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AN OPTIMAL TRANSPORT APPROACH FOR THE
KINETIC BOHMIAN EQUATION

ABSTRACT. We study the existence theory of solutions of the kinetic
Bohmian equation, a nonlinear Vlasov-type equation proposed for
the phase-space formulation of Bohmian mechanics. Our main idea is
to interpret the kinetic Bohmian equation as a Hamiltonian system
defined on an appropriate Poisson manifold built on a Wasserstein
space. We start by presenting an existence theory for stationary
solutions of the kinetic Bohmian equation. Afterwards, we develop
an approximative version of our Hamiltonian system in order to
study its associated flow. We then prove existence of solutions of our
approximative version. Finally, we present some convergence results
for the approximative system, the aim being to establish that, in
the limit, the approximative solution satisfies the kinetic Bohmian
equation in a weak sense.

§1. INTRODUCTION

In this paper, we study the existence theory of solutions of the kinetic
Bohmian equation [15,16],

Ag

along with the initial value,
B(t=0,z,0) =By € MT (R* xR?), (1.2)

where v,z € R?, t > 0, and M+ (Rd X Rd) denotes the set of nonnegative
Radon measures defined on phase space, R¢ x R¢. Furthermore, V : R? —
R is a potential satisfying some regularity assumptions given below, and
B = B (t,z,v) represents the generalized Bohmian measure. Finally, o =
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o (t,x) is the position density given by
o(t,xz)= /ﬂ(t,x,dv).
R4

For a comprehensive review of Bohmian mechanics and its role in quantum
mechanics, see, e.g., [7,8].

It was shown in [15,16] that if the initial condition (1.2) is a mono-
kinetic measure, then there exists a connection between the kinetic Boh-
mian equation and the linear Schrodinger equation that can be used to
establish an existence theory for solutions of (1.1). Nevertheless, for the
more general situation given by (1.1)—(1.2), such connection is lost. In this
case, our analysis relies on interpreting the kinetic Bohmian equation as
a Hamiltonian system on a space of probability measures in the following
way. Let Po(R? x R?) stand for the set of Borel probability measures
on R? x R? with finite second moments and consider the Hamiltonian
H : Py(R? x R?) — R U {400} given by

M) = / o2 u(d, do)

R4 xR4
+ [ vutdna + ¢ [T o) + xal(m).

Rd x R4 R4

where we have used the Radon—Nikodym decomposition
7rq1¢u =oL? + (W#u)s,

7! iR x R? : (w,2z) — w represents the first projection of RY x R? onto
RZ, and xo : P2(R?) — {0, +0c} assumes the value 0 on null measures and
the value +o00 on probability measures of positive total mass. Formally, at
least, if the metric slope of H at u is finite, under suitable conditions, the
subdifferential of H at u is not empty. Its unique element of minimal norm
is a Borel vector field,

V,H:RYx R — R x RY,
which is referred to as the Wasserstein gradient of H at pu. V,H belongs
to the range of the projection map

. : L2 (3) — VOX(RE x RY)- ™
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and is given by

Using the (2d) x (2d) symplectic matrix

_ 0 I
()
the theory developed in [9] allows us to define a Poisson structure for which

Xy =7, (JVMH) is a Hamiltonian vector field; we have

v

Xn(p)(z,v) =m,

~V.V(@)+ 3V, (258 (@)

On the other hand, the path t — p; € P2(R% x R?) is said to be driven by
a velocity vector field, v : (0,1) x RY x R? — R? x RY, if

Op+ V- (uv) =0,

in the sense of distributions. According to [2], the path t — u; satisfies the
Hamiltonian system (defined in the context of Poisson geometry)

o= Xp((p)
if X34(p) is a velocity vector field driving ¢ — p;, namely,

_ lg (Bave
Bt + Vg - (vp) = Vy - (va(z) SVa( = )),

in the sense of distributions. This is exactly (1.1) when u; = B(¢, -, - )£3?.

Therefore, now we can say that one of the main ideas of this paper is to
investigate the existence theory of solutions of the kinetic Bohmian equa-
tion through the Hamiltonian flow generated by the Hamiltonian vector
field XH-

To motivate the study of the kinetic Bohmian equation, let us start
by reviewing the aforementioned connection with the linear Schrédinger
equation,

0 = 30UV, B(E=0,) = v € I (RGC). (1)
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A thorough analysis of this equation can be found in, e.g., [6,20,21]. We
adopt the normalization of the initial data, i.e., |[1o| 2 = 1. Thus,

1 @®llz> = [[Poll > = 1. (1.4)

In addition, we assume that i) has bounded initial energy. The energy is
conserved for all ¢ > 0 and is given by

)= [IV0ta)f dot [ V@)ool do=E().
R4 R4
Note that the Schrodinger equation (1.3) has a reduced Planck constant
equal to one (h =1).

As a consequence of (1.4), one can define real-valued probability den-
sities from ¢ (t,2) € C. These probability densities can be used to com-
pute expectation values of physical observables. In particular, we have the
position and current densities given by

o=o(t,x) =Y (t,z)>, J=J(ta)=Im(p(taz) V(). (1.5)

Definition 1.1. (Bohmian measure [15,16]). For ¢ € H' (R?), with as-
sociated densities o, J given by (1.5), the Bohmian measure B = B[] €
MT (R? x R?) is defined by

(B, ) := /g(a:) %) (a:, !;((;:))) dz, Yo e Cy (Rd X Rd) , (1.6)
R4

where C (Rd X Rd) denotes the space of continuous functions vanishing
at infinity.
Let

Bo = Bo (z,v) = 0o (x) 0 (v — uo (2)), (1.7)
where g9 = 0(t =0,2), uo = vt =0,z), u = u(t,z) := J/p, and § is
the delta distribution on R?. It was shown in [15] that if ¢ (¢,z) solves
the Schrédinger equation (1.3), then the corresponding Bohmian measure
(1.6) is the push-forward of (1.7) under the phase space flow

b, : (z,v) — (X (t,z,v), P (t,z,v)),
induced by
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X =P
{ P=—-VV(X)-VVgs(t,X), (1.8)

where Vg (t,z) is the Bohm potential:
Aot )

1
2 Vo(tz)
Note that the specific form of the initial data (1.7) implies that the phase-

space flow ®;, governed by (1.8), is initially projected onto the graph of
g, that is,

Ve (t,z) == —

L:= {(a:,U)GRded:v:uo(a:)}. (1.9)
This imposes a big limitation for the application of the theory developed
in [15,16]: from the whole phase space, we are restricted to the Lagrangian
submani fold (1.9) for the initial condition of (1.8).

Furthermore, it was proved in [16] that for V € C} (Rd;R) and ¢ €
H3 (Rd) with corresponding gg, Jp given by (1.5), the Bohmian measure
B(t,.’lﬁ,’l)) = g(t,w)é(v —u(t,a:)) )
is a weak solution of the kinetic Bohmian equation in D’ (R x R? x R?)
and in D’ ([0,00) x R? x R?) with initial data (1.7). On the other hand,

the uniqueness theory is still an open problem.

As mentioned before, the purpose of this paper is to study the kinetic
Bohmian equation with the more general initial data (1.2), which implies
that the connection with the Schrédinger equation is lost. Nevertheless,
the idea is to use the Wasserstein gradient/Hamiltonian flow techniques
to generate rigorous results on (1.1)—(1.2) with the aim of overcoming the
limitations mentioned above, in particular, the restriction from the whole
phase space to the Lagrangian submanifold (1.9). Moreover, this opens
the door for a new interpretation of Bohmian mechanics through optimal
transportation.

The remainder of this paper is organized as follows. In Section 2, we
present the basic theory and notation used throughout our analysis. In
Section 3, we study the existence of stationary solutions of the kinetic
Bohmian equation. Sections 4, 5, and 6 are devoted to the development of
an approximative version of the kinetic Bohmian equation; in particular,
we prove existence of solutions of this approximative version in Section 6. In
Section 7, we present some convergence results for the approximative model
developed in Sections 4, 5, and 6. Conclusions are drawn in Section 8.
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§2. PRELIMINARIES

Since most of our work is performed inside the framework of probability
measures, we present now the basic concepts and notation for this topic.
A comprehensive review of this subject can be found in [19]. Furthermore,
the theory of optimal transportation is extensively studied in [3,23,24].

A Borel measure on a topological space, X, is any measure defined on
the o-algebra generated by the open sets of X. The elements of such o-al-
gebra are called the Borel sets. Furthermore, a map, f : X — Y, between
the topological spaces X and Y, is called a Borel map if f~!(B) is a Borel
set for any Borel set B C Y.

Suppose that p and v are nonnegative Borel measures on the topological
spaces X and Y, respectively. We say that the Borel map 7' : X — Y
transports p into v, denoted by Ty p = v, if for every Borel set B C Y we
have v [B] = pu [T~ (B)]; in this case, we also say the v is the pushforward
of u through T'. We shall represent by J (u,v) the set of all Borel maps,
T, satisfying Ty = v.

Let 71 : X xY — X be the projection of X x Y onto X and let
72 : X xY — Y be the projection of X x Y onto Y. A nonnegative Borel
measure, v, on X x Y is said to have marginals g and v if p = 7r31¢7 and
V= ni'y; in this case, v is called a transport plan between p and v. The
set of all transport plans between u and v is denoted by T (i, v).

Let d > 1 be an integer and let D € {d,2d}. The D-dimensional
Lebesgue measure on R” is represented by £7. P (RP) stands for the set
of Borel probability measures on R”. The second moment of y € P (RD )
is defined as

Ma ()= [ 1af du(2).
RD
Furthermore,
Py (RP) :={peP (RP): My (p) < +o0}.

The subspace of Ps (RD ) of absolutely continuous measures with respect
to LT is represented by P (RD).

For p € P (RD), we denote by L? (i) the set of Borel vector fields,
¢:RP — RP, which are y—measurable and satisfy

nmﬂ=/M@ﬁm@<+m
RD
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P, (RP) is canonically endowed with the Wasserstein distance, Wa, de-
fined by

Wi () =mind [ ey €T g ()
RP xRP

Any minimizer in (2.1) is called an optimal transport plan between p and v.
The set of all such minimizers is indicated by T, (, v).

Suppose now that p € Py (R”) and v € P, (R”). Then, there ex-
ists a unique minimizer, 7,, in (2.1) which can be represented as v, =
(id x T:)# p for some T/ : RP — RP that coincides p—a.e. with the gra-
dient of a convex function and satisfies Tyup = v. Hence, T}/ is the unique
minimizer of

7 [lo-TEP ).
RD

over J (p,v).

(P2 (RP) ,W>) is a Polish space, namely, a complete and separable
metric space (see Section 7.1 in [23] and Proposition 7.1.5 in [3] for de-
tails). On the other hand, it is not locally compact. Nevertheless, bounded
sets in P, (RD ) are sequentially relatively compact with respect to the
narrow convergence; a sequence (u;), C P (RP) converges narrowly to
MGP(RD) as k — oo if

im [ g(2)du (2) = / 9 (=) du(2),

k—o0
RD RD
for every g € CY (RD ), the space of bounded and continuous functions
on RP. Moreover, a sequence (B;),, C P2 (R”) converges to 8 € P> (RP)
if and only if (fy), converges narrowly to § and M, (Br) — M> (3) as
k — oo.

A particularly important subject for our analysis is the differentiable
Riemannian structure of P, (RD ), which can be derived from its metric
structure. For such derivation, we first have to characterize the absolutely
continuous curves p : [a,b] — P2 (RP). As proved in Theorem 8.3.1 of [3],
if i solves the continuity equation

d
etV (wipe) = 0, (2.2)
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in the sense of distributions in (a, b) x R” for some time-dependent velocity
vector field, wy, with |lw||,, € L' (a,b), then

t
Wo (s, pit) < /||wr||ur dr Va < s <t<b. (2.3)
s

Therefore, the map ¢ — g is absolutely continuous from [a, b] to P (R”).
Conversely, for any absolutely continuous curve, ¢ — pu;, there exists a
unique (up to £! —negligible sets in time) velocity vector field, v;, for which
the continuity equation (2.2) holds, along with asymptotic equality in (2.3):
1
%%sz (t4ns ) = [lve|,,  for a.e. t.

Proposition 8.4.5 of [3] shows that this minimality property of v; is equiv-
alent to the fact that

v €{Vyp:peCx (RD)}L (m).

This result leads to the identification of v; as the “tangent” velocity vector
to u:. Hence, the tangent space to Ps (RD) at p is defined as

T, P, (RP) = (Vo :p € Cx RD)} .

Furthermore, using a simple duality argument, it has been proved in Lem-
ma 8.4.2 of [3] that

1L
[T, P> (RD)} ={weL?(u): V- (wu)=0}.
The following is a useful characterization of the tangent velocity vector,
vy, given in Proposition 8.4.6 of [3]:

. zZ—w . .
ilzli% (w’T)#% = (1d,vt)#,ut in Po (RD XRD),

for almost every t and any v, € Ty (i, pe+r)- In addition, if 4, € P5 (RP),
then the last characterization becomes
tp, —id
h
where t;, are the optimal transport maps between p; and fpig4p.
We present now some basic results from convex analysis in Ps (RD )
which are extensively used in the sequel.

— v in L? (,ut;RD) as h — 0,
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Let po,p1 € P2 (RP) and let v € Ty (po, p1). Let @' : RP x RP -
(w,z) — w and 72 : RP? x RP : (w,z) — z be the first and second
projections of R x RP onto RP, respectively. Consider the interpolation
between the measures pp and p; given by

pe = ((1—t)x" +t7r2)#'y, t €0,1].
Theorem 7.2.2 of [3] shows that ¢t — p; is a constant speed geodesic in
Po (RD), ie, W (us,pt) = [t — s| Wa (o, p1) for all s,¢ € [0,1]. In ad-
dition, any constant speed geodesic has this representation for a suitable

optimal transport plan, .
Let ¢ : Po (RD) — [—00,4+00]. We define the effective domain of ¢ as

D(¢) :={2€P:(RP): —00 < ¢(2) < +00}.

Definition 2.1. (A—convegity). Let ¢ : Py (RP) — [—o0,+00] be such
that D (¢) # @ and let A € R. We say that ¢ is A—convex if for every
Lo, 1 € Po (RD) and every v € T, (po, 1) we have

6 () < (1= )6 (o) + 16 () — 31 (1= ) W3 (o) ¥ € [0,1],

where puy = ((1 — )7t + t7r2)# v. In particular, 0-convezity corresponds to
the so-called displacement convezity.

Definition 2.2. Let G : Py(RP) — [~o00, 00] be such that D(G) # @ and
let € D(G).
(i) We say that £ belongs to the subdifferential of G at i, and we write
£€0G, if ¢ € L*(p) and

G(w)—G(u) = sup {(w) - (z — w)y(dw, dz)
7GFO(“’V)RD xRD (2.4)
+o(Wa(p,v)), Vv e D(G).
The unique element of minimal norm in 0G(u) belongs to
T, P>(RP) and is called the gradient of G at u; it is denoted by
V,.6().
(il) We say that £ belongs to the superdifferential of G at u, and we
write & € 0G(w), if =& € A(=G)(n). _
(iii) We say that G is differentiable at p if both 0G(p) and 0G(u) are
non empty. In that case (see e.g. [10]) both sets coincide and

9G(u) N T, Po(RP) = 8G(n) N T, Po(RP) = {V,.G(u)}.
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Therefore, there is no ambiguity if we define the gradient of G at pu as the
unique element of minimal norm in 0G(u); we denote it by V,G(u).

Remark 2.3. Here are some remarks.

(i) We refer the reader to Remark 3.2 of [10] for property (iii) in
Definition 2.2.

(ii) Due to Proposition 8.5.4 of [3], (2.4) holds for ¢ if and only if it
holds for any & € L%(u) such that & — & belongs to the orthogonal
complement of T,,P>(RP) in L?(u). Rephrasing, if (2.4) holds for
& € L*(p), then it holds for ¢ defined as the orthogonal projection
of & onto T, P2 (RP). Hence,

V() + (€ € L) | div ,(6) = 0} € 3%(p)

(iii) Define 1 (v) = 1/2W2(v, o) for v € Py(RP), where p € P2(RP) is
absolutely continuous. The proof of Proposition 10.4.12 [3] reveals
that if ¢ € 0y (v), since v € T',(v, o) has a unique element, then
m,(€) = id — 7, where 7 is the barycentric projection of . Hence,

Op(v) =id — 7 + {v € L*(v) | div, (v) = 0}.

We next list some facts about proper functionals, ® : Po(R? x R?) —
R U {oo}, for which there exists a functional, ¢ : P2(R%) — RU {cc}, such
that

(1) = P(mip).
If £ = (&,&) € 0®(p), then & € 0¢(p), where

amz/a@mew
]Rd

and (py)zera is the disintegration of u with respect to p. This result holds
under the assumption that 0®(u) # @. Moreover, if ® is bounded below
and lower semicontinuous for the narrow convergence, we can then draw
some conclusions about the functionals ®, defined in 4.1, the Moreau—
Yosida approximations of ®. First, ®, (i) # @ and

P, (1) = ¢-(0)-

Second, if we further assume that the domain of ¢ is contained in Pj (R?)
and ¢ € P4 (R?), then 0@, (i) and J¢, (o) are non empty and their elements
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of minimal norm, respectively denoted by V,®,(u) and V¢, (p), satisfy
V,9-(0)(z)

0

This is a subtle statement, since (cf. Remark 2.3 (ii))
V(o) + {u € L*(0) | div ,(u) = 0} C 0¢(e)

Y, (1) (,v) =

and similarly,
Vi ®(0) + {6 € L2() | div ,(€) = 0} C 0%(p). (2.5)

Thus, there are elements, ¥, of 9®(u) which are functions of (z,v) and have
second components that are not null. To see this, it suffices to choose ¢
such that div ,(¢) = 0 with £(z,v) depending on (z,v) and 7%(§) # 0;
then, just set ¥ =V, ®(u) + .

Finally, for simplicity of notation, we define the Fisher information, 8 F,
by (see [13,17]):

4 [ |Vyelrde if Joe WHH(RP)n{o =0},
8F (o) := RD
{ 400 if Jog Wh2(RP)n{p>0}.

The Fisher information plays a fundamental role in our subsequent anal-
ysis.

(2.6)

§3. STATIONARY SOLUTIONS ON THE TANGENT BUNDLE
TM :=R? x R4

In this section, we start our analysis by exploring special solutions of
the kinetic Bohmian equation (1.1). To this end, define the Hamiltonian

function
_ 1 s 1Ao(x)
H(z,v) =5 |v]" = 5——=—=+V (),
2 2 el(x)
and consider solutions of (1.1) of the form
f(z,v) = F (H (z,v) —n),
where 7 € R represents a (quasi) Fermi level and F' : R — R¥ is a con-

tinuous strictly decreasing function. In particular, we are interested in
functions F': R — R™T satisfying

A(a) ;:RZ F <% ol + a) dv < oo, (3.1)
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for any a € R. Furthermore, the condition

//dedv::le,

RP RP

where M is the (normalized) mass of the system, can be used to compute 7.
We have

a1 1 Av/o(z)
5(%“)—F<§|U| +V(35)—77—§W>,

and therefore we obtain the following integral equation for p:

9<w>=/F<§|v|2+v<z>—n—§AT@> .

RD
Hence,
o(r) = A <v<z) - %%ﬂ) ,

from which we obtain the equation

1A/ (z) -1 _
—§W+V( )— A" (e(x) =n. (3.2)
along with
/g(w) dr = 1. (3.3)
]RD

To proceed further, we now restrict our attention to probability mea-
sures. For the rest of this section, and for simplicity of notation, for any
probability measure, u, let us define F (u) as one eighth of the Fisher
information, i.e.,

peP(RP) = F(p)
L [IV(/@) dz, if p=oLP, and /5 € W'2(RP)
RD

0, otherwise.
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The properties of F can also be studied through the convex lower semi-
continuous function L : R x RP — [0, +00] defined by
%, ifo>0
L(o,¢) = 0, if¢=0andp=0 (3.4)
, if(¢#0and p=0)or (0<0) or (p=00).

Ifpuep (RD) then
Y [ L(e,Vo) dw, if p=0LP, and L (g, Ve) € L'(RP)
]RD
F(p) =

00 otherwise.
(3.5)

Remark 3.1. Since F' is monotone, its set of discontinuity is countable
and will be denoted by {t,}52,

(i) The infimum of F must be 0, otherwise we would have A = oco.
(ii) We exploit (i) and the dominated convergence theorem to obtain

1 1
lim A(a) = lim F<§ v]? +a)dv = /( lim F(§ v]? +a)>dv =0.
RD RD
(iii) Let @ € R and denote by S,.(0) the sphere of radius r centered at
the origin. If 72 4+ 2a = 2t,,, then the union of N(a) := U2, S, (0)
is a set of null Lebesgue measure and
: o] _ (P
Jim P(5+a) = F (5 +a)
for all v ¢ N(@). Thus, as above, by the dominated convergence
theorem, limy_5 A(a) = A(@). In other words, A is continuous
on R.
(iv) Let Ag > 0 be the supremum of F. We have

D—1
A 5
wminl Cap 2 op (30
Hence,
lim A(a) = co. (3.7

a— — 00
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Indeed, if a < —2

Ala) = ’SD_I‘ 77"D_1F(§ + a)dr > ‘SD_I’ /arD_lF(g + a)dr.
0 -

R

Since F' decreases, we conclude that
0> [57(5) (5 ) 3[57](-5) (o),

which implies (3.6). Thus, (3.7) holds.
(v) By (i-iv), A: R — (0,00) is a homeomorphism, and

lim —A~%(s) = oo, lir% —A7(s5) = —0c0.
(vi) Let B € C'(0,00) be such that

B'(s) = —A"!(s). (3.8)

Observe that since —A™! strictly increases, B is strictly convex.
(vii) Let b(s) = B’(s). Using first (v) and then (iv) we obtain

1 _

b — D 2 A
lim sup @ = lim sup( a ) < — = 2L (3.9
s—oo S§D a——oo \A(a) ‘SD—l‘ ) 2
Therefore, we can choose T7; > 1 such that
0 < b(s) < AisP (3.10)

for all s € [T1,00). Since b(s) increases as s increases, setting
A2 == b(T1) > 0 we have

b(s) < AisP + A (3.11)

for any s € (0, c0).
(viii) Suppose that lim,_,o+ B(s) exists. Since B is defined up to additive
constant, we can set B(0) = 0 such that

mﬂ:/m@@. (3.12)

By (3.11),
sb(s) < X' 4 s (3.13)
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and .
B(s) <\ (sl""f + s) (3.14)
for any s € (0, 00). We have set
/\1 = max{;\l, ;\2}
Lemma 3.2. Suppose that b and B are as in Remark 3.1 and B(0) = 0.
Then
(i) the infimum of B(s) is finite.
(ii) The infimum of sb(s) is finite and for any s > 0 we have
sb_(s) < B_(s).
Proof. If B* denotes the Legendre transform of B, then, by the fact that
B(0) =0, we have
B* > 0. (3.15)
(i) Since by Remark 3.1 lim,_,o b(s) = oo, there exists sp such that
b > 0 on [sg,00). Thus, B is bounded below on [sg, c0) by B(sp). Since B
is continuous on [0, so] we conclude that it is also bounded below there.
Consequently, there exists A\, < 0 such that B > —\;.
(ii) Let s > 0 and set a = B’(s) = b(s). Since
sby(s) — sb_(s) = sb(s) = B(s) + B*(a) = B4(s) — B_(s) + B*(«a)
we conclude that
sb_(s) + By (s) + B*(a) = sby(s) + B_(s).
Since by (3.15) B* > 0, we conclude the proof. O

Example 3.3. Examples include

F(t)=et, A(t)=Ce™, b(s):ln(%),

where

(o)
.2
C:= |SD_1|/7"D_Ierr.
0

In general, if B satisfies (3.8), then, by Remark 3.1 (v), we have

im 2 — o (3.16)

s—oo 8

We shall assume that
B(0) := lim B(s) exists. (3.17)

s—0t
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Define

and assume that
00 LP € Po(RP) and  f*° := B(oso) + 05V € LY(RP). (3.18)

Remark 3.4. By the convexity of B, B(s) > B(so) + b(s0)(s — s¢) and if
s >0, then B’(s)s = B(s) + B*(B'(s)). Hence,

(i) if o : RP — [0, 0] is a Borel function
B(0)+V e > Blow)+V 0out (b(0x)+V ) (6= 0c) = Blew) +V 0o = £
Consequently, due to (3.18),
(Blo)+Ve) <f* and B.(o)<Vo—f~.  (319)
Hence, the functional
Plo)= [ Vo B(o) ds

RD

is meaningful and achieves its minimum at 9.-
(ii) We use the first inequality in (i) to conclude that for ¢ > 0 we
have

B'()o+ Vo= B(o)+B*(B'(0)) + Vo= f*+ B*(B'(0)).

(iii) In particular, a consequence of (ii) is that, since B(0) = 0 implies
B* >0, Lemma 3.2 and (3.19) imply

ob_(0) <Vo— f.
Lemma 3.5. Let o : RP — [0,00] be a Borel function. Then
(i)
B()| < M ("% + o) + Vo -
(ii) At the point where o > 0, we have
olb(0)] < Mo P + Xo+ Vo~ f*.

Proof. We combine (3.14) and (3.19) to obtain (i). The proof of (ii) follows
by combining (3.11) and Remark 3.4. O
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Now define the functional E : P(RP) — (—o0, o0] by

_ | Fw)+P(o), if p=oL",
E(p) = { 00, otherwise. (3.20)

Lemma 3.6. Assume (3.18) holds. On its proper domain, the functional
E defined in (3.20) is strictly convex and bounded below. Furthermore, E
is lower semicontinuous for the narrow convergence on P(RP),

Proof. As F > 0, we use Remark 3.4 to conclude that E (u) > P(00)-
Furthermore, we use (3.19) to conclude that the proper domain of E is the
intersection of the proper domains of F and P. The strict convexity of B
implies that of P on its proper domain.

To show that E is lower semicontinuous for the narrow convergence on
P(RP) it suffices to show that F and P are both lower semicontinuous. Let
(n)n C P(RP) be a sequence that converges to p narrowly and assume
that

sup E(uy) < oo.

By Lemma 2.2 of [17], there exist g, : RP — [0,00] and ¢ : RP — [0, ]
such that

Vou| Vol

w=0LP, u=0LP, o0, 0 W' (RP), [Ven| , =l e L*(RP),

fin = 0 p=0 on, 0 € Wy, (RY) Vo' Ve (R7)
lim inf F(pn) = F(p), (3.21)

(v/@,)n converges to /o, strongly in L?(R”) and weakly in W'?(RP).
Thus, every subsequence of (9,), admits itself a subsequence which con-
verges almost everywhere to ¢. By (3.19), B(0,)+V 0+ > > 0. Therefore,
we can apply Fatou’s Lemma, to obtain

liminf/(B(gn) + Vo, + fﬁo) dzr > /(B(g) +Vo+ ffo) dz.

n—oo

RD RD
Then,
liminf P(0,) > P(o). (3.22)

By (3.21) and (3.22), E is lower semicontinuous.
Convexity of F follows from that of L. Consequently, E is strictly convex
on its proper domain. O

We shall see that solutions of (3.2) can be obtained by minimizing E.
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Remark 3.7. Recall that a set K C P (RP”) is tight if

Ve >0 3K. compact in R such that p (RD\KE) <e Vpek.
(3.23)
Moreover, it can be verified that (3.23) is equivalent to the following inte-
gral condition (cf. Remark 5.1.5 in [3]): there exists a function ¥ : RP? —
[0, +00], whose sublevels {z € R” | (z) < ¢} are compact in R”, such
that

sup /19 (z)du (z) < +00.
nekK

RD
Lemma 3.8. Consider a strictly convezx function B : R — [0, 400], with
B (00) = oo and differentiable on (0,00). Suppose there are strictly positive
Borel functions 9o,o and o such that, on the set where these expressions
are positive, we have

~B'(0x) =V (3.24)
and for some 0 < a < 1
—B' (0x,0) =V, (3.25)
and
B (00,0 (2)) + QV (2) 00,0 (z) € L' (RP). (3.26)

Assume V : RP — R is a Borel function which satisfies

lim V (z) = +o0 (3.27)
2| —o00
and there exists V. € R such that V (z) > V_ for almost every = € RP.

For any K > 0 there exists a constant K > 0 such that ifoe L! (RD) 18
nonnegative and

N
=

/ (B(o(@) +V (2) 0 (x)) da (3.28)

RD

then,
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Proof. If (3.28) holds, then
K >/(B(g<x>>+av<x>g<z)+<1—a>v<x>g<w>) da
RD
= / (B(o(x)) = B' (0s0,a () 0(x) + (1 — ) V (x) o (2)) dz, (3.29)
RD
where we used (3.25) for the last expression. Since
B (Q) 2 B (Qoo,a) + B/ (Qoo,oz) (Q - Qoo,oz) 9
(3.29) implies
K2 [ (B (@) = B (¢ (0)) g (@) + (1= )V (0) 0 (0)) da
RD
= [ (B (@) + OV (3) 0 () + (1= ) V (0) 0(0)) ds
RD
—C+(1-a) / V(2) o(x) da, (3.30)
RD

where, due to (3.26), we have set

C:= / (0o, (7)) + AV () 0.0 (T)) d.

By (3.30),

[V @e de<

RD

Remark 3.9. Let F' (s) = e~ *, which implies B (s) = slns. Then, all the
assumptions in Lemma 3.8 are satisfied if we have e=*V(#) ¢ L1 (RD) for
some 0 < a < 1.

Theorem 3.10. Assume V : RP — R is a Borel function, bounded be-
low and satisfying (3.27). Suppose F : R — R is strictly decreasing and
is such that for any a € R the function in (3.1) assumes only finite val-
ues. Suppose further that B € C*(0,00) N C([O,oo)) s such that B’ =
—A~Y, B(0) = 0 and (3.17) holds. Finally, assume that lims_o sB’(s) = 0,
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B(0so) + Voo € L'(RP), and (3.26) holds. If E # oo, then the minimiza-
tion problem

argmin FE (u) ,
nEP2(RP)

has a unique solution, us = 0,L7. Setting

1
ni= 5IVVEI: + [ (Be) +V)a dz,
]RD
we have in the weak sense

1
—50es + Ve, +2(B'(05) + V) os = 11505, (3.31)
which can be interpreted as (3.2).

Proof. Part I: Ezistence and uniqueness of a minimizer. Let {j,}, . be
a minimizing sequence of FE (u), i.e.,

lim E (u,) = inf  E(u).
Jim B (1) L ()

Since both P and F are bounded below,
sup F () < oo.
n

By Lemma 2.2 of [17], there exist g, : RP — [0, o0] such that p, = 0,£P.
We have
sup P(0,) < oo

and hence, Lemma 3.8 implies

sup/Vgn dz < oo.

n
RD

Thus, by Remark 3.7, {un}n is pre-compact for the narrow convergence.
Extracting a subsequence if necessary, we assume without loss of generality
that {{,}n converges narrowly to some pus € P2(RP). By Lemma 2.2
of [17], there exists g5 : RP — [0, 00] such that

[Vonl| [Vos|
Ve, Ve,
Furthermore, (,/0,)n converges to ,/g_, strongly in L*(RP) and weakly

in WH2(RP). By Lemma 3.6, E is lower semicontinuous for the narrow
convergence and hence, i, minimizes E over Py(RP).

fin = 0, L0, ps = 05LP,  0n,05 € WE(RD), €L*(RP).

loc
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Uniqueness of ug follows from the strict convexity property of E on its
domain (cf. Lemma 3.6).
Part I1: Properties of the minimizer. Since
P < inf E(u), 3.32
(0 < _inf | E(n) 3.32)
we use the last statement in Lemma 3.8 and the fact that V' is bounded
below to deduce that

0s|V| € LY(RP). (3.33)
By Remark 3.4
B(0s)- < 05V — B(ow) — 0V € L'(RP). (3.34)
Thus, combining (3.32), (3.33) and (3.34) we conclude that
B(os) € L'(RP). (3.35)
Part III: The Euler—Lagrange equations. Let v € C2°(R) and set
Uy + €UV 2 AD
= /0., uei= QT e = 2gD,
Uo \/Es u ||u0 + CUOUHLZ a “
We have
u? = uj + 2euda(v) + uac(v), (3.36)
where
a(v) :=v — /u%v dr and  sup |[|be(v)||oco < 00.
0<]el<1
RD
We set )
3
8= (14120l + sup [Ja @)]|z~) .
lel<1
We have
/ Vuldr — / Vuldde = e / Vug (2a(v) + eae(v)> dz.
RP RP RP

Therefore, exploiting (3.33) we can apply the dominated convergence the-
orem to obtain

d >
e Vu, dx

= / 2a(v)Vul dz. (3.37)
RD =0 gpb

If D > 3, then
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Since by the Sobolev Embedding theorem W2(RP) C L%(RD), we
conclude that W12(RP) c L*t5 (RP). The latter inclusion remains true
when D € {1,2}. Consequently, ug € L>*5 (RP) and then, F>° € L!(RP)
if we set

F =\ (uy P85+ udS?) + |V]uS? — 1.
By Lemma 3.5

B@)| < M (P ) + V2 —
) (3.38)
< (o) B + (0S)?) +|V(uoS)* — 1 = F>.

Let 6. : RP — (0,1) be such that if ug > 0 we have the first order
expansion

B(u2) = B(uf) = (u2 — ud) B (u§ + 0.((u? — 1)) ).
This means that
B(u?) — B(ud) = eu? (2(1(1}) + eae(v))B'((u0@€)2>,

where

=

0. := (1 + €0 [2a(v) + eae(v)})
Reorganizing the expession, we have
B(u?) — B(u?) (2a(v) + eae(v)>
€ 14 e€b. [2a(v) + eac(v)]

This, together with Lemma 3.5, imply
‘B(UZ’) — B(uj)

(100)*B'((100.)”). (3.39)

€

< (5\1 (UO®5)2+% + 5\2 (U0®e)2 + |V|(U0@5)2 o f°0>

€
‘Qa(v) + eae(v)‘
“1 + €0 [2a(v) + eac(v)]
Thus, if |¢| is small enough so that 2|ef, [2a(v) + eac(v)]| < 1, then
‘B(UQ) — B(up)

€
€

. (3.40)
<262 <X1 (165)* P + Xo (u0S)” + V (ueS)” — f°°> e L'(RP).
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Since B(0) =0 and u. = 0 on {ug = 0}, we conclude that

/Mda:: / de.

€ €

RD {u0>0}
Due to (3.40), we can apply the dominated convergence theorem to con-
clude that
d B(u?) — B(u?
— /B(u?) dz = / lim Blug) = Blug) dx.
de o e—0 €
RD {u0>0}
We then let € go to 0 in (3.39) to deduce that
d
7 /B(u?) dz =2 / a(v)uy B’ (uf) dx.
€ _
RD =0 >0}
Taking into account the fact that lims_o sB’(s) = 0, we get
d
7 /B(u?) dz =2 / a(v)uyB' (uf) dx. (3.41)
eRD e=0 D
Note that

|Vue|? = [Vuo|? + 2ee(v) + €2 (ug + |uoVuo| + |Vu0|2)e€(v), (3.42)
where

e(v) := (Vuo; V(vug)) — |Vuol|? /ugv der and  sup |lec(v)||oo < 0.
0<e|<1
RD

Hence, applying the dominated convergence theorem, we have

i/|VuE|2 dx :/26(’1)) dz. (3.43)
deRD c—0

RD
We combine (3.37), (3.41) and (3.43) to conclude that

%E(uf) = /e(v) dz +2 /(B’(u%) + V)uga(v) dz.
RD RD

e=0

Using the fact that E(u€) achieves its minimum at € = 0, we conclude that

0= %E(,uf) = /(e(v) +2(B'(u3) + V)u%a(v)) da. (3.44)
RD

e=0
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In other words,
/ <(Vu0; V(ugv)) — lgugv +2(B'(ud) + V)ugv — 2ugllv> dz =0,
RD
where
lo :=||Vuol|g2, 11 := /(B'(ug) +V)ug dz.
RD
This implies that for all v € C°(RP)

0= / ((uOVuO; Vo) + (|Vuo|2 — [Jug + 2(B'(ug) + V)ug — 2u3l1)v) dx

RD
_ (Yo, 2 / i
= §<VQS,VU>+ (|V\/§s| +2(B (gs)+V—l1—5)gs>v dz.
RD
(3.45)
This means that (3.31) holds in the distributional sense. O

Definition 3.11. Given G : P(RP) — (o0, ], we define G* on the set
of Borel functions W : RP — (00, oo] which is bounded below, by

G (W) = sup {W/ W (@)u(dz) — G () | p € PRP)

We refer to G* as the Legendre transform of G.

The next result follows immediately from the definition of the Legendre
tranform.

Lemma 3.12. IfV and E are as in Theorem 3.10 and for any u € P(RP)
we define

F(w)+ [ Bleo) dx, if p=oL",
RD
0, otherwise,

then
—G* (V) =infE (oL”).
0
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Remark 3.13. The conclusions in Theorem 3.10 remain valid if we re-
place R” by the torus T”. We keep the same assumptions on B and b,
but on V we only assume that V : RP? — R is a Borel function bounded
below, skipping (3.27).

§4. MOREAU—Y OSIDA APPROXIMATION

In the remainder of this paper, we develop an approximative version of
the kinetic Bohmian equation with the aim of applying the results obtained
in [2]. As we shall see, this approximative version allows us to get around
one of the main difficulties of the kinetic Bohmian equation when studied
in the context of Wasserstein Hamiltonian flows: the lack of A-convexity of
the corresponding Hamiltonian.

We assume throughout this section that d is an integer with d > 1 and
D € {d,2d}. We also assume that ® : Po(RP) — [0,00] is proper and
lower semicontinuous with respect to the narrow convergence on bounded
subsets of Py(RP). If D = 2d we assume that

o+ D(®) C {u € Po(R2) | whp e Pg(Rd)}.
Finally, when D = d, we assume that
@ # D(®) C P5(RY).

For 7 > 0 and p € Py(R?*%), we define the Moreau-Yosida approxima-
tion of ® by

. 1
@ (1) = inf{ W3 (,v) + 2(0)}. (4.1)
We shall use the function
1
Ma() = 3 [ IePude)
RD
We fix v, € D(®) and set

2
C, = ;MQ(I/*) + ®(v,).

Remark 4.1. Existence of a solution in (4.1) is a standard result due
to the fact that & is lower semicontinuous for the narrow convergence.
Moreover, we define the set of minimizers

TE) = {v € PoR) | 8, (0) = o3 (1) + 20 ).
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By abuse of notation, we denote by u™ any element of J2 ().

If 4 € P5(RP), then W2 (u, -) is strictly convex along geodesics of the
L'*-metric and hence, since in addition ® is convex, J® (i) reduces to a
single element (cf., e.g., [13] and [23]).

Lemma 4.2. The following hold:
(i) —®, is (=L)-convez along geodesics of constant speed.
(ii) If p € P2(RP), then
1
-

0< @, () < =Ms(p) + Cr.

(iii) Let po,pu € P2(RP); let G € Ty(po,puy) and denote by G,’fé the

barycentric projection of G. Let G € T,(uo, ). We have

w— G“g w - 1
B < 0o+ [ ()G o)+ W ),

RP xRP
(iv) We conclude that
id—Ghe

€ a(I)T (HO)
r

Proof. (i) Let po,p1 € P2(RP) and let (u:): be a geodesic of constant

speed connecting fig to p1. Fix ¢ € (0,1) and let u] € Po(RP) be such
that

@, () = 5= W3 (e, i) + B4 (42)
We have
B, (1) < 5 W3 iy ) + B(uf) Vi € 0,1},
Thus,

1—-1¢ t
(1=1)®, (o) +tP+ (1) < 7W22(,u0aHZ)+§W§(H1,HZ)+¢(MZ)- (4.3)

Since —1/2WZ(-,ul) is (—1)-convex along geodesics of constant speed
(cf., e.g., [3]), we conclude that

W3 (e, 1) + (1 — W3 (o, 1) = (1 — ) W3 (po, iy ) + tW3 (p1, ).
This, along with (4.3), yields

1 1
(1 =)@, (o) +1P, (1) < 2—TW22(Nt,NZ) + ;t(l — )W (1o, ) + @ ().
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Therefore, by (4.2)

(1= ) (1) + 18 (11) < -1~ O3 (o, ) + B ().

This proves (i).
(ii) We have

1
0< @r(p) < W5 (1, v) + @ ().
This, together with the triangle inequality

(W) < (Wa(an,d0) + Waldo 1)) < 4Ma (1) + 410 (02),

gives (ii).
(iii) Let po, u € P2(RP). We have
W2 , T W2 , T W2 ) T
@, (n) < D)+ D2Uo0) _ g () Walions) | Wk i) (g
2T 2T 2T

By Theorem 7.3.2 [3], ¢ := —1/2W3( -, ) is (—1)-convex along geodesics.
Since id — G5 € 9¢(uo), by Theorem 10.3.6 [3], we have

i ~ 1
v > wlo)+ [ (Gl (w) ~ wiz — w)Gldw,dz) = 5W (. o).
RP xRP
This, along with (4.4), yields (iii).
We use (i), (iii) and Theorem 10.3.6 [3] to obtain (iv). O

Remark 4.3. Let € P>(RP) and G € T',(p, 7). Furthermore, let GY,-
be the barycentric projection of G based at u”.

(i) We have
G". —id id—agr™
———€92(u"), ———" €0%,(n).
T T
(ii) We have
Wi, m) Hid*Gﬁf 2 id - G H2
T2 - T ur’ T n

(i) If R > 0 and 1, po € P2(RP) are such that W (po,d) < R and
Wy (p1,00) < R, then for a constant Cr g depending on R and 7

|@-(p1) — @r(p0)| < Cr, RkWa(pa, pto)-
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Proof. The first claim in (i) can be derived from Lemma 10.3.4 [3] while
the second claim is Lemma 4.2 (iv). The inequalities in (ii) are conse-
quences of Jensen’s inequality.

(iii) Assume R > 0 and pi,p0 € P2(RP) are such that Ms(uo),
Ms(u1) < R. Without loss of generality, we may assume that 0 < ®, (1) —

&, (1o). Let G € Topo, 1), let G € Tolpo, pd) and denote by G0 the
barycentric projection of G. By Lemma 4.2 (iii)

wauéw ~ 1
)2l < [ (I )G, de) W )

i
RD xRD

and hence, by Holder’s inequality

w — Gyl (w)

T

W2(p1,
W2(M1,Mo)+M-

(IDT *(}‘r <
)~ (o) < | i i

We then use (ii) to obtain

Wa (po, Wa (1,
[ (1) = B+ (o)| < W2(u1,u0)( 20 0) | Walis m))

@ (o) N W2(u1,uo))_

T 2T

< W2(u1,/lo)(

We use Lemma 4.2 (ii) to conclude. O

Remark 4.4. Assume (u;)r C Po(RP) converges narrowly to € P2 (RP).
If there exists n € P»(RP) such that

o W (p,n) = Wa () (4.5)

then (ug)r converges in the Wasserstein metric to p; this is by now a
standard result.

Lemma 4.5. Suppose (ju,)n is a bounded sequence in Po(RP) that con-
verges narrowly to u € P2(RP). Let u7, € J2(uy,) and let G, € Ty(jtn, ).

(i) Up to a subsequence, (u%)n C P2(RP) converges in the Wasser-
stein metric to some u”. Furthermore, a subsequence of (Gp)n
obtained from a second extraction has itself a subsequence which
converges narrowly to some G € T'y(u, 7).

(ii) If J®(n) = {u"}, then the whole sequence (u7), C Pa(RP) con-
verges in the Wasserstein metric to p™.
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(iii) If J®(u) = {u"} and Ty(p, u™) has a unique element G, then the
whole sequence (Gr)y converges narrowly to G.

Proof. (i) Assume (py)n C Po(RP) narrowly converges to p. Since ® > 0,
we use Lemma 4.2 to conclude that

sup Wa(n, piy,) < oo and  sup ®(u;) < co. (4.6)
n n

This, together with the fact that (i, ), is bounded in P2 (R?), implies that
(17)n is bounded in P2(RP). Consider a subsequence (u, )i C P2(RP).
Since bounded subsets of P2(R”) are tight (cf., e.g., Remark 5.1.5 [3]) we
may assume without loss of generality that (uf, )i C P2(R”) converges
narrowly to some i € P>(RP). Because (G, )i C P(RP x RP) is tight,
extracting a subsequence if necessary, we may assume that (ng)k con-
verges narrowly to some G. By the stability of optimal transport plans for
the narrow convergence (cf., e.g., Proposition 7.1.3 [3]), G € T',(u, i) and

lim inf Wa(sin,, 17,) > Wa(pt, o). (4.7)

The lower semicontinuity of ® for the narrow convergence and the second
inequality in (4.6) allow us to assert that

oo > likm inf ®(py,, ) = ®(f1). (4.8)
If v € Po(RP) then
W2(tin,, V) W3 (fns, > 17,,,)
—2 e s (un ——
a(v) + U)o g7y 4 22
Therefore, by (4.7) and (4.8)
2 200 &
q)(V) + W2 (:u’:’/) 2 CIJ(,D,) + W2 (,u':/j'). (49)
2t 2T

Hence, i € J2 (). Would the inequality in (4.7) be strict, so would be the
one in (4.9), yielding a contradiction. Thus,

i W, i, ) = Waln, ).
The identities
(Wa (, 1, ) — Wa(pes 1)
= | (W, 12,) = Wi ) + (Wi i) = W, 1)
< Wap, piny) + [Wolpn, s tiny) — Walp, )|
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yield

Hm W, p, ) = W (u, f1)-
We apply Remark 4.4 to conclude that (u],, ), C P2(RP) converges in the
Wasserstein metric to fi.

(ii) By (i), if u” is unique, every subsequence of (u,,), admits itself a
subsequence converging to u”. Hence, the whole sequence must converge
to u”.

(iii) As in (ii), we use (i) to conclude that if p” is unique and G is the
unique element of 'y (u, #7), then the whole sequence (G}, ), must converge
to G. (]

§5. FUNCTIONS ON P5(R??) DEPENDING ONLY ON FIRST
MARGINALS

To emphasize the difference between the spatial and velocity variables,
we set

M:=R? TM:=M xR?,

and use notation such as x € M, (z,a) € M x M, (z,v) € TM, and so
forth.
Suppose

D Py (TM) — (—o0,0¢], ¢:Pa(M)— (—00, 0]
are lower semicontinuous for the narrow convergence and
B(u) = d(myp) Ve PA(TM).

In this section we study the relation between the superdifferential of
the Moreau-Yosida approximations ®, at u € P»(R?”) and that of ¢, at
mhp € P2(RP). The set

S :={(z,v,a,b) e TM xTM | v=>b}
plays an important role in our study.

Definition 5.1. Let u € Po(TM), n € Po(M), iy = o and let v €
Ty(0,n). Let (uz). be the disintegration of p with respect to o in the sense
that

/l(x,v)u(dw, dv) = /g(dw)/l(x,v)um(dv) Vie Cy(TM).
™ M Rd
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(i) We define the Borel measure G := G*Y on TM x TM by

g(z,v,a,b)G(dx, dv,da, db)

TMxTM

= / 7(da:,da)/g(a:,v,a,v)uz(dv) Vg e C.(TM xTM). o1
MXM R4
(ii) We define the Borel measure m*" by
/g(a,b)m“’”(da,db)
o (5.2)

= [ eda) [ gty vgeCur.
MxM R4
Remark 5.2. Using the above notation, the following hold:

(i) G*7 is supported by the closed set S.
(ii) G*7 € T'y(p, mm7).

(ili) mpmMT = 1.

(iv) Wa(e,n) = Wa(p, mi7).
Proof. (i) Observe that
|v — b]*G*7 (dx, dv, da, db) = / ~v(dz,da) /O,um(dv) =0,
TMXTM MXxM R4

which proves that G*7 is supported by the closed set S.
(ii) Let g € C.(TM). We have

/ g(z,v)G”’”(dz,dv,da,db):/ 'y(da:,da)/g(z,v),ux(dv)

TMxTM Mx M Rd
= / o(dz) / 9(w,v) pz (dv) (5.3)
M R

- / o(de) gz, v)u(de, dv).

TM
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Similarly,

g(a,b)G*" (dz, dv, da, db) = / 'y(da:,da)/g(a,v),ux(dv)

TMxTM MxM R4

= / v(dz, da) / 9(a,b)pz(db) - (5.4)

M xM R4

= / g(a,bym*7(da, db).

TM

By (5.3) and (5.4), G € I'(u, m*7).

To conclude that G € T',(g,10), it suffices to show that the support of G
is cyclically monotone (cf. e.g. Section 6.2.3 [3]). Let {(z;, v;, a4, b;)}1y C
spt G and let o be a permutation of n letters. By (i), b; = v;, and therefore,
using the fact that {(z;,a;)}?, C spty and v € I',(0,vp) we conclude that

n n

n
Z'(xiavz) a'z: z Z|$z_az| Z|$i_aa(i)|2+z|vi_ba(i)|2-
3 i=1 i=1

Equivalently, this means

n

Z|(xiavl) aza z Z| T, Uz Qg (1)) a(z))|
i=1

i=1
Thus, the support of G#™7 is cyclically monotone, which concludes the

proof of (ii).
(iii) Let g € C.(M). We have

g(a)m(da, db) = / 3(de, da) / 9(a) 12 (db)

TMxTM MxM R4
= [ s(@n(de.da) = [ gl@n(d),
MxM M

Thus 7, m = 1.
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(iv) Using the fact that by (i) G*7 is supported by S and by (ii) it is
optimal, we have

W2 (4, m) = / (2, v) — (a,)?G* (dz, dv, da, db)

TMXTM
= / |z — a|®*G(dz,dv, da, db).
TMXTM
Since
m G = € To(o,m),
the previous identity becomes W3 (u, m*7) = W3 (o,n). O

Lemma 5.3. Let i € Po(TM) and let 0,1 € Pa(M) be such that myp = o.
(i) We have
vent AW m) |m € Po(TM), mhm = n} = Wi(o,m).  (55)
(ii) If vy € Tp(0,7m), then m™Y minimizes (5.5).
(iii) If m minimizes (5.5) and G € To(p,m), then 5 := W#SG_' € Ty(o,n)
and G is supported by S.
(iv) If o < LP, then m = m™" is the unique minimizer in (5.5) and
Lo(p,m) = {G*7}.
Proof. Let m € Py(TM) be such that 7m = n and let G € To(p, m).
Set 7 := W;fG € I'(p,n). We have

W2 (4, m) = / \(&,v) — (a,b) 2G(dz, dv, da, db)

TMxTM

_ / (J& — af? + |v — b?) G(d, dv, da, db)

TMXTM (56)
= / |z — a|?y(dz,da) + / |v — b|?G(dz, dv, da, db)

M x M TMxTM

> W3 (0,m).

Observe that the inequality in (5.6) is strict unless ¥ € T'y(0,7) and G is
supported by S. In light of Remark 5.2 and (5.6)

W3 (n,m) = W5 (0,n) = W3 (u, m*"7).
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Hence, we have established (i) and (ii).
~ (iii) From the previous result, if m is another minimizer in (5.5) and
€ T',(u,m), then G must be supported by S and we must have J :=
W#SG € T'y(0,m), otherwise the inequality in (5.6) would be strict.
(iv) Assume now that o < £P and let u : RP — (—o00,00] be a lower

semicontinuous convex function such that (id x Vu)xe = 7. The first of
the following identities is due to (iii). If g € C°(TM x T M), then
g(z,v,a,b)G(dz, dv,da, db)
TMXTM
= / g(z,v, Vu(z),v)G(dz, dv,da, db)
TMXTM

- /g(ar,v,Vu(a:),v)M(dﬂfadU)
TM

= [ otdo) [ g0, Vu(z), 0)us (o) (5.7)

M RP

= /7(da:,da)/g(a:,v,Vu(a:),v)uz(dU)

™ RD
= [ dndo) [ gta,v,0, 0 (@)
™ RD
= / g(z,v,a,b)G*" (dz, dv, da,db). O
TMXTM

Definition 5.4. Let (S, dist) be a metric space and let ¢ : S — [—00, 0].
If v € D(¢), we define the global (metric) slope of ¢ at v to be

|0¢|(v) = lim sup M

W dist(w, v)
Lemma 5.5. Let y € Po(TM) and let myp = 0. We have
10@[(1) = |06 (0)-

Proof. Lemma 5.3 implies not only the straightforward inequality
|0®|(1r) < |00|(0), but in fact, it implies that |0®|(u) = |0¢|(0). O
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Lemma 5.6. Let p € Po(TM), let ﬂ;&u = o and let (pg). be the disinte-
gration of p with respect to o.

(i) We have & € 0¢(o) if

_( & 3] and & (x) = [ &(z,v)pe (dv).
e=(§)cmw i &w R[f( a0

(ii) We have
[1€llw = 1€l

and the inequality is strict unless & = 0 pu—a.e. and & (x,v) is
independent on v.
(iii) If 0% () # 2, then [V, @(w)l[u = [[V,0(0)]l,-

Proof. (i) Let n € Po(M) and let v € T'y(0,n). Suppose £ and & are
as above. By Remark 5.2, G*7 € T',(u, m*") and w#m“ﬁ = n. Thus,
(setting w = (z,v) and z = (a, b))

o(n) — ¢(0) = ®(mH7) — (n)
< / <£(w); P w>G“”7’7 + 0(W2(u, m#nm))_ (5.8)

TMxTM
By Remark 5.2 (iv),
Wa(p, m*7) = Wa(e,n). (5.9)
But
(ewnz - w)ra

TMxTM

= / 7(da:,da)/<£(w);< aaz >>Nz(dv)'
Rd

MxM

(5.10)

We combine (5.8), (5.9) and (5.10) to conclude that

o) - 90 < [ (@@ha—snds.da) +o(Walem).

which proves (i).
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(ii) Note that

€2 = / (60? + €] (dr, o)

TM

> [ 16Putdndn = [ ofdo) [ leaPus(a),
TM R4

M
and equality holds if and only if ||&]|, = 0. Hence, by Jensen’s inequality

2
€l > [ atdn)| [ eumatan)| = lial
M Rd

The inequality is strict unless for p a.e.  we have & (z,v) = & (z) for
a.e. v.

(iii) Follows from (i) and (ii). O
Remark 5.7. Let pu € Po(TM) and let ¢ = 7jpu. Let G € To(p, u™) and
recall that Gl’jf is its barycentric projection onto u.

(i) We have @, () = ¢-(0) and o™ := myu.
(ii) We have n* (G4 (x,v)) = v p a.e., with 72 defined by 7% (z,v) = v
for (z,v) e TM.
Proof. (i) follows from Lemma 5.6.

Assume G € T,(p, ™) and let A € C.(T M, R?) be arbitrary. We exploit
Lemma 5.6 (iii) which asserts that G is supported by S to obtain

/ (v — 72 (GI‘jT (z,v)); Az, v))p(dz, dv)

TM

= / (v —b; A(z,v))G(dz,dv,da,db) = 0. O
TMXTM

Proposition 5.8. Assume that D(¢) C Py (M) and that ¢ is convex for
the L' ~metric. Let i € Po(TM) and o = mj,pu be such that J? (o) contains
a unique element, o, which then belongs to P5(M). Denote by v the unique
element of T',(0,07) and let G € To(p, u7)-

(i) If ¢ € ¢, (o) and 'ygT denotes the barycentric projection of v onto
o, then
id —~2"
m(§) = ——*.

T
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(ii) Further assume that o0 < L% and let u : M — (—o0,00] be a
lower semicontinuous convex function such that (Vu)go = o™. If
X € 0%, (u), then

- id—Vu

id - G* 7

mu(X) = — =
g 0
(iii) As a consequence, if o < LP, then
; V(o)
id — Vu ¢
V,0:(0) = - and V,®,(n) =
0

Furthermore, J () = {m*7}.

Proof. (i) Applying Lemma 4.2 to ¢,, we have d¢,(9) # @. For U €
C*(M) and for s € R, we define
gs :=id +sVU, and g, :=gs40.

Observe that for |s| small enough, g, is the gradient of a convex function
and therefore, it is optimal among the maps that push p forward to g,
where optimality is measured against the cost c¢(z,a) = |z — a|®> where
z,a € M. Hence,

Bs = (id X gs)#@ € Fo(ga Qs)'
By the fact that o7 € J?(o5) we have
1
0r(0) = 0r(0) > 5= (Wiles o)) = Wile.0D)).  (5.11)

By the fact that ¢ € 0¢, (o), there exists a function & : R — R such that
limt_,() E(t) =0 and

600~ 0r(0) < Wale, 0)E(Wale,0) + [ (€le)ia— )6 (do,do).
M x M
This, together with (5.11), implies
1

o= (W3 0o, 0) = Wi(o,00)

< Walo, 02)e(Walos 01)) + / (€(x);a — )Ba(de, da).

MxM

(5.12)
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Let s € T'y(0s,0%) and define on M x M the Borel probability measure

¥s by

/ Iz, a)4(dz, da) = / Fg=(a),y)vs(da,dy) V1€ Co(M x M).

MxM MxM
We have
2
g (a) = a— sVU(a) + %V2U(a)VU(a) + o(s?)
and ¥, € T'(p, o7 ). Thus,
> [ - sPutdndo - [ - aP7.(dr.da)
M x M M x M
= [ (a=oP - o & 0)F)ds o
MxM
=2s / (y —a; VU (y))vs(dz,da) + o(s).
M x M
Recall that for |s| small enough, 35 € T',(p, 0s) and hence,
Wie.0)= [ o=yl Bu(dn,dy) = VUL
M x M

We combine (5.12), (5.13) and (5.14) to obtain

ols) / (E=25VU () )i (da dy)

S

MxM
< IV o (VT o) + / (€(x); VU (2)) o(d).
M

Letting s — 0 we conclude that

s—0t
MxM

iimint [ (Y590G) (o dy) < [ (6@ VU @) el
M

(5.13)

(5.14)

(5.15)
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Observe that
sup Wi (0s,680) < sup /|a: + sVU(z)]?o(dz) < oc.
M

ls|<1 Is|<1

This, together with Lemma 4.2 (ii), implies
sup WZ(o7, o) < oo.
[s|<1
Thus,
sup WQQ(%,(S(O,O)) < 00. (5.16)

Is|<1
By Lemma 4.5, as s tends to 0, (ys)s converges narrowly to the unique
element v € I', (0, 07). Since (5.16) holds and |2=%; VU (z)| grows at most

p
linearly as |z| and |a| tend to oo, we conclude that

S y—a _ y—a

imigt [ (YU )dady) = [ (P50 ) dady),
MxM MxM

This, together with (5.15), yields

[ (5 vow)dady) < [ @) vU@) otda).

MxM M

Replacing U by —U we conclude that

[te@ivu@etan = [ (*%v0) )1 (da,dy)

M M x M
=/<¥M;VU(y)>a(dy)-
M

As a consequence,

id—~2"\ id—9¢
T N T

7©) = 7o

since by Theorems 8.5.5 and 12.4.4 [3], we know that 'ygT —id € T,P2(M).
(ii) Further assume that ¢ < £9. Then as observed in Remark 4.1,
J¢ = {07} reduces to a single point such that o7 < £¢. Thus, [',(0, 07) =

{7} also reduces to a single point and v = (id x Vu)4p for a lower semi-
continuous convex function, v : M — (—00, 00]. By Lemma 5.3

7 (u) = {m"7}.

)
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That uniqueness result is all we need to repeat the same arguments as in
(i) to conclude the first identity in (ii). Remark 5.7 asserts that

7’ (G,’f (z,v)) =v
while by Lemma 5.3
Lo(p,m) ={G"7}.

Thus, if A € C.(TM) is arbitrary, denoting by GﬁT the barycentric pro-
jection of G*7 onto u, we have

/ (A, v); 7 (G (2,0))) (e, dv)
TM

= / (A(z,v); a)G*7 (dz, dv, da, dv).
TMXTM

Using the fact that v = (id x Vu)x 0, we conclude that

[ (w07 G (@ o)utd, do

TM
_ / (A(z,0); Vu(@))G" (de, dv, da, dv) (5.17)
TMxTM
= [ {Alw.0)s Vula)utda, do).
TM
Therefore,

! (GZT (x,v)) = Vu(z) = 'yST [ a.e..
In light of (i), (id — 737)/7' is the element of minimal norm in ¢, (p);
hence, the first identity in (iii) holds. Similarly, we use (ii) to obtain the

second identity in (iii). Since J¢(p) contains only o7, we use Lemma 5.3
(iv) to conclude that J®(g) contains only m*". O

§6. SOLUTIONS TO AN APPROXIMATE HAMILTONIAN SYSTEMS IN
THE PERIODIC SETTING

To avoid technical issues, in this section, we shall study an approxima-
tive version of the kinetic Bohmian equation (1.1) on T? x R? instead of
R? x R?. In the sequel, we set

M :=TP,
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and fix a function V € C?(M). The function F, defined in (2.6) (or equiv-
alently in (3.5)) as 1/8 times the Fisher information, will be used in this
section. For u € P2(T' M), we define the function

H(p) = My (1) + (1) + V(1)

where
Vi) = Vi) = [ Vi@ldo,do)
™
®(p) == p(myp),
/' of? w(dz, dv),
and
¢:=F.

Fix 7 > 0 and recall that if ¢ < £? we denote by o7 the unique measure
satisfying

6:(0) = o(0") + P22,

Similarly, Lemma 5.3 ensures that there is a unique p” € Po(T'M) such
that

W3 (7).

P, (p) =2(u") + o

We set
He (i) = My (1) + @7 (n) + V(i)

Lemma 6.1. Let p € Py(TM) and assume that o := 7r?1¢u < LP. Then,
V”HT(M)(QT,U) = =: H(z,v), (6.1)

where th is the optimal map that pushes o forward to o™
Proof. By Proposition 5.8 |

2" (2)—a
Val (o) = | e )
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Since
var=( ) ). www=( V) v er

and

VuM;(n) € OM; (1) NOM; (u) and YV, V() € OV(1) N OV(1)
we conclude that if Z € OH, (i), then
Z — N, My(u) — V,V € 0%, ().
Furthermore, by Proposition 5.8
Vu®r(u) = mu(Z - VMM%(N) = VuV) =mu(Z) - vuM21 (1) = VuV.
In particular, setting Z := V,H,(p), we conclude the proof. O

Theorem 6.2. Let jo = foL?P € Py (TM) and let T > 0.

(i) There exists a path t — ] such that for each T > 0 we have
o e AC, (O,T;PQ(TM)) and

o + V- (ATIV Mo (7)) =0 D((0,T) x TM)).
(ii) We have uf < L2P for all t > 0.
(iii) Given r — M, € (0,00) there exists r — L, € (0,00) such that
d
d£2D

(iv) Given r — m, € (0,00) there exists r — I, € (0,00) (depending
on ) such that

fo < M, on B,(0)

< L, on B(0)

di;

fo>=m, onB,(0) = T

(v) We have H,(i]) = H(uo)-
Proof. 1. Let ug € P5(T'M) and set go := W#uo. Similarly, for any arbi-

> 1. on B, (0)

trary p € Py (T M) we set g := w#,u. Recall that th is the optimal map

that pushes p forward to ¢”. Since th : M — M and M is a bounded set,
Lemma 6.1 supplies us with a constant C' depending on 7, but independent
of u, such that

Vi H: (1) (z,v)| < C(|(z,v)] +1), V(z,v) € TM. (6.2)

This is referred to as assumption (H1) in [2].
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Assume (pn)n C P2(TM) is a sequence of absolutely continuous mea-
sures which converges narrowly to p < £2?. Then (), is bounded in
P(T M) for the Wasserstein metric and (0,) := (74 ftn)n is a sequence of
absolutely continuous measures that converges narrowly to o < £%. Let
un : RY — R be convex functions such that z — wu(z) — |z|2/2 is con-
vex, un(0) = 0 and Vu,, = tgi. By Remark 4.1 both J?(0) = {0"} and
J®(p) = {u7} are of cardinality 1. By Lemma 4.5, (¢7),, converges to o”.
Since M is a compact set, (Vu,)y is uniformly bounded on M. We use
the convexity of u, to conclude that (Vu,)y is pre-compact in LP (M) for
any 1 < p < co. Any point of accumulation of (Vuy,), in LP(M), t, is an
optimal map for the Wasserstein metric, W5, among the maps that push
o forward to 7. Since such an optimal map is unique, we conclude that
the whole sequence (Vuy,,), converges to t = th. Using the expression of
V. Hy(pn) provided by Lemma 6.1 we conclude that (V,H-(u,)), con-
verges almost everywhere to V,H,(p). This is referred to as assumption
(H2) in [2]. By (H1) and (H2) we obtain (i)—(iv).

2. For the conservation of the Hamiltonian, [2] requires the Hamiltonian
to be A—convex. We now check that A—concavity is sufficient as well.

By Remark 4.3, ®, is Lipschitz on bounded subsets of P(TM). Since
V and Mj are also Lipschitz on bounded subsets of Py(T'M), so is H, =
®, 4+ M3 +V.Fix T > 0. Since p € AC5(0,T; P2(T'M)), we conclude that
t — H(@]) is Lipschitz on [0, T]. To show that H(f]) is time independent,
it suffices to show that its derivative vanishes almost everywhere.

Let W be the velocity of minimal norm for the path ¢ — ] provided by
Theorem 8.3.1 [3]. Since both W and JV,H(u™) are velocities for ¢t — 7,
we have

v. (W - JVMH(ﬁT)) =0 D’((O,T) X TM).

In other words

T
/dt / (W — IV, M) VRV (de,do) =0 Y F € CL((0,T) x TM).
0 TM™M
Choosing F in the form F(t,z,v) = A(t)B(z,v) and using a density argu-
ment, we conclude that for almost every ¢ € (0,7) we have
/ (W — IV, H(@T); VB (do,dv) =0 VB € CHTM).
™
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Thus, for almost every ¢ € (0,7), W; is the orthogonal projection of
JV  /H(p7) onto the tangent space Ty Po(TM) :

W, o= s (JVMH(ﬂ[)).
By (8.4.6) [3], for almost every ¢ € (0,T), if t+ h € (0,7) and G, €
Uo(f, i, p,), then we have the following convergence in the Wy-metric:
—2 -1

. (T —T . .
]1113%(#, - )#Gh:(ldXWt)#ut. (6.3)

Here,
al(w,2) =w, 7(w,2)=2 Yw:=(z,v),z:=(a,b)cTM.

Denote by |(i])'| the metric derivative of ¢ — ] (cf. e.g. Definition 1.1.1
[3]). By definition

w = |()'|(t)

for almost every t € (0,7). Hence, for these t,

lim
h—0

W2 ST ST
2 (l’l’thj l’l’t+h) — O(h), (64)

where o(h) depends on t. Note that by Lemma 4.2 (ii), ®, is 7~ '—concave.
Since the second derivatives of (z,v) — V(z) and that of (z,v) — |v|?
are bounded, we conclude that there exists a constant C, such that M, is
C,-concave. Thus,

Ho (B sn) — Mo ()
< / (7, M) (w); 2 — w) G (dw, d2) + Cr W2 (BT B4 n).
TMxTM

If t is such that (6.3) holds, since [(V,H,(fif);2z — w)| grows at most
quadratically, we conclude that

Mt+h —H- (Ht)
/ BV M i) (10); W ()i (dw) + Co W2 (i i) + (). (65)
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We use the fact that W; is the projection of JV H(f]) onto Ty; Po(T M)
to conclude that

/ (W HGEF) (1); W (1)) (o)

TM

- / (V HGET) (w); T HET) () (duw) = 0.
TM

This, together with (6.4) and (6.5), implies

H(figsn) — H(Ag) < o(h). (6.6)

The map t — H(f]) is Lipschitz on [0,T]. Therefore, it is differentiable
almost everywhere. If ¢ is a point of differentiability, using alternatively
h>0and h <0 in (6.6), we conclude that

d =T _
EH(IU’SHS:t =0.

Since the derivative of the Lispchitz function ¢ — H(]) vanishes almost
everywhere, the function must be constant. O

Remark 6.3. If we replace T¢ by R¢ then, because of Remark 4.3, (H1’)
of [2] holds. [2] ensures that if (H2’) also holds, then there is a solution to
our Hamiltonian system. The proof of (H2’) requires some effort and this
is why we worked on T?. Note that the above arguments go through if we
replace T¢ by any open bounded set.

§7. INGREDIENTS TOWARD A CONVERGENCE ANALYSIS IN THE
PERIODIC SETTING

Let o = foL£?*? € Py(TM) and let T > 0. For 7 > 0 we define t — fi] €
PI(TM) as in Theorem 6.2. Write

ﬁ;:r = -ftT‘CM’ y! #ﬂtT = ézﬁda

fl (z,v) = o] (z)F/ (z,v), with /F[(z,v)dv =1.
Rd
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7.1. Continuity equation. Since fo € L'(T'M), we apply de la Vallée
Poussin Theorem to {fy}, a compact subset of L' (T'M), to conclude that
there exists a super linear convex function 6 : [0,00) — [0,00) such that
0(fo) € LY(TM). We use Lemma 6.2 [2] to conclude that

sup /9 fo)dzdv < /0 fo) dz dv < oo. (7.1)

teOT]

We apply again de la Vallée Poussin Theorem to conclude that {7 | 7 > 0}
is a compact subset of L*((0,T) x TM).
Recall that since m zuf < L%, J?(0;) reduces to a single element o] £¢.

We have R
W2 (Qz—v éz—) .

6:@) = olap) + 2L (72)

By Theorem 6.2 (v)
o-(07) + /V( x)dr+ = / [v|? iy (dz, dv) = Hr (o) < H(po). (7.3)

By Proposition 5.8

W T’ AT
Vo0 (@)llgr = W2 ) (r.4)
This, together with (7.3), yields

||Vg¢r(0t)|| + ¢(07) < H(po) + [|V|[oo- (7.5)

Define
iy (x) := /thT(z,v)dv.
R4

We use (7.1) to deduce that up to a subsequence, (f7), converges weakly
to some f in L'((0,1) x TM).
Proposition 7.1. The following hold:

(i) 0" € AC»(0,T; P(M)).

(i)

/ 07 () () dr < H(po) + [V

Qo +V-(ora")=0  D'((0,T) x M).
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Proof. (i) We use that m is a contraction of (P(TM),W:) into
(P2(M),Ws) and use the fact that g™ € AC2(0,T;P2(TM)) to conclude
the proof of (i).

(ii) We use Jensen’s inequality to deduce that

[ @Pe@ e < [ o (e, do),
M ™
which, together with (7.3), yields (ii).

(iii) The differential equation in Theorem 6.2 yields (iii). O
7.2. Convergence in P(M). The goal of this subsection is to establish
some convergence results. We prove that the paths ™ and g™ converge
to the same limit p. Setting

A £%0,T) ® ﬂTn

we show that for the narrow convergence topology, (¥™) = contains points
of accumulation of the form E%O,T) ® fi; where g,£% is the projection of fis
onto M.

Proposition 7.2. There exists a sequence (T,,)yn decreasing to 0 such that
the following hold:

(i) For anyt € (0,T), (Q’Z")n converges in P(M) to g;.

(ii) For anyt € (0,T), (gtT")n converges in P(M) to g.

(iii) We have sup;c (o) ¢ (o) < 0.

(iv) (I/T")n converges narrowly on [0,T] xTM to some v = ﬁ%mT) ® [t
(v) We have jig (TM) =1 for L'~ a.e. t € (0,T).

(vi) We have wlyji; = 0L for L' —a.e. t € (0,T).

Proof. Recall that H, < H. Therefore, using Theorem 6.2 (v) we have
Hy (i) = Hr (o) < H (o) - (7.6)

(i) By Proposition 7.1, ‘(@T)"2 < 2H; (po) +2||V| . except maybe on
a set of null measure. Thus,

Wa (@20 < [ 1@ | < It = sl /204 o) + V]

Now we can apply the Ascoli-Arzela theorem (see Proposition 3.3.1 [3]) to
get (i).
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(ii) We exploit (7.6) to get
W3 (a7, of)

o). ()

Voo +H (ko) = ¢- (07) =
Hence,
W3 (ef, ef) <27 (H (po) + [Vll)
which, together with (i), yields (ii).
(iii) We use (7.7) and the fact that ¢ is lower semicontinuous for the
narrow convergence to conclude that

¢ (1) < [Vlloo +H (1o) -
(iv) By (7.3)

T
/dt (1 + |z]” + |v] ) ¢ (dz, dv)

T™
T

:/ 1+ /|a:| (dx) dt+//lv| ff (dz, dv)
0 0 TM
1+ (diamM)* + 2 (H (o) + | V[|..) -

Hence, (#™) is pre-compact for the narrow convergence. Extracting a
subsequence if necessary, we obtain a Borel measure v on [0, 1] x T'M such
that ( T") converges narrowly on [0,7] x T'M to v. Since the projection
of £(0 myii" onto [0,T] is less than 1, the same is true for the projection
of v (cf. e.g. Theorem 2.28 [1]). This concludes the proof of (iv).

(v) Let ¢ € Cy ([0,1]). Note that

1 1
/go(t) dt = lim/go(t) dt / ui™ (dz, dv)
0 0 ™

= lim / e ) v™ (dt,dz,dv) .
n
[0,T]xTM

We use (iv) to deduce that

/180(t)dt=/1<p(t)dt/ut(dw,dv).

TM
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Since t — [ fit (dz,dv) belongs to L' (0,1), (v) follows.
™
(vi) Let ¢ € Cp ([0,1]) and ¢ € Cp (M). We first use (i) and then use
(v) to obtain
T

T
/wwm/émmwuwM=1ml wam/zwmwuwm

Tn—0

0 M 0 M
= lim / e () v™ (dt,dz,dv) .
[0,T]xXTM

Thus by (iv),

T T

[ewa [a@v@d=[ewd [ v m,aw),
0 M 0 TM

which means that

[ @tz = [ (@) @) da.

T™ M
Since 1 € Cy (M) is arbitrary, we conclude the proof of (vi). O
7.3. Momentum equations for approximate solutions. Recall that

according to Section 6, if t” is the unique gradient of a lower semicontin-
uous convex function such that t7, o] = o7, then

t™ —id id — (¢7)~ !
¢ = €06(op) and DU
T T

€ 09(a7)-
Thus, by Proposition 5.8, the Wasserstein gradient of ¢, g7 , and &7 satisfy
the relation

§" = Vopr(07) ot (7.8)
Using F'7 as introduced at the beginning of the current section, we define
the averages

X (t,z) = /v Q@ vE] (z,v) dv.
Rd
Definition 7.3. Let o € AC>(0,T;P(M)). Moreover, let

p € ACy(0, T; P(M))
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be such that o; is the projection of pus on M and set

@0 = /v ® vFi(z, dv),
R4
where (Fy(z, -))y is the disintegration of p;. Assume that & : (0,T) x M —
R is a Borel vector field such that & € L*(o;) for L' —a.e. t € (0,1). We

say that (g,u,@u, &) satisfies the momentum equation

(ow) + V- (v v") = —o(VV +¢) (7.9)
in the sense of distribution if
T T
/dt/(atA +080"VA)o(dr) = /dt /<A; UV + €)on(de),
0 M 0 M

for all A € C((0,T) x M;R%).

Remark 7.4. The following hold:

(i) If o belongs to the appropriate Sobolev space, then it is smooth
enough such that we can write the Wasserstein gradient of ¢ at o

Veilo) = —5v(22).

Ve
Therefore (cf., e.g., [15]),

0V ,6(0) = %V(Ag) —div(Vye® V). (7.10)

(ii) Since ¢ is the Fisher information up to a multiplicative constant
and J?(o7) = {o] }, by Lemma 10.1.2 [3], £ is in the strong sub-
differential of ¢. By Corollary 5.8 [13]

Vo, € W (M). (7.11)

(ili) If A € C'((0,T) x M,R?), then we can apply Corollary 5.8 [13]
to deduce that (7.10) holds for ¢ = ¢" in the sense that

/T it [ (A€ (o) do

o M (7.12)

T
_ /dt/(—%(V-A) NG} + (VA VT, © VVE) ) dr.

M
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(iv) Observe that Proposition 7.2 (iii) alone ensures that, for the lim-
iting measures, we have /o] € W2 and therefore, the expression
on the right-hand side of (7.12) continues to make sense for the
limiting densities g obtained in Proposition 7.2; it can be written as

T
/dt/(—%A(V A) o+ (VA VG © VVE)) dr.

M

For any vector valued Borel field, &, on M of null average, we define the
norm

Il = sup {/<A;£<dx>>| ||VA||OO<1}.

AC (MRe)
M

Theorem 7.5. Using the notation of Subsection 7.1, the following hold:
(i) (@T,ﬂrw/@\vﬁ ,VQQST(@T)) satisfies the momentum equation (7.9)

in the sense of distributions.
(ii) In the sense of distributions, as given by Definition 7.3 and (7.12),

.

(@ w)+V-(veu )
= YV +V(5V(00) — div(VVe @ VyE) ) + 0,
where
67' — é‘rvg(b(ér) _ Q‘ré-‘r-

(iii) Further assume that there exists a sequence (7,)y decreasing to 0
such that for L' a.e. t € (0,T) we have

Tim 6, (2]") — d(e") = 0. (7.13)

Then, for any p € [1,00) we have

T
lim / G777 ,dt = 0.
0
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Proof. (i) By Theorem 6.2 for any L € C°((0,T) x TM) we have

T

/dt /(BtL+<v;VxL>)ﬂ[(da:,dv)

oo (7.14)
= [t [ (V3V + oo, e (e, de)) =0

T™
The uniform bound in (7.3) implies that

sup / |v|? i} (dx, dv)

Thus, if A € C>((0,T) x M), B;(v) = v;, since B; grows slower than |v|?
at infinity, by a standard approximation argument, we can use L(t,z,v) :=
B;(v)A(t,z) in (7.14) and read off the proof of (i).

(ii) Applying Remark 7.4 (iii), we obtain in the sense of distributions

1 H T T T ¢T
V(§V(AQT) —div(Vy3 @ V.3 )) 4 oTET =0,
This, together with (i), implies (ii).
(iii) For any A € C°(M) such that ||VA||o < 1, we have

[ (Vatn @ A (@) = [(T6r(a7) 0 €7 A7) ] 2) dn
M M
Thus, using (7.8) we conclude that

}/07 da: }/ €75 A(tT) ()>g[(z)dw‘

< IIETIIQ:IItT —id|lg; = [[€7]lg; W2 (o7, 7 )-
Since by Remark 4.3 (ii)

W3(o7,07)
T

Wa(of, a0)I1€7llo7 < =2(¢-(27) — ¢(27)),

we obtain

[y | < 2000 a0) - 900D)
M

Hence,

1107 (11 < 2(¢+(87) — ble])). (7.15)
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We use the fact that ¢ > 0 and (7.7) to obtain for any ¢ € (0,7) and
T€(0,1)

¢-(07) — (ef) < ¢-(27) < H(po) + [V |so-
We can use (7.13) and the Lebesgue dominated convergence theorem to
conclude that for any p > 1

T
lim /||6[n||{1dt:o. 0
n—oo

0

§8. CONCLUDING REMARKS

It is important to mention that the previous results require the initial
condition to be absolutely continuous with respect to the Lebesgue mea-
sure, and therefore, the mono-kinetic case presented in the introduction is
not covered. It remains an interesting question to determine if our results
may be extended to an arbitrary initial measure if we consider the second
method proposed in [2].

On the other hand, the convergence analysis needs to be improved in
order to verify that the limit of the approximative scheme satisfies the
kinetic Bohmian equation in a weak sense. We leave it as an open question
for now to investigate if the flow exchange technique introduced in [17] for
the analysis of Wasserstein gradient flows may be extended to our problem,
giving us the additional estimates that we need to pass to the limit in our
approximative scheme.
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