " (uy) k=1,...,n, n20.
¥meC®(R), "20 j=1,...,N k=1,...,n, n>1,
cr € C™ (), ;20 k=1,...,n, n21l

G0)=1, b=
b) Truncation of u and u,.

Fix 6 (h) < 1. Truncate u and u, by considering ¢ (u) and ¢ (u,) respectively where
¢ is given by

~ i / N ! i H ! d¢
(25) ¢w=gwmm ¢M=H¢w> with ' (£) = = (1),

and ¢ € G (R, R) is defined in the following way
-h if t<—-h-24(h),
Pt)=qt if [t] = h,
h if t>h+6(h),
0S¢/ (t) S 1foreveryt € Rand ¢’ (t) =0 if and only if |¢]| 2 h + 6 (h).

¢) Regularization of g (x, T).
We apply Lemma 2.3 to g: Q x R™ — [0, o). We obtain a sequence (g;), which has
properties i),...,v) of Lemma 2.3. Recall that

(2.6) g(z, T) = llim gi(x, T) V(z, T)e Q xR".

Since (g:), is uniformly bounded below on 2 x R", we can assume without loss of
generality that g, = 0.

Second step. For ! = ly, k 2 1 we show that
(2.7) lim inf / & (uwy) g (z) bf (w,) g1 (z, T(Vu,))
V—00 Qf
2 [ ¢@a@nwa T W)

- If im inf ¢ (wy) e (z) b} (uy) gi (=, T (V u,)) = oo then (2.7) is trivial.
v—oo Jfor
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462 W. GANGBO

— Assume that inf ¢ (uy,) et (z) b (uy) g1 (z, T(Vu)) < co. We may assume
Vo0 Q'

without loss of generality that
u € C™(Q, RY).

If this wasn’t the case then it would suffice to replace u by u. € C* (2, RV) such that
|| ue — u|lwr.~ < €, following the proof with necessary modifications. Since

(2.8) oz, )=0 i dist(s, an)g%,

|Drgi(z, T)| £C=C(l, h) forevery (z,T) € 2 xR,
g €C®(Q xR, [0, o0)) and g1 (z, -) is convex,
cp e C= (),

by € C*= (RY),

and

# €C™ (R R)
we deduce that
lim inf / g (z) b} (wy) ¢’ (un) g1 (x, T(V )
V=00 Q

2 lim inf cf(z)b% (w) ¢ (w)gi(z, T (V)

+lim inf [ cf(2)bF (w) ¢ (w)Dra (o T(Vw) T(Vu)-T (V)

QI

2 [ @@k W W @ TV
+tim jof [ )8 ()¢ @w)Drar (5 T (V) T (V) =T (V)

where we used Fatou’s Lemma and the fact that
p (z) BF (w,) ¢ (us) — ¢ (2) bR (u) ¢ (u) ae.

ForTeR", wesetT = (T, t), t € R. For fixed z € Q, let D1 gi (z, -) denote the matrix
of the partial derivatives of g; (x, -) with respect to the 7 — 1 first variables in R™. Let H
be the functional defined on 2 x RY x RNXN by

H(z,v, &) =} (2) b (v) ¢ (v) (Drgi(z, T(Vu(2); T(§)-T(Vu).

It is easy to see that H and —H are quasiconvex in the last variable. Using the fact that
u € C® (2, RY), (2.8) and the fact that | ¢’ (u,)| S 1, we get that H and —H verify
the assumptions of Proposition 1.3. We deduce that

(2.9) lim l’i_1'1£° /;y c(z)} b (1) ¢’ (ws) (Dr g1 (z, T (Vu)); T(Vu,)-T(Vu))=0.
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ON THE WEAK LOWER SEMICONTINUITY OF ENERGIES WITH POLYCONVEX INTEGRANDS 463

On the other hand, setting
=B, v =B W),
where Bl (t) = / bomop1(s)ds, |t| < h+6(h),

—h—6(h)
then we obtain

v =o' in WbP
bp" (w) ¥ (u,) — " (u)) 9 (w) ae.

As )
pn a1 (z, TVu) e C§ (),

by Lemma 1.4 we obtain:

lim inf /Q, ¢k (z) b (uy) @' (uy) %gl (z, T (Vu))(det (Vu,) —det (Vu))

V=00

= lim inf (/ ck (x) gt-gl (z, TVwu)(det (Vu,) —det (V v))
Qr

| - [ et (B )¢ )~ B ()¢ W) g n (o, TT ) det (V) =0
which together with (2.9), yields (2.7).
Third step. We conclude that
/Q a(z, u(z))g(z, T(Vu(z)))dz £ lim uglgo /f; a(z, uy, (z))g(z, T(Vu, (x)))dz.

V—0o0

Since M :=lim inf a(z, u,)g(z, T(Vu,)) <ooanda(zr, u) Zv>0, by steps 1
nl

and 2 we obtain

lim inf A a(z, uw, (z)g(z, T (Vu, (z)))dz

vV—0Q

v—00

n(g)
> lim inf (¢' (u) Z Cp © (z) by @) (uy () g1 (x, T(V u.,))) dz
13 k=0

n ()
2y /n ¢ (w) e © (2) 87 () g, (2, T (Vw))de — ¢S,
k=0

M+1

where S = + 3meas (Q) + / 91, (z, T (Vu))de.
Q

In the previous inequalities, we used the second step to prove that
tim inf [ ¢/ (u) <} (@) B (e, T(V )2 [ o (0cf (@) B () g5, T(V )

for k # 0. For k = 0, we used the fact that a (z, u) 2 v > 0, and M < co. Letting € go to
zero, ly go to infinity and then h go to infinity in the previous inequality we obtain (2.2). B
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464 W. GANGBO
3. The case of Carathéodory integrands

We state the main result of this section.

THEOREM 3.1, — Let N 2 2 be an integer number, N—1 < p < N, let Q2 C RN bean open
bounded set, and let K C ) be a compact set. The two following assertions are equivalent:

(3.10) meas (8K) # 0,
(3.11) lim inf | det (V uy () | dz < f | det (Vu(z))|dz
vooo JK K

for a suitable u,, uw € WHV (Q, RN) such that u, — u in WhHP.
Before proving Theorem 3.1 we begin with some remarks.

Remark 3.2. — Let us recall that if F' (u) = / | det (v u (z)) | dz and if K is a compact
K

set then, for p = N, F is weakly lower semicontinuous on WLP even if meas (0K) # 0
(see [AF)). For p < N — 1 then F is not weakly lower semicontinuous on WP even
if meas (0K) = 0 (see [Mal]).

The following lemma will be used to prove that (3.10) implies (3.11).

LemMa 3.3. — Let N, 7 = 2 be two integer numbers, let 2 C RN be an open bounded set
and let K C 1 be a compact set such that meas (0K) > 0. Let p < N be a real number.
Then there is a sequence ux € WHY (2, RY) such that

() w—u=id in WHP(Q, RM) with id (z) := =,
(i) |det(Vur(z))| £1 on K,

(iii) meas {z € OK: det (V uy (2)) # 0} < 21—,,

Proof. - We divide the proof into five steps. We assume without loss of generality
that © = (0, ).

First step. We construct the sequence u;. Let k € N be fixed. Using Vitali’s Covering

Theorem we find two sequences (z¥); C 9K, (B%) C (0, '217:) such that

ok c e \J (U Bz, 8))

i=1
(312)  {B@hAHNB@EL A =0 for i#j ii=l.. o,
meas(m)g%ﬁa‘m,
OK)
meas B (z¥, BH\OK Sm_ea_._s_(__‘
o) ( B, ANK) S 5

@t ghca  for i=1,..,00,

ToMB 73 - 1994 - N° §




ON THE WEAK LOWER SEMICONTINUITY OF ENERGIES WITH POLYCONVEX INTEGRANDS 465

where B (z, 3) stands for the open ball in RY with center © and radius 3 and Ny is an
open set. Since K is a compact set we have
T (k)

(3.14) 0K C Ny U (U B (af, ﬁf)),

i=1

where T (k) is a constant depending on k. Now we want to change the centers z* by
other centers which belong to the complementary of K. Using (3.12), (3.13), (3.14) and
the fact that =¥ € OK, we deduce that there are an open set Ny and two sequences
ok € B(zF, BE\K, 0 < eF < BF, such that

T (k)

ox <N (U Bt e§)>,
e (U
B(at, ety C B(a, 65 i=1,...,T(k),
; (3.16) meas (Nx) £ ﬂm_.;gB_K_)‘
T (k)
(3.17) meas < U B (af, e{-‘)\@K) < _"E_‘I_-;I‘_QI_Q.
i=1

Since Q\K is an open set and a¥ € B (z¥, BE\K, there is §¥ > 0 such that

(3.18) Ty (N — et T (k)
. z T(k)(?k-sf)l’ T=4y...,
and
(3.19) B(aF, 65)cO\K i=1,...,T(k).
We define
at + 5 (o - af) z € B (af, &),
k
ug (2) = af + |xiaF | (z —af) =z € B(ak, ef)\B(al, 8f),
T (k)
z xeﬂ\(U B(af,ef)).
i=1

It is easy to see that uy, is a diffeomorphism from B (af, 6¥) into B (a¥, ¥) and uy maps
B (af, e5)\B (ak, &F) into OB (af, ef).

Second step, In this step we show that u, € Wh > (Q2, RY). As
ur € C* (B (af, 6F), RY),
ur € C* (B (af, e5)\B (af, 6F), RY)
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and

ug is continuous on B (af, €F),
we have
(3.20) ui € WH> (B (af, €), R")
and since
(3.21) uk(z) =z on 9B (af, ef

we conclude that

(3.22) ug € C°(Q, RY).

Using the definition of uy on Q\( U B(ak, € ) it is obvious that

i=1
T (k)
(3.23) up € Whe (Q\ \J Blal, ¢! )
=1

which together with (3.20) and (3.22) yields
(3.24) ur € WH (Q, RY).

Third step. We show that, up to a subsequence, ux — u = id in wtr(Q, RV),
Using the definition of u, we obtain:

(3.25) |ug (z) —z| £ -2—1; for every €
and
% Iy z € B(ak, 6%),
Vug(z) = Ti%T(IN_(_I—T%z)-_@i(;F&_)) z € B (af, ,)\B(a 8f),
Iy rea\(U B )

where Iy is the identity matrix in RV*Y. If g, b € RV, a ® b denotes the N x N
matrix with component a;b; and |a| = \/a + -+ a%. Cleary, there exists a constant
C = C(N) such that

cé z € B (a, 6%),
|Vux (2)] < O sthar =€ B(ah, ch\B(ak, o)

C mGQ\(U B (af, eF )
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Thus by (3.17) and (3.18) we have:

T (k) ok P eF\P
Vou (z ”da:SC”(1+ </ (—1) d:z+/ (—'—) da:)
/Q |V ue ()] - ; B (a*, ek |z —af | B (ak, 6*) &¥
T (k) kN
(e7) 1

< P L o

SuwyC (1+; Ny T%)
where wy = meas B (0, 1). Recalling that B (a¥, €¥) does not intersect B (a¥, %) for
i # j and B(a¥, eF) Cc Q = (0, 1)™ we conclude that

N 1

3.26 v Pdz £ CP 14+ ————+ =)
o2 [1vm@rasme (g )

Therefore (uy)x is bounded in W2 and by (3.25) we deduce that, up to a subsequence,
ue —u=1id in WHP(Q, RY).

Fourth step. We show that | det (Vui (z))| £ 1 ae. on K. Indeed (X) implies that
T (k)

(3.27) det (Vuip(z))=1ae z€ Q\( U B (a¥, ef))

i=1
We know that u, € C (B (a¥, e¥)\B (ak, 6F), RY) and

|uk(x)_a§| =6? V‘TEB(af)sf)\B(af,éf)
As uy is the identity on OB (af, ¥) we obtain
Uk (B (a:'cv Ef)\B (afv 6:‘:)) =0B (a’f’ 6? '

Therefore wu; is not locally invertible at any point z € B(a¥, e¥)\B (af, 6F). We
conclude that

(3.28) det (V ug (z)) =0 a.e. = € B (af, eF)\B (af, 6F),
which, together with (3.19) and (3.27) implies that
(3.29) 0<det(Vur(z))<1ae z€K.
meas (0K)

Fifth step. We claim that meas (z € K : det(Vue(z)) # 0} =
By (3.15), (3.19), (3.27) and (3.28) we have

(3.30) {z € 0K: det(Vuy(x))#0} C N

2k

and the result follows now from (3.16). B

Proof of Theorem 3.1. — We prove that (3.10) implies (3.11). Assume that meas (0K )
# 0. By Lemma 3.3 there exists a sequence ux € W1 (Q, RY) such that:

() uwe—u in W-P(Q,RY), u(z):==x,

(3.31) (ii) |det(Vux(z))| £1ae. on K,
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(3.32) (ili) meas{z € OK: det(Vux(z))#0}< 2ik

Then (3.31) and (3.32) imply that

/|det(Vuk(x))|d:v=/ Idet(Vuk(x))ldx+/ | det (V ux (z)) | dz
K 8K K\8K

meas (0K
< —2,5—) + meas (K\JK)
and so

lim inf / | det (V ux (z)) | dz < meas (K\OK)

<meas(K)=/K|det(vu(x))|dx

and we conclude (3.11).

In order to prove that (3.11) implies (3.10), we assume that meas (0K ) = 0. It is easy to
construct a sequence a,, € C° (2, RY) such that (see [Ga])

(3.33) an(z) = 1k () ae. z€Q,
(3.34) 0L a,(z)Lans1(z) S 1k (x) ae. z€N.
Let ux, w € Wh N (Q, RM) be such that uy — u Wh? (Q, RV). Setting in Theorem 2.1 _?
a(lL‘,’U.)E]., g(a:,T,t):a,.(m)Itl,
we obtain
/ an (2) | det (Vu (2)) | do < lim inf / o, (z) | det (V ux (2)) | do
Q —*co JQ
<lim inf / | det (V u (2)) | da,
k—oo K

for each fixed n. Using (3.33), (3.34) and Fatou’s Lemma we conclude that

/Idet(Vu(a:))|dz§lim inf / | det (V ug (z)) |dz. W
K k—oo Jg

Acknowledgements.

This work was supported by the Army Research office and the National Foundation
through the Center for Nonlinear Analysis at Camegie Mellon University. I would like to
thank Stefan Miiller for the helpfull discussion we had while he visited Carnegie Mellon i
University. I would like also to thank Irene Fonseca for her comments on the original !
manuscript.

TOME 73 - 1994 - N° 5




ON THE WEAK LOWER SEMICONTINUITY OF ENERGIES WITH POLYCONVEX INTEGRANDS 469

REFERENCES

[AF] E. Acersi, N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rat Mech. Anal., 86,
1984, pp. 125-145.

[BM] J. M. BatL, F. MuraT, Quasiconvexity and variational problems for multiple integrals, J. Funct. Anal.,
58, 1984, pp. 337-403.

[Da] B. DACOROGNA, Direct methods in the calculus of variations, Springer-Verlag, 1989.

[DM] B. DACOROGNA, P. MARCELLINI, Semicontinuité pour des intégrandes polyconvexes sans continuité des
déterminants, C. R. Acad. Sci. Paris, t. 311, Série 1, 1990, pp. 393-396.

[Ga] W. GANGBO, Thesis, Swiss Federal Institute of Technology, 1992.

[K1] G. KLAMBAUER, Real analysis, Elsevier.

[Mal] J. MALY, Weak lower semicontinuity of polyconvex integrals, to appear.

[Mal]  P. MArCeLLIN On the definition and the lower semicontiuity of certain quasiconvex integrals, Ann. Inst.
H Poincaré, Anal. Non lin., 3, 1986, pp. 385-392.

[Ma2] P. MARCELLINI, Approximation of quasiconvex functions and lower semicontinuity of multiple integrals,
Manus. math., 51, 1985, pp. 1-28.

[Mol] C. B. MorreY, Quasiconvexity and semicontinuity of multiple integrales, Pacific J. Math., 2, 1952,
pp. 25-33.

[Mo2] C. B. MORREY, Multiple integrals in the calculus of variations, Springer, 1966.

(Manuscript received December 1992.)

W. GANGBO
Camegie Mellon University,
Department of Mathematics,
Pittsburgh PA 15213-3890, USA.

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES




