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Abstract

We prove that any discrete equilibrated system of forces can be decomposed into finitely many
bars. We provide an estimate on the cost and the norm of the endpoints of the bars of that
decomposition. The questions we address here are of interest in elasticity theory, optimal designs,
as well as in functional analysis.

1 Introduction

Let F = (F1, · · · , Fd) be a given a system of forces in IRd that is in equilibrium in the sense that
F1, · · · , Fd are signed measures of null average and the moments

∫

IRd

(xjdFi(x) − xidFj(x)) = 0, i, j = 1, · · · , d. (1.1)

Let us start with the following definitions. Assume that Ω ⊂ IRd contains the support of F in its
interior.

Definition 1.1 Assume that a1, · · · , ad, f are Radon measures whose supports are compact and con-
tained in Ω̄. Set a = (a1, · · · , ad). We say that

−diva = f on Ω̄

if
∫

Ω̄
< a;∇ϕ >=

∫

Ω̄
fϕ

for every ϕ ∈ C1(Ω̄). Since ai and f are of compact supports, there is no need to impose that ∇ϕ
is of bounded support. Note that a Neumann type boundary condition has been incorporated in the
definition.
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Definition 1.2 Assume that {Fi}d
i=1 ⊂ M(Ω). (i) We define Σ(Ω̄) to be the set of of matrices σ =

{σij}d
i,j=1 such that σij = σji ∈ M(Ω̄).

(ii) If F is an equilibrated system of forces in Ω and σ ∈ Σ(Ω̄) are of compact supports, we say
that −divσ = F on Ω̄ if for each i = 1, · · · , d we have that −divσi· = Fi on Ω̄. Here, σi· stands for the
ith row of σ. In that case, we say that σ ∈ ΣF(Ω̄).

We want to design a frame in Ω that are static under the action of force F. The frame is represented
by a stress tensor σ = {σij}d

i,j=1 such that σij = σji is a Radon measure supported on Ω̄. The
equilibrium equation is the balance equation

−div(σ) = F in Ω̄, (1.2)

(in the sense of definition 1.2) which prevents overall motion of the structure. Let ΣF(Ω̄) be the set
of all such stresses σ that are symmetric and satisfy (1.2). It is first natural to wonder if ΣF(Ω̄) is
nonempty, the point being to show that the restriction on σ to be symmetric still allows (1.2) to be
solvable. In theorem 2.4 we shall prove that ΣF(IRd) 6= ∅. Furthermore, there exists an element of
ΣF(IRd) whose support in contained in a ball whose radius depends only on F. Hence, if Ω is large
enough, ΣF(Ω̄) 6= ∅.

The condition that F is in equilibrium in IRd means that first, the resultant of the forces is null:

k
∑

i=1

Fi = ~0, (1.3)

and the first moments of F with respect to the origin is null (the net torque is null):

k
∑

i=1

Fi ∧ Mi = ~0. (1.4)

Here if a and b are two vectors in IRd then a∧ b is the skew symmetric matrix (aibj − ajbi)
d
i,j=1. Note

that if A is an arbitrary point in IRd then the moment of F with respect to A is

k
∑

i=1

Fi ∧ (Mi − A) =
k

∑

i=1

Fi ∧ Mi +
(

k
∑

i=1

Fi

)

∧ A,

and so, it is independent of A whenever the resultant of the forces
∑k

i=1 Fi = ~0.
An equilibrated system of forces consists of at least two forces and their points of applications. In

case the system has two forces, they must be opposite to each other and we refer to it as elementary
equilibrated systems. In case the elementary equilibrated system is of the form

F = ±(δA − δB)
A − B

|A − B| ,

we call it a normalized beam.

The purpose of these notes is to find sets of points A = {Ai}l
i=1 ⊂ IRd and sets of real numbers

Λ = {λij}l
i,j=1 ⊂ IR such that F can be decomposed in

1/2

l
∑

i,j=1

λijBeam(Ai, Aj) = F. (1.5)
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Here,

Beam(Ai, Aj) = (δAi
− δAj

)
Ai − Aj

|Ai − Aj |2
represents the ”unit beam” of endpoints Ai and Aj . That question which may be basic in a course of
mechanics, is answered in theorem 2.4. There, our construction gives a constant Cd, independent of
F, such that A is contained in an Cddiam(IM)–neighborhood of IM := {Mi}k

i=1 and

CostF

(

A,Λ
)

≤ Cddiam(IM)

k
∑

i=1

|Fi|2 (|Mi|2 + 1) = Cddiam(IM)

∫

IRd

(1 + |x|2)d|F|. (1.6)

Acknowledgement. Computations communicated by L. Tartar to the author were incorporated in
section 2. Fruitful discussions were also provided by G. Bouchitté, G. Buttazzo, B. Dacorogna and P.
Seppecher.

2 Decomposition of systems of forces in equilibruim

Assume that we are given an open set X ⊂ IRd which is smooth enough, and that F is an equilibrated
system of forces in IRd, whose support IM is compact and contained in X.

In subsection 2.1, we prove that if F is an equilibrium system of forces in IRd and the cardinality
of IM is finite, then ΓF(IRd) contains an element γo which consists of a finite combination of ”bars”.
Furthermore, we give an estimate on how far from IM, the endpoints of the bars in γo could be. The
precise result in contained in theorem 2.4.

2.1 Decomposition into finitely many bars

In this subsection, we denote by {e1, e2, · · · , ed} the standard orthonormal basis of IRd and make the
identification

IR = span{e1}, IR2 = span{e1, e2}, · · · , IRd−1 = span{e1, e2, · · · , ed−1}.

We assume that

F =

k
∑

i=1

FiδMi
(2.1)

is a system of forces in equilibrium in IRd and that the M ′
is are distinct. We denote by IM the set

which consists of the points of applications of F : IM = {M1, · · · ,Mk}. If

F =
∑

1<i<j≤l

λijtAiAj
(δAi

− δAj
), tAiAj

=
Aj − Ai

|Aj − Ai|

we call
∑

1<i<j≤l λijtAiAj
⊗ tAiAj

H1
|[Ai,Aj ]

a frame associated to F and define the volume of that frame

to be
∑

1≤i,j≤l

|λij | |Ai − Aj |.
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Proposition 2.1 Assume that F is given by (2.1) and that either
(i) M1, · · · ,Mk,F1, · · · ,Fk ∈ IR
or
(ii) M1, · · · ,Mk,∈ IRd−1 and Fi is parallel to ed.

Then F is a linear combination of finitely many beams of controlled moments and points of applications:
there exist k + 1 points of application A1, · · · , Ak+1 ∈ IRd, and a symmetric matrix of real numbers
{λij}k+1

i,j=1 such that

F =
∑

1<i<j≤k+1

λijtAiAj
(δAi

− δAj
),

dist(Ai, IM) ≤ diam(IM),
∑

1≤i<j≤k+1

|λij | ≤ 3
k

∑

i=1

|Fi| (2.2)

∑

1≤i<j≤k+1

|λij | |Ai − Aj| ≤ diam(IM)

k
∑

i=1

|Fi| (2|Mi| + 1). (2.3)

Proof: Up to a rotation and translation we may assume without loss of generality that one of the
Mi say, Mk, is at the origin. In order to preserve the assumptions of this theorem, we further assume
that these rotation and translation are defined from IRd−1 onto IRd−1.

1. We assume first that (i) holds, and write Mi = aie1 and Fi = fie1 for some real numbers ai, fi.
Note that

F =

k
∑

i=1

FiδMi
−~0 δ~0 =

k
∑

i=1

fie1(δMi
− δ~0).

Set
Ak = ~O, Ai = Mi, λij = λji = 0, λik = fi,

for all i, j = 1, · · · , k − 1. We have that dist(Ai, IM) = 0, that

∑

1≤i<j≤k

|λij | =
k

∑

i=1

|Fi|, and
∑

1≤i<j≤k

|λij | |Ai − Aj| =
k

∑

i=1

|Fi| |Mi|.

This proves the proposition in case (i).
2. Assume next that (ii) holds. We select a point Ō = (0, · · · , 0, a) on the vertical line passing

through O, where a 6= 0 is a constant to be chosen later (see figure 1). We write

Mi = (M ′
i , 0), Fi = fied.

We decompose each force Fi into a horizontal and oblique component by setting

Fi = Fo
i + Fh

i , Fo
i =

(

−fi

a
M ′

i , fi

)

, Fh
i =

fi

a
Mi.

This leads us to consider a force which we will soon realize to be in equilibrium in IRd−1. We define

Fh =

k
∑

i=1

Fh
i δMi

, Fo =

k
∑

i=1

Fo
i δMi

.
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Figure 1:
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Decomposition of vertical forces:
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Note that because Mi lies in the horizontal hyperplane and Fi is a vertical vector then the d th column
(Mi ∧ Fi)·d of the skew-symmetric matrix Mi ∧ Fi is the vector fiMi. This proves that

k
∑

i=1

Fh
i =

1

a

k
∑

i=1

fiMi =
1

a

k
∑

i=1

(Mi ∧ Fi)·d = ~0

and so,

Fh =

k
∑

i=1

Fh
i δMi

=

k
∑

i=1

Fh
i (δMi

− δ~0) =

k
∑

i=1

fi||Mi||
a

(δMi
− δ~0)

Mi

||Mi||
. (2.4)

By (2.4) Fh is a linear combination of beams and so, it is a system of forces in equilibrium. Thus,
Fo = F − Fh is also in equilibrium as the difference of two systems of forces in equilibrium. In
particular,

∑k
i=1 Fo

i = ~0, which allows us to write that

Fo =
k

∑

i=1

Fo
i δMi

=
k

∑

i=1

Fo
i (δMi

− δŌ). (2.5)

We use (2.5) and the fact that Fo
i = − fi

a
(Mi − Ō) to conclude that

Fo =
k

∑

i=1

−fi

a

√

||Mi||2 + a2
Mi − Ō

||Mi − Ō|| (δMi
− δŌ). (2.6)

Note that (2.4) and (2.6) give a decomposition of F into beams whose points of applications are in
IM ∪ {Ō}. Set

Ak+1 = Ō, Ai = Mi, λik = λki =
fi|Mi|

a
λi(k+1) = λ(k+1)i = −fi

a

√

|Mi|2 + a2, (2.7)

i = 1, · · · , k. The first inequality in (2.2) is immediat for any a ≤ diam(IM), while the second inequality
holds for a = diam(IM).

We have that

∑

1≤i<j≤k+1

|λij ||Ai − Aj | ≤ Λ(a) :=
2

|a|
(

k
∑

i=1

|fi| |Mi|2
)

+ a

k
∑

i=1

|fi| (2.8)

When a = diam(IM), (2.8) yields (2.3). QED

Remark 2.2 Note that (2.3) can be improved by chosing a in order to optimize Λ(a) : It is easy to
see that the minimum value of Λ(a) is

Λ(ā) =

√

√

√

√

k
∑

i=1

2|fi| |Mi|2
√

√

√

√

k
∑

i=1

|fi|, ā =

√

∑k
i=1 2|fi| |Mi|2
∑k

i=1 |fi|
.
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Remark 2.3 Assume that M̄1, · · · , M̄r,∈ IRd−1, that F̄1, · · · , F̄r,∈ IRd and that F̄ =
∑r

i=1 F̄iδM̄i
is

a system of forces in equilibrium in IRd. We divide the set of forces into two classes by assuming that
there exists n ∈ (1, r) such that F̄1, · · · , F̄n 6∈ IRd−1 and F̄n+1, · · · , F̄r ∈ IRd−1. Note that

(F̄i ∧ M̄i)αj = 0, (i = n + 1, · · · , r) (2.9)

if α = d or j = d, and
(F̄i ∧ M̄i)αj = 0, (i = 1, · · · , n) (2.10)

if α, j 6= d or α = j = d. We decompose F̄i into F̄h
i + f̄ v

i ed, such that F̄h
i ∈ IRd−1, so that f̄ v

i = 0 for
i = n + 1, · · · , k. Set

H =
n

∑

i=1

F̄h
i δM̄i

+
r

∑

i=n+1

F̄iδM̄i

and
IM = {M̄1, · · · , M̄k}.

Observe that the points of applications of the forces of H are contained in IM.
Clearly

∑n
i=1 F̄h

i +
∑k

i=n+1 F̄i = ~0. This, together with (2.9) and (2.10) implies that H is in
equilibrium. Set

F⊥ = F̄ − H =

r
∑

i=1

f̄ v
i edδM̄i

.

Note that
|F̄i|2 = |Hi|2 + |f̄ v

i |2 (2.11)

for all i = 1, · · · , k.
Because H and F̄ are in equilibrium, we have that F⊥ is in equilibrium. By proposition 2.1 (ii),

there exist m ≤ r + 1 points of application Ar+1, · · · , Ar+m ∈ IRd, and a m × m symmetric matrix
{λij}r+m

i,j=r+1 such that

F⊥ =
∑

r+1<i<j≤r+m

λijtAiAj
(δAi

− δAj
),

dist(Ai, IM) ≤ diam(IM ), (2.12)

∑

r+1≤i<j≤r+m

|λij | ≤ 3

n
∑

i=1

|f̄ v
i | ≤ 3

n
∑

i=1

|F̄i|, (2.13)

and

∑

r+1≤i<j≤r+m

|λij | |Ai − Aj| ≤ diam(IM )

n
∑

i=1

|f v
i | (2|Mi| + 1)

≤ diam(IM )

n
∑

i=1

|F̄i| (2|Mi| + 1). (2.14)

In (2.14) we have used the fact that from (2.11), |F̄i| ≤ |f̄ v
i |.
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Theorem 2.4 Assume that F is given by (2.1). Then F is a linear combination of finitely many
beams: meaning that there exist l points of application A1, · · · , Al ∈ IRd, and a l× l symmetric matrix
{λij}l

i,j=1, of null diagonal such that

F =
∑

1<i<j≤l

λijtAiAj
(δAi

− δAj
).

Furthermore, there exists a constant Cd depending only on d such that these beams can be chosen to
satisfy

dist(Ai, IM) ≤ Cddiam(IM),
∑

1<i<j≤l

|λij | ≤ Cddiam(IM)
k

∑

i=1

|Fi|, (2.15)

and
∑

1<i<j≤l

|λij | |Ai − Aj | ≤ Cddiam(IM)

k
∑

i=1

|Fi| (|Mi| + 1). (2.16)

Proof: The idea of the proof is to decompose F into the sum of equilibrated systems of forces

F = G + F̄. (2.17)

Here, G as an explicite linear combination of beams, whose volumes are controlled by F and F̄ is an
equilibrated system of forces in IRd, whose points of applications are all in IRd−1. We use remark 2.3
to write that

F̄ = F⊥ + H, (2.18)

where H is an equilibrated system of forces in IRd−1 and F⊥ is an equilibrated system of forces
perpendicular to IRd−1, whose points of applications are all in IRd−1. Thanks to proposition 2.1 (i),
we can proceed with the proof of the theorem assuming that it holds for H. We use (2.17) and (2.18)
to show that it suffices to prove the theorem for F⊥. That task was done in proposition 2.1 (ii).

Up to a rotation and a translation, we may assume that one of the points of application of F is
the origin and so, is in IRd−1; reordering the Mi if necessary, we may also assume that there exists
p ∈ {0, · · · , k − 1} such that

Mp+1, · · · ,Mk ∈ IRd−1, Mk = ~O, and M1, · · · ,Mp 6∈ IRd−1.

Step 1. This step consists in reducing the proof of the theorem from general systems of forces in
IRd into the case where the points of application of the forces are in a hyperplan. This step will be
skipt in case p = 0 and so, we assume that p 6= 0.

We refer to
< Fi; ed > ed = f v

i ed

as the ”vertical” component of Fi and to

Fh
i = Fi− < Fi; ed > ed ∈ IRd−1

as its ”horizontal” component.
Here, we only deal with the forces F1, · · · ,Fp. If the angle between Fi and ed is less than π/4 then

the straight line passing through Mi and parellel to Fi intersects IRd−1 at a point M̄i not too far from
Mi. To be more precised, if |f v

i | ≥ |Fh
i |, then

|M̄i − Mi| ≤
√

2|(Mi)d| ≤
√

2|Mi|, (2.19)
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where (Mi)d is the vertical component of Mi :

Reordering if necessary, we may assume that

|f v
i | ≥ |Fh

i |, (i = 1, · · · , n1)

and
|f v

i | < |Fh
i |, (i = n1 + 1, · · · , p).

When i = n1 + 1, · · · , p, the straight line passing through Mi and parellel to Fi intersects IRd−1 at a
point ”too far” from Mi (see figure 2). We set

Fi = F′
i + F

′′

i , F′
i = Fi/2 + |Fh

i |ed, F
′′

i = Fi/2 − |Fh
i |ed.

The straight line passing through Mi and parellel to F′
i, (respectively F

′′

i ), intersects IRd−1 at the
point (see figure 3)

M ′
i = Mi −

Fi/2 + |Fh
i |ed

f v
i /2 + |Fh

i |
(Mi)d (respectively M

′′

i = Mi −
Fi/2 − |Fh

i |ed

(Fi)d/2 − |Fh
i |

(Mi)d).

Worst case: Fi is horizontal

Fp

Figure 2:
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Introducing new points of applications in IRd−1

Mp

M ′
p

Mp”

F′
p

F”p

Figure 3:

Since by assumption |f v
i | < |Fh

i | we conclude that

|Fi|/2 ≤ |F′
i|, |F′′

i | ≤ 3/2|Fi|, (2.20)

and so,
|M ′

i − Mi|, |M ′′

i − Mi| ≤ 6|Mi|. (2.21)

We set

G =

n1
∑

i=1

Fi(δMi
− δM̄i

) +

p
∑

i=n1+1

F′
i(δMi

− δM ′

i
) + F

′′

i (δMi
− δ

M
′′

i

) (2.22)

and q = 3p−n1 ≤ 3(k− 1). Note that the points of application of G consists of q points {A1, · · · , Aq}
(allowing repetitions), contained in the following union

{M1, · · · ,Mp} ∪ {M̄1, · · · , M̄n1
} ∪ {M ′

n1+1, · · · ,M ′
p} ∪ {M ′′

n1+1, · · · ,M
′′

p }.

We use (2.19), (2.21) and the fact that ~O ∈ IM to conclude that

dist(Ai, IM) ≤ 6|Mi| ≤ 6 diam(IM). (2.23)

One can easily read off that (2.22) that there exists a q × q symmetric matrix {λi,j}q
i,j=1 such that

G =
∑

1≤i<j≤q

λij(δAi
− δAj

)
Ai − Aj

|Ai − Aj |
. (2.24)

Althought we don’t write here the explicite expression of λij , we use (2.20) to obtain that

∑

1≤i<j≤q

|λij | ≤
n1
∑

i=1

|Fi| +
p

∑

i=n1+1

(|F′
i| + |F′′

i |) ≤ 3

p
∑

i=1

|Fi|. (2.25)
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Also, (2.19– 2.21) imply that

∑

1≤i<j≤q

|λij | |Ai − Aj| ≤
n1
∑

i=1

|Fi| |Mi − M̄i| +
n

∑

i=n1+1

(

|F′
i| |Mi − M ′

i | + |F′′

i | |Mi − M
′′

i |
)

≤ 18
k

∑

i=1

|Fi| |Mi| (2.26)

By (2.24), G is a system of forces in equilibrium and so, as the difference of two systems in equilibrium,

F̄ = F − G =

n1
∑

i=1

FiδM̄i
+

p
∑

i=n1+1

(

F′
iδM ′

i
+ F

′′

i δ
M

′′

i

)

+

k
∑

i=p+1

FiδMi

is also a system of forces in equilibrium.
Set r = k+p−n1 ≤ 2k−1. Note that the points of application of F̄−G are in the set {M̄1, · · · , M̄r}

of IRd−1 which is:

{M̄1, · · · , M̄n1
} ∪ {M ′

n1+1, · · · ,M ′
p} ∪ {Mp+1, · · · ,Mk} ∪ {M ′′

n1+1, · · · ,M
′′

p }.

We have implicitely used the ordering

M̄n1+1 = M
′

n1+1, · · · , M̄p = M
′

p, M̄p+1 = Mp+1, · · · , M̄k = Mk

and
M̄k+1 = M

′′

n1+1, · · · , M̄k+p−n1
= M

′′

p .

Using (2.19) and (2.21) we conclude that not only

|Mi| ≤ 6diam(IM), diam(IM ) ≤ 14diam(IM), (2.27)

but also,
|M̄i| ≤ 7|Mi| (2.28)

for i = 1, · · · , k and
|M̄i| ≤ 7|Mi+p−n1

|, (2.29)

for i = k + 1, · · · , r. and
We use that F̄i = Fi for i ∈ {1, · · · , n1} ∪ {p + 1, · · · , k} and (2.20) to obtain that

|F̄i| ≤ |Fi|, i ∈ {1, · · · , n1} ∪ {p + 1, · · · , k} (2.30)

|F̄i| ≤ 3/2|Fi|, i ∈ {n1 + 1, · · · , p} ∪ {k + 1, · · · , r}. (2.31)

Step 2. We have reduced the decomposition of systems of forces problem to the case where the
points of application of the forces are all in IRd−1. It remains to prove the theorem in the case where
the forces are all horizontal or all vertical. Indeed, as in remark 2.3 we write

F̄ = F⊥ + H, (2.32)

where H is an equilibrated system of forces in IRd−1 whose points of applications are in IM and

F⊥ =

r
∑

i=1

f v
i edδM̄i
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is an equilibrated system of forces in IRd, is perpendicular to IRd−1 with its points of applications are
in IRd−1. We write that

F⊥ =
∑

r+1<i<j≤r+m

λijtAiAj
(δAi

− δAj
), (2.33)

where {λij}r+m
i,j=r+1 is a symmetric matrix and Ar+1, · · · , Ar+m ∈ IRd satisfy (2.13) and (2.14). These,

together with (2.28–2.29) and (2.30–2.31) imply that

∑

r+1<i<j≤r+m

|λij| ≤ C ′
d

k
∑

i=1

|Fi| (2.34)

and
∑

r+1<i<j≤r+m

|λij | |Ai − Aj | ≤ C ′
d

k
∑

i=1

|Fi|(|Mi| + 1), (2.35)

for a constant C ′
d depending only on d. Since H is in equilibrium in IRd−1 and has its points of

application in IM , the induction argument ensures that there are s points A1+r+m, · · · , As+r+m and
a s × s symmetric matrix {λij}s+r+m

i,j=1+r+m such that

H =
∑

1+r+m≤i<j≤s+r+m

λij(δAi
− δAj

)tAiAj
, (2.36)

dist(Ai, IM ) ≤ C ′
d−1diam(IM ) ≤ Cd−1diam(IM), (2.37)

∑

1+r+m≤i<j≤s+r+m

|λij | ≤ Cd−1

r
∑

i=1

|Hi| ≤ C ′
d−1

r
∑

i=1

|F̄i| ≤ Cd−1

k
∑

i=1

|Fi|, (2.38)

∑

1+r+m≤i<j≤s+r+m

|λij ||Ai − Aj | ≤ C
′′

d−1diam(IM )

r
∑

i=1

|Hi|(|M̄i| + 1)

≤ C ′
d−1diam(IM)

r
∑

i=1

|F̄i|(|Mi| + 1)

≤ Cd−1diam(IM)
k

∑

i=1

|Fi|(|Mi| + 1). (2.39)

In (2.38) and (2.39) we used (2.11) and (2.20) to obtain that |Hi| ≤ |F̄i|. We have used that r ≤ 2k.
We have used (2.28) and (2.29) to bound |Mi|.

Observe that by (2.22) and (2.32) we have that

F = G + F⊥ + H

This, together with (2.24), (2.33) and (2.36) gives that

F =
∑

1≤i<j≤l

λijtAiAj
(δAi

− δAj
). (2.40)
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We use (2.27) and (2.37) to obtain that

dist(Ai, IM) ≤ 14diam(IM), (i = 1, · · · , l). (2.41)

We use (2.25–2.26), (2.34–2.35) and (2.38–2.39) to deduce that (2.15) and (2.16) hold a constant Cd

that depends only on d.
This concludes the proof of the theorem. QED


