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Abstract

In this paper we consider a Hamiltoni&h on @z(RZd), the set of probabil-
ity measures with finite quadratic moments on the phase sp#te- R x RY,
which is a metric space when endowed with the WassersteiandisW,. We
study the initial value problerdp; /dt+ O- (Jgvi k) = O, where]y is the canon-
ical symplectic matrix,ug is prescribedy; is a tangent vector teﬂ’z(RZd) at
U, and belongs toH (1t ), the subdifferential oH at . Two methods for con-
structing solutions of the evolutive system are providelle Tirst one concerns
only the case whergg is absolutely continuous. It ensures thiatemains abso-
lutely continuous and; = OH (1) is the element of minimal norm i6H (1t ).
The second method handles any initial meaguelf we furthermore assume
thatH is A—convex, proper and lower semicontinuous@l@(RZd), we prove
that the Hamiltonian is preserved along any solution of auolwgive system:
H(u) =H(Lp). © 2000 Wiley Periodicals, Inc.

1 Introduction

In the last few years there has been a considerable intertst theory of gra-
dient flows in the Wasserstein spagé&(RP) of probability measures with finite
quadratic moments iRP, starting from the fundamental papers [35], [43], with
several applications ranging from rates of convergencejtdibrium to the proof
of functional and geometric inequalities. In particular[4] (see also [13]), a sys-
tematic theory of these gradient flows is built, providingseence and uniqueness
results, contraction estimates and error estimates fanthkcit Euler scheme.

In this paper, motivated by a work in progress by Gangbo &m#8i], we pro-
pose a rigorous theory concerning evolution problemsZs{RP) of Hamiltonian
type. Here typicallyD = 2d and the measures we are dealing with are defined in
the phase space. As shown in Section 8, our study coverseadbasgs of systems
which have recently generated a lot of interest, includimg ¥lasov-Poisson in
one space dimension [9] [47], the Vlasov-Monge-Ampérg [18] and the semi-
geostrophic systems [10] [16] [17] [19] [18] [23] [20] [2122] [40Q].
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We note that a general theory of Hamiltonian ODE’s for noreeth Hamil-
tonianH, in particular wherH is only convex, seems to be completely understood
only in finite-dimensional spaces, and even in these spheamiqueness question
has been settled only in very recent times, see Remark 6isfinite-dimensional
Hilbert spaces very little appears to be known at the levekegtence of solutions,
and nothing is known at the level of uniqueness.

Besides its comprehensive character, another nice feafwar theory is its
ability to handle singular initial data and singular sadag. This class of solutions
is natural, for instance, to include solutions (e.g. thoseegated by classical non-
kinetic solutions) with one or finitely many velocities, s@&] for a first result
in this direction. At the same time, there is the possibiliyhandle discrete and
continuous models with the same formalism, and to showl#&tat#sults (the first
one in this direction, for two specific models, is [18]).

We recall that#,(RP) is canonically endowed with the Wasserstein distance
W5, defined as follows:

@D wg)=mind [ vy ver(u |
y RPxRDP

Herel (u,v) is the set of Borel probabilty measures BR x R® which haveu
andv as their marginals. The Riemannian structureZf(RP), introduced at a
formal level in [43] and later fully developed in [4], will batensively exploited in
this work. Notice that, as soon ﬁz(RD) is endowed with a differentiable struc-
ture, the theory of ODE'’s in the finite-dimensional sp&%naturally extends to a
theory of ODE'’s in the infinite-dimensional spagé(RP): it suffices to consider
the isometryl : z— &, whered, stands for the Dirac mass at

In particular, we consider the case whbn= 2d and we are given a lower
semicontinuous Hamiltoniad : 2;(R%) — R. As we will be mostly considering
semiconvex Hamiltonians, in the sense of displacementecaiyv[38], mimick-
ing some classical concepts of convex analysis we introgu@efinition 3.2 the
subdifferentialdH (1) and denote byIH (u) its element with minimal?(p; R%)
norm (well defined whenevetH (L) # 0).

The problem we study in Section 6 is: given an initial meagure #,(R%),
find a patht — i € 92,(R??) such that

d
Ho = M

and||OH ()] 2() € L(0,T). Here,Jis a(2d) x (2d) symplectic matrix.

Using a suitable “chain rule” in the Wasserstein space fifsoduced in [4],
we prove in Theorem 5.2 th&t is constant among all solutions of (1.2), pro-
vided H is A—convex (orA—concave) for some real numh&r The proof of this
fact requires neither regularity assumptions on the vsidi@ld JOH (%) nor the
absolute continuity ofk.
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Existence of solutions can be established in (1.2) if oneosep a growth con-
dition on the gradient, as

(H1) the existence of constantgs € (0, +), R, € (0, 4] that for all u € 22(R??)
withWa(u, 1) < Ry we haveu € D(H), dH () # 0 and|OH (1) (2)| < Co(1+|2))
for u—almost every z R

and a “continuity property” of the gradient as

(H2) If p = p.2%, iy = pn.L* € Z3(R™), sup,Wa(pin, ) < Ry and pin — U
narrowly, then there exist a subsequend&)rand functionswy, w : R — R
such thatwy = OH (k) Hn-a-€.,W = OH (1) p-a.e. andw — w £2-a.e. in
R as k— .

Here we are denoting by?3(R?) the elements of?,(R?) that are absolutely
continuous with respect t&2. The requirements of bounds and continuity on the
gradient naturally appear also in the finite dimensionabtjein order to obtain
bounds on the discrete solutions of the ODE and to pass tantiite |

In Theorem 6.6 we show that a minor variant of the algorithresduin [10],
[12], [17] in connection with specific models, establishgistence of a solution
in (1.2) up to some tim& = T(Cy, Ry) (T =+ wheneveR, = +), whenpp =
0022 is absolutely continuous with respect.#%® and (H1) and (H2) hold. A
good feature of this algorithm is that it preserves the alieatontinuity condition,
so thatyy = 0224, and provides the “entropy” inequalities

/ S(pt)dzg/. S(po)dz te [0,T], with Sconvex.
R2d R2d

Unlike the theory of gradient flows, where the selection ef glhadient among
all subdifferentials is ensured on any solution by ener@soes (see [4]), in our
case it is not clear why in general this selection should leentitural one, even
though it provides the tangency condition and it is moreljike provide bounds,
by the minimality of the gradient. Therefore, we considaoal weaker version of
(1.2), which works for arbitrary initial measurgs find a patht — iy € Z2(R?)
and vector fields; € L2(;R%) such that

d _
(13) a#t‘i_':l'(‘]vt#t):(l Ho = M, te (07T)
Vi € T, Z2(RY) NoH () forae.dt.

HereT,, 2,(R%) is the tangent space t@,(R%) at u, according to Otto’s calcu-
lus [4], defined as the?(u; R?®) closure of the gradients @ (R?Y) maps. Even
in this case we are able to show thhis constant along solutions of (1.3), provided
H is A—convex (orA—concave) for somg € R.

For the system in (1.3), we weaken (H1) and (H2) and only asshat
(H1") the existence of constantg € [0,+), R, € (0,+] such that for allu €
P5(R) with Wa (1, 1) < Ro we haveu € D(H), dH () # 0 and||OH (1) [ 2y <
Co



4 LUIGI AMBROSIO, WILFRID GANGBO

and

(H2') If sup,Wa(n, 1) < Ry and p, — p narrowly, then the limit points of convex
combinations of OH (un) n } v, for the weak-topology are representable asu
for somew € dH () N T, Z2(R?Y).

In Section 7 a second algorithm, based on linear interpalaif transport maps,
provides existence of solutions to (1.3). We refer to Theore4 for a complete
statement of the results we obtain. In particular, wier iy, definingh on
R by h(x,v) = H(Jxv)), the algorithm used in this section coincides with a nat-
ural finite-dimensional algorithm yielding in the limit tielume-preserving flow
associated to the ODE (see Remark 6.5 for a more precisesdisa):

d(X(t),v(t)) € ah(x(t),v(t)), te (0,T)
¢4 {( XOMO) = (X,

Note that proving existence of (1.3) is harder, comparedrdwipg existence
for the symplified system

d _
(15) dtﬂt—i_D (‘]th'lt) =0, Ho =M, te (07T)
vi € O0H () fora.e.t,

where we drop the constraint thate T, P,(R?), and sov; may be not tangent
to Z2,(R?). The system in (1.5) does not make geometrical sense, excepet
cial cases such as when is concentrated on finitely many points (in this case
L2(; RM) = Ty, 225(R?)). On the technical side, the lack of the tangency condi-
tion seems to prevent the possibility of proving constarfdh@ Hamiltonian along
solutions of (1.5).

Finally, we add more motivations for the terminology “Hatmilian” adopted
for the systems (1.2) and (1.3) (particularly wheis the canonical symplectic
matrix). A first justification is given in [31], wher@qOH (1) is shown to be the
“symplectic gradient” induced by a suitable skew-symnee2rform (see the more
detailed discussion made right after Definition 5.1). MeeFpin the recent work
[18] the authors consider Hamiltonians BA™ of the form

(X1, Va5 *+* %0, Vn) — Hn(X1,Va; -+ ; Xn, V) ———W2< Zéw Z5nbn>

where(a],b}),- -, (all,bl) € R% are prescribed. They study the classical finite-
dimensional Hamiltonian systems

X (t) = nOy Hn O (1), V1 (1); - - Xa (1), V() t
(1.6) V() = —anHn(Xl()V”() =X (1), Va(t)) t
(x'(0),v(0)) prescribed [

m m

I
=
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Defining

ln
M == Suom )
t niz O (1) v'(1)

itis readily checked that the paths- ! € 92,(R??) satisfy (1.3) withH, in place
of H. In [18], it is proven that if the initial condition$x(0),V'(0)) are suitably
chosen and" = 1/n3 i ; &z pry tends tov asn tends to+e, then up to a subse-
quence which is independent of the time variabtbe measurefy}>_; narrowly
converge as — +oo to measureg Lk }c(o,1) Satisfying (1.2) for the Hamiltonian

H(u) = —1/2W5(u, v).

Acknowledgment It is a pleasure to express our gratitude to Y. Brenier for the
many interesting and instructive discussions we had.ditis were also provided
by T. Nguyen.

2 Basic notation and terminology

In this section we fix our basic notation and terminology orasee theory and
Hamiltonian systems.

- The effective domain of a functioH : A — (—oo,+oo] is the setD(H) of all
ac Asuch thaH (a) < +. We say thaH is proper ifD(H) # 0.

- Letd, D be integers. We denote iy the identity matrix orR® and we denote
by Jq4 the sympletig2d) x (2d) matrix

(0 I
Jd_<—ﬂd 0).

Whend = 1, this is the clockwise rotation of angle/2. We denote byid the
identity map orRP or R%.

- If r > 0 andz € RP, B;(2) denotes the ball ilRP of centerz and radiug. If
B c RP we denote byB® the complement oB.

- Assume thay is a nonnegative Borel measure on a topological spaaad
thatv is a nonnegative Borel measure on a topological sjgaiée say that a Borel
mapt : X — Y transportsu ontov, and we writetyu = v, if v[B] = u[t~1(B)] for
all Borel setB C Y. We sometimes say thaipushegu to v. We denote by7 (i, v)
the set of alt such thatzu = v.

If yis a nonnegative Borel measure ®nx Y then its projection prgjy is a
nonnegative Borel measure &hand its projection prqjy is a nonnegative Borel
measure olY; they are defined by

projxy[A] = y[AxY],  projyy[B] = y{X x B].
A measurey on X x Y is said to haveu andv as its marginals iu = projy y and
v = projy y. We write thaty € " (i, v) and cally a transport plan betwegnandv.
- WhenX =Y = M, any minimizery, in (1.1) is called an optimal transport
plan betweeru andv. We write y, € Mo(, V).



6 LUIGI AMBROSIO, WILFRID GANGBO

- We denote by#(RP) the set of Borel probability measures &Y. The
D—dimensional Lebesgue measure R is denoted by#P°. The 2-moment of
u € 2(RP) with respect to the origin is defined by

Ma(k) = [ IEu(x).
RD
Notice thatW2 (i, &) = Ma(u). We will be dealing in particular with
Z5(RP) :={p e 2(RP): My(l) < +o0}

and its subspace”3(RP), made of absolutely continuous measures with respect
to .£P.

-If e 25(RP)andvy, ..., v € L?(RP, u), we writev = (vq,..., W) € L?(RP, u; R¥)
or simplyv € L?(u; R¥).

- Assume thatu, v are Borel probability measures tth= RP with M (1), M2(v) <

+o00 and u absolutely continuous with respect #P. Then there exists a unique
minimizer y, in (1.1), characterized by the fact that = (id x t})su for some

mapt), : RP — RP which coincidesu—a.e. with the gradient of a convex function.
Therefore, the mafy, is the unique minimizer of

t— /RD 12— t(2)Pdu(2)

over.7 (u,v).

- If h € C}(R™), the Hamiltonian vector field associated hds X, = JOh.
WhenX € C1(R% R2), the flow of X is the map® : [a,b] x R — R defined
by

2.1)

d(t,2) = X(t,P(t,2) telab), ze RM
®(0,2) = z zeRX.

The flow® is unique, and the growth condition
IX(t,2)| <C(t)(14]2) with Cell(ab)

ensures its existence.
- If Lo = &, and we sepy = ®(t,-)ulo = do(t ), thenp satisfy the continuity
equation

d
2.2) S O (Xp) =0

in the sense of distributions. Wheh= X, for a Hamiltonianh, (2.1) is called a
Hamiltonian system.

In this work, we consider the infinite-dimensional versidi{z1 —2.2), where
&, is replaced by a measurec 2,(RY x RY) andX; is replaced by the Hamilton-
ian vector fieldXy of a HamiltonianH : 22,(RY x RY) — (—o0, +-00]. Whend = 1,
that vector field is defined to be the clockwise “rotation” bg anglerr/2, on the
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tangent space at of 9%,(R%) of the the gradient of.

3 The differentiable structure of the Wasserstein space?;(RP)

In this section we introduce the differentiable an Riemansitructure of#,(RP)
following essentially the approach developed in [4] (see §l1] [43], two seminal
papers on this subject).

We recall first tha(ﬁ”z(RD),Wz) is a complete and separable space, not locally
compact. We refer to Proposition 7.1.5 and Remark 7.1.9]ifof4nore comments
. However, bounded sets i##,(RP) are (sequentially) relatively compact with re-
spect to the so-called narrow convergence, i.e. weak cgaree in the duality
with Cp(RP), the space of continuous and bounded functiorRHinActually a se-
quence{ tin}*_, converges tqu in #2,(RP) if and only if p, narrowly converge to
u andMa () — Ma(u) asn — +o. The lack of compactness i#,(RP) is pre-
cisely due to the fact that narrow convergence does not ahivagly convergence
of second moments.

To derive the differentiable structure from the metric stwe, we start from the
following fact, proved in Theorem 8.3.1 of [4]: ik € Z>(RP) solve the continuity
eqguation

d
(3.2) gt (Wepk) =

d

in the sense of distributions i@, b) x RP, for some time-dependent velocity field
W with [[wi]| 2(,,,) € L*(a,b), then

(3.2) Wo (s, Lt ) g/ [WellL2(y,;r0) AT Va<s<t<h.
S

As a consequence we obtain that if the miaps L is absolutely continuous from
[a,b] to 22,(RP). Conversely, it was proved in the same theorem in [4] thaafyr
absolutely continuous curte— Lk, there is always a unique, up to negligible sets
in time, velocity fieldv; for which both the continuity equation and, asymptotically
equality holds in (3. 2)'

(3.3) Jim ]h]WZ Hirh, ) = [[Velliz(y)  forace.t.

In Proposition 8.4.5 of [4], this minimality property gf is proved to be equivalent
to the fact that belongs to thé.?(p; RP) closure of{(¢ : ¢ € CZ(RP)}. Hence,

we may viewv; as the “tangent” velocity field tp; and define the tangent space to
2,(RP) atp, as follows:

(3.4) T, 2,(RP) = {06 ¢ eCa(ROY}" MR,

Notice also that a simple duality argument gives (see Lem#h2 8f [4])

(3.5) [Ty Z2(RP)] " = {w e L3(;RP) : O (wy) =0}
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In the following we shall denote by, : L(u;RP) — T, 2%(RP) the canonical
orthogonal projection.

Summing up, the previous results can be rephrased as follows

Theorem 3.1(Due to [4]) The class of absolutely continuous curygs [a,b] —
2,(RP) coincides with the class of solutions of the continuity ¢iguafor some
velocity fieldw; with [[wi[[ 2, .ro) € L (a,b).

For any absolutely continuous curyg: [a,b] — 22,(RP) there exist; € L?(; RP)
for which both the continuity equation aif@.3) hold. Given a solution of the con-
tinuity equation(3.1), equality holds in(3.2)if and only ifw; € T, Z2,(RP) for a.e.
t.

Finally, the map t— v; € L?(u;RP) is uniquely determined up t&*-negligible
sets.

Itis proven in (8.4.6) in [4] that the above tangent velowgiggtorv;, is identified
for almost everyt by the following property :

@6 jm (x, L,f) b= (d.v)upk in 2,(R®xRP)
- #

for any choice ofy, € Io(Lk, th+n). Essentially this property says that optimal
plans betweep . , andp; asymptotically behave as the plans induced by the trans-
port maps(id + hvi)«k. In the case whep; € 23(RP), where optimal plans are
unique and induced by maps, (3.6) reduces to

th—id
h

wheret;, are the optimal transport maps betweerand Lk p,.

Several notions of differential can be defined, accordinthi® differentiable
structure. We state here the one more relevant for our pespasotivated by
the fact that we will be dealing with convex Hamiltoniansr(émncave ones, one
should instead use a superdifferential).

(3.7) —Vv  inL%(w;RP) ash—0,

Definition 3.2 (Fréchet subdifferential)Let H: #%,(RP) — (—o, +] be a proper,
lower semicontinuous function and lgte D(H). We say thaw € L?(u,RP)
belongs to the R¥chet subdifferentiadH (1) if

HW) = H(u)+ sup [ w(x.y—x)dy(xy) + oWa(k,v)
yelo(k,v) /ROxRP
asv — LU.
Definition 3.2 is a particular case of Definition 10.3.1 [4]ifwthe replacement

of a sup with an inf, see also Proposition 4.2), where the etdésof the subdif-
ferential are plans, and so, are measures in the prdfict RP, instead of maps
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onRP. If ye Mo(U, V), recall that its barycentric projectionis characterized by
yu = (mm)#(yy) or, equivalently, by

@8 [ o00ydu) = [ e(ydyixy) V9 €CulRD).
Hence, we can rephrase the conditiere dH (1) as
(39) H(v)>H(u)+ sup (W(X), 7(X) — X)dH (X) + O(Wa(k, V).

yelo(p,v) /RPxRP

Notice that, wheneven € 273(RP), there is only an optimal plan induced by
andy =ty

It has been proved in Theorem 12.4.4 of [4] that
(3.10) y—id € T,2,(R°) Vv e P2,(RP), VyeTo(u,v).

By (3.9) and (3.10) we infer that € oH () iff 7,w € dH (). Notice thatoH (i)

is a closed and convex subsetldf i; RP). Therefore, as it is customary in subd-
ifferential analysis, we shall denote BYH (i) the element oBH (u), of minimal
L?(u; RP)—norm. The previous comments show in particular that, byrimémal-
ity of its norm, OH (u) = m,0H (1) belongs tadH (1) N T, Z,(RP).

In the following lemma we state a well-known continuity peofy of optimal
plans or maps. Its proof, which is by now standard in the Melkgatorovich
theory, can be found for instance in Proposition 7.1.3 [4¢ Méproduce part of it
for the reader’s convenience.

Lemma 3.3(Continuity of optimal plans and mapshssume thafpin o1, {Vn}n_1
are bounded sequences i#i,(RP) narrowly converging respectively o and v.
Assume thalf o (u, v) contains a unique plag. Then (i)
(3.11) im, [ aydnmxy) = [ ady

RDP xRD

n—-+o JRDyRD

for any choice off, € M'o(tn, V) and for any continuous function:dRP x R® — R
satisfying

(3.12) jim 9V

|yl =+ [X[2 4 |y]2
(i) Assume furthermore that,, 4 € 23(RP) and that there exists a closed ball
B, of finite radius, containing the supportswfandv. Then there exist Lipschitz,
convex functions gu: RP — RU {+e} such thatOu, =t}? py-a.e. inRP and
Ou=tj p-ae. in RP. In addition, there exists a subsequeder}_; of integers
such that

(3.13) Oup, — Ou .#P-a.e. inRP.
Proof. An argument which is by now standard and can be found in [3@tad:

terizes the elementSy(Un, Vi) to be the elements df(un, vn) Whose supports,
supph, are cyclically monotone. More precisely, € I'o(Un, Vi) if and only if
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¥ € I (n, vn) and there exist convex, lower semicontinuous functiops,RP —
RU {4}, such that

(3.14) supph C Aup.

If v, = uj; is the Fenchel-Moreau transformwf andB is any closed set containing
the support ofu,, then

D
(3.15) Un(x) = Inf{5 < Y)—Wn(y)}  xeR".

Using the fact thah € Mo(tn, Vn) and{pin}>_4, {vn}%_, are bounded in?,(RP),
we obtain that

(3.16)  sup[ (x-+Iy)dvh(6y) = SUBMalpn) + Ma(un)} <+

By (3.16), {yn}n_4 is precompact for the narrow topology. Assuf, }r_, is
a narrowly convergent subsequence whose limig.isUsing again (3.16), it is
clear thaty € I'(u,v) and (3.11) holds if we substitutgh}i_; by {yn }e-1- BY
Proposition 7.1.3 of [4], every point in sups a limit of points in supp,, and so,
suppy is cyclically monotone. This implieg € [o(u,v) = {y}. Since the limity
is independent of the subsequergsg, }i_,, we have proven thdty, }_; narrowly
converges ty and (3.11) holds. This proves (i).

Letid be the identity map oRP and assume now thak, u € 23(RP), so that
(3.17) Yo € To(Hn,Vn) = {id xt} and yeTo(p,v) = {id xt;}.

Since convex functions are differentiabfé®—almost everywhere, (3.14) and the
first equality in (3.17) imply that‘[,ﬂ = Ou, pp-a.e. inRP. Let us furthermore
assume that there exists a closed IBalbf finite radius, containing the supports
of v, andv. EnlargingB if necessary, we may without loss of generality that
B contains the origin and so, by (3.1}, is Lipschitz with a Lipschitz constant
bounded above by the radius Bf We may substitutes, by u, — uy(0) without
altering the validity of the above reasonings. Therefonethie sequel, we may
assume without loss of generality that(0) = 0. Ascoli-Arzela lemma ensures
the existence of a subsequeng®, }° ; which is locally uniformly convergent.
Its limit u is necessary convex, with a Lipschitz constant boundedeabgwthe
diameter ofB.

Now, let us show the convergence of the transport maps. Rptssthe limit as
n — oo in the suddifferential inequality

Un(X) > Un(X) + (Oun(X); X —X)

we immediately obtain that, at any differentiability pooftall mapsu,, any limit
point of {Oun(X)}»_, belongs to the subdifferentiau(x). It follows that Cup
converge tdJu wherever all gradients (includingu) are defined, henc&P-a.e.
in RP. In particular, recalling (3.14) and the fact that everynpai supyy is a limit
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of points in supps,,, we conclude that sugpC du. This, together with the second
inequality in (3.17) implies tha, = Ou y—almost everywhere ORP. QED.

4 Convex analysis onZ,(RP)

Let to, 11 € F»(RP) and lety € 'o(Lo, 1) be an optimal transport plan. Let
m:RP xRP:(zw) — zand7 : RP x RP : (zw) — w be the first and second
projections oRP x RP ontoRP. As suggested in [38], the interpolati¢h—t )z +
tm between maps can be used to interpolate between the meaguaad L, as
follows:

(4.1) He = <(1—t)7T1+t7T2)#V-

The proof of the well known fact that— 1 is a geodesic i??,(RP) of constant
speed, i.eWo(Us, L) = [t — SWo(Lp, H1) for all st € [0,1], can be found in Theo-
rem 7.2.2 of [4]; furthermore, any constant speed geodesidhis representation
for a suitable optimay. As it is customary in Riemannian geometry, the identifica-
tion of constant speed geodesics with segments allows ttwalirction of various
notions of convexity for functions (see Chapter 9 of [4] a&d]).

Definition 4.1 (A—convexity) Let H: ,(RP) — (—oo, +o0] be proper and let
A € R. We say that H is —convex if for everyl, 1 € 2,(RP) and every optimal
transport plany € I'o( Lo, 1) we have

A
(4.2)  H(p) < (1-t)H(Ho) +tH (p1) — gt(l—t)sz(uo,ul) vt €[0,1].
Herep = ((1—t)mm +t7®)4y, wherery and 76 are the above projections.

For a real-valued map,-convexity means that the second distributional deriva-
tive oft — H (i) is larger tham .Z*. In general, the inequality above is equivalent
to saying that — H (k) is AW (Lo, g )—convex. In particular, O—convexity corre-
sponds to the notion of displacement convexity introduce@8]. Finally, notice
that this notion of convexity is slightly stronger than theeaintroduced in [4],
where the inequality above is imposed only on some optiraakrort plan.

Proposition 4.2 (Characterization of subdifferentials df-convex functions) Let

H: 22,(RP) — (—, 4] be lower semicontinous and-convex for soma € R
and lety € D(H). Then, any of the following two conditions is equivalent to
we dH(u):

(i)

(43)  HW) =H@+ it [ ;70 - 9du() + oWa(k,v);
yelo(u,v) JRD
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(i) forall v e 2,(R™) we have

@4)  HO)ZH@+ sup [ w0070 ~Xdu00 + SWE(,V).
yelo(u,v)/R? 2

Proof. It is clear thatw € dH (i) implies (i), and that (i) impliesv € dH (u). So,
it remains to show that (i) implies (ii). To this aim, fixe 22,(R¥), y € I'o(u,Vv)
and define the constant speed geodésigc(o 1, betweenu andv as in (4.1).
Then, we know that fot < 1 there is a unique optimal plan betwegrand L,
induced byy = (1q, (1—t)mm +t7R)»Yy (See Lemma 7.2.1 of [4]), so that (4.3) and
the identityy —id =t(y—id) give

liminf M

t]0 t

> /D<W(X);x7(><) —Xdu(x).
R
Then, by applying (4.2) we get

H(VY) —H () > [ (W00 70~ Xd() + SWE (1, v).

RD
QED.

It is not difficult to show that the infimum in (i) and the suprem (ii) are
achieved. As shown in Chapter 10 of [4], the “inf” definitiohsubdifferential in
(i) ensures the weak closure properties of the graph of thdierential. Again,
in the case whep € 228(RP), the previous formula reduces to

HV) 2 W+ [ W00 —xdu + SWE (1Y) W € 25(R)

The typical Hamiltonian we consider in this paper is the tiggaquared Wasser-
stein distance. Some of its properties, established ind2itipn 9.3.12 and Theo-
rem 10.4.12 of [4], are summarized in the following progosit

Proposition 4.3(Convexity of the negative Wasserstein distant&tv € 22,(RP)
and define

1

(4.5) H(u)=—5We(1,v)  pe 22(RP).
Then H is(—1)-convex. Furthermore, ifi € #,(RP),
(4.6) OH (M) NTuZ2(R°) = {y—id: yeTo(u,v)}
and thereforeJH () is the minimizer in
4.7) min{/D ly—id?du: ye Fo(u,v)}.

R
Hereyis the barycentric projection of, as defined irf3.8). In particular,
(4.8) OH(U)NTuP(RP) = {t,—id} Ve 25RP).
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Notice thatWZZ(-,v) is, on the other hand, trivially convex with respect to the
conventional linear structure aP,(RP), asty; + (1 —t)y, € [ (tug + (L—t)up, v)
wheneven € ' (g, v) anduy € T'(Lp, v). Also, as shown in Example 9.1.5 of [4],
for eachA € R, W?(-,v) fails to beA-convex along geodesics.

5 Basic properties of solutions of Hamiltonian ODE’s

We now have all the necessary ingredients for the definitiétamiltonian flow
in 22,(R¥). In order to cover more examples (see Section 8) we consistethe
case when the spaced8,(RP) andJ : RP — RP is a linear map satisfyingv L v
for all v e RP (this framework includes the canonical cée- 2d andJ = Jg).

Definition 5.1. Let H: 22,(RP) — (—w, +] be a proper, lower semicontinuous
function. We say that an absolutely continuous cyrveg0, T] — D(H) is a Hamil-
tonian ODE relative to Hstarting fromp € 22,(RP), if there existv; € L?(u; RP)
with ||Vt|||-2(l»1t) S Ll(O,T), such that

d
allt-FD'(Jthlt)ZQ Ho = U, te(0,T)
(5.1)

Vi € Ty Z2(RP)NaH (1) for a.e.t.

The terminology “Hamiltonian ODE” is fully justified in theaseD = 2d,
J = Jq in a work in progress by Gangbo and Pacini [31]. There, theyethat
Jg induces a nondegenerate bilinear skew-symmetric closteard-Q as follows.
Denoting byT*%7,(R¥) the subbundle defined by

T P(RM) = {nu(Jdv) Ve Tuﬁz(RZd)} ,

they defineQ, : T; 7,(R¥) x T 7,(R*) — R as follows: ifvy = 13, (Java), V2 =
m,(Jav2) € T P2(R™), with vy, v, € T, 7,(R?), they set

Q,(V2, Vo) :/medvl;vzmu U e P5(R2).

It is easy to check tha®,, is well defined (i.e. it does not depend on the choice of
the vectorsy; such that; = 11, (Jv;)), skew-symmetric and nondegenerate.

For anyu € @z(RZ") where[OH exists, the Hamiltonian vector fieldy €
T P,(R%) is classically defined by the identity

Q0% (1).9) = [ (OH()7) =dHE) W Ty 2,(R™).

In other words,Q(Xu(u),-) = dH(-). The system (5.1) withvy = OH (1) is
then easily seen to be equivalent to the condition that thgetat velocity vec-
tor 1, (Javi) to Lk is X (L) or equivalently,fx = Xy (tk). More generally, one
could define a “Hamiltonian subdifferential” by consideyithe vectorsm(Jqv)
with v € 9H (1) N T, Z2(R%).
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The integrability condition|v¢ | 2(,,,) € L*(0, T) ensures that the continuity equa-
tion makes sense in the sense of distributions; furtherifseefor instance Lemma8.1.2
in [4]), possibly redefining in a negligible set of times, we can assume thatL
is narrowly continuous 0, T]. We shall always make tacitly this continuity as-
sumption in the sequel.

In the construction of solutions to Hamiltonian ODE'’s by eppmation, one
finds that the subdifferential inclusion € dH (1) (and therefore the continuity
equation with velocity fieldJv;) has good stability properties (see for instance
Lemma 10.1.3 and Lemma 10.3.8 of [4], or Remark 6.5). Theemag condi-
tion, on the other hand, is not stable in general; howeverdbindition is crucial
to show that — H (L) is constant for Hamiltonian ODE’s. In the proof of this
fact we follow the “Wasserstein chain rule” #10.1.2 and Proposition 10.3.18 of
[4], whose proof (based on a subdifferentiability arguheve reproduce for the
reader’s convenience.

Theorem 5.2. Let H be as in Definition 5.1, and let be a Hamiltonian ODE,
with [|vt][ 2,y € L*(0,T). If H is A—convex for som@ € R then t— H(L) is
constant.

Proof. We first prove that — H () is a Lipschitz function. Le€ be theL* norm
of [Jvt[[ 2, @and notice that (3.2) gives that the Lipschitz constart-ef . is less
thanC. We denote byv; the tangent velocity field tp; and notice that, adv; is an
admissible velocity field fopk, we have thaw; — Jv; is orthogonal tor, 25(RP)
fora.e.t.

Let nowD C (0,T) be the set of points where bothe dH (1) and||vi || 2( ) <
Chold. Lett € D, s€ [0, T] and notice that by Proposition 4.2

. A
H()—H(ps) < inf / — (Ve (X);y—X) dy — ZWE ()
yelo(,1is) JRD xRD 2

2A7
gcm—q+c

(t—9?

TA™
< C?(14——E?—)“-—SL

As H is lower semicontinuous, by approximation the same indtyuablds when
s, t € [0,T]. Reversing the roles afandt we obtain that the Lipschitz constant of
t— H(w) is less tharC?(1+TA~/2).

It remains to show that the derivativetof> H (1) is equal to 0. Fix € (0,T)
where this derivative exists, (3.6) holds,e dH (L) N Ty, P5(RP) andw; — Jv
is orthogonal toT,, #2,(RP). We have then the existence of optimal plaase

Co(ke, ke n) satisfying
C2)—

R+ H () ~H () > [ (w(iy =X,

RPxRDP
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Next, we definaj, = (X, (Y — X)/h)# to obtain

H(pn) —H () = h (vt (x);y)dnn + o(h)
RD xRDP
and use (3.6) to obtatn

H(peen) =H() = h [ (w00:)dlic, )t +olh)

—h [ (0w ()bt +ofh)
_ h/RZd (Ve (); Ive (x))dik + o(h) = o(h).

Sinces— H(Ls) is differentiable as=t, this can happen only if the derivative
is 0. QED.

6 Existence of Hamiltonian flows: regular initial data

Before stating our main existence theorem, we state a tesliemma concern-
ing the approximation of tangent vectors by smooth gradient

Lemma 6.1. Let u = p.#P € 22,(RP) be satisfyingo > m; > 0 #P-a.e. on B
forany r> 0. 1fC > 0, v € T,%,(RP) and

(6.1) \V(z)] <C(1+]|Z)  for u—almost every z RP
then there exists a sequenf®, }&_, € CZ(RP) such that
|O¢n(2)] <C(2+1]2) VzeRP

and
nEToo [v— D‘anLz(y;RD) =0.

Proof. Let {gh};_y € CZ(RP) be such thaflv — Ogh||z(,) — 0 asn — +oo. For
allr > 0 we have

1
limsup|lv — Oa||? < —limsup||v— O@||%,,,, = O.
n_)+oop|| %HLZ(Bth,RD) S nﬁ_i_pr %HLZ(H)
This proves thav € L2 (R%, #2) and that cury = 0. Letl; € CZ be a non-
negative probability density whose support is containetthénunit ball ofR% and
set L
: z
Vh = lp*Vv, with |h(Z)=hﬁ|1(ﬁ)-

1Even though the test functidix,y) — (vt(x);y) is possibly discontinuous and unbounded, one
can use the boundedness of 2-momentgpénd the fact that their first marginal does not depend
onhto pass to the limit, see for instang®.1.1 in [4]
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Clearly,v, € C*(R® R?) and curl, = 0. Hence, there exigt, € C*(R%®) such
thatvy, = OAn andAn(0) = 0. Thanks to Jensen'’s inequality, (6.1) implies that

|vh(z)|:|/F;2dIh(w) (z—w)dw <c/ W)(1+ |z— w|)dw
C(1+2) +c/ w)|w|dw
—C(1+|2)) +hC/ W)W [dw/
<C(1 hC dw
SCOLt)4hC [ (W)

(6.2) <C(2+2),

for h < 1. Since{Vvh}nh=0 converges¥2—almost everywhere tw, the uniform
bound in (6.2) and the fact thate Z2,(RP) imply, by the dominated convergence
theorem,

. 2 .
(6.3) Iim v —OAa[[{z o) = O
Define
An(z) for|z <r
6.4 Bl (7) =
6-4) (2 {O for |z > 2r.

Note thatB}, is aC(2+ r)-Lipschitz function and so it admits an extensiorRd,
that we still denote b}, which isC(2+r)-Lipschitz. We use (6.1), (6.2) and the
fact that

(6.5) |0BL(2)] <C(2+T1) <C(2+12) on B (0)

to conclude that forah <1

[ v=0B2dn = [ v—OadPdu+ [ v— DB}y
R2d B (0) BF(0)

(6.6) g/ \v—DAhlzdu+4CZ/ (2+12)%du.
R BY(0)

We combine (6.3) and (6.6) to conclude that

6.7) im = OB ) = O

This, together with (6.2) and (6.5) yields the lemma. QED.

The following lemma provides a discrete solution of the Heanian ODE in
a small time interval, whose iteration will lead to a disersblution. To make
the iteration possible, one has to show that the flow presdérveome sense the
bounds on the initial datum: this is possible thanks to tle fiaat the flow is
incompressible.
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Lemma6.2. Leth> 0, let u = p.#P € #3(RP) be satisfying
(6.8) p>m >0  ZP-ae. onB foranyr>0

and letv € T, 2,(RP) be satisfying6.1), with €" < 2. Then there exists a family
of measureg = pi.ZP, t € [0, h], satisfying
(@) Jro S(pr)dz< Jzo S(p)dz for any convex function:30, ) — [0, +o);
(b) t — tk € P»(RP) is absolutely continuousyo = ¢ and the continuity
eqguation

(6.9) gut +0-Jvy) =0, (t,2) € (0,h) x RP

dt
holds;
(©) pr > my ZP-a.e. on B, with r' = €“r - 2(e"" — 1),

Finally, we have also that#- L is Lipschitz continuous, with Lipschitz constant

less than b =C+/24(1+ My (u)) and, in particular,
(6.10) Wo(p, 4) <hl,  Vte[0,h].

Remark 6.3. Assumption (6.8) is used twice. First, it is used to concltio
sincev is definedu—almost everywhere, then it is defingfP—almost everywhere,
hencepy—almost everywhere, ify < .#°. More importantly, it is used to apply
Lemma 6.1, to treat as a gradient and to obtain that is divergence free with
respect taZP. This leads to the conclusion that the fl@it,-) associated tdv
preservesZ’® for eacht fixed.

Proof of lemma 6.2 We assume first that = O¢ € C2(RP;RP) and that the
weaker conditionv(z)| < C(2+ |2]) is fulfilled. Under this assumption the au-
tonomous vector fieldv is smooth and divergence-free, so the fldw [0,h] x
RP — RP associated tdv is smooth and measure-preserving. In this case we
simply definel; = ®(t,-)gu, so that the continuity equation (6.9) is satisfied. The
measure preserving property gives that= p,. P, with

(6.11) prod(t,-) =p.

Notice that (a) (with an equality, and even for noncon@follows immediately
by (6.11), and (c) as well, provided we show tie(t,-)~*(B;) C By. To show
the latest inclusion, notice thit(t,y) = ®(t,-)~1(y) is the flow associated teJv,
hence

d
gt Y EY)| < PV(W(ty) = C2+[W(Ly)).
By integrating this differential inequality we immedigtedbtain that
2+ |W(ty)| < €2+ y).

Hence,|y| < r implies |W¥(t,y)| < r’ for t € [0,h]. An analogous argument gives
2+|®(t,2)| < €4(2+]7), hence wher"" < 2 we obtain

[®(t,2)] < 2(]7+1).
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Using this inequality we can estimate
[ 19vPdm < 27 | (4+IyP)du — 802+ 22 [ | jo(t,2)du
< 8cz+1ecz/RD(1+ 12%) dp = 24C2 + 16C°My () < L2.

Using this estimate in conjunction with (3.2) and (6.9) g&ethatt — p is Lo—
Lipschitz .

In the general case we consider a sequenee g, with all properties stated in
Lemma6.1. Ap > 0.#P—-a.e., we can also assume with no loss of generality that
Vh — v ZP-a.e. inR%. Let y" be the measures built according to the previous
construction relative te, and notice that — g are equi-bounded ir#?,(RP),
andL,—Lipschitz continuous. Furthermorg!! = p.#® with p locally uniformly
bounded from below. Hence, we may assume with no loss of gityethat 1" —

i narrowly for anyt € [0, h.

By the lower semicontinuity of moments we getc #%,(RP) for anyt, and the
lower semicontinuity of Wasserstein distance (see foaimst Proposition 7.1.3 in
[4]) gives that the Lipschitz bound and the distance bountiQ)6are preserved
in the limit. Also the inequality/ S(p")dz < [S(p)dz with S convex and the
local lower bound in (c) are easily seen to be stable undek weavergence, and
imply (choosingS = S convex, growing faster than linearly at infinity, such that
[S(p)dz< +o) thatpy = P € 23(RP) with p > m #P-a.e. orB; for any
r>o0.

It remains to show the validity of the continuity equation(in). To this aim,
it suffices to show that, for fixed, Jvnop{" converge in the sense of distributions
to Jvpr. As Sgrows faster than linearly at infinity, we obtain from thequoality
JS(p")dz< [ S(p)dz thatp is equi-integrable (see for instance Proposition 1.27
of [3]). Hence for anye > 0 we can find > 0 such that

ZPB)<d = /.ptdz+sup/.pt”dz<e.
B n JB

We fix r > 0 and choose a8 C B; an open set given by Egorov theorem, so that
Vnh — V uniformly on B, \ B; let alsoVv' : R? — R be a continuous function
coinciding withv on B, \ B, with |V'| < C(2+r). For any@ € C(B;) we have
then

/(pJvnpt”dz:/ (p(Jvn—Jv’)pt”dZJr/ @Jvp dz
RD RD RD
+/ fp(JV’—Jv)ptdz+/ @IV (A" — pr)dz
RD RD
so that

limsup
n—--o0

/D(pJvnpt”dz—/Dq)vat dz < 2Csup|@|(2+r)e.
R R

As ¢ is arbitrary, this proves the weak convergence. QED.
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Remark 6.4 (Stability of upper bounds)By the same argument one can show
that if p < M, ZP-a.e. onB, for anyr > 0, thenp, < M, ZP—-a.e. onB, with
r'=ehr +2(e“—1).

The main result of this section is concerned with Hamiltasid satisfying the
following properties:

(H1) There exist constants,& (0, +), R, € (0, +] such that for allu € 22(RP)
with W (u, 1) < Ry we haveu € D(H), dH(u) # 0 andw = OH(u) satisfies
W(2)| < Co(1+|2) for u—almost every z RP.

(H2)If p=pLP, = pnZ® € P5(RP), sup,Wa(pin, 1) < Ro and pin — pt nar-
rowly, then there exist a subsequend&)rand functionswy, w : RP — RP such
that wy = OH (Unk)) ng-a.€.,w = OH(u) p-a.e. andwy — w #P—a.e. inRP
as k— 4o,

To ensure the constancy dfalong the solutions of the Hamiltonian system we
consider also:

(H3)H : 225(RP) — (—, +oo] is proper, lower semicontinuous and-convex for
someA € R.

Recalling that?3(RP) is dense in?,(RP) it would be not difficult to show, by
the same argument used at the beginning of the proof of Threbr2, that (H3) and
(H1) imply thatH is Lipschitz continuous on the bglu € %2,(RP) : Wo(u, ) <
Ro}. Assumption (H2), instead, is a kind o€¥-regularity” assumption o.
Thinking to the finite-dimensional theory (for instance teaRo’s existence the-
orems for ODE’s with a continuous velocity field) some asstiompof this type
seems to be necessary in order to get existence. In the fotiokemark we dis-
cuss, instead, existence in the “flat” infinite-dimensiocase and uniqueness in
the finite-dimensional case.

Remark 6.5. Assume that we are given a convex foiconvex for somel € R)
Lipschitz functionH : R — R. Then,dH (x) is not empty for alk € R? and we
may define solutions of the Hamiltonian ODE those absolutelytinuous maps
X : [0, 40) — R? satisfyingJgx(t) € dH (x(t)) for a.e.t € [0, +oo).

The same subdifferentiability argument used in the prodfledorem 5.2 then
shows that — H(x(t)) is constant along Hamiltonian flows. Existence of Hamil-
tonian flows can be achieved by the following discrete schdixa time parame-
terh > 0 and an initial datunx € R%. Then, choosgyp € dH (Xo) and set(t) =
X0+ Japot for t € [0,h], choosep; € IH (xn(h)) and setn(t) = xq + Jqpy(t — h) for
t € [h,2h] and so on. In this way,(t) solves the “delayed” Hamiltonian equation

(6.12) Jkn(t) € OH (xh(h[%])) fora.e.t > 0.

Using a compactness and equi-continuity argument we camfseduencéh;) | O
and a Lipschitz mag : [0,0) — R?? such thai, (t) converge to(t) asi — oo for

anyt > 0 andx,, weakly converge in2([0,); R??) to x.
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In order to show thalgx € dH (x) a.e., we use an integral version of the discrete
subdifferential inclusion, namely

/H dt+/ - Xh.(h[,:,]),Jdkhi(t»p(t)dt,

|
with p(t) nonnegative, Wlth compact support and satisfyjmmdt = 1, and pass to
the limit asi — oo to find

V= [ HEO)POd [ y=xt).Jex®)p(t)dt
Choosing properly a family; of approximations o#, this yields

H(y) = H(X) 4 (y = X(t), Jax(t))
at any Lebesgue pointof X. This proves existence of Hamiltonian flows. We also
refer the reader to a work in progress by Ghoussoub and MddB#&ron related
questions.

Notice that this scheme doesn’t seem to work in the infiniteeshsional case,
whenR is replaced by an infinite-dimensional phase spéague to the difficulty
of handling termsf { fn(t), gn(t))dt with f,, weakly converging irL.2 ([0, +o); X)
andgp(t) only pointwise weakly converging tg(t). Indeed, we are not aware of
any existence result in this direction.

Coming back to the finite-dimensional case- R%4, the results in [5] (see also [6]
for special classes of Hamiltonians) ensure a kind of “gehemiqueness prop-
erty, or uniqueness in the flow sense, in the same spirit oéD#-Lions’ theory
[25] (see§6 of [5] for a precise formulation). In brief, among all faie# of solu-
tionsx(t,x) of the ODE, the condition

(6.13) X(t,)x2?d <C#* with C independent of

determines< up to #9-negligible sets (i.e. ik andxXfulfil (6.13), thenx(-,X) =
%(-,x) for £9-a.e.x) and the unique satisfying (6.13) is stable within the class
of approximations fulfilling (6.13) (in particular, one fisdhatx(t,-) is measure-
preserving for alt). It turns out that the scheme described here produces r@tisc
flow xn(t,X) satisfying (6.13) wittC = 1, and therefore is a good approximation of
the unique Hamiltonian flow. See also [45] for discrete schemes (called leap-frog
schemes) that really preserve the symplectic forms anafirer the symplectic
volume.

Theorem 6.6. Assume thafH1) and (H2) hold and that T> O satisfies (6.18).
Then there exists a Hamiltonian flowy = 0.#° : [0,T] — D(H) starting from
U= p<P e 23(RP), satisfying(5.1), such that the velocity field; coincides
with OH (1) for a.e. te [0, T]. Furthermore, t— L is L—Lipschitz, with

L2=2C2(1+M) and M=eZCHIT (14 M(j)).
Finally, there exists a functior(i) depending only on T and,Guch that
(6.14) p>m LP-ae.onBvr>0 = p>m; L -ae.onBVr>0
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and
(6.15) p<M; #P-ae.onBVr>0 = p <M £ -ae onBvr>0.

If in addition (H3) holds, then t— H (1) is constant.

Proof. In the first two steps of the proof, we shall assume existetfigesitive
numbersm, such that the initial datum satisfies> m, > 0_.#P a.e. onB, for any
r > 0. That technical assumption will be removed only in the $asp of the proof
of the theorem.

Step 1. (a time discrete scheme). Sinpeis integrable, standard arguments
give existence of a convex functi@®i [0, o) — [0,+00), which grows faster than
linearly at infinity and such that S(p) dzis finite. We fix an integeN sufficiently
large, so thaCyh < 1/8 and 14+ Coh/2 < €% < 1+ 2Coh with h =T /N, and we
divide [0, T] into N equal intervals of length. We shall next argue how, for any
suchN, Lemma 6.2 gives time discrete solution8 = pN.#P satisfying:

(a) the Lipschitz constant ¢f— N is less tharl, with L independent oN;

(b) supWa(l", 1) < Ro, [ S(p")dz< [ S(p)dzandp! > m ;) £P-a.e. on
B, for anyr > 0;

(c) the “delayed” Hamiltonian equation

d
(6.16) G DOV =0

holds in the sense of distributions (0, T) x RP, with vlN = OH (ul) for
0<i<N-—1landt < [ih,(i+1)h).

In order to buildy)N, we apply Lemma 6.] times withC = C,: we start with
p = p andv = OH(p.#P) to obtain a solutionuN of (6.16) in[0,h]. Then, we
apply the lemma again with = p\ andv = OH (pN.#P) to extend it continuously
to a solution of (6.16) irih, 2h]. In N steps we build the solution i@, T].

However, in order to be sure that the lemma can be appliedteaechwe have
to check that the inequalityb (U}, 1) < Ry is valid fori = 0,...,N —1, and this is
where the restriction ofi comes from: first notice that since

W (1, e ) < WCoy /24014 Ma(pY)) |

by the triangle inequality we need only to prove by inductamupper bound of
the form

(6.17) Ma(y) < M,
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for someM such thaC, T /24(1+ M) < R,. To estimate inductively the moments,
we recall thaM,(p) = W2 (1, &) and we use the triangle inequality to find

Mz(”(l\ilﬂ)h) < <\/W+hg\/24(l+M2(uiﬁ))>2

1
< (L )Ma(k) +24(1+ )WPCH(1+ Ma ()
< (1+ (252 + Dh)M(pp) +25C2h

as soon as 24+ 1) < 25. Hence, setting for brevitp = 25C2 41, we have the
inequality

M2 (1Y, 1)) < (14 Ph)M2(y) + Ph.
By induction we get
Ma(p) < (1+Ph) (Mz(1) +1) - 1

and setting = N we find thatM = €°T(1+ M,(11)) is a good upper bound on all
moments. We have proved that the lemma can be iteftiaies, provided

(6.18) CoT/24(1+ €255 0T (14 Ma(1))) < Ro.

Finally, let us find an explicit expression for the functitm) in (b) (the ar-
gument for (6.15) is similar, and based on Remark 6.4). Ascthestantr’ in
Lemma 6.2 is less thare™" + 4C,h, by our choice oh, by induction ori we get

N >m. #P-a.e. onB, with r; = reCe" 4 4C h(e V%N 4... 1 1) vt € [0,ih], 1<i<N.

Since

neen—1
gh —1

it suffices to set(r) = (r +8)e™".

Step 2.(passage to the limit). By (a), (d)— i\ are equi-bounded i#?,(RP),
and equi-Lipschitz continuous. Hence, we may assume witloswof generality
that N — i narrowly for anyt € [0, T].

By the lower semicontinuity of moments we getc #%,(RP) for anyt, and the
narrow lower semicontinuity of the Wasserstein distanee fer instance Propo-
sition 7.1.3 of [4]) gives that thie-Lipschitz bound in (a) and the distance bound
in (b) are preserved in the limit. Also the inequalify§(pN)dz< [S(p)dzand
the local lower bounds in (b) are easily seen to be stablerumeak convergence,
hencep; = p.#P, and the conclusion of (6.14) holds witfr) = (r + 8)%T (the
argument for (6.15) is similar, and based on Remark 6.4).

It remains to show thaty is an Hamiltonian flow. To this aim, it is enough
to show that, for any fixed, v converges, in the sense of distributions, to

ry = reNeN 4 4G, < (r+8)eNoN = (r +-8)e™T,
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JOH () . Assume by contradiction that this does not happen, i.eetbrist a
subsequench; and a smooth test functiop such that

[ o1du — [ i)l

Let us denote by:] the greatest integer function. Notice that by assumptia®) (H
and the narrow convergence mﬁit] N to u; we can assume with no loss of gener-
ality that

(6.19) inf

> 0.

Vit = JOH (K ) = I0H () #P-ae. inR* asi — +o.

I/N
By the same argument used at the end of the proof of Lemmads2dion Egorov
theorem and the equi-integrability ¥, we prove thaw¥ ;¥ converge in the
sense of distributions t&0H (4 ) tt, thus reaching a contradiction with (6.19).

Therefore, it suffices to pass to the limitlds— c in (6.16) to obtain that is
an Hamiltonian flow with velocity fieldy = OH (14 ).

Step 3. Now we consider the general case. We strongly approximaite
LY(RP) by functionsp® such thap*.#® € 2,(RP) and, for any, there exist con-
stantsmi > 0 such thap® > mk .#P-a.e. onB, for anyr > 0 (for instance, convex
combinations ofp with a Gaussian). We also notice that the equi-integratift
{p«}i_, ensures the existence of a convex funct®having a more than linear
growth at infinity, and independent kf such that/ S(p¥)dz< 1 for anyk.

The construction performed in Step 1 and Step 2 can then Hedgpr each
k, yielding solutions of the Hamiltonian ODEX = p¥.#P, t € [0, T], satisfying
p=p", [ S(pl)dx< 1, and

(6.20) %uﬁ O0-QOH (W) =0 in(0,T)xR™,

As, by constructiont — p areL-Lipschitz, we can also assume, possibly extract-
ing a subsequence, thaf — 1 narrowly ask — -+ for anyt € [0, T]. The upper
bound onf S(pK)dxthen ensures thak € 23(RP) for allt € [0, T].

The same argument used in Step 2, based on (H2) and the éegriaibility of
p, shows that for any € [0, T], JOH (uf) ¥ converges tdOH ()t ask — +oo
in the sense of distributions. Therefore, passing to thit isk — +o0 in (6.20) we
obtain thaty is a solution of the Hamiltonian ODE with velocity fieldH (14 ).

Let us next give a more explicit expression for the Lipschimnstant of — (.
Recall that by (6.17), we have

(6.21) Mz (ki) <M = €T(1+Ma(1))

andWs(ur, 1) < Ry for T € [0, T]. Thus, (6.21) and (H1) imply that
(6.22)

1OH (pte) 112, 0y < CS/RD(H 12)?dpir (2) < 2C3 (14 M (k) < 2C5(1+M).
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This, together with (3.2), yields

t
(6.23) Wb (s, ) < / 1OH (1r) | 2 0y AT < L(E— ).
Finally, the constancy df— H () follows by the (essential) boundedness of
[Vt[| 2(;re) @nd Theorem 5.2. QED.

We conclude this section by showing a class of Hamiltoniaisfying the
assumptions of Theorem 6.6.

Lemma 6.7. Letv € Z2,(RP) with a bounded support and let \RP — R be Ay
convex, W RP x RP — R convex and even, both differentiable and with at most
quadratic growth at infinity. Then, for a 0 the function

(6.24)

1
H () = Ho(K)+ 7 (1) + 7 (1) =~ JWE () + [ Vs [ Wekoxp
R 2 JRDxRD
is (Av — a)—convex, lower semicontinuous and satisftét) and (H2).

Proof. Possibly rescaliny andW, we shall assume that= 1. It is well known
(see for instance [46] or Chaper 10 of [4]) that the potertiadrgy?” is Ay—convex
and lower semicontinuous, and that the interaction en#fgig convex and lower
semicontinuous. As a consequenieis (Ay — 1)—convex and lower semicontinu-
ous.

In order to show (H1) it suffices to notice that baikv andOW have a growth
at most linear at infinity, and prove that

(6.25) OH(U) = dHo(u) + 0OV + (DW= ) Y e Z(RP),

taking also into account that Proposition 4.3 yields, indhse whem € 23(RP),
IHo(H) = {t, —id}, and that € L*(y; RP) (by the boundedness of the support
of v).

The inclusionD in (6.25) is a direct consequence of the characterizatiof) (4
of the subdifferential and of the inequalities

W) 2 H @)+ [ OV id) o+ W ()

PW) =W (W)+ [ (OW) . y—id) du

for y € Fo(u,v) (see for instance [4]). In order to prove the inclusiapwe fix
a vectoré € dH(u) and define, foly € I'o(1, V), the measureg; = ((1—t)7q +
t)sy and y = (1, (1— ) +t7R)sy € To(U, ). AS (y —id)u =t(y—id)y,
by applying the definition of subdifferential we obtain

H () —H(u)

Ilr%nff Z/RD<W,y—|d>du.
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Now, the dominated convergence theorem gives
t]0 t R2d t]0 t
so that

— [, (OW)sp i) d,

- Ho() —H (W) — .
iminf RS > [ (5, 7 id)dp

with §o = & — OV — (OW) * u. Then, by(—1)—convexity ofHp we get

Ho(v) 2 Holy) + [ (60,7~ id) dh — 3WE(u1v).

The previous inequality, together with Propositions 4.8 48, gives thagg

IHo(H).
Property (H2) follows directly from the identity

OH(p) = {(t, —id) + 0OV + (OW) * u}
and from Lemma 3.3. QED.

As shown in [38], another important class of convex funaisnin #2,(RP)
is provided by the so-called internal energy functiopa= p.#° — [S(p)dz
However, as the subdifferential of this functional is notpgyronly whenLs(p) is
aW?! function (hereLs(y) = yS(y) — S(y)), these functionals fail to satisfy (H1).

The previous result can be extended to Hamiltonians gestbfadm those of
Lemma 6.7 through a sup-convolution. For simplicity we ddesthe case when
neither potential nor interaction energies are presentthair inclusion does not
present any substantial difficulty.

Lemma 6.8. Assume tha®  RP is a bounded open set, and that

(a) K 2(Q) is a convex set, with respect to the standard linear strgctidr
2(Q), closed with respect to the narrow convergence;

(b) J: K - RU {+} is strictly convex with respect to the standard linear
structure ofZ2(Q), bounded from below and lower semicontinuous with
respect to the narrow convergence.

Define the Hamiltonian H or#?,(RP) by

(6.26) () = Inf (GWE(uv) + 3w}

Then H is(—1)—convex and lower semicontinuous, and satigfitl) and (H2).

Proof of Lemma 6.8. Since u — —WZ(u,v) — J(v) is (—2)-convex for each
v € K, we obtain thaH is (—1)-convex and so (H3) holds.

1. Notice first thatW(-,v) is lower semicontinuous with respect to the narrow
convergence (see for instance Proposition 7.1.3 of [4jpc&ld is bounded from
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below and lower semicontinuous, and since bounded set&(iRP) are sequen-
tially compact with respect to the narrow convergence, waiolihat the infimum
in the definition of—H is attained. Strict convexity of and convexity ofVZ(-, V)
give uniqueness of the minimizer, which we denote/iop ). A compactness argu-
ment based on the uniqueneswoft) then shows that, — 1 in 22,(RP) implies
V(Un) — v(p) narrowly in 2(Q). As Q is bounded the map — v(u) is also
continuous between?,(RP) and 2,(Q).

2. Let o € Z3(RP) andu € Z2,(RP). Clearly,

H (1) — H(to) > — (W2 (11, V(1)) ~ WE o, v 11))).

This, together with the fact that the Wasserstein gradiépt -6 —%sz(u, V(o))

at l1o is ). —id (see (4.8)), yields that " —id € dH (o) and s0IH (Lo) is
nonempty.
To characterize the elementsaifl (L), let @ € CZ(RP) and set

gs = id +slJo, Ms = Qs#Ho, Vs = V(Us)-
If & € dH(Lo), the fact thaH is (—1)—convex implies that

' . 1
H () = H (o) — [ (&t — ) dbo + SWE (b, i) = O

For|s << 1, gs is the gradient of a convex function and so, the previoustiakiy
yields

s
—S/RD<E;Dfp>duo + E/Rm |0|?dpo > H (Ho) —H (kis)

1
2 — (WZZ(IJS, Vs) —W22(u07 VS))

2
1 . 1 .
> E/RD lid —tl‘jss|2dus—§/RD|ld —ksothe[?dvs

17 . 1
(6.27) = E/RD lid _tffs‘zd”s_ E/R2d \tﬁz—ks‘Zdus.
Here, we have séts = g5 1. One can easily check that
(6.28) ks(y) =y—sDo(y) + s D?@(y)De(y) +£(s)Y),

2

wheree is a function such thde(s,y)| < |s® ||¢l|c3(rea)- We combine (6.27) and
(6.28) to conclude that

: & .
—S/RD(E; D<p>duo+§/RZd \D(p[zduo > s/ (id —y; O@)dys + 0(s),

RD
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whereys is the unigue optimal plan betwegg andvs. Recall now thaps — (g in
P5(RP) andvs — v in 2,(Q) ass— 0, hence Lemma 3.3 gives

: & .
6.29) s/ (&:0@)dko+ > [ 100duo>s [ (id ~:0g)duo+ o).
RD 2 Jro RD °
We divide both sides of (6.29) first ks> 0 thens < 0; letting |s| — O we find
. _ " __tVo-
_/RD(E,D(p>duo_/RD(|d t%o; D) dto.

This proves thair,,é = tff; —id. The minimality of the norm of the gradient then
gives

(6.30) OH (ko) = t2 —id.
¢From this representation &fH (1) and from (3.13) we obtain both (H1) and
(H2). QED.

7 An alternative algorithm yielding existence of Hamiltonian flows for
general initial data

In this section we provide a new discrete scheme providingtence of solu-
tions to Hamiltonian flows for general initial data, i.e. macessarily absolutely
continuous with respect to Lebesgue measure. Being basadiogar interpola-
tion at the level of transports, when particularized to Dinaasses this algorithm
coincides with the one considered in Remark 6.5.

Lemma 7.1. Let f: X — Y be a Borel mapu € #(X), and letv € L?(u;RP).
Then, setting’ = fzu, we have f(vu) = wv for somew € L?(v;RP) with

(7.1) W[l L2(v:re) < [IV]|L2(uRo)-

Proof. Let 0 := fy(vu) and ¢ < L*(Y;RP); denoting byc?, a = 1,--- N, the
components o& we have

i_i/Yhidai

Sinceg is arbitrary this proves (7.1). QED.

< H¢ o fHLz(u;RD)HVHLZ(u;RD) - H¢HLZ(V;RD)HVHLZ([J;RD)'

Lemma 7.2. Let T>0,C>0, y: [0,T] — Z(RP) and V' € L?(;R¥) be
satisfying:
(@) p" — L narrowly as n— +oo, forallt € [0, T];
(b) [IVfllL2(y;re) < C for a.e. te [0,T];
(c) theRX-valued space-time measungg4dt are weakly converging in(0, T) x
RPtoo.
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Then there exist; € L?(p4; R¥), with ||v¢ | 2(,.rx) < C for a.e. t, such that =
th.ltdt.

Proof. Possibly extracting a subsequence we can also assumedisattlar space-

time measurep/'| " dt weak -converge ta/, and it is well-known (see for instance
Proposition 1.62(b) of [3]) thdo| < v. Since, by Holder inequality, the projection
of |v{'|"dt on [0, T] is less tharCdt, the same is true for. Hence the disintegra-

tion theorem (see for instance Theorem 2.28 in [3]) provigewith the represen-

tation o = gydt for suitableRK-valued measures iRP having total variation less

thanC for a.e.t.

Now, for any¢ € C2(0,T), ¢ € C?(RP;R¥) we have

[ e0wia = lewial = tim | ["owwnguia <c [ 010w mat

N—-+4o00
As ¢ is arbitrary, this means thaty; ai)| < C\/(|y|?; 1) for a.e.t. By a density
argument we can find a Lebesgue negligibleNset (0, T) such that

(w00 <C\/ (W) YgeCP(RPRY), vte(0,T)\ 4.

Hence, for anyt € (0,T)\ .4 we haveag; = v for somev; € L?(;R¥) with
L?(u; R¥) norm less thae. QED.

We consider now two basic assumptions on the Hamiltoniaat,ake variants
of those considered in the previous section.
(HY’) There exist constants,@ [0, +), Ry € (0, +o0] such that for allu € Z2,(RP)
with Wa(u, 1) < Ry we haveu € D(H), dH (1) # 0 and [|OH (1) [ 2(y) < Co.

(H2') If sug,Wa(n, 1) < Ry and pn — p narrowly, then

00

(7.2) () CO({OH(tn)pn: n=m}) C {wu: we IH(u)NTuZ2(R°)},

m=1

whereco denotes the closed convex hull, with respect to vi«aology.

Remark 7.3. (a) AssumptiorfH1’) is weaker thar{H1), with the replacement of a
pointwise bound with an integral one. Alfid2") is essentially weaker thafi2),
as it does not impose any “strong” convergence propertyldf(uy,); however,
this forces to consider a stability with respect to closedvex hulls.

(b) A sufficient condition which ensur@42’) is the following:
(H2") If sup,Wa(n, H) < Ro andpn, — p narrowly, then

OH (Un) tin — OH (p) p

in the sense of distribution.

(c) As in the previous section, the conditi@d3) ensures constancy of the
Hamiltonian along the Hamiltonian flows. We can apply the samgument used
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at the beginning of the proof of Theorem 5.2, to obtain (8) and (H1') imply
that H is Lipschitz continuous on the bgjli € 92,(RP) : Wa(u, 1) < Ry}

Theorem 7.4. Assume tha(H1) and (H2’) hold and that GT < R,. Then there
exists a Hamiltonian flow : [0, T] — D(H) starting fromu € £2,(RP), satisfying
(5.1), such that t— p is Co—Lipschitz. Furthermore, ifH3) holds, then t— H (k)
is constant.

In particular, if dH (1) N Ty, Z2(RP) = {OH (i)} for all u such that W(u, i) <
Ro, then the velocity field; in (5.1) coincides withJH (1) for a.e. te [0, T].

Proof. Step 1.(construction of a discrete solution). We fix an inteNesufficiently
large and we divid¢0, T] in N equal intervals of length= T /N. We build discrete
solutionsy]N satisfying:

(a) the Lips_chitz constant ¢f— y is less tharCy;
(b) Wo (i, ) < CoT;

(c) the “delayed” Hamiltonian equation
d
(7.3) GeH 0 (W) =0
holds in the sense of distributions (@, T) x RP, with
(7.4) wi g = (id + (t = ih)IOH (ki) (IOH (L) i)
for0<i <N-—1andt € [ih,(i+1)h).
We build first the solution irf0, h], settingw = JOH (i). We then set

_ id +twy ), (Wo i
“tN _ (ld +tWISI)#IJ, W{\I _ (I + W:ltzl# (Wo l"l)’ te [O, h]

We claim thatw] is an admissible velocity field fouN. Indeed, for anyp <
CZ(RP) we have

d s d . — _
a/RDfl’dutN — a/RD¢>(|d +twy )dj :/RD<D¢(x+twg');Wy>du

— i_i/RD g—id<(id +tw’g‘)#(w(’;‘iﬁ)> :/RD<D¢;WtI\I>d“tN'

As ¢ is arbitrary, this proves that (7.3) is fulfilled j@, h]. Notice also that Lemma 7.1
gives

oW < [ wiFaE<cs vielon),
R R

hence (3.2) gives that the Lipschitz constant ef N in [0,h] is bounded byC,.
In particularWa(i1, uN) < Coh for t € [0,h]. We can repeat this process, setting
wh = JOH () and introduce the following extensions ¢m 2h :

(id + (t — wi) , (Wi i)

W= (id+(E—hwh) iy, wy = m
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fort € [h, 2h], with the Lipschitz constant af— g is bounded by, and the con-
tinuity equation (c) holding. By iterating this procddgimes we build a solution
of (7.3), provided\NhG, < R,. In summary, we have obtained that

(7.5)  Wo(l", i) < CoT, HDH(utN)HLZ(utN;RD) < Co, ||WtN||L2(;1tN;RD) <GCo

fort € [0, T]. The first inequality in (7.5) is due to our choice Dfand to the fact

thatt — L is Co—Lipschitz. The second inequality is a consequence of (HL)

obtain the last inequality in (7.5), we have used Lemma 7.%.(B5), we can

readily conclude (a) and (b). The constructionudf andwy is made such that (c)
holds.

Step 2.(passage to the limit). By (a), (4)— i\ are equi-bounded i#?,(RP),
and equi-Lipschitz continuous. Hence, we may assume witlhgs®of generality
thatuN — i narrowly for anyt € [0, T].

By the lower semicontinuity of moments we gete #2,(RP) for anyt, more-
over, the lower semicontinuity &4 (-,-) under narrow convergence gives that the
Co-Lipschitz bound in (a) and the distance bound in (b) arequxesl in the limit.

It remains to show that; solves the Hamiltonian ODE. To this aim, taking
into account Lemma 7.2 and possibly extracting a subsegu@mat relabelled for
simplicity) we can assume that there exigte L%(p4;RP), with [|wi [ 2(,) < Co
for a.e.t, such that the space-time measungNdt weak -converge taw, g dt.
We have to show that; = Jv; for somev; € T, 2,(RP). To this aim, notice that

T T
Jm [ om@itudt= [ o0 @iwmpmdt  ¥9 €CFO.T). Y CYROIRD).
For  fixed, this means that the maps- (; W] (4V) weakly converge i.?(0, T)
to (Y;w; 4 ). Therefore, a sequence of convex combinations of them cgesea.e.
to (y;w; L) and we obtain
(7.6) (i wpt) < lim sup{y;wi' i)
——4-00

for a.e.t € [0,T]|. By a density argument we can find a Lebesgue negligible set
A C (0,T) such that, for alt € (0,T)\ .#, (7.6) holds for ally € C,(RP;RP)
(the closure, in the sup norm, 6§(RP; RP)).

Now, fix t € (0,T)\ N where (7.6) holds for ally € Co(RP;RP) and apply
Hahn-Banach theorem to obtain that

Wil € ﬂ Kwm.t
M=1
whereKy is the closed convex hull ofw]NpN}n=m with respect to the weak

topology. Indeed, fiXM and assume by contradiction thaty; does not belong
to Kut. Then, we can strongly separatgy; and Ky by a continuous linear
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functional, induced by some functiap € C¢(RP;RP), to obtain a contradiction
with (7.6). As

w gt = (id +(t— [Nt]/N)WIﬁI\u]/N>#(W[\rl\n]/NN['?l\n]/N)

= (id + (t — [Nt]/N)JOH (“[NNt]/N))#(‘]DH (“[NNt]/N)“[NNt]/N)

we obtain also that

wepe € () 20 ({I0H (g g s N=MY),
M=1
hence (H2') gives thaty i = Jv; 14 for somevy € dH () N Ty, P5(RP).
Finally, the constancy df+— H (1) follows by the (essential) boundedness of
[Vt |l 2(y:roy @nd Theorem 5.2. QED.

Remark 7.5. One can readily check that if we assume tftdt’) and (H2") hold
and that GT < Ry, then there exists a Hamiltonian flqw: [0, T] — D(H) starting
from 1 € 22,(RP), satisfying(1.2), such that t— L is Co—Lipschitz. Furthermore,
if (H3) holds, then - H (L) is constant.

We can prove now the following extension of Lemma 6.7, wheeedwop the
boundedness assumption on the suppott.of

Lemma 7.6. Letv € 22,(RP) and let VW as in Lemma 6.7. Then the function H
defined in(6.24) satisfieqH1"), (H2') and (H3).

Proof. (H3) has already been proved in Lemma 6.7, while (H1’) foBolay the
identity (6.25), taking into account that

[ 7-iafu< [ ly—xPdy=WEuv)  VyeTo(uy).
RD RD xRD

Finally, let us check property (H2’). Letu be the weak limit of the convex
combinations

I(n) I(n)

Z AinWiui Wlth O § Ain S 1, Z )\in == 1,

i=n i=n

and, representing ag, = y, — id for suitabley, € 'o(Un, V), define

I(n) I(n)
fin = z)‘inllh ¥h= ZAiny.e [ (fn, V).
i=n i=n

Let & be a distance i (RP x RP) inducing the narrow convergence (see for in-
stance Remark 5.1.1 of [4]). As any limit point with respectite narrow topology
of {yn}r_q belongs td o(u,Vv) (see for instance Proposition 7.1.3 of [4]), a com-
pactness argument gives an infinitesimal seque@gé_, C (0,+) andn, €
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Mo(H, V) such thatd(y, nn) < & In particular, setting), = Z:Q "ni e Mo(u,v)
and noticing thad is induced by a norm, we have
3 (¥h, Mn) < SUpE;.
i>n
In particular, sincd o(u, V) is narrowly closed, we infer that any limit poigt in
the narrow topology, ofq, belongs td o(u, V). Let y be any of these limit points,
along a subsequencgk), and notice that for ang € C?(R%4;R%) we have

I(n(k))
i T n(k) = . T o A
(Wi; ) = kLlTw<i:§(k))‘i O —id)pig) = lim =X (X))
= (y=x ¢ (x))dy=((y—id)u; ¢).
RP xRD
As ¢ is arbitrary, this proves that = y—id, hence (3.10) and Proposition 4.3 yield
w € T, #,(RP) andw € dH (p). QED.

8 Examples

In this section we briefly illustrate some PDE'’s fitting in dtamework.

Semigeostrophic equations.
(@) If we setd = 1 andv = xo0.Z2 in Lemma 6.7, wher€® C R? is a bounded
Borel set with#?(Q) = 1, then

d .
actt + Dy (J2(Ty; —id) ) =0

is the Hamiltonian ODE relative teW2(p,v)/2, thanks to (4.6). This PDE is a
variant of the semigeostrophic equation. Notice that(th&)—convexity ofH is
ensured by Proposition 4.3.

(b) Whend = 1 andJ(p) = %fQ p2dx, then the Hamiltonian ODE relative to

H () 1= sup—WE(,p.2%) — J(p)
pek
corresponds to the semigeostrophic shallow water equasimied in [17]. It
suffices to apply Lemma 6.8.
(c) Finally, if D = 3, J(x,Y,2) = (—¥,%,0) andH (1) = —“W2(u,v)/2, with v =
Xa-Z3, then the Hamiltonian ODE is the 3-d semigeostrophic eqoattudied in
[10] and [16].

Vlasov-Poisson and Vlasov-Monge-Am@re equations.

Suppose thatl > 1, v = (xo.2%) x &, whereQ c RY is a bounded Borel set
with .29(Q) = 1, and & is the Dirac mass ifRY. Then, as shown in [18], the
Hamiltonian in Lemma 6.7 decouples into

1

1
H (1) = —5Ma(k*) - Esz(ul,fod),
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wherepu?® (resp. py?) is the first (resp. second) marginal pf This is due to the
fact the optimal transport ma}j betweeru € QS(RZC’) andv has necessarily the

form (t,0), wheret is the optimal transport map betwegn and xo.#¢, and an
analogous property holds at the level of optimal plans, wihena general measure
in 2,(R).

Setting g = f(t,-).22 andp(x) = [ra f(t,x,V)dv (i.e. the first marginal of
U, we have then obtained the Hamiltonian for the Vlasov-MeAggére (VMA)
equation studied in [12] and more recently in [18], whichuip o a scaling argu-
ment)

(8.1) %f(t,X,V)—FDX- (vf(t,x,v)) =D, (f(LX,V)qu)pt (X))
| (id — Ox®p, )Py = Xdi, with ‘X’Z/Z— ®,, (X) convex.

Note that wherd = 1 the relation betweep; and®,, reduces tq; = 1 — P,
and so (8.1) is nothing but the well-known Vlasov-Poissomagign. Our existence
result Theorem 6.6 covers the case of absolutely continsolusions, while The-
orem 7.4 covers, thanks to Lemma 7.6, also the case of gengialdata: in this
case (VMA) has to be understood as follows:

d .
Sike + Dy (Vi) = Dy~ ((id — y) i)
(62 {ve Fo(u, Xo29).

Indeed, any € (L, Xo-Z9 x &) can be written as a produgtx (id x 0)x4?,
with y € To(ut, xo£%), so thaty = (y,0). Finally, it would be interesting to
compare carefully, in one space dimension, our existensgtréor the Vlasov-
Poisson equation with the existence result in [47]. Here wsé nention that on
the one hand our result allows more general initial data &pmeential decay of
the velocities is required), on the other hand the solutigh im [47] has additional
space-timeBV regularity properties related to velocity averaging, et used to
define the produdDy - (fOx®p, ).
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