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Abstract

In this paper we consider a HamiltonianH on P2(R2d), the set of probabil-
ity measures with finite quadratic moments on the phase spaceR2d = Rd ×Rd,
which is a metric space when endowed with the Wasserstein distanceW2. We
study the initial value problemdµt/dt+∇ · (Jdvt µt) = 0, whereJd is the canon-
ical symplectic matrix,µ0 is prescribed,vt is a tangent vector toP2(R2d) at
µt , and belongs to∂H(µt), the subdifferential ofH at µt . Two methods for con-
structing solutions of the evolutive system are provided. The first one concerns
only the case whereµ0 is absolutely continuous. It ensures thatµt remains abso-
lutely continuous andvt = ∇H(µt) is the element of minimal norm in∂H(µt).
The second method handles any initial measureµ0. If we furthermore assume
that H is λ–convex, proper and lower semicontinuous onP2(R2d), we prove
that the Hamiltonian is preserved along any solution of our evolutive system:
H(µt) = H(µ0). c© 2000 Wiley Periodicals, Inc.

1 Introduction

In the last few years there has been a considerable interest in the theory of gra-
dient flows in the Wasserstein spaceP2(RD) of probability measures with finite
quadratic moments inRD, starting from the fundamental papers [35], [43], with
several applications ranging from rates of convergence to equilibrium to the proof
of functional and geometric inequalities. In particular, in [4] (see also [13]), a sys-
tematic theory of these gradient flows is built, providing existence and uniqueness
results, contraction estimates and error estimates for theimplicit Euler scheme.

In this paper, motivated by a work in progress by Gangbo & Pacini [31], we pro-
pose a rigorous theory concerning evolution problems inP2(RD) of Hamiltonian
type. Here typicallyD = 2d and the measures we are dealing with are defined in
the phase space. As shown in Section 8, our study covers a large class of systems
which have recently generated a lot of interest, including the Vlasov-Poisson in
one space dimension [9] [47], the Vlasov-Monge-Ampère [12] [18] and the semi-
geostrophic systems [10] [16] [17] [19] [18] [23] [20] [21] [22] [40].
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We note that a general theory of Hamiltonian ODE’s for non-smooth Hamil-
tonianH, in particular whenH is only convex, seems to be completely understood
only in finite-dimensional spaces, and even in these spaces the uniqueness question
has been settled only in very recent times, see Remark 6.5. Ininfinite-dimensional
Hilbert spaces very little appears to be known at the level ofexistence of solutions,
and nothing is known at the level of uniqueness.

Besides its comprehensive character, another nice featureof our theory is its
ability to handle singular initial data and singular solutions. This class of solutions
is natural, for instance, to include solutions (e.g. those generated by classical non-
kinetic solutions) with one or finitely many velocities, see[47] for a first result
in this direction. At the same time, there is the possibilityto handle discrete and
continuous models with the same formalism, and to show stability results (the first
one in this direction, for two specific models, is [18]).

We recall thatP2(RD) is canonically endowed with the Wasserstein distance
W2, defined as follows:

(1.1) W2
2 (µ ,ν) := min

γ

{

∫

RD×RD
|x−y|2dγ(x,y) : γ ∈ Γ(µ ,ν)

}

.

HereΓ(µ ,ν) is the set of Borel probabilty measures onRD ×RD which haveµ
andν as their marginals. The Riemannian structure ofP2(RD), introduced at a
formal level in [43] and later fully developed in [4], will beintensively exploited in
this work. Notice that, as soon asP2(RD) is endowed with a differentiable struc-
ture, the theory of ODE’s in the finite-dimensional spaceRD naturally extends to a
theory of ODE’s in the infinite-dimensional spaceP2(RD): it suffices to consider
the isometryI : z→ δz, whereδz stands for the Dirac mass atz.

In particular, we consider the case whenD = 2d and we are given a lower
semicontinuous HamiltonianH : P2(R2d)→ R. As we will be mostly considering
semiconvex Hamiltonians, in the sense of displacement convexity [38], mimick-
ing some classical concepts of convex analysis we introducein Definition 3.2 the
subdifferential∂H(µ) and denote by∇H(µ) its element with minimalL2(µ ;R2d)
norm (well defined whenever∂H(µ) 6= /0).

The problem we study in Section 6 is: given an initial measureµ̄ ∈ P2(R2d),
find a patht → µt ∈ P2(R2d) such that

(1.2)







d
dt

µt + ∇ · (J∇H(µt)µt) = 0, t ∈ (0,T)

µ0 = µ̄

and‖∇H(µt)‖L2(µt) ∈ L1(0,T). Here,J is a(2d)× (2d) symplectic matrix.
Using a suitable “chain rule” in the Wasserstein space first introduced in [4],

we prove in Theorem 5.2 thatH is constant among all solutionsµt of (1.2), pro-
vided H is λ–convex (orλ–concave) for some real numberλ . The proof of this
fact requires neither regularity assumptions on the velocity field J∇H(µt) nor the
absolute continuity ofµt .
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Existence of solutions can be established in (1.2) if one imposes a growth con-
dition on the gradient, as

(H1) the existence of constants Co ∈ (0,+∞), Ro∈ (0,+∞] that for all µ ∈P2
a(R2d)

with W2(µ , µ̄) < Ro we haveµ ∈ D(H), ∂H(µ) 6= /0 and|∇H(µ)(z)| ≤Co(1+ |z|)
for µ–almost every z∈ R2d

and a “continuity property” of the gradient as

(H2) If µ = ρL 2d, µn = ρnL
2d ∈ Pa

2(R2d), supnW2(µn, µ̄) < Ro and µn → µ
narrowly, then there exist a subsequence n(k) and functionswk, w : R2d → R2d

such thatwk = ∇H(µn(k)) µn(k)-a.e.,w = ∇H(µ) µ-a.e. andwk → w L 2d–a.e. in
R2d as k→ +∞.

Here we are denoting byPa
2(R2d) the elements ofP2(R2d) that are absolutely

continuous with respect toL 2d. The requirements of bounds and continuity on the
gradient naturally appear also in the finite dimensional theory, in order to obtain
bounds on the discrete solutions of the ODE and to pass to the limit.

In Theorem 6.6 we show that a minor variant of the algorithms used in [10],
[12], [17] in connection with specific models, establishes existence of a solutionµt

in (1.2) up to some timeT = T(Co,Ro) (T = +∞ wheneverRo = +∞), whenµ0 =
ρ0L

2d is absolutely continuous with respect toL 2d and (H1) and (H2) hold. A
good feature of this algorithm is that it preserves the absolute continuity condition,
so thatµt = ρtL

2d, and provides the “entropy” inequalities
∫

R2d
S(ρt)dz≤

∫

R2d
S(ρ0)dz t∈ [0,T], with Sconvex.

Unlike the theory of gradient flows, where the selection of the gradient among
all subdifferentials is ensured on any solution by energy reasons (see [4]), in our
case it is not clear why in general this selection should be the natural one, even
though it provides the tangency condition and it is more likely to provide bounds,
by the minimality of the gradient. Therefore, we consider also a weaker version of
(1.2), which works for arbitrary initial measures̄µ : find a patht → µt ∈ P2(R2d)
and vector fieldsvt ∈ L2(µt ;R2d) such that

(1.3)







d
dt

µt + ∇ · (Jvtµt) = 0, µ0 = µ̄ , t ∈ (0,T)

vt ∈ Tµt P2(R2d)∩∂H(µt) for a.e.t.

HereTµt P2(R2d) is the tangent space toP2(R2d) at µ , according to Otto’s calcu-
lus [4], defined as theL2(µ ;R2d) closure of the gradients ofC∞

c (R2d) maps. Even
in this case we are able to show thatH is constant along solutions of (1.3), provided
H is λ–convex (orλ–concave) for someλ ∈ R.

For the system in (1.3), we weaken (H1) and (H2) and only assume that

(H1’) the existence of constants Co ∈ [0,+∞), Ro ∈ (0,+∞] such that for allµ ∈
P2(R2d) with W2(µ , µ̄) < Ro we haveµ ∈D(H), ∂H(µ) 6= /0 and‖∇H(µ)‖L2(µ) ≤
Co
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and

(H2’) If supnW2(µn, µ̄) < Ro andµn → µ narrowly, then the limit points of convex
combinations of{∇H(µn)µn}

∞
n=1 for the weak∗-topology are representable aswµ

for somew ∈ ∂H(µ)∩TµP2(R2d).

In Section 7 a second algorithm, based on linear interpolation of transport maps,
provides existence of solutions to (1.3). We refer to Theorem 7.4 for a complete
statement of the results we obtain. In particular, whenµ̄ = δ(x̄,v̄), definingh on
R2d by h(x,v) = H(δ(x,v)), the algorithm used in this section coincides with a nat-
ural finite-dimensional algorithm yielding in the limit thevolume-preserving flow
associated to the ODE (see Remark 6.5 for a more precise discussion):

(1.4)

{

Jd(ẋ(t), v̇(t)) ∈ ∂h(x(t),v(t)), t ∈ (0,T)

(x(0),v(0)) = (x̄, v̄).

Note that proving existence of (1.3) is harder, compared to proving existence
for the symplified system

(1.5)







d
dt

µt + ∇ · (Jvtµt) = 0, µ0 = µ̄ , t ∈ (0,T)

vt ∈ ∂H(µt) for a.e.t,

where we drop the constraint thatvt ∈ Tµt P2(R2d), and sovt may be not tangent
to P2(R2d). The system in (1.5) does not make geometrical sense, except in spe-
cial cases such as whenµt is concentrated on finitely many points (in this case
L2(µt ;R2d) = Tµt P2(R2d)). On the technical side, the lack of the tangency condi-
tion seems to prevent the possibility of proving constancy of the Hamiltonian along
solutions of (1.5).

Finally, we add more motivations for the terminology “Hamiltonian” adopted
for the systems (1.2) and (1.3) (particularly whenJ is the canonical symplectic
matrix). A first justification is given in [31], whereJd∇H(µ) is shown to be the
“symplectic gradient” induced by a suitable skew-symmetric 2-form (see the more
detailed discussion made right after Definition 5.1). Moreover, in the recent work
[18] the authors consider Hamiltonians onR2nd of the form

(x1,v1; · · · ;xn,vn) → Hn(x1,v1; · · · ;xn,vn) = −
1
2
W2

2

(

1
n

n

∑
i=1

δ(xi ,vi ),
1
n

n

∑
i=1

δ(an
i ,b

n
i )

)

,

where(an
1,b

n
1), · · · ,(a

n
n,b

n
n) ∈ R2d are prescribed. They study the classical finite-

dimensional Hamiltonian systems

(1.6)











xn
i (t) = n∇vi Hn(xn

1(t),v
n
1(t); · · · ;xn

n(t),v
n
n(t)) t ∈ (0,T)

vn
i (t) = −n∇xi Hn(xn

1(t),v
n
1(t); · · · ;xn

n(t),v
n
n(t)) t ∈ (0,T)

(xn
i (0),vn

i (0)) prescribed i = 1, · · · ,n.
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Defining

µn
t =

1
n

n

∑
i=1

δ(xn
i (t),v

n
i (t))

,

it is readily checked that the pathst → µn
t ∈P2(R2d) satisfy (1.3) withHn in place

of H. In [18], it is proven that if the initial conditions(xn
i (0),vn

i (0)) are suitably
chosen andνn = 1/n∑n

i=1 δ(an
i ,b

n
i )

tends toν asn tends to+∞, then up to a subse-
quence which is independent of the time variablet, the measures{µn

t }
∞
n=1 narrowly

converge asn → +∞ to measures{µt}t∈[0,T ] satisfying (1.2) for the Hamiltonian
H(µ) = −1/2W2

2 (µ ,ν).

Acknowledgment It is a pleasure to express our gratitude to Y. Brenier for the
many interesting and instructive discussions we had. Criticisms were also provided
by T. Nguyen.

2 Basic notation and terminology

In this section we fix our basic notation and terminology on measure theory and
Hamiltonian systems.

- The effective domain of a functionH : A→ (−∞,+∞] is the setD(H) of all
a∈ A such thatH(a) < +∞. We say thatH is proper ifD(H) 6= /0.

- Let d, D be integers. We denote byID the identity matrix onRD and we denote
by Jd the sympletic(2d)× (2d) matrix

Jd =

(

0 Id

−Id 0

)

.

When d = 1, this is the clockwise rotation of angleπ/2. We denote byid the
identity map onRD or R2d.

- If r > 0 andz∈ RD, Br(z) denotes the ball inRD of centerz and radiusr. If
B⊂ RD we denote byBc the complement ofB.

- Assume thatµ is a nonnegative Borel measure on a topological spaceX and
thatν is a nonnegative Borel measure on a topological spaceY. We say that a Borel
mapt : X →Y transportsµ ontoν , and we writet#µ = ν , if ν [B] = µ [t−1(B)] for
all Borel setsB⊂Y. We sometimes say thatt pushesµ to ν . We denote byT (µ ,ν)
the set of allt such thatt#µ = ν .

If γ is a nonnegative Borel measure onX ×Y then its projection projXγ is a
nonnegative Borel measure onX and its projection projYγ is a nonnegative Borel
measure onY; they are defined by

projXγ [A] = γ [A×Y], projYγ [B] = γ [X×B].

A measureγ on X×Y is said to haveµ andν as its marginals ifµ = projXγ and
ν = projYγ . We write thatγ ∈ Γ(µ ,ν) and callγ a transport plan betweenµ andν .

- WhenX = Y = M , any minimizerγo in (1.1) is called an optimal transport
plan betweenµ andν . We writeγo ∈ Γo(µ ,ν).
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- We denote byP(RD) the set of Borel probability measures onRD. The
D–dimensional Lebesgue measure onRD is denoted byL D. The 2-moment of
µ ∈ P(RD) with respect to the origin is defined by

M2(µ) =

∫

RD
|x|2dµ(x).

Notice thatW2
2 (µ ,δ0) = M2(µ). We will be dealing in particular with

P2(RD) :=
{

µ ∈ P(RD) : M2(µ) < +∞
}

and its subspacePa
2(RD), made of absolutely continuous measures with respect

to L D.
- If µ ∈P2(RD) andv1, . . . ,vk ∈ L2(RD,µ), we writev = (v1, . . . ,vk)∈ L2(RD,µ ;Rk)

or simplyv ∈ L2(µ ;Rk).

- Assume thatµ , ν are Borel probability measures onM = RD with M2(µ),M2(ν)<
+∞ andµ absolutely continuous with respect toL D. Then there exists a unique
minimizer γo in (1.1), characterized by the fact thatγo = (id × tν

µ)#µ for some
maptν

µ : RD → RD which coincidesµ–a.e. with the gradient of a convex function.
Therefore, the maptν

µ is the unique minimizer of

t →
∫

RD
|z− t(z)|2dµ(z)

overT (µ ,ν).
- If h ∈ C1(R2d), the Hamiltonian vector field associated toh is Xh = J∇h.

WhenX ∈C1(R2d,R2d), the flow ofX is the mapΦ : [a,b]×R2d → R2d defined
by

(2.1)

{

Φ̇(t,z) = X(t,Φ(t,z)) t ∈ [a,b], z∈ R2d

Φ(0,z) = z, z∈ R2d.

The flowΦ is unique, and the growth condition

|X(t,z)| ≤C(t)(1+ |z|) with C ∈ L1(a,b)

ensures its existence.
- If µo = δz and we setµt = Φ(t, ·)#µo = δΦ(t,z), thenµt satisfy the continuity

equation

(2.2)
d
dt

µt + ∇ · (Xµt) = 0

in the sense of distributions. WhenX = Xh for a Hamiltonianh, (2.1) is called a
Hamiltonian system.

In this work, we consider the infinite-dimensional version of (2.1 –2.2), where
δz is replaced by a measureµ ∈P2(Rd×Rd) andXh is replaced by the Hamilton-
ian vector fieldXH of a HamiltonianH : P2(Rd ×Rd) → (−∞,+∞]. Whend = 1,
that vector field is defined to be the clockwise “rotation” by the angleπ/2, on the
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tangent space atµ of P2(R2d) of the the gradient ofH.

3 The differentiable structure of the Wasserstein spaceP2(RD)

In this section we introduce the differentiable an Riemannian structure ofP2(RD)
following essentially the approach developed in [4] (see also [11] [43], two seminal
papers on this subject).

We recall first that
(

P2(RD),W2
)

is a complete and separable space, not locally
compact. We refer to Proposition 7.1.5 and Remark 7.1.9 in [4] for more comments
. However, bounded sets inP2(RD) are (sequentially) relatively compact with re-
spect to the so-called narrow convergence, i.e. weak convergence in the duality
with Cb(RD), the space of continuous and bounded functions inRD. Actually a se-
quence{µn}

∞
n=1 converges toµ in P2(RD) if and only if µn narrowly converge to

µ andM2(µn) → M2(µ) asn→ +∞. The lack of compactness inP2(RD) is pre-
cisely due to the fact that narrow convergence does not always imply convergence
of second moments.

To derive the differentiable structure from the metric structure, we start from the
following fact, proved in Theorem 8.3.1 of [4]: ifµt ∈P2(RD) solve the continuity
equation

(3.1)
d
dt

µt + ∇ · (wtµt) = 0

in the sense of distributions in(a,b)×RD, for some time-dependent velocity field
wt with ‖wt‖L2(µt) ∈ L1(a,b), then

(3.2) W2(µs,µt) ≤
∫ t

s
‖wτ‖L2(µτ ;RD) dτ ∀a≤ s≤ t ≤ b.

As a consequence we obtain that if the mapst 7→ µt is absolutely continuous from
[a,b] to P2(RD). Conversely, it was proved in the same theorem in [4] that forany
absolutely continuous curvet 7→ µt , there is always a unique, up to negligible sets
in time, velocity fieldvt for which both the continuity equation and, asymptotically,
equality holds in (3.2):

(3.3) lim
h→0

1
|h|

W2(µt+h,µt) = ‖vt‖L2(µt) for a.e.t.

In Proposition 8.4.5 of [4], this minimality property ofvt is proved to be equivalent
to the fact thatvt belongs to theL2(µt ;RD) closure of{∇ϕ : ϕ ∈C∞

c (RD)}. Hence,
we may viewvt as the “tangent” velocity field toµt and define the tangent space to
P2(RD) at µ , as follows:

(3.4) TµP2(RD) = {∇ϕ : ϕ ∈C∞
c (RD)}

L2(µ ;RD)
.

Notice also that a simple duality argument gives (see Lemma 8.4.2 of [4])

(3.5)
[

TµP2(RD)
]⊥

=
{

w ∈ L2(µ ;RD) : ∇ · (wµ) = 0
}

.
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In the following we shall denote byπµ : L2(µ ;RD) → TµP2(RD) the canonical
orthogonal projection.

Summing up, the previous results can be rephrased as follows:

Theorem 3.1(Due to [4]). The class of absolutely continuous curvesµt : [a,b] →
P2(RD) coincides with the class of solutions of the continuity equation for some
velocity fieldwt with ‖wt‖L2(µt ;RD) ∈ L1(a,b).
For any absolutely continuous curveµt : [a,b]→P2(RD) there existvt ∈ L2(µt ;RD)
for which both the continuity equation and(3.3)hold. Given a solution of the con-
tinuity equation(3.1), equality holds in(3.2) if and only ifwt ∈ Tµt P2(RD) for a.e.
t.
Finally, the map t7→ vt ∈ L2(µt ;RD) is uniquely determined up toL 1–negligible
sets.

It is proven in (8.4.6) in [4] that the above tangent velocityvectorvt , is identified
for almost everyt by the following property :

(3.6) lim
h→0

(

x,
y−x

h

)

#
γh = (id,vt)#µt in P2(RD ×RD)

for any choice ofγh ∈ Γo(µt ,µt+h). Essentially this property says that optimal
plans betweenµt+h andµt asymptotically behave as the plans induced by the trans-
port maps(id +hvt)#µt . In the case whenµt ∈ Pa

2(RD), where optimal plans are
unique and induced by maps, (3.6) reduces to

(3.7)
th− id

h
→ vt in L2(µt ;RD) ash→ 0,

whereth are the optimal transport maps betweenµt andµt+h.
Several notions of differential can be defined, according tothis differentiable

structure. We state here the one more relevant for our purposes, motivated by
the fact that we will be dealing with convex Hamiltonians (for concave ones, one
should instead use a superdifferential).

Definition 3.2 (Fréchet subdifferential). Let H : P2(RD)→ (−∞,+∞] be a proper,
lower semicontinuous function and letµ ∈ D(H). We say thatw ∈ L2(µ ,RD)
belongs to the Fŕechet subdifferential∂H(µ) if

H(ν)≥ H(µ)+ sup
γ∈Γo(µ ,ν)

∫

RD×RD
〈w(x),y−x〉dγ(x,y)+o(W2(µ ,ν))

asν → µ .

Definition 3.2 is a particular case of Definition 10.3.1 [4] (with the replacement
of a sup with an inf, see also Proposition 4.2), where the elements of the subdif-
ferential are plans, and so, are measures in the productRD ×RD, instead of maps
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on RD. If γ ∈ Γo(µ ,ν), recall that its barycentric projection̄γ is characterized by
γ̄µ = (π1)#(yγ) or, equivalently, by

(3.8)
∫

RD
ϕ(x)γ̄(x)dµ(x) =

∫

RD×RD
ϕ(x)ydγ(x,y) ∀ϕ ∈Cb(RD).

Hence, we can rephrase the conditionw ∈ ∂H(µ) as

(3.9) H(ν)≥ H(µ)+ sup
γ∈Γo(µ ,ν)

∫

RD×RD
〈w(x), γ̄(x)−x〉dµ(x)+o(W2(µ ,ν)).

Notice that, wheneverµ ∈ Pa
2(RD), there is only an optimal plan induced bytν

µ
andγ̄ = tν

µ .

It has been proved in Theorem 12.4.4 of [4] that

(3.10) γ̄ − id ∈ TµP2(RD) ∀ν ∈ P2(RD), ∀γ ∈ Γo(µ ,ν).

By (3.9) and (3.10) we infer thatw∈ ∂H(µ) iff πµw∈ ∂H(µ). Notice that∂H(µ)

is a closed and convex subset ofL2(µ ;RD). Therefore, as it is customary in subd-
ifferential analysis, we shall denote by∇H(µ) the element of∂H(µ), of minimal
L2(µ ;RD)–norm. The previous comments show in particular that, by theminimal-
ity of its norm,∇H(µ) = πµ∇H(µ) belongs to∂H(µ)∩TµP2(RD).

In the following lemma we state a well-known continuity property of optimal
plans or maps. Its proof, which is by now standard in the Monge-Kantorovich
theory, can be found for instance in Proposition 7.1.3 [4]. We reproduce part of it
for the reader’s convenience.

Lemma 3.3(Continuity of optimal plans and maps). Assume that{µn}
∞
n=1, {νn}

∞
n=1

are bounded sequences inP2(RD) narrowly converging respectively toµ and ν .
Assume thatΓo(µ ,ν) contains a unique planγ . Then (i)

(3.11) lim
n→+∞

∫

RD×RD
g(x,y)dγn(x,y) =

∫

RD×RD
gdγ

for any choice ofγn ∈ Γo(µn,νn) and for any continuous function g: RD×RD → R
satisfying

(3.12) lim
|(x,y)|→+∞

|g|(x,y)
|x|2 + |y|2

= 0.

(ii) Assume furthermore thatµn, µ ∈ Pa
2(RD) and that there exists a closed ball

B, of finite radius, containing the supports ofνn andν . Then there exist Lipschitz,
convex functions un, u : RD → R∪{+∞} such that∇un = tνn

µn µn-a.e. inRD and
∇u = tν

µ µ-a.e. inRD. In addition, there exists a subsequence{nk}
∞
k=1 of integers

such that

(3.13) ∇unk → ∇u L
D–a.e. inRD.

Proof. An argument which is by now standard and can be found in [30] charac-
terizes the elementsΓo(µn,νn) to be the elements ofΓ(µn,νn) whose supports,
suppγn, are cyclically monotone. More precisely,γn ∈ Γo(µn,νn) if and only if
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γn ∈ Γ(µn,νn) and there exist convex, lower semicontinuous functions,un : RD →
R∪{+∞}, such that

(3.14) suppγn ⊂ ∂un.

If vn = u∗n is the Fenchel-Moreau transform ofun andB is any closed set containing
the support ofµn, then

(3.15) un(x) = inf
y∈B

{
1
2
〈x;y〉−vn(y)} x∈ RD.

Using the fact thatγn ∈ Γo(µn,νn) and{µn}
∞
n=1, {νn}

∞
n=1 are bounded inP2(RD),

we obtain that

(3.16) sup
n

∫

RD×RD
(|x|2 + |y|2)dγn(x,y) = sup

n
{M2(µn)+M2(νn)} < +∞.

By (3.16), {γn}
∞
n=1 is precompact for the narrow topology. Assume{γnk}

∞
k=1 is

a narrowly convergent subsequence whose limit isγ̄ . Using again (3.16), it is
clear thatγ̄ ∈ Γ(µ ,ν) and (3.11) holds if we substitute{γn}

∞
n=1 by {γnk}

∞
k=1. By

Proposition 7.1.3 of [4], every point in suppγ̄ is a limit of points in suppγnk and so,
supp̄γ is cyclically monotone. This implies̄γ ∈ Γo(µ ,ν) = {γ}. Since the limitγ̄
is independent of the subsequence{γnk}

∞
k=1, we have proven that{γn}

∞
n=1 narrowly

converges toγ and (3.11) holds. This proves (i).
Let id be the identity map onRD and assume now thatµn, µ ∈Pa

2(RD), so that

(3.17) γn ∈ Γo(µn,νn) = {id × tνn
µn
} and γ ∈ Γo(µ ,ν) = {id × tν

µ}.

Since convex functions are differentiableL D–almost everywhere, (3.14) and the
first equality in (3.17) imply thattνn

µn = ∇un µn-a.e. inRD. Let us furthermore
assume that there exists a closed ballB, of finite radius, containing the supports
of νn and ν . EnlargingB if necessary, we may without loss of generality that
B contains the origin and so, by (3.15),un is Lipschitz with a Lipschitz constant
bounded above by the radius ofB. We may substituteun by un − un(0) without
altering the validity of the above reasonings. Therefore, in the sequel, we may
assume without loss of generality thatun(0) = 0. Ascoli-Arzela lemma ensures
the existence of a subsequence{unk}

∞
k=1 which is locally uniformly convergent.

Its limit u is necessary convex, with a Lipschitz constant bounded above by the
diameter ofB.

Now, let us show the convergence of the transport maps. Passing to the limit as
n→ ∞ in the suddifferential inequality

un(x
′) ≥ un(x)+ 〈∇un(x);x

′ −x〉

we immediately obtain that, at any differentiability pointof all mapsun, any limit
point of {∇un(x)}∞

n=1 belongs to the subdifferential∂u(x). It follows that ∇un

converge to∇u wherever all gradients (including∇u) are defined, henceL D–a.e.
in RD. In particular, recalling (3.14) and the fact that every point in suppγ is a limit
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of points in suppγnk, we conclude that suppγ ⊂ ∂u. This, together with the second
inequality in (3.17) implies thattν

µ = ∇u µ–almost everywhere onRD. QED.

4 Convex analysis onP2(RD)

Let µ0, µ1 ∈ P2(RD) and letγ ∈ Γo(µ0,µ1) be an optimal transport plan. Let
π1 : RD ×RD : (z,w) → z andπ2 : RD ×RD : (z,w) → w be the first and second
projections ofRD×RD ontoRD. As suggested in [38], the interpolation(1−t)π1+
tπ2 between maps can be used to interpolate between the measuresµ0 andµ1 as
follows:

(4.1) µt =
(

(1− t)π1+ tπ2

)

#
γ .

The proof of the well known fact thatt → µt is a geodesic inP2(RD) of constant
speed, i.e.W2(µs,µt) = |t −s|W2(µ0,µ1) for all s, t ∈ [0,1], can be found in Theo-
rem 7.2.2 of [4]; furthermore, any constant speed geodesic has this representation
for a suitable optimalγ . As it is customary in Riemannian geometry, the identifica-
tion of constant speed geodesics with segments allows the introduction of various
notions of convexity for functions (see Chapter 9 of [4] and [34]).

Definition 4.1 (λ–convexity). Let H : P2(RD) → (−∞,+∞] be proper and let
λ ∈ R. We say that H isλ–convex if for everyµ0, µ1 ∈ P2(RD) and every optimal
transport planγ ∈ Γo(µ0,µ1) we have

(4.2) H(µt) ≤ (1− t)H(µ0)+ tH(µ1)−
λ
2

t(1− t)W2
2 (µ0,µ1) ∀t ∈ [0,1].

Hereµt = ((1− t)π1 + tπ2)#γ , whereπ1 andπ2 are the above projections.

For a real-valued map,λ -convexity means that the second distributional deriva-
tive of t →H(µt) is larger thanλL 1. In general, the inequality above is equivalent
to saying thatt → H(µt) is λW2

2 (µ0,µ1)–convex. In particular, 0–convexity corre-
sponds to the notion of displacement convexity introduced in [38]. Finally, notice
that this notion of convexity is slightly stronger than the one introduced in [4],
where the inequality above is imposed only on some optimal transport plan.

Proposition 4.2(Characterization of subdifferentials ofλ–convex functions). Let
H : P2(RD) → (−∞,+∞] be lower semicontinous andλ–convex for someλ ∈ R
and let µ ∈ D(H). Then, any of the following two conditions is equivalent to
w ∈ ∂H(µ):

(i)

(4.3) H(ν) ≥ H(µ)+ inf
γ∈Γo(µ ,ν)

∫

RD
〈w(x); γ̄(x)−x〉dµ(x)+o(W2(µ ,ν));
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(ii) for all ν ∈ P2(R2d) we have

(4.4) H(ν) ≥ H(µ)+ sup
γ∈Γo(µ ,ν)

∫

RD
〈w(x); γ̄(x)−x〉dµ(x)+

λ
2

W2
2 (µ ,ν).

Proof. It is clear thatw ∈ ∂H(µ) implies (i), and that (ii) impliesw ∈ ∂H(µ). So,
it remains to show that (i) implies (ii). To this aim, fixν ∈ P2(R2d), γ ∈ Γo(µ ,ν)
and define the constant speed geodesic{µt}t∈[0,1], betweenµ and ν as in (4.1).
Then, we know that fort < 1 there is a unique optimal plan betweenµ and µt ,
induced byγt = (π1,(1− t)π1 + tπ2)#γ (see Lemma 7.2.1 of [4]), so that (4.3) and
the identityγ̄t − id = t(γ̄ − id) give

liminf
t↓0

H(µt)−H(µ)

t
≥

∫

RD
〈w(x); γ̄(x)−x〉dµ(x).

Then, by applying (4.2) we get

H(ν)−H(µ)≥
∫

RD
〈w(x); γ̄(x)−x〉dµ(x)+

λ
2

W2
2 (µ ,ν).

QED.

It is not difficult to show that the infimum in (i) and the supremum (ii) are
achieved. As shown in Chapter 10 of [4], the “inf” definition of subdifferential in
(i) ensures the weak closure properties of the graph of the subdifferential. Again,
in the case whenµ ∈ Pa

2(RD), the previous formula reduces to

H(ν) ≥ H(µ)+

∫

RD
〈w(x); tν

µ (x)−x〉dµ +
λ
2

W2
2 (µ ,ν) ∀ν ∈ P2(RD).

The typical Hamiltonian we consider in this paper is the negative squared Wasser-
stein distance. Some of its properties, established in Proposition 9.3.12 and Theo-
rem 10.4.12 of [4], are summarized in the following proposition.

Proposition 4.3(Convexity of the negative Wasserstein distance). Letν ∈P2(RD)
and define

(4.5) H(µ) = −
1
2
W2

2 (µ ,ν) µ ∈ P2(RD).

Then H is(−1)-convex. Furthermore, ifµ ∈ P2(RD),

(4.6) ∂H(µ)∩TµP2(RD) = {γ̄ − id : γ ∈ Γo(µ ,ν)}

and therefore∇H(µ) is the minimizer in

(4.7) min

{

∫

RD
|γ̄ − id|2dµ : γ ∈ Γo(µ ,ν)

}

.

Here γ̄ is the barycentric projection ofγ , as defined in(3.8). In particular,

(4.8) ∂H(µ)∩TµP2(RD) =
{

tν
µ − id

}

∀µ ∈ P
a
2(RD).
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Notice thatW2
2 (·,ν) is, on the other hand, trivially convex with respect to the

conventional linear structure ofP2(RD), astγ1 +(1− t)γ2 ∈ Γ(tµ1 +(1− t)µ2,ν)
wheneverγ1 ∈ Γ(µ1,ν) andµ2 ∈ Γ(µ2,ν). Also, as shown in Example 9.1.5 of [4],
for eachλ ∈ R, W2(·,ν) fails to beλ -convex along geodesics.

5 Basic properties of solutions of Hamiltonian ODE’s

We now have all the necessary ingredients for the definition of Hamiltonian flow
in P2(R2d). In order to cover more examples (see Section 8) we consider also the
case when the space isP2(RD) andJ : RD → RD is a linear map satisfyingJv⊥ v
for all v∈ RD (this framework includes the canonical caseD = 2d andJ = Jd).

Definition 5.1. Let H : P2(RD) → (−∞,+∞] be a proper, lower semicontinuous
function. We say that an absolutely continuous curveµt : [0,T]→D(H) is a Hamil-
tonian ODE relative to H, starting fromµ̄ ∈P2(RD), if there existvt ∈ L2(µt ;RD)
with ‖vt‖L2(µt) ∈ L1(0,T), such that

(5.1)















d
dt

µt + ∇ · (Jvtµt) = 0, µ0 = µ̄ , t ∈ (0,T)

vt ∈ Tµt P2(RD)∩∂H(µt) for a.e.t.

The terminology “Hamiltonian ODE” is fully justified in the caseD = 2d,
J = Jd in a work in progress by Gangbo and Pacini [31]. There, they prove that
Jd induces a nondegenerate bilinear skew-symmetric closed 2–form Ω as follows.
Denoting byT∗P2(R2d) the subbundle defined by

T∗
µ P2(R2d) :=

{

πµ(Jdv) : v ∈ TµP2(R2d)
}

,

they defineΩµ : T∗
µ P2(R2d)×T∗

µ P2(R2d)→R as follows: ifv̄1 = πµ(Jdv1), v̄2 =

πµ(Jdv2) ∈ T∗
µ P2(R2d), with v1, v2 ∈ TµP2(R2d), they set

Ωµ(v̄1, v̄2) =
∫

R2d
〈Jdv1;v2〉dµ µ ∈ P2(R2d).

It is easy to check thatΩµ is well defined (i.e. it does not depend on the choice of
the vectorsvi such that̄vi = πµ(Jvi)), skew-symmetric and nondegenerate.

For any µ ∈ P2(R2d) where∇H exists, the Hamiltonian vector fieldXH ∈
T∗

µ P2(R2d) is classically defined by the identity

Ωµ(XH(µ), v̄) =

∫

R2d
〈∇H(µ); v̄)〉 = dH(v̄) ∀v̄ ∈ T∗

µ P2(R2d).

In other words,Ωµ(XH(µ), ·) = dH(·). The system (5.1) withvt = ∇H(µt) is
then easily seen to be equivalent to the condition that the tangent velocity vec-
tor πµt (Jdvt) to µt is XH(µt) or equivalently,µ̇t = XH(µt). More generally, one
could define a “Hamiltonian subdifferential” by considering the vectorsπ(Jdv)
with v ∈ ∂H(µ)∩TµP2(R2d).
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The integrability condition‖vt‖L2(µt) ∈ L1(0,T) ensures that the continuity equa-
tion makes sense in the sense of distributions; furthermore(see for instance Lemma 8.1.2
in [4]), possibly redefiningµt in a negligible set of times, we can assume thatt 7→ µt

is narrowly continuous in[0,T]. We shall always make tacitly this continuity as-
sumption in the sequel.

In the construction of solutions to Hamiltonian ODE’s by approximation, one
finds that the subdifferential inclusionvt ∈ ∂H(µt) (and therefore the continuity
equation with velocity fieldJvt) has good stability properties (see for instance
Lemma 10.1.3 and Lemma 10.3.8 of [4], or Remark 6.5). The tangency condi-
tion, on the other hand, is not stable in general; however this condition is crucial
to show thatt 7→ H(µt) is constant for Hamiltonian ODE’s. In the proof of this
fact we follow the “Wasserstein chain rule” in§10.1.2 and Proposition 10.3.18 of
[4], whose proof (based on a subdifferentiability argument) we reproduce for the
reader’s convenience.

Theorem 5.2. Let H be as in Definition 5.1, and letµt be a Hamiltonian ODE,
with ‖vt‖L2(µt) ∈ L∞(0,T). If H is λ–convex for someλ ∈ R then t 7→ H(µt) is
constant.

Proof. We first prove thatt 7→ H(µt) is a Lipschitz function. LetC be theL∞ norm
of ‖vt‖L2(µt) and notice that (3.2) gives that the Lipschitz constant oft 7→ µt is less
thanC. We denote bywt the tangent velocity field toµt and notice that, asJvt is an
admissible velocity field forµt , we have thatwt −Jvt is orthogonal toTµt P2(RD)
for a.e.t.

Let nowD⊂ (0,T) be the set of points where bothvt ∈ ∂H(µt) and‖vt‖L2(µt) ≤

C hold. Lett ∈ D, s∈ [0,T] and notice that by Proposition 4.2

H(µt)−H(µs) ≤ inf
γ∈Γo(µt ,µs)

∫

RD×RD
−〈vt(x);y−x〉dγ −

λ
2

W2
2 (µt ,µs)

≤ C2|t −s|+
C2λ−

2
(t −s)2

≤ C2(1+
Tλ−

2
)|t −s|.

As H is lower semicontinuous, by approximation the same inequality holds when
s, t ∈ [0,T]. Reversing the rôles ofs andt we obtain that the Lipschitz constant of
t 7→ H(µt) is less thanC2(1+Tλ−/2).

It remains to show that the derivative oft 7→ H(µt) is equal to 0. Fixt ∈ (0,T)
where this derivative exists, (3.6) holds,vt ∈ ∂H(µt)∩Tµt P2(RD) andwt − Jvt

is orthogonal toTµt P2(RD). We have then the existence of optimal plansγh ∈
Γo(µt ,µt+h) satisfying

C2λ−

2
h2 +H(µt+h)−H(µt) ≥

∫

RD×RD
〈vt(x);y−x〉dγh.
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Next, we defineηh = (x,(y−x)/h)#γh to obtain

H(µt+h)−H(µt) ≥ h
∫

RD×RD
〈vt(x);y〉dηh +o(h)

and use (3.6) to obtain1

H(µt+h)−H(µt) ≥ h
∫

RD×RD
〈vt(x);y〉d(id,wt)#µt +o(h)

= h
∫

R2d
〈vt(x);wt(x)〉dµt +o(h)

= h
∫

R2d
〈vt(x);Jvt(x)〉dµt +o(h) = o(h).

Sinces 7→ H(µs) is differentiable ats= t, this can happen only if the derivative
is 0. QED.

6 Existence of Hamiltonian flows: regular initial data

Before stating our main existence theorem, we state a technical lemma concern-
ing the approximation of tangent vectors by smooth gradients.

Lemma 6.1. Let µ = ρL D ∈ P2(RD) be satisfyingρ ≥ mr > 0 L D–a.e. on Br
for any r> 0. If C > 0, v ∈ TµP2(RD) and

(6.1) |v(z)| ≤C(1+ |z|) for µ–almost every z∈ RD

then there exists a sequence{ϕn}
∞
n=1 ⊂C∞

c (RD) such that

|∇ϕn(z)| ≤C(2+ |z|) ∀z∈ RD

and
lim

n→+∞
‖v−∇ϕn‖L2(µ ;RD) = 0.

Proof. Let {φn}
∞
n=1 ⊂C∞

c (RD) be such that‖v−∇φn‖L2(µ) → 0 asn→ +∞. For
all r > 0 we have

limsup
n→+∞

‖v−∇φn‖
2
L2(Br ,L D,RD) ≤

1
mr

limsup
n→+∞

‖v−∇φn‖
2
L2(µ) = 0.

This proves thatv ∈ L2
loc(R

2d,L 2d) and that curlv = 0. Let l1 ∈ C∞
c be a non-

negative probability density whose support is contained inthe unit ball ofR2d and
set

vh = lh∗v, with lh(z) =
1

h2d l1(
z
h
).

1Even though the test function(x,y) 7→ 〈vt(x);y〉 is possibly discontinuous and unbounded, one
can use the boundedness of 2-moments ofηh and the fact that their first marginal does not depend
onh to pass to the limit, see for instance§5.1.1 in [4]
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Clearly,vh ∈C∞(R2d,R2d) and curlvh = 0. Hence, there existAh ∈C∞(R2d) such
thatvh = ∇Ah andAh(0) = 0. Thanks to Jensen’s inequality, (6.1) implies that

|vh(z)| = |
∫

R2d
lh(w)v(z−w)dw| ≤C

∫

R2d
lh(w)(1+ |z−w|)dw

≤C(1+ |z|)+C
∫

R2d
lh(w)|w|dw

= C(1+ |z|)+hC
∫

R2d
l1(w

′)|w′|dw′

≤C(1+ |z|)+hC
∫

B1(0)
l1(w

′)dw′

≤C(2+ |z|),(6.2)

for h ≤ 1. Since{vh}h>0 convergesL 2d–almost everywhere tov, the uniform
bound in (6.2) and the fact thatµ ∈P2(RD) imply, by the dominated convergence
theorem,

(6.3) lim
h→0

‖v−∇Ah‖
2
L2(µ ;RD) = 0.

Define

(6.4) Br
h(z) =

{

Ah(z) for |z| ≤ r

0 for |z| ≥ 2r.

Note thatBr
h is aC(2+ r)–Lipschitz function and so it admits an extension toRD,

that we still denote byBr
h, which isC(2+ r)–Lipschitz. We use (6.1), (6.2) and the

fact that

(6.5) |∇Br
h(z)| ≤C(2+ r) ≤C(2+ |z|) on Bc

r (0)

to conclude that for allh≤ 1
∫

R2d
|v−∇Br

h|
2dµ =

∫

Br(0)
|v−∇Ah|

2dµ +
∫

Bc
r (0)

|v−∇Br
h|

2dµ

≤
∫

R2d
|v−∇Ah|

2dµ +4C2
∫

Bc
r (0)

(2+ |z|)2dµ .(6.6)

We combine (6.3) and (6.6) to conclude that

(6.7) lim
h,1/r→0

‖v−∇Br
h‖

2
L2(µ ;RD) = 0.

This, together with (6.2) and (6.5) yields the lemma. QED.

The following lemma provides a discrete solution of the Hamiltonian ODE in
a small time interval, whose iteration will lead to a discrete solution. To make
the iteration possible, one has to show that the flow preserves in some sense the
bounds on the initial datum: this is possible thanks to the fact that the flow is
incompressible.
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Lemma 6.2. Let h> 0, let µ = ρL D ∈ Pa
2(RD) be satisfying

(6.8) ρ ≥ mr > 0 L
D–a.e. on Br , for any r> 0

and letv ∈ TµP2(RD) be satisfying(6.1), with eCh ≤ 2. Then there exists a family
of measuresµt = ρtL

D, t ∈ [0,h], satisfying

(a)
∫

RD S(ρt)dz≤
∫

RD S(ρ)dz for any convex function S: [0,+∞) → [0,+∞);
(b) t 7→ µt ∈ P2(RD) is absolutely continuous,µ0 = µ and the continuity

equation

(6.9)
d
dt

µt + ∇ · (Jvµt) = 0, (t,z) ∈ (0,h)×RD

holds;
(c) ρt ≥ mr ′ L

D–a.e. on Br , with r′ = eChr +2(eCh−1).

Finally, we have also that t7→ µt is Lipschitz continuous, with Lipschitz constant
less than Lo = C

√

24(1+M2(µ)) and, in particular,

(6.10) W2(µt ,µ) ≤ hLo ∀t ∈ [0,h].

Remark 6.3. Assumption (6.8) is used twice. First, it is used to concludethat
sincev is definedµ–almost everywhere, then it is definedL D–almost everywhere,
henceµt–almost everywhere, ifµt � L D. More importantly, it is used to apply
Lemma 6.1, to treatv as a gradient and to obtain thatJv is divergence free with
respect toL D. This leads to the conclusion that the flowΦ(t, ·) associated toJv
preservesL D for eacht fixed.

Proof of lemma 6.2 We assume first thatv = ∇φ ∈C∞
c (RD;RD) and that the

weaker condition|v(z)| ≤ C(2+ |z|) is fulfilled. Under this assumption the au-
tonomous vector fieldJv is smooth and divergence-free, so the flowΦ : [0,h]×
RD → RD associated toJv is smooth and measure-preserving. In this case we
simply defineµt = Φ(t, ·)#µ , so that the continuity equation (6.9) is satisfied. The
measure preserving property gives thatµt = ρtL

D, with

(6.11) ρt ◦Φ(t, ·) = ρ .

Notice that (a) (with an equality, and even for nonconvexS) follows immediately
by (6.11), and (c) as well, provided we show thatΦ(t, ·)−1(Br) ⊂ Br ′. To show
the latest inclusion, notice thatΨ(t,y) = Φ(t, ·)−1(y) is the flow associated to−Jv,
hence

d
dt
|Ψ(t,y)| ≤ |Jv|(Ψ(t,y)) ≤C(2+ |Ψ(t,y)|).

By integrating this differential inequality we immediately obtain that

2+ |Ψ(t,y)| ≤ eCt(2+ |y|).

Hence,|y| < r implies |Ψ(t,y)| < r ′ for t ∈ [0,h]. An analogous argument gives
2+ |Φ(t,z)| ≤ eCt(2+ |z|), hence wheneCh < 2 we obtain

|Φ(t,z)| ≤ 2(|z|+1).
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Using this inequality we can estimate
∫

RD
|Jv|2dµt ≤ 2C2

∫

RD
(4+ |y|2)dµt = 8C2 +2C2

∫

RD
|Φ(t,z)|2 dµ

≤ 8C2 +16C2
∫

RD
(1+ |z|2)dµ = 24C2 +16C2M2(µ) ≤ L2

o.

Using this estimate in conjunction with (3.2) and (6.9) yields thatt 7→ µt is Lo–
Lipschitz .

In the general case we consider a sequencevn = ∇φn with all properties stated in
Lemma 6.1. Asρ > 0 L D–a.e., we can also assume with no loss of generality that
vn → v L D–a.e. inR2d. Let µn

t be the measures built according to the previous
construction relative tovn and notice thatt 7→ µn

t are equi-bounded inP2(RD),
andLo–Lipschitz continuous. Furthermore,µn

t = ρn
t L D with ρn

t locally uniformly
bounded from below. Hence, we may assume with no loss of generality thatµn

t →
µt narrowly for anyt ∈ [0,h].

By the lower semicontinuity of moments we getµt ∈P2(RD) for anyt, and the
lower semicontinuity of Wasserstein distance (see for instance Proposition 7.1.3 in
[4]) gives that the Lipschitz bound and the distance bound (6.10) are preserved
in the limit. Also the inequality

∫

S(ρn
t )dz≤

∫

S(ρ)dz with S convex and the
local lower bound in (c) are easily seen to be stable under weak convergence, and
imply (choosingS= S̄ convex, growing faster than linearly at infinity, such that
∫

S̄(ρ)dz< +∞) thatµt = ρtL
D ∈ Pa

2(RD) with ρt ≥ mr ′ L
D–a.e. onBr for any

r > 0.
It remains to show the validity of the continuity equation in(b). To this aim,

it suffices to show that, fort fixed, Jvnρn
t converge in the sense of distributions

to Jvρt . As S̄grows faster than linearly at infinity, we obtain from the inequality
∫

S̄(ρn
t )dz≤

∫

S̄(ρ)dz, thatρn
t is equi-integrable (see for instance Proposition 1.27

of [3]). Hence for anyε > 0 we can findδ > 0 such that

L
D(B) < δ =⇒

∫

B
ρt dz+sup

n

∫

B
ρn

t dz< ε .

We fix r > 0 and choose asB⊂ Br an open set given by Egorov theorem, so that
vn → v uniformly on Br \B; let alsov′ : R2d → R2d be a continuous function
coinciding withv on Br \B, with |v′| ≤ C(2+ r). For anyφ ∈ Cc(Br) we have
then

∫

RD
φJvnρn

t dz =
∫

RD
φ(Jvn−Jv′)ρn

t dz+
∫

RD
φJvρt dz

+

∫

RD
φ(Jv′−Jv)ρt dz+

∫

RD
φJv′(ρn

t −ρt)dz,

so that

limsup
n→+∞

∣

∣

∣

∣

∫

RD
φJvnρn

t dz−
∫

RD
φJvρt dz

∣

∣

∣

∣

≤ 2Csup|φ |(2+ r)ε .

As ε is arbitrary, this proves the weak convergence. QED.
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Remark 6.4 (Stability of upper bounds). By the same argument one can show
that if ρ ≤ Mr L D–a.e. onBr for any r > 0, thenρt ≤ Mr ′ L D–a.e. onBr with
r ′ = eChr +2(eCh−1).

The main result of this section is concerned with HamiltoniansH satisfying the
following properties:

(H1)There exist constants Co ∈ (0,+∞), Ro∈ (0,+∞] such that for allµ ∈P2
a(RD)

with W2(µ , µ̄) < Ro we haveµ ∈ D(H), ∂H(µ) 6= /0 and w = ∇H(µ) satisfies
|w(z)| ≤Co(1+ |z|) for µ–almost every z∈ RD.

(H2) If µ = ρL D, µn = ρnL
D ∈ Pa

2(RD), supnW2(µn, µ̄) < Ro andµn → µ nar-
rowly, then there exist a subsequence n(k) and functionswk, w : RD → RD such
that wk = ∇H(µn(k)) µn(k)-a.e.,w = ∇H(µ) µ-a.e. andwk → w L D–a.e. inRD

as k→ +∞.

To ensure the constancy ofH along the solutions of the Hamiltonian system we
consider also:

(H3) H : P2(RD) → (−∞,+∞] is proper, lower semicontinuous andλ–convex for
someλ ∈ R.

Recalling thatPa
2(RD) is dense inP2(RD) it would be not difficult to show, by

the same argument used at the beginning of the proof of Theorem 5.2, that (H3) and
(H1) imply thatH is Lipschitz continuous on the ball{µ ∈ P2(RD) : W2(µ , µ̄) ≤
Ro}. Assumption (H2), instead, is a kind of “C1-regularity” assumption onH.
Thinking to the finite-dimensional theory (for instance to Peano’s existence the-
orems for ODE’s with a continuous velocity field) some assumption of this type
seems to be necessary in order to get existence. In the following remark we dis-
cuss, instead, existence in the “flat” infinite-dimensionalcase and uniqueness in
the finite-dimensional case.

Remark 6.5. Assume that we are given a convex (orλ -convex for someλ ∈ R)
Lipschitz functionH : R2d → R. Then,∂H(x) is not empty for allx∈ R2d and we
may define solutions of the Hamiltonian ODE those absolutelycontinuous maps
x : [0,+∞) → R2d satisfyingJdẋ(t) ∈ ∂H(x(t)) for a.e.t ∈ [0,+∞).

The same subdifferentiability argument used in the proof ofTheorem 5.2 then
shows thatt 7→ H(x(t)) is constant along Hamiltonian flows. Existence of Hamil-
tonian flows can be achieved by the following discrete scheme: fix a time parame-
ter h > 0 and an initial datum ¯x∈ R2d. Then, choosep0 ∈ ∂H(x0) and setxh(t) =
x0+Jd p0t for t ∈ [0,h], choosep1 ∈ ∂H(xh(h)) and setxh(t) = x1+Jd p1(t−h) for
t ∈ [h,2h] and so on. In this wayxh(t) solves the “delayed” Hamiltonian equation

(6.12) Jdẋh(t) ∈ ∂H
(

xh(h[
t
h
])
)

for a.e.t ≥ 0.

Using a compactness and equi-continuity argument we can finda sequence(hi) ↓ 0
and a Lipschitz mapx : [0,∞) → R2d such thatxhi (t) converge tox(t) asi → ∞ for
anyt ≥ 0 andẋhi weakly converge inL2

loc([0,∞);R2d) to ẋ.
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In order to show thatJdẋ∈ ∂H(x) a.e., we use an integral version of the discrete
subdifferential inclusion, namely

H(y) ≥
∫ ∞

0
H(xhi (hi [

t
hi

]))ρ(t)dt +
∫ ∞

0
〈y−xhi (hi [

t
hi

]),Jdẋhi (t)〉ρ(t)dt,

with ρ(t) nonnegative, with compact support and satisfying
∫

ρ dt = 1, and pass to
the limit asi → ∞ to find

H(y) ≥
∫ ∞

0
H(x(t))ρ(t)dt +

∫ ∞

0
〈y−x(t),Jdẋ(t)〉ρ(t)dt.

Choosing properly a familyρi of approximations ofδt , this yields

H(y) ≥ H(x)+ 〈y−x(t),Jdẋ(t)〉

at any Lebesgue pointt of ẋ. This proves existence of Hamiltonian flows. We also
refer the reader to a work in progress by Ghoussoub and Moameni [32] on related
questions.

Notice that this scheme doesn’t seem to work in the infinite-dimensional case,
whenR2d is replaced by an infinite-dimensional phase spaceX, due to the difficulty
of handling terms

∫

〈 fh(t),gh(t)〉dt with fh weakly converging inL2
loc([0,+∞);X)

andgh(t) only pointwise weakly converging tog(t). Indeed, we are not aware of
any existence result in this direction.
Coming back to the finite-dimensional caseX = R2d, the results in [5] (see also [6]
for special classes of Hamiltonians) ensure a kind of “generic” uniqueness prop-
erty, or uniqueness in the flow sense, in the same spirit of DiPerna–Lions’ theory
[25] (see§6 of [5] for a precise formulation). In brief, among all families of solu-
tionsx(t, x̄) of the ODE, the condition

(6.13) x(t, ·)#L
2d ≤CL

2d with C independent oft

determinesx up toL d–negligible sets (i.e. ifx and x̃ fulfil (6.13), thenx(·, x̄) =
x̃(·, x̄) for L d–a.e. ¯x) and the uniquex satisfying (6.13) is stable within the class
of approximations fulfilling (6.13) (in particular, one finds thatx(t, ·) is measure-
preserving for allt). It turns out that the scheme described here produces a discrete
flow xh(t, x̄) satisfying (6.13) withC = 1, and therefore is a good approximation of
the unique Hamiltonian flowx. See also [45] for discrete schemes (called leap-frog
schemes) that really preserve the symplectic forms and therefore the symplectic
volume.

Theorem 6.6. Assume that(H1) and (H2) hold and that T> 0 satisfies (6.18).
Then there exists a Hamiltonian flowµt = ρtL

D : [0,T] → D(H) starting from
µ̄ = ρ̄L D ∈ Pa

2(RD), satisfying(5.1), such that the velocity fieldvt coincides
with ∇H(µt) for a.e. t∈ [0,T]. Furthermore, t→ µt is L–Lipschitz, with

L2 = 2C2
o(1+M) and M= e(25C2

o+1)T(1+M(µ̄)).

Finally, there exists a function l(r) depending only on T and Co such that

(6.14) ρ̄ ≥ mr L
D-a.e. on Br ∀r > 0 =⇒ ρt ≥ ml(r) L

D-a.e. on Br ∀r > 0
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and

(6.15) ρ̄ ≤ Mr L
D-a.e. on Br ∀r > 0 =⇒ ρt ≤ Ml(r) L

D-a.e. on Br ∀r > 0.

If in addition (H3) holds, then t7→ H(µt) is constant.

Proof. In the first two steps of the proof, we shall assume existence of positive
numbersmr such that the initial datum satisfies̄ρ ≥ mr > 0 L D a.e. onBr for any
r > 0. That technical assumption will be removed only in the laststep of the proof
of the theorem.

Step 1. (a time discrete scheme). Sincēρ is integrable, standard arguments
give existence of a convex functionS: [0,+∞)→ [0,+∞), which grows faster than
linearly at infinity and such that

∫

S(ρ̄)dz is finite. We fix an integerN sufficiently
large, so thatCoh < 1/8 and 1+Coh/2 < eCoh < 1+ 2Coh with h = T/N, and we
divide [0,T] into N equal intervals of lengthh. We shall next argue how, for any
suchN, Lemma 6.2 gives time discrete solutionsµN

t = ρN
t L D satisfying:

(a) the Lipschitz constant oft 7→ µN
t is less than̄L, with L̄ independent ofN;

(b) supN,t W2(µN
t , µ̄) < Ro,

∫

S(ρN
t )dz≤

∫

S(ρ̄)dzandρN
t ≥ ml(r) L D-a.e. on

Br for anyr > 0;
(c) the “delayed” Hamiltonian equation

(6.16)
d
dt

µN
t + ∇ · (JvN

t µN
t ) = 0

holds in the sense of distributions in(0,T)×RD, with vN
t = ∇H(µN

ih) for
0≤ i ≤ N−1 andt ∈ [ih,(i +1)h).

In order to buildµN
t , we apply Lemma 6.2N times withC = Co: we start with

ρ = ρ̄ andv = ∇H(ρ̄L D) to obtain a solutionµN
t of (6.16) in [0,h]. Then, we

apply the lemma again withρ = ρN
h andv = ∇H(ρN

h L D) to extend it continuously
to a solution of (6.16) in[h,2h]. In N steps we build the solution in[0,T].

However, in order to be sure that the lemma can be applied eachtime, we have
to check that the inequalityW2(µN

ih , µ̄) < Ro is valid for i = 0, . . . ,N−1, and this is
where the restriction onT comes from: first notice that since

W2(µN
(i+1)h,µN

ih) ≤ hCo

√

24(1+M2(µN
ih)) ,

by the triangle inequality we need only to prove by inductionan upper bound of
the form

(6.17) M2(µN
ih) ≤ M,
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for someM such thatCoT
√

24(1+M) < Ro. To estimate inductively the moments,
we recall thatM2(µ) = W2

2 (µ ,δ0) and we use the triangle inequality to find

M2(µN
(i+1)h) ≤

(

√

M2(µN
ih)+hCo

√

24(1+M2(µN
ih))

)2

≤ (1+h)M2(µN
ih)+24(1+

1
h
)h2C2

o(1+M2(µN
ih))

≤ (1+(25C2
o +1)h)M2(µN

ih)+25C2
oh

as soon as 24(h+ 1) < 25. Hence, setting for brevityP = 25C2
o + 1, we have the

inequality

M2(µN
(i+1)h) ≤ (1+Ph)M2(µN

ih)+Ph.

By induction we get

M2(µN
ih) ≤ (1+Ph)i(M2(µ̄)+1)−1

and settingi = N we find thatM = ePT(1+ M2(µ̄)) is a good upper bound on all
moments. We have proved that the lemma can be iteratedN times, provided

(6.18) CoT
√

24(1+e(25C2
o+1)T(1+M2(µ̄))) < Ro.

Finally, let us find an explicit expression for the functionl(r) in (b) (the ar-
gument for (6.15) is similar, and based on Remark 6.4). As theconstantr ′ in
Lemma 6.2 is less thanreCoh +4Coh, by our choice ofh, by induction oni we get

ρN
t ≥mr i L

D-a.e. onBr with r i = reiCoh+4Coh(e(i−1)Coh+ · · ·+1) ∀t ∈ [0, ih], 1≤ i ≤N.

Since

rN = reNCoh +4Coh
eNCoh−1
eCoh−1

≤ (r +8)eNCoh = (r +8)eCoT ,

it suffices to setl(r) = (r +8)eCoT .

Step 2.(passage to the limit). By (a), (b),t 7→ µN
t are equi-bounded inP2(RD),

and equi-Lipschitz continuous. Hence, we may assume with noloss of generality
thatµN

t → µt narrowly for anyt ∈ [0,T].
By the lower semicontinuity of moments we getµt ∈P2(RD) for anyt, and the

narrow lower semicontinuity of the Wasserstein distance (see for instance Propo-
sition 7.1.3 of [4]) gives that theL-Lipschitz bound in (a) and the distance bound
in (b) are preserved in the limit. Also the inequality

∫

S(ρN
t )dz≤

∫

S(ρ̄)dz and
the local lower bounds in (b) are easily seen to be stable under weak convergence,
henceµt = ρtL

D, and the conclusion of (6.14) holds withl(r) = (r +8)eCoT (the
argument for (6.15) is similar, and based on Remark 6.4).

It remains to show thatµt is an Hamiltonian flow. To this aim, it is enough
to show that, for anyt fixed, vN

t µN
t converges, in the sense of distributions, to
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J∇H(µt)µt . Assume by contradiction that this does not happen, i.e. there exist a
subsequenceNi and a smooth test functionϕ such that

(6.19) inf
i

∣

∣

∣

∣

∫

RD
〈vNi

t ;ϕ〉dµNi
t −

∫

RD
〈vt ;ϕ〉dµt

∣

∣

∣

∣

> 0.

Let us denote by[·] the greatest integer function. Notice that by assumption (H2)
and the narrow convergence ofµNi

[Ni t]/Ni
to µt we can assume with no loss of gener-

ality that

vNi
t = J∇H(µNi

[Nit]/Ni
) → J∇H(µt) L

D–a.e. inR2d asi → +∞.

By the same argument used at the end of the proof of Lemma 6.2, based on Egorov
theorem and the equi-integrability ofρNi

t , we prove thatvNi
t µNi

t converge in the
sense of distributions toJ∇H(µt)µt , thus reaching a contradiction with (6.19).

Therefore, it suffices to pass to the limit asN → ∞ in (6.16) to obtain thatµt is
an Hamiltonian flow with velocity fieldvt = ∇H(µt).

Step 3. Now we consider the general case. We strongly approximateρ̄ in
L1(RD) by functionsρ̄k such that̄ρkL D ∈P2(RD) and, for anyk, there exist con-
stantsmk

r > 0 such that̄ρk ≥ mk
r L D-a.e. onBr for anyr > 0 (for instance, convex

combinations ofρ̄ with a Gaussian). We also notice that the equi-integrability of
{ρ̄k}

∞
k=1 ensures the existence of a convex functionS having a more than linear

growth at infinity, and independent ofk, such that
∫

S(ρ̄k)dz≤ 1 for anyk.
The construction performed in Step 1 and Step 2 can then be applied for each

k, yielding solutions of the Hamiltonian ODEµk
t = ρk

t L D, t ∈ [0,T], satisfying
ρk

0 = ρ̄k,
∫

S(ρk
t )dx≤ 1, and

(6.20)
d
dt

µk
t + ∇ · (J∇H(µk

t )µk
t ) = 0 in (0,T)×R2d.

As, by construction,t 7→ µk
t areL-Lipschitz, we can also assume, possibly extract-

ing a subsequence, thatµk
t → µt narrowly ask→ +∞ for anyt ∈ [0,T]. The upper

bound on
∫

S(ρk
t )dx then ensures thatµt ∈ Pa

2(RD) for all t ∈ [0,T].
The same argument used in Step 2, based on (H2) and the equi-integrability of

ρk
t , shows that for anyt ∈ [0,T], J∇H(µk

t )µk
t converges toJ∇H(µt)µt ask→ +∞

in the sense of distributions. Therefore, passing to the limit ask→+∞ in (6.20) we
obtain thatµt is a solution of the Hamiltonian ODE with velocity fieldJ∇H(µt).

Let us next give a more explicit expression for the Lipschitzconstant oft → µt .
Recall that by (6.17), we have

(6.21) M2(µN
ih) ≤ M = ePT(1+M2(µ̄))

andW2(µτ , µ̄) < Ro for τ ∈ [0,T]. Thus, (6.21) and (H1) imply that
(6.22)

‖∇H(µτ)‖
2
L2(µτ ;RD) ≤C2

o

∫

RD
(1+ |z|)2dµτ (z) ≤ 2C2

o(1+M(µτ)) ≤ 2C2
o(1+M).
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This, together with (3.2), yields

(6.23) W2(µs,µt) ≤

∫ t

s
‖∇H(µτ)‖L2(µτ ;RD)dτ ≤ L(t −s).

Finally, the constancy oft 7→ H(µt) follows by the (essential) boundedness of
‖vt‖L2(µt ;RD) and Theorem 5.2. QED.

We conclude this section by showing a class of Hamiltonians satisfying the
assumptions of Theorem 6.6.

Lemma 6.7. Let ν ∈ P2(RD) with a bounded support and let V: RD → R beλV

convex, W: RD ×RD → R convex and even, both differentiable and with at most
quadratic growth at infinity. Then, for a> 0 the function
(6.24)

H(µ) = H0(µ)+V (µ)+W (µ) =−
a
2
W2

2 (µ ,ν)+

∫

R2d
V dµ +

1
2

∫

RD×RD
W dµ×µ

is (λV −a)–convex, lower semicontinuous and satisfies(H1) and(H2).

Proof. Possibly rescalingV andW, we shall assume thata = 1. It is well known
(see for instance [46] or Chaper 10 of [4]) that the potentialenergyV is λV–convex
and lower semicontinuous, and that the interaction energyW is convex and lower
semicontinuous. As a consequence,H is (λV −1)–convex and lower semicontinu-
ous.

In order to show (H1) it suffices to notice that both∇W and∇W have a growth
at most linear at infinity, and prove that

(6.25) ∂H(µ) = ∂H0(µ)+ ∇V +(∇W∗µ) ∀µ ∈ P2(RD),

taking also into account that Proposition 4.3 yields, in thecase whenµ ∈Pa
2(RD),

∂H0(µ) = {tν
µ − id}, and thattν

µ ∈ L∞(µ ;RD) (by the boundedness of the support
of ν).

The inclusion⊃ in (6.25) is a direct consequence of the characterization (4.4)
of the subdifferential and of the inequalities

V (ν) ≥ V (µ)+

∫

RD
〈∇V, γ̄ − id〉dµ +

λV

2
W2

2 (µ ,ν)

W (ν) ≥ W (µ)+
∫

RD
〈(∇W)∗µ , γ̄ − id〉dµ

for γ ∈ Γo(µ ,ν) (see for instance [4]). In order to prove the inclusion⊂, we fix
a vectorξ ∈ ∂H(µ) and define, forγ ∈ Γo(µ ,ν), the measuresµt = ((1− t)π1 +
tπ2)#γ andγt := (π1,(1− t)π1 + tπ2)#γ ∈ Γo(µ ,µt). As (γ̄t − id)µ = t(γ̄ − id)µ ,
by applying the definition of subdifferential we obtain

liminf
t↓0

H(µt)−H(µ)

t
≥

∫

RD
〈w, γ̄ − id〉dµ .
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Now, the dominated convergence theorem gives

lim
t↓0

V (µt)−V (µ)

t
=

∫

R2d
〈∇V, γ̄− id〉dµ , lim

t↓0

W (µt)−W (µ)

t
=

∫

R2d
〈(∇W)∗µ , γ̄− id〉dµ ,

so that

liminf
t↓0

H0(µt)−H(µ)

t
≥

∫

RD
〈ξ0, γ̄ − id〉dµ

with ξ0 = ξ −∇V − (∇W)∗µ . Then, by(−1)–convexity ofH0 we get

H0(ν) ≥ H0(µ)+

∫

RD
〈ξ0, γ̄ − id〉dµ −

1
2
W2

2 (µ ,ν).

The previous inequality, together with Propositions 4.2 and 4.3, gives thatξ0 ∈
∂H0(µ).

Property (H2) follows directly from the identity

∂H(µ) = {(tν
µ − id)+ ∇V +(∇W)∗µ}

and from Lemma 3.3. QED.

As shown in [38], another important class of convex functionals in P2(RD)
is provided by the so-called internal energy functionalµ = ρL D 7→

∫

S(ρ)dz.
However, as the subdifferential of this functional is not empty only whenLS(ρ) is
aW1,1 function (hereLS(y) = yS′(y)−S(y)), these functionals fail to satisfy (H1).

The previous result can be extended to Hamiltonians generated from those of
Lemma 6.7 through a sup-convolution. For simplicity we consider the case when
neither potential nor interaction energies are present, but their inclusion does not
present any substantial difficulty.

Lemma 6.8. Assume thatΩ ⊂ RD is a bounded open set, and that

(a) K ⊂ P(Ω) is a convex set, with respect to the standard linear structure of
P(Ω), closed with respect to the narrow convergence;

(b) J̃ : K → R∪ {+∞} is strictly convex with respect to the standard linear
structure ofP(Ω), bounded from below and lower semicontinuous with
respect to the narrow convergence.

Define the Hamiltonian H onP2(RD) by

(6.26) −H(µ) = inf
ν∈K

{
1
2

W2
2 (µ ,ν)+ J̃(ν)}.

Then H is(−1)–convex and lower semicontinuous, and satisfies(H1) and(H2).

Proof of Lemma 6.8. Since µ 7→ −W2
2 (µ ,ν)− J̃(ν) is (−2)-convex for each

ν ∈ K, we obtain thatH is (−1)-convex and so (H3) holds.

1. Notice first thatW2
2 (·,ν) is lower semicontinuous with respect to the narrow

convergence (see for instance Proposition 7.1.3 of [4]). Since J̃ is bounded from
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below and lower semicontinuous, and since bounded sets inP2(RD) are sequen-
tially compact with respect to the narrow convergence, we obtain that the infimum
in the definition of−H is attained. Strict convexity of̃J and convexity ofW2

2 (·,ν)
give uniqueness of the minimizer, which we denote byν(µ). A compactness argu-
ment based on the uniqueness ofν(µ) then shows thatµn → µ in P2(RD) implies
ν(µn) → ν(µ) narrowly in P(Ω). As Ω is bounded the mapµ 7→ ν(µ) is also
continuous betweenP2(RD) andP2(Ω).
2. Let µo ∈ Pa

2(RD) andµ ∈ P2(RD). Clearly,

H(µ)−H(µo) ≥−
1
2

(

W2
2 (µ ,ν(µo))−W2

2 (µo,ν(µo))
)

.

This, together with the fact that the Wasserstein gradient of µ →−1
2W2

2 (µ ,ν(µo))

at µo is tν(µo)
µo − id (see (4.8)), yields thattν(µo)

µo − id ∈ ∂H(µo) and so∂H(µo) is
nonempty.

To characterize the elements of∂H(µo), let φ ∈C∞
c (RD) and set

gs = id +s∇φ , µs = gs#µo, νs = ν(µs).

If ξ ∈ ∂H(µo), the fact thatH is (−1)–convex implies that

H(µs)−H(µo)−
∫

R2d
〈ξ ; tµs

µo − id〉dµo +
1
2
W2

2 (µo,µs) ≥ 0.

For |s|<< 1, gs is the gradient of a convex function and so, the previous inequality
yields

−s
∫

RD
〈ξ ;∇φ〉dµo +

s2

2

∫

R2d
|∇φ |2dµo ≥ H(µo)−H(µs)

≥
1
2

(

W2
2 (µs,νs)−W2

2 (µo,νs)
)

≥
1
2

∫

RD
|id− tνs

µs
|2dµs−

1
2

∫

RD
|id −ks◦ tµs

νs |
2dνs

=
1
2

∫

RD
|id− tνs

µs
|2dµs−

1
2

∫

R2d
|tνs

µs
−ks|

2dµs.(6.27)

Here, we have setks = g−1
s . One can easily check that

(6.28) ks(y) = y−s∇φ(y)+
s2

2
∇2φ(y)∇φ(y)+ ε(s,y),

whereε is a function such that|ε(s,y)| ≤ |s|3 ||φ ||C3(R2d). We combine (6.27) and
(6.28) to conclude that

−s
∫

RD
〈ξ ;∇φ〉dµo +

s2

2

∫

R2d
|∇φ |2dµo ≥ s

∫

RD
〈id−y;∇φ〉dγs+o(s),
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whereγs is the unique optimal plan betweenµs andνs. Recall now thatµs→ µo in
P2(RD) andνs → ν in P2(Ω) ass→ 0, hence Lemma 3.3 gives

(6.29) −s
∫

RD
〈ξ ;∇φ〉dµo +

s2

2

∫

RD
|∇φ |2dµo ≥ s

∫

RD
〈id − tνo

µo
;∇φ〉dµo +o(s).

We divide both sides of (6.29) first bys> 0 thens< 0; letting |s| → 0 we find

−
∫

RD
〈ξ ;∇φ〉dµo =

∫

RD
〈id− tνo

µo
;∇φ〉dµo.

This proves thatπµ0ξ = tνo
µo − id. The minimality of the norm of the gradient then

gives

(6.30) ∇H(µo) = tνo
µo
− id.

¿From this representation of∇H(µo) and from (3.13) we obtain both (H1) and
(H2). QED.

7 An alternative algorithm yielding existence of Hamiltonian flows for
general initial data

In this section we provide a new discrete scheme providing existence of solu-
tions to Hamiltonian flows for general initial data, i.e. notnecessarily absolutely
continuous with respect to Lebesgue measure. Being based ona linear interpola-
tion at the level of transports, when particularized to Dirac masses this algorithm
coincides with the one considered in Remark 6.5.

Lemma 7.1. Let f : X → Y be a Borel map,µ ∈ P(X), and letv ∈ L2(µ ;RD).
Then, settingν = f#µ , we have f#(vµ) = wν for somew ∈ L2(ν ;RD) with

(7.1) ‖w‖L2(ν ;RD) ≤ ‖v‖L2(µ ;RD).

Proof. Let σ := f#(vµ) andϕ ∈ L∞(Y;RD); denoting byσ α , α = 1, · · · ,N, the
components ofσ we have

∣

∣

∣

∣

∣

D

∑
i=1

∫

Y
ϕ i dσ i

∣

∣

∣

∣

∣

≤ ‖ϕ ◦ f‖L2(µ ;RD)‖v‖L2(µ ;RD) = ‖ϕ‖L2(ν ;RD)‖v‖L2(µ ;RD).

Sinceϕ is arbitrary this proves (7.1). QED.

Lemma 7.2. Let T > 0, C ≥ 0, µn
t : [0,T] → P2(RD) and vn

t ∈ L2(µt ;Rk) be
satisfying:

(a) µn
t → µt narrowly as n→ +∞, for all t ∈ [0,T];

(b) ‖vn
t ‖L2(µt ;Rk) ≤C for a.e. t∈ [0,T];

(c) theRk-valued space-time measuresvn
t µn

t dt are weakly∗ converging in(0,T)×
RD to σ .
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Then there existvt ∈ L2(µt ;Rk), with ‖vt‖L2(µt ;Rk) ≤ C for a.e. t, such thatσ =
vt µtdt.

Proof. Possibly extracting a subsequence we can also assume that the scalar space-
time measures|vn

t |µn
t dt weak∗-converge toν , and it is well-known (see for instance

Proposition 1.62(b) of [3]) that|σ | ≤ ν . Since, by Hölder inequality, the projection
of |vn

t |µn
t dt on [0,T] is less thanCdt, the same is true forν . Hence the disintegra-

tion theorem (see for instance Theorem 2.28 in [3]) providesus with the represen-
tation σ = σtdt for suitableRk-valued measures inRD having total variation less
thanC for a.e.t.

Now, for anyϕ ∈C∞
c (0,T), ψ ∈C∞

c (RD;Rk) we have
∣

∣

∣

∣

∫ T

0
ϕ(t)〈ψ ;σt〉dt

∣

∣

∣

∣

= |〈ϕψ ;σ〉|= lim
n→+∞

∣

∣

∣

∣

∫ T

0
ϕ(t)〈ψ ;vn

t µn
t 〉dt

∣

∣

∣

∣

≤C
∫ T

0
|ϕ |(t)

√

〈|ψ |2;µt〉dt.

As ϕ is arbitrary, this means that|〈ψ ;σt〉| ≤C
√

〈|ψ |2;µt〉 for a.e.t. By a density
argument we can find a Lebesgue negligible setN ⊂ (0,T) such that

|〈ψ ;σt〉| ≤C
√

〈|ψ |2;µt〉 ∀ψ ∈C∞
c (RD;Rk), ∀t ∈ (0,T)\N .

Hence, for anyt ∈ (0,T) \N we haveσt = vt µt for somevt ∈ L2(µt ;Rk) with
L2(µt ;Rk) norm less thanC. QED.

We consider now two basic assumptions on the Hamiltonian, that are variants
of those considered in the previous section.

(H1’) There exist constants Co∈ [0,+∞), Ro∈ (0,+∞] such that for allµ ∈P2(RD)
with W2(µ , µ̄) < Ro we haveµ ∈ D(H), ∂H(µ) 6= /0 and‖∇H(µ)‖L2(µ) ≤Co.

(H2’) If supnW2(µn, µ̄) < Ro andµn → µ narrowly, then

(7.2)
∞
⋂

m=1

co({∇H(µn)µn : n≥ m}) ⊂
{

wµ : w ∈ ∂H(µ)∩TµP2(RD)
}

,

whereco denotes the closed convex hull, with respect to weak∗-topology.

Remark 7.3. (a) Assumption(H1’) is weaker than(H1), with the replacement of a
pointwise bound with an integral one. Also(H2’) is essentially weaker than(H2),
as it does not impose any “strong” convergence property on∇H(µn); however,
this forces to consider a stability with respect to closed convex hulls.

(b) A sufficient condition which ensures(H2’) is the following:
(H2”) If supnW2(µn, µ̄) < Ro andµn → µ narrowly, then

∇H(µn)µn → ∇H(µ)µ

in the sense of distribution.
(c) As in the previous section, the condition(H3) ensures constancy of the

Hamiltonian along the Hamiltonian flows. We can apply the same argument used
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at the beginning of the proof of Theorem 5.2, to obtain that(H3) and (H1’) imply
that H is Lipschitz continuous on the ball{µ ∈ P2(RD) : W2(µ , µ̄) ≤ Ro}.

Theorem 7.4. Assume that(H1’) and (H2’) hold and that CoT < Ro. Then there
exists a Hamiltonian flowµt : [0,T]→ D(H) starting fromµ̄ ∈P2(RD), satisfying
(5.1), such that t→ µt is Co–Lipschitz. Furthermore, if(H3) holds, then t7→ H(µt)
is constant.
In particular, if ∂H(µ)∩TµP2(RD) = {∇H(µ)} for all µ such that W2(µ , µ̄) <
Ro, then the velocity fieldvt in (5.1)coincides with∇H(µt) for a.e. t∈ [0,T].

Proof. Step 1.(construction of a discrete solution). We fix an integerN sufficiently
large and we divide[0,T] in N equal intervals of lengthh= T/N. We build discrete
solutionsµN

t satisfying:

(a) the Lipschitz constant oft 7→ µN
t is less thanCo;

(b) W2(µN
t , µ̄) ≤CoT;

(c) the “delayed” Hamiltonian equation

(7.3)
d
dt

µN
t + ∇ · (wN

t µN
t ) = 0

holds in the sense of distributions in(0,T)×RD, with

(7.4) wN
t µN

t =
(

id +(t − ih)J∇H(µN
ih)

)

#

(

J∇H(µN
ih)µN

ih

)

for 0≤ i ≤ N−1 andt ∈ [ih,(i +1)h).

We build first the solution in[0,h], settingwN
o = J∇H(µ̄). We then set

µN
t =

(

id + twN
o

)

# µ̄ , wN
t =

(

id + twN
o

)

#

(

wN
o µ̄

)

µN
t

, t ∈ [0,h].

We claim thatwN
t is an admissible velocity field forµN

t . Indeed, for anyϕ ∈
C∞

c (RD) we have

d
dt

∫

RD
ϕ dµN

t =
d
dt

∫

RD
ϕ(id + twN

o )dµ̄ =

∫

RD
〈∇ϕ(x+ twN

o );wN
o 〉dµ̄

=
D

∑
i=1

∫

RD

∂ϕ
∂xi

d

(

(

id + twN
o

)

# (wN
oiµ̄)

)

=
∫

RD
〈∇ϕ ;wN

t 〉dµN
t .

Asϕ is arbitrary, this proves that (7.3) is fulfilled in[0,h]. Notice also that Lemma 7.1
gives

∫

RD
|wN

t |
2dµN

t ≤

∫

RD
|wN

o |
2dµ̄ ≤C2

o ∀t ∈ [0,h],

hence (3.2) gives that the Lipschitz constant oft 7→ µN
t in [0,h] is bounded byCo.

In particularW2(µ̄ ,µN
t ) ≤ Coh for t ∈ [0,h]. We can repeat this process, setting

wN
h = J∇H(µN

h ) and introduce the following extensions on(h,2h] :

µN
t =

(

id +(t −h)wN
h

)

# µN
h , wN

t :=

(

id +(t −h)wN
h

)

#

(

wN
h µN

h

)

µN
t
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for t ∈ [h,2h], with the Lipschitz constant oft 7→ µN
t is bounded byCo and the con-

tinuity equation (c) holding. By iterating this processN times we build a solution
of (7.3), providedNhCo < Ro. In summary, we have obtained that

(7.5) W2(µN
t , µ̄) ≤CoT, ‖∇H(µN

t )‖L2(µN
t ;RD) ≤Co, ‖wN

t ‖L2(µN
t ;RD) ≤Co

for t ∈ [0,T]. The first inequality in (7.5) is due to our choice ofT and to the fact
that t → µt is Co–Lipschitz. The second inequality is a consequence of (H1’). To
obtain the last inequality in (7.5), we have used Lemma 7.1. By (7.5), we can
readily conclude (a) and (b). The construction ofµN

t andwN
t is made such that (c)

holds.

Step 2.(passage to the limit). By (a), (b),t 7→ µN
t are equi-bounded inP2(RD),

and equi-Lipschitz continuous. Hence, we may assume with noloss of generality
thatµN

t → µt narrowly for anyt ∈ [0,T].
By the lower semicontinuity of moments we getµt ∈ P2(RD) for anyt, more-

over, the lower semicontinuity ofW2(·, ·) under narrow convergence gives that the
Co-Lipschitz bound in (a) and the distance bound in (b) are preserved in the limit.

It remains to show thatµt solves the Hamiltonian ODE. To this aim, taking
into account Lemma 7.2 and possibly extracting a subsequence (not relabelled for
simplicity) we can assume that there existwt ∈ L2(µt ;RD), with ‖wt‖L2(µt) ≤ Co

for a.e. t, such that the space-time measureswN
t µN

t dt weak∗-converge towt µtdt.
We have to show thatwt = Jvt for somevt ∈ TµP2(RD). To this aim, notice that

lim
N→+∞

∫ T

0
ϕ(t)〈ψ ;wN

t µN
t 〉dt =

∫ T

0
ϕ(t)〈ψ ;wt µt〉dt ∀ϕ ∈C∞

c (0,T), ψ ∈C∞
c (RD;RD).

Forψ fixed, this means that the mapst 7→ 〈ψ ;wN
t µN

t 〉 weakly converge inL2(0,T)
to 〈ψ ;wt µt〉. Therefore, a sequence of convex combinations of them converges a.e.
to 〈ψ ;wt µt〉 and we obtain

(7.6) 〈ψ ;wt µt〉 ≤ limsup
N→+∞

〈ψ ;wN
t µN

t 〉

for a.e. t ∈ [0,T]. By a density argument we can find a Lebesgue negligible set
N ⊂ (0,T) such that, for allt ∈ (0,T) \N , (7.6) holds for allψ ∈ Co(RD;RD)
(the closure, in the sup norm, ofCc(RD;RD)).

Now, fix t ∈ (0,T) \N where (7.6) holds for allψ ∈ Co(RD;RD) and apply
Hahn-Banach theorem to obtain that

wt µt ∈
∞
⋂

M=1

KM,t

whereKM,t is the closed convex hull of{wN
t µN

t }N≥M with respect to the weak∗

topology. Indeed, fixM and assume by contradiction thatwt µt does not belong
to KM,t . Then, we can strongly separatewt µt and KM,t by a continuous linear
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functional, induced by some functionψ ∈ Cc(RD;RD), to obtain a contradiction
with (7.6). As

wN
t µN

t =
(

id +(t − [Nt]/N)wN
[Nt]/N

)

#
(wN

[Nt]/NµN
[Nt]/N)

=
(

id +(t − [Nt]/N)J∇H(µN
[Nt]/N)

)

#
(J∇H(µN

[Nt]/N)µN
[Nt]/N)

we obtain also that

wt µt ∈
∞
⋂

M=1

co
({

J∇H(µN
[Nt]/N)µN

[Nt]/N : N ≥ M
})

,

hence (H2’) gives thatwt µt = Jvt µt for somevt ∈ ∂H(µt)∩Tµt P2(RD).
Finally, the constancy oft 7→ H(µt) follows by the (essential) boundedness of

‖vt‖L2(µt ;RD) and Theorem 5.2. QED.

Remark 7.5. One can readily check that if we assume that(H1’) and (H2”) hold
and that CoT < Ro, then there exists a Hamiltonian flowµt : [0,T]→D(H) starting
from µ̄ ∈P2(RD), satisfying(1.2), such that t→ µt is Co–Lipschitz. Furthermore,
if (H3) holds, then t7→ H(µt) is constant.

We can prove now the following extension of Lemma 6.7, where we drop the
boundedness assumption on the support ofν .

Lemma 7.6. Let ν ∈ P2(RD) and let V, W as in Lemma 6.7. Then the function H
defined in(6.24)satisfies(H1’), (H2’) and(H3).

Proof. (H3) has already been proved in Lemma 6.7, while (H1’) follows by the
identity (6.25), taking into account that

∫

RD
|γ̄ − id|2dµ ≤

∫

RD×RD
|y−x|2dγ = W2

2 (µ ,ν) ∀γ ∈ Γo(µ ,ν).

Finally, let us check property (H2’). Letwµ be the weak∗ limit of the convex
combinations

l(n)

∑
i=n

λ n
i wiµi with 0≤ λ n

i ≤ 1,
l(n)

∑
i=n

λ n
i = 1,

and, representing aswn = γ̄n− id for suitableγn ∈ Γo(µn,ν), define

µ̂n =
l(n)

∑
i=n

λ n
i µi , γ̂n =

l(n)

∑
i=n

λ n
i γi ∈ Γ(µ̂n,ν).

Let δ be a distance inP(RD ×RD) inducing the narrow convergence (see for in-
stance Remark 5.1.1 of [4]). As any limit point with respect to the narrow topology
of {γn}

∞
n=1 belongs toΓo(µ ,ν) (see for instance Proposition 7.1.3 of [4]), a com-

pactness argument gives an infinitesimal sequence{εn}
∞
n=1 ⊂ (0,+∞) and ηn ∈
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Γo(µ ,ν) such thatδ (γn,ηn) < εn. In particular, settinĝηn = ∑l(n)
i=n λ n

i ηi ∈ Γo(µ ,ν)
and noticing thatδ is induced by a norm, we have

δ (γ̂n, η̂n) ≤ sup
i≥n

εi .

In particular, sinceΓo(µ ,ν) is narrowly closed, we infer that any limit pointγ , in
the narrow topology, of̂γn, belongs toΓo(µ ,ν). Let γ be any of these limit points,
along a subsequencen(k), and notice that for anyϕ ∈C∞

c (R2d;R2d) we have

〈wµ ;ϕ〉 = lim
k→+∞

〈
l(n(k))

∑
i=n(k)

λ n(k)
i (γ̄i − id)µi ;ϕ〉 = lim

k→+∞

∫

RD×RD
〈y−x;ϕ(x)〉dγ̂n(k)

=

∫

RD×RD
〈y−x;ϕ(x)〉dγ = 〈(γ̄ − id)µ ;ϕ〉.

As ϕ is arbitrary, this proves thatw = γ̄− id, hence (3.10) and Proposition 4.3 yield
w ∈ TµP2(RD) andw ∈ ∂H(µ). QED.

8 Examples

In this section we briefly illustrate some PDE’s fitting in ourframework.

Semigeostrophic equations.
(a) If we setd = 1 andν = χΩL 2 in Lemma 6.7, whereΩ ⊂ R2 is a bounded
Borel set withL 2(Ω) = 1, then

d
dt

µt +Dx ·
(

J1(T
ν
µt
− id)µt

)

= 0

is the Hamiltonian ODE relative to−W2
2 (µ ,ν)/2, thanks to (4.6). This PDE is a

variant of the semigeostrophic equation. Notice that the(−1)–convexity ofH is
ensured by Proposition 4.3.
(b) Whend = 1 andJ̃(ρ) = 1

2

∫

Ω ρ2dx, then the Hamiltonian ODE relative to

H(µ) := sup
ρ∈K

−
1
2
W2

2 (µ ,ρL
3)− J̃(ρ)

corresponds to the semigeostrophic shallow water equation, studied in [17]. It
suffices to apply Lemma 6.8.
(c) Finally, if D = 3, J(x,y,z) = (−y,x,0) andH(µ) = −W2

2 (µ ,ν)/2, with ν =
χΩL 3, then the Hamiltonian ODE is the 3-d semigeostrophic equation studied in
[10] and [16].

Vlasov-Poisson and Vlasov-Monge-Amṕere equations.
Suppose thatd ≥ 1, ν = (χΩL d)× δ0, whereΩ ⊂ Rd is a bounded Borel set

with L d(Ω) = 1, andδ0 is the Dirac mass inRd. Then, as shown in [18], the
Hamiltonian in Lemma 6.7 decouples into

H(µ) = −
1
2

M2(µ2)−
1
2
W2

2 (µ1,χΩL
d),
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whereµ1 (resp. µ2) is the first (resp. second) marginal ofµ . This is due to the
fact the optimal transport maptν

µ betweenµ ∈ Pa
2(R2d) andν has necessarily the

form (t,0), wheret is the optimal transport map betweenµ1 and χΩL d, and an
analogous property holds at the level of optimal plans, whenµ is a general measure
in P2(R2d).

Settingµt = f (t, ·)L 2d andρt(x) =
∫

Rd f (t,x,v)dv (i.e. the first marginal of
µ , we have then obtained the Hamiltonian for the Vlasov-Monge-Ampère (VMA)
equation studied in [12] and more recently in [18], which is (up to a scaling argu-
ment)

(8.1)

{

d
dt f (t,x,v)+Dx ·

(

v f(t,x,v)
)

= Dv ·
(

f (t,x,v)∇xΦρt (x)
)

(id −∇xΦρt )#ρt = χΩL d, with |x|2/2−Φρt (x) convex.

Note that whend = 1 the relation betweenρt andΦρt reduces toρt = 1− ∂xxΦρt

and so (8.1) is nothing but the well-known Vlasov-Poisson equation. Our existence
result Theorem 6.6 covers the case of absolutely continuoussolutions, while The-
orem 7.4 covers, thanks to Lemma 7.6, also the case of generalinitial data: in this
case (VMA) has to be understood as follows:

(8.2)

{

d
dt µt +Dx · (vµt) = Dv · ((id − γ̄)µt)

γ ∈ Γ0(µ1
t ,χΩL d).

Indeed, anyγ ′ ∈ Γo(µt ,χΩL d × δ0) can be written as a productγ × (id ×0)#µ2
t ,

with γ ∈ Γo(µ1
t ,χΩL d), so thatγ̄ ′ = (γ̄ ,0). Finally, it would be interesting to

compare carefully, in one space dimension, our existence result for the Vlasov-
Poisson equation with the existence result in [47]. Here we just mention that on
the one hand our result allows more general initial data (no exponential decay of
the velocities is required), on the other hand the solution built in [47] has additional
space-timeBV regularity properties related to velocity averaging, thatare used to
define the productDv · ( f ∇xΦρt ).
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