
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 457, 2017 Ç.W. Gangbo, J. Haskove, P. Markowih, J. SierraAN OPTIMAL TRANSPORT APPROACH FOR THEKINETIC BOHMIAN EQUATIONAbstrat. We study the existene theory of solutions of the kinetiBohmian equation, a nonlinear Vlasov-type equation proposed forthe phase-spae formulation of Bohmian mehanis. Our main idea isto interpret the kineti Bohmian equation as a Hamiltonian systemde�ned on an appropriate Poisson manifold built on a Wassersteinspae. We start by presenting an existene theory for stationarysolutions of the kineti Bohmian equation. Afterwards, we developan approximative version of our Hamiltonian system in order tostudy its assoiated ow. We then prove existene of solutions of ourapproximative version. Finally, we present some onvergene resultsfor the approximative system, the aim being to establish that, inthe limit, the approximative solution satis�es the kineti Bohmianequation in a weak sense.
§1. IntrodutionIn this paper, we study the existene theory of solutions of the kinetiBohmian equation [15, 16℄,�t� + v · ∇x� −∇x(V − 12△x√%√% )

· ∇v� = 0; (1.1)along with the initial value,� (t = 0; x; v) = �0 ∈ M+ (Rd × Rd) ; (1.2)where v; x ∈ Rd, t > 0, and M+ (Rd × Rd) denotes the set of nonnegativeRadon measures de�ned on phase spae, Rd×Rd. Furthermore, V : Rd →
R is a potential satisfying some regularity assumptions given below, and� = � (t; x; v) represents the generalized Bohmian measure. Finally, % =Key words and phrases: Kineti equation, Hamiltonian ow, Wasserstein spae,Poisson struture, Moreau{Yosida approximation.The researh of W. Gangbo was supported by NSF grant DMS{1160939.114



AN OPTIMAL TRANSPORT APPROACH 115% (t; x) is the position density given by% (t; x) = ∫
Rd � (t; x; dv) :For a omprehensive review of Bohmian mehanis and its role in quantummehanis, see, e.g., [7, 8℄.It was shown in [15, 16℄ that if the initial ondition (1.2) is a mono-kineti measure, then there exists a onnetion between the kineti Boh-mian equation and the linear Shr�odinger equation that an be used toestablish an existene theory for solutions of (1.1). Nevertheless, for themore general situation given by (1.1){(1.2), suh onnetion is lost. In thisase, our analysis relies on interpreting the kineti Bohmian equation asa Hamiltonian system on a spae of probability measures in the followingway. Let P2(Rd × Rd) stand for the set of Borel probability measureson Rd × Rd with �nite seond moments and onsider the Hamiltonian

H : P2(Rd × Rd) → R ∪ {+∞} given by
H(�) := 12 ∫

Rd×Rd |v|2�(dx; dv)+ ∫

Rd×Rd V (x)�(dx; dv) + 18 ∫
Rd |∇%|2% %(dx) + �0((�1#�)s);where we have used the Radon{Nikodym deomposition�1#� = %Ld + (�1#�)s;�1 : Rd × Rd : (w; z) → w represents the �rst projetion of Rd × Rd onto

Rd, and �0 : P2(Rd) → {0;+∞} assumes the value 0 on null measures andthe value +∞ on probability measures of positive total mass. Formally, atleast, if the metri slope of H at � is �nite, under suitable onditions, thesubdi�erential of H at � is not empty. Its unique element of minimal normis a Borel vetor �eld,
∇�H : Rd × Rd → Rd × Rd;whih is referred to as the Wasserstein gradient of H at �. ∇�H belongsto the range of the projetion map�� : L2(�) → ∇C∞ (Rd × Rd)L2(�)



116 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRAand is given by
∇�H(x; v) =  ∇xV (x)− 12∇x(△x√%√% )(x)v 

 :Using the (2d)× (2d) sympleti matrixJ = ( 0 Id
−Id 0 ) ;the theory developed in [9℄ allows us to de�ne a Poisson struture for whihXH := ��(J∇�H) is a Hamiltonian vetor �eld; we haveXH(�)(x; v) = �� v

−∇xV (x) + 12∇x(△x√%√% )(x)  :On the other hand, the path t→ �t ∈ P2(Rd×Rd) is said to be driven bya veloity vetor �eld, v : (0; 1)× Rd × Rd → Rd × Rd, if�t�+∇ · (�v) = 0;in the sense of distributions. Aording to [2℄, the path t→ �t satis�es theHamiltonian system (de�ned in the ontext of Poisson geometry)_� = XH(�)if XH(�) is a veloity vetor �eld driving t→ �t, namely,�t�+∇x · (v�) = ∇v · (∇xV (x) − 12∇x(△x√%√% ));in the sense of distributions. This is exatly (1.1) when �t = �(t; · ; · )L2d.Therefore, now we an say that one of the main ideas of this paper is toinvestigate the existene theory of solutions of the kineti Bohmian equa-tion through the Hamiltonian ow generated by the Hamiltonian vetor�eld XH.To motivate the study of the kineti Bohmian equation, let us startby reviewing the aforementioned onnetion with the linear Shr�odingerequation,i�t = −12△ + V  ;  (t = 0; · ) =  0 ∈ L2 (Rd;C) : (1.3)



AN OPTIMAL TRANSPORT APPROACH 117A thorough analysis of this equation an be found in, e.g., [6, 20, 21℄. Weadopt the normalization of the initial data, i.e., ‖ 0‖L2 = 1. Thus,
‖ (t)‖L2 = ‖ 0‖L2 = 1: (1.4)In addition, we assume that  has bounded initial energy. The energy isonserved for all t > 0 and is given byE (t) := 12 ∫

Rd |∇ (t; x)|2 dx+ ∫
Rd V (x) | (t; x)|2 dx = E (0) :Note that the Shr�odinger equation (1.3) has a redued Plank onstantequal to one (~ = 1).As a onsequene of (1.4), one an de�ne real-valued probability den-sities from  (t; x) ∈ C. These probability densities an be used to om-pute expetation values of physial observables. In partiular, we have theposition and urrent densities given by% = % (t; x) = | (t; x)|2 ; J = J (t; x) = Im ( (t; x)∇ (t; x)) : (1.5)De�nition 1.1. (Bohmian measure [15, 16℄). For  ∈ H1 (Rd), with as-soiated densities %, J given by (1.5), the Bohmian measure � = � [ ℄ ∈

M+ (Rd × Rd) is de�ned by
〈�; '〉 := ∫

Rd % (x)'(x; J (x)% (x)) dx; ∀' ∈ C0 (Rd × Rd) ; (1.6)where C0 (Rd × Rd) denotes the spae of ontinuous funtions vanishingat in�nity.Let �0 = �0 (x; v) = %0 (x) Æ (v − u0 (x)) ; (1.7)where %0 ≡ % (t = 0; x), u0 ≡ u (t = 0; x), u = u (t; x) := J=%, and Æ isthe delta distribution on Rd. It was shown in [15℄ that if  (t; x) solvesthe Shr�odinger equation (1.3), then the orresponding Bohmian measure(1.6) is the push-forward of (1.7) under the phase spae ow�t : (x; v) 7→ (X (t; x; v) ; P (t; x; v)) ;indued by
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{ _X = P;_P = −∇V (X)−∇VB (t;X) ; (1.8)where VB (t; x) is the Bohm potential:VB (t; x) := −12△√% (t; x)√% (t; x) :Note that the spei� form of the initial data (1.7) implies that the phase-spae ow �t, governed by (1.8), is initially projeted onto the graph ofu0, that is,
L := {(x; v) ∈ Rd × Rd : v = u0 (x)} : (1.9)This imposes a big limitation for the appliation of the theory developedin [15,16℄: from the whole phase spae, we are restrited to the Lagrangiansubmanifold (1.9) for the initial ondition of (1.8).Furthermore, it was proved in [16℄ that for V ∈ C1b (Rd;R) and  0 ∈H3 (Rd) with orresponding %0, J0 given by (1.5), the Bohmian measure� (t; x; v) = % (t; x) Æ (v − u (t; x)) ;is a weak solution of the kineti Bohmian equation in D′ (R × Rd × Rd)and in D′ ([0;∞)× Rd × Rd) with initial data (1.7). On the other hand,the uniqueness theory is still an open problem.As mentioned before, the purpose of this paper is to study the kinetiBohmian equation with the more general initial data (1.2), whih impliesthat the onnetion with the Shr�odinger equation is lost. Nevertheless,the idea is to use the Wasserstein gradient/Hamiltonian ow tehniquesto generate rigorous results on (1.1){(1.2) with the aim of overoming thelimitations mentioned above, in partiular, the restrition from the wholephase spae to the Lagrangian submanifold (1.9). Moreover, this opensthe door for a new interpretation of Bohmian mehanis through optimaltransportation.The remainder of this paper is organized as follows. In Setion 2, wepresent the basi theory and notation used throughout our analysis. InSetion 3, we study the existene of stationary solutions of the kinetiBohmian equation. Setions 4, 5, and 6 are devoted to the development ofan approximative version of the kineti Bohmian equation; in partiular,we prove existene of solutions of this approximative version in Setion 6. InSetion 7, we present some onvergene results for the approximative modeldeveloped in Setions 4, 5, and 6. Conlusions are drawn in Setion 8.
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§2. PreliminariesSine most of our work is performed inside the framework of probabilitymeasures, we present now the basi onepts and notation for this topi.A omprehensive review of this subjet an be found in [19℄. Furthermore,the theory of optimal transportation is extensively studied in [3, 23, 24℄.A Borel measure on a topologial spae, X , is any measure de�ned onthe �-algebra generated by the open sets of X . The elements of suh �-al-gebra are alled the Borel sets. Furthermore, a map, f : X → Y , betweenthe topologial spaes X and Y , is alled a Borel map if f−1(B) is a Borelset for any Borel set B ⊂ Y .Suppose that � and � are nonnegative Borel measures on the topologialspaes X and Y , respetively. We say that the Borel map T : X → Ytransports � into �, denoted by T#� = �, if for every Borel set B ⊂ Y wehave � [B℄ = � [T−1 (B)]; in this ase, we also say the � is the pushforwardof � through T . We shall represent by J (�; �) the set of all Borel maps,T , satisfying T#� = �.Let �1 : X × Y → X be the projetion of X × Y onto X and let�2 : X × Y → Y be the projetion of X × Y onto Y . A nonnegative Borelmeasure, , on X × Y is said to have marginals � and � if � = �1# and� = �2#; in this ase,  is alled a transport plan between � and �. Theset of all transport plans between � and � is denoted by � (�; �).Let d > 1 be an integer and let D ∈ {d; 2d}. The D-dimensionalLebesgue measure on RD is represented by LD. P (RD) stands for the setof Borel probability measures on RD. The seond moment of � ∈ P

(
RD)is de�ned as M2 (�) := ∫

RD |z|2 d� (z) :Furthermore,
P2 (RD) := {� ∈ P

(
RD) :M2 (�) < +∞

} :The subspae of P2 (RD) of absolutely ontinuous measures with respetto LD is represented by Pr2 (RD).For � ∈ P2 (RD), we denote by L2 (�) the set of Borel vetor �elds,� : RD → RD, whih are �−measurable and satisfy
‖�‖2� := ∫

RD |� (z)|2 d� (z) < +∞:



120 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRA
P2 (RD) is anonially endowed with the Wasserstein distane, W2, de-�ned byW 22 (�; �) := min 




∫

RD×RD |x− y|2 d (x; y) :  ∈ � (�; �) : (2.1)Any minimizer in (2.1) is alled an optimal transport plan between � and �.The set of all suh minimizers is indiated by �o (�; �).Suppose now that � ∈ Pr2 (RD) and � ∈ P2 (RD). Then, there ex-ists a unique minimizer, o, in (2.1) whih an be represented as o =(id× T v�)# � for some T �� : RD → RD that oinides �−a.e. with the gra-dient of a onvex funtion and satis�es T ��#� = �. Hene, T �� is the uniqueminimizer of T →
∫

RD |z − T (z)|2 d� (z) ;over J (�; �).(
P2 (RD) ;W2) is a Polish spae, namely, a omplete and separablemetri spae (see Setion 7.1 in [23℄ and Proposition 7.1.5 in [3℄ for de-tails). On the other hand, it is not loally ompat. Nevertheless, boundedsets in P2 (RD) are sequentially relatively ompat with respet to thenarrow onvergene; a sequene (�k)k ⊂ P

(
RD) onverges narrowly to� ∈ P

(
RD) as k → ∞ iflimk→∞

∫

RD g (z) d�k (z) = ∫
RD g (z) d� (z) ;for every g ∈ C0b (RD), the spae of bounded and ontinuous funtionson RD. Moreover, a sequene (�k)k ⊂ P2 (RD) onverges to � ∈ P2 (RD)if and only if (�k)k onverges narrowly to � and M2 (�k) → M2 (�) ask → ∞.A partiularly important subjet for our analysis is the di�erentiableRiemannian struture of P2 (RD), whih an be derived from its metristruture. For suh derivation, we �rst have to haraterize the absolutelyontinuous urves �t : [a; b℄ → P2 (RD). As proved in Theorem 8.3.1 of [3℄,if �t solves the ontinuity equationddt�t +∇ · (wt�t) = 0; (2.2)



AN OPTIMAL TRANSPORT APPROACH 121in the sense of distributions in (a; b)×RD for some time-dependent veloityvetor �eld, wt, with ‖wt‖�t ∈ L1 (a; b), thenW2 (�s; �t) 6

t∫s ‖w�‖�� d� ∀a 6 s < t 6 b: (2.3)Therefore, the map t 7→ �t is absolutely ontinuous from [a; b℄ to P2 (RD).Conversely, for any absolutely ontinuous urve, t 7→ �t, there exists aunique (up to L1−negligible sets in time) veloity vetor �eld, vt, for whihthe ontinuity equation (2.2) holds, along with asymptoti equality in (2.3):limh→0 1
|h|W2 (�t+h; �t) = ‖vt‖�t for a.e. t:Proposition 8.4.5 of [3℄ shows that this minimality property of vt is equiv-alent to the fat thatvt ∈ {∇' : ' ∈ C∞ (RD)}L2(�t):This result leads to the identi�ation of vt as the \tangent" veloity vetorto �t. Hene, the tangent spae to P2 (RD) at � is de�ned asT�P2 (RD) := {∇' : ' ∈ C∞ (RD)}L2(�):Furthermore, using a simple duality argument, it has been proved in Lem-ma 8.4.2 of [3℄ that

[T�P2 (RD)]⊥ = {w ∈ L2 (�) : ∇ · (w�) = 0} :The following is a useful haraterization of the tangent veloity vetor,vt, given in Proposition 8.4.6 of [3℄:limh→0(w; z − wh )# h = (id; vt)# �t in P2 (RD × RD) ;for almost every t and any h ∈ �o (�t; �t+h). In addition, if �t ∈ Pr2 (RD),then the last haraterization beomesth − idh → vt in L2 (�t;RD) as h→ 0;where th are the optimal transport maps between �t and �t+h.We present now some basi results from onvex analysis in P2 (RD)whih are extensively used in the sequel.



122 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRALet �0; �1 ∈ P2 (RD) and let  ∈ �o (�o; �1). Let �1 : RD × RD :(w; z) → w and �2 : RD × RD : (w; z) → z be the �rst and seondprojetions of RD × RD onto RD, respetively. Consider the interpolationbetween the measures �0 and �1 given by�t = ((1− t)�1 + t�2)# ; t ∈ [0; 1℄ :Theorem 7.2.2 of [3℄ shows that t 7→ �t is a onstant speed geodesi in
P2 (RD), i.e., W2 (�s; �t) = |t− s|W2 (�0; �1) for all s; t ∈ [0; 1℄. In ad-dition, any onstant speed geodesi has this representation for a suitableoptimal transport plan, .Let � : P2 (RD)→ [−∞;+∞℄. We de�ne the e�etive domain of � asD (�) := {z ∈ P2 (RD) : −∞ < � (z) < +∞

} :De�nition 2.1. (�−onvexity). Let � : P2 (RD) → [−∞;+∞℄ be suhthat D (�) 6= ∅ and let � ∈ R. We say that � is �−onvex if for every�0; �1 ∈ P2 (RD) and every  ∈ �o (�0; �1) we have� (�t) 6 (1− t)� (�0) + t� (�1)− �2 t (1− t)W 22 (�0; �1) ∀t ∈ [0; 1℄ ;where �t = ((1− t)�1 + t�2)# . In partiular, 0-onvexity orresponds tothe so-alled displaement onvexity.De�nition 2.2. Let G : P2(RD) → [−∞;∞℄ be suh that D(G) 6= ∅ andlet � ∈ D(G).(i) We say that � belongs to the subdi�erential of G at �, and we write� ∈ ��G, if � ∈ L2(�) and
G(�) − G(�) > sup∈�o(�;�) ∫

RD×RD �(w) · (z − w)(dw; dz)+o(W2(�; �)); ∀ � ∈ D(G): (2.4)The unique element of minimal norm in ��G(�) belongs toT�P2(RD) and is alled the gradient of G at �; it is denoted by
∇�G(�).(ii) We say that � belongs to the superdi�erential of G at �, and wewrite � ∈ ��G(�), if −� ∈ ��(−G)(�).(iii) We say that G is di�erentiable at � if both ��G(�) and ��G(�) arenon empty. In that ase (see e.g. [10℄) both sets oinide and��G(�) ∩ T�P2(RD) = ��G(�) ∩ T�P2(RD) = {∇�G(�)}:



AN OPTIMAL TRANSPORT APPROACH 123Therefore, there is no ambiguity if we de�ne the gradient of G at � as theunique element of minimal norm in ��G(�); we denote it by ∇�G(�).Remark 2.3. Here are some remarks.(i) We refer the reader to Remark 3.2 of [10℄ for property (iii) inDe�nition 2.2.(ii) Due to Proposition 8.5.4 of [3℄, (2.4) holds for � if and only if itholds for any �0 ∈ L2(�) suh that �0−� belongs to the orthogonalomplement of T�P2(RD) in L2(�). Rephrasing, if (2.4) holds for�0 ∈ L2(�), then it holds for � de�ned as the orthogonal projetionof �0 onto T�P2(RD). Hene,
∇��(�) + {� ∈ L2(�) | div �(�) = 0} ⊂ ���(�):(iii) De�ne  (�) = 1=2W 22 (�; %) for � ∈ P2(RD); where % ∈ P2(RD) isabsolutely ontinuous. The proof of Proposition 10.4.12 [3℄ revealsthat if � ∈ �� (�), sine  ∈ �o(�; %) has a unique element, then��(�) = id− �, where � is the baryentri projetion of . Hene,�� (�) = id− � + {v ∈ L2(�) | div �(v) = 0}:We next list some fats about proper funtionals, � : P2(Rd × Rd) →

R∪ {∞}, for whih there exists a funtional, � : P2(Rd) → R∪ {∞}, suhthat �(�) = �(�1#�):If � = (�1; �2) ∈ ���(�), then ��1 ∈ ���(%), where��1(x) = ∫
Rd �1(x; v)�x(dv)and (�x)x∈Rd is the disintegration of � with respet to %. This result holdsunder the assumption that ���(�) 6= ∅. Moreover, if � is bounded belowand lower semiontinuous for the narrow onvergene, we an then drawsome onlusions about the funtionals �� de�ned in 4.1, the Moreau{Yosida approximations of �. First, ���� (�) 6= ∅ and�� (�) = �� (%):Seond, if we further assume that the domain of � is ontained in Pr2 (Rd)and % ∈ Pr2 (Rd), then ���� (�) and ���� (%) are non empty and their elements



124 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRAof minimal norm, respetively denoted by ∇��� (�) and ∇%�� (%), satisfy
∇��� (�)(x; v) =  ∇%�� (%)(x)0 

 :This is a subtle statement, sine (f. Remark 2.3 (ii))
∇%�(%) + {u ∈ L2(%) | div %(u) = 0} ⊂ ���(%)and similarly,
∇��(�) + {� ∈ L2(�) | div �(�) = 0} ⊂ ���(�): (2.5)Thus, there are elements, �, of ���(�) whih are funtions of (x; v) and haveseond omponents that are not null. To see this, it suÆes to hoose �suh that div �(�) = 0 with �(x; v) depending on (x; v) and �2(�) 6= 0;then, just set � = ∇��(�) + �.Finally, for simpliity of notation, we de�ne the Fisher information, 8F ,by (see [13, 17℄):8F(%) := { 4 ∫

RD |∇√%|2 dx if √% ∈W 1;2(RD) ∩ {% > 0};+∞ if √% 6∈W 1;2(RD) ∩ {% > 0}: (2.6)The Fisher information plays a fundamental role in our subsequent anal-ysis.
§3. Stationary solutions on the tangent bundleTM := Rd × RdIn this setion, we start our analysis by exploring speial solutions ofthe kineti Bohmian equation (1.1). To this end, de�ne the Hamiltonianfuntion H (x; v) := 12 |v|2 − 12△√% (x)√% (x) + V (x) ;and onsider solutions of (1.1) of the form� (x; v) = F (H (x; v) − �) ;where � ∈ R represents a (quasi) Fermi level and F : R → R+ is a on-tinuous stritly dereasing funtion. In partiular, we are interested infuntions F : R → R+ satisfyingA (�) := ∫

RD F (12 |v|2 + �) dv <∞; (3.1)



AN OPTIMAL TRANSPORT APPROACH 125for any � ∈ R. Furthermore, the ondition
∫

RD ∫RD � dx dv :=M ≡ 1;whereM is the (normalized) mass of the system, an be used to ompute �.We have � (x; v) = F (12 |v|2 + V (x) − � − 12△√% (x)√% (x) ) ;and therefore we obtain the following integral equation for %:% (x) = ∫
RD F (12 |v|2 + V (x)− � − 12△√% (x)√% (x) ) dv:Hene, % (x) = A(V (x)− � − 12△√% (x)√% (x) ) ;from whih we obtain the equation

−12△√% (x)√% (x) + V (x) −A−1 (% (x)) = �: (3.2)along with ∫

RD % (x) dx = 1: (3.3)To proeed further, we now restrit our attention to probability mea-sures. For the rest of this setion, and for simpliity of notation, for anyprobability measure, �, let us de�ne F (�) as one eighth of the Fisherinformation, i.e.,� ∈ P
(
RD)→ F (�):=  12 ∫

RD ∣∣∇(√%)∣∣2 dx; if � = %LD ; and √% ∈W 1;2(RD)
∞; otherwise:



126 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRAThe properties of F an also be studied through the onvex lower semi-ontinuous funtion L : R × RD → [0;+∞℄ de�ned byL (%; �) :=  |�|22% ; if % > 00; if � = ~0 and % = 0
∞; if (� 6= ~0 and % = 0) or (% < 0) or (% = ∞) : (3.4)If � ∈ P

(
RD) then

F (�) := 14 ∫
RD L (%;∇%) dx; if � = %LD ; and L (%;∇%) ∈ L1(RD)

∞ otherwise: (3.5)Remark 3.1. Sine F is monotone, its set of disontinuity is ountableand will be denoted by {tn}∞n=1(i) The in�mum of F must be 0, otherwise we would have A ≡ ∞.(ii) We exploit (i) and the dominated onvergene theorem to obtainlim�→∞
A(�) = lim�→∞

∫

RD F(12 |v|2+�)dv = ∫
RD ( lim�→∞

F(12 |v|2+�))dv = 0:(iii) Let �� ∈ R and denote by Sr(0) the sphere of radius r entered atthe origin. If r2n+2�� = 2tn, then the union of N(��) := ∪∞n=1Srn(0)is a set of null Lebesgue measure andlim�→��F( |v|22 + �) = F( |v|22 + ��)for all v 6∈ N(��). Thus, as above, by the dominated onvergenetheorem, lim�→��A(�) = A(��). In other words, A is ontinuouson R.(iv) Let �0 > 0 be the supremum of F . We havelim inf�→−∞
A(�)(−�)D >

∣∣∣SD−1∣∣∣2D : (3.6)Hene, lim�→−∞
A(�) = ∞: (3.7)



AN OPTIMAL TRANSPORT APPROACH 127Indeed, if � < −2A(�) = ∣∣∣SD−1∣∣∣ ∞∫0 rD−1F(r22 + �)dr >

∣∣∣SD−1∣∣∣ −�∫
−�2 rD−1F(r22 + �)dr:Sine F dereases, we onlude thatA(�) >

∣∣∣SD−1∣∣∣(−�2 )DF(�22 + �) >

∣∣∣SD−1∣∣∣(−�2)DF(−�);whih implies (3.6). Thus, (3.7) holds.(v) By (i - iv), A : R → (0;∞) is a homeomorphism, andlims→∞
−A−1(s) = ∞; lims→0−A−1(s) = −∞:(vi) Let B ∈ C1(0;∞) be suh thatB′ (s) = −A−1 (s) : (3.8)Observe that sine −A−1 stritly inreases, B is stritly onvex.(vii) Let b(s) = B′(s). Using �rst (v) and then (iv) we obtainlim sups→∞

b(s)s 1D = lim sup�→−∞

( −�A(�)) 1D
6

2
∣∣∣SD−1∣∣∣ 1D =: ��12 : (3.9)Therefore, we an hoose T1 > 1 suh that0 < b(s) 6 ��1s 1D (3.10)for all s ∈ [T1;∞). Sine b(s) inreases as s inreases, setting��2 := b(T1) > 0 we haveb(s) 6 ��1s 1D + ��2 (3.11)for any s ∈ (0;∞).(viii) Suppose that lims→0+ B(s) exists. Sine B is de�ned up to additiveonstant, we an set B(0) = 0 suh thatB(t) = t∫0 b(s)ds: (3.12)By (3.11), sb(s) 6 ��1s1+ 1D + ��2s (3.13)



128 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRAand B(s) 6 �1(s1+ 1D + s); (3.14)for any s ∈ (0;∞). We have set�1 := max{��1; ��2}:Lemma 3.2. Suppose that b and B are as in Remark 3.1 and B(0) = 0.Then(i) the in�mum of B(s) is �nite.(ii) The in�mum of sb(s) is �nite and for any s > 0 we havesb−(s) 6 B−(s):Proof. If B∗ denotes the Legendre transform of B, then, by the fat thatB(0) = 0, we have B∗ > 0: (3.15)(i) Sine by Remark 3.1 lims→∞ b(s) = ∞, there exists s0 suh thatb > 0 on [s0;∞). Thus, B is bounded below on [s0;∞) by B(s0). Sine Bis ontinuous on [0; s0℄ we onlude that it is also bounded below there.Consequently, there exists �b < 0 suh that B > −�b.(ii) Let s > 0 and set � = B′(s) = b(s). Sinesb+(s)− sb−(s) = sb(s) = B(s) +B∗(�) = B+(s)−B−(s) +B∗(�)we onlude thatsb−(s) +B+(s) +B∗(�) = sb+(s) +B−(s):Sine by (3.15) B∗ > 0, we onlude the proof. �Example 3.3. Examples inludeF (t) = e−t; A(t) = Ce−t; b(s) = ln( sC ); B(s) = s ln( sC )− s;where C := |SD−1| ∞∫0 rD−1e−r22 dr:In general, if B satis�es (3.8), then, by Remark 3.1 (v), we havelims→∞
B(s)s = ∞: (3.16)We shall assume that B(0) := lims→0+B(s) exists: (3.17)



AN OPTIMAL TRANSPORT APPROACH 129De�ne %∞ := A (V )and assume that%∞LD ∈ P2(RD) and f∞ := B(%∞) + %∞V ∈ L1(RD): (3.18)Remark 3.4. By the onvexity of B, B(s) > B(s0) + b(s0)(s− s0) and ifs > 0, then B′(s)s = B(s) +B∗(B′(s)). Hene,(i) if % : RD → [0;∞℄ is a Borel funtionB(%)+V % > B(%∞)+V %∞+(b(%∞)+V )(%−%∞) = B(%∞)+V %∞ = f∞:Consequently, due to (3.18),
(B(%) + V %)

−
6 f∞

− and B−(%) 6 V %− f∞: (3.19)Hene, the funtionalP (%) := ∫
RD (V %+B (%)) dxis meaningful and ahieves its minimum at %∞.(ii) We use the �rst inequality in (i) to onlude that for % > 0 wehaveB′(%)%+ V % = B(%) +B∗(B′(%))+ V % > f∞ +B∗(B′(%)):(iii) In partiular, a onsequene of (ii) is that, sine B(0) = 0 impliesB∗ > 0, Lemma 3.2 and (3.19) imply%b−(%) 6 V %− f∞:Lemma 3.5. Let % : RD → [0;∞℄ be a Borel funtion. Then(i)

|B(%)| 6 �1(%1+ 1D + %)+ V %− f∞:(ii) At the point where % > 0, we have%|b(%)| 6 ��1%1+ 1D + ��%+ V %− f∞:Proof. We ombine (3.14) and (3.19) to obtain (i). The proof of (ii) followsby ombining (3.11) and Remark 3.4. �



130 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRANow de�ne the funtional E : P(RD) → (−∞;∞℄ byE (�) := { F (�) + P (%); if � = %LD ;
∞; otherwise. (3.20)Lemma 3.6. Assume (3.18) holds. On its proper domain, the funtionalE de�ned in (3.20) is stritly onvex and bounded below. Furthermore, Eis lower semiontinuous for the narrow onvergene on P(RD).Proof. As F > 0, we use Remark 3.4 to onlude that E (�) > P (%∞).Furthermore, we use (3.19) to onlude that the proper domain of E is theintersetion of the proper domains of F and P . The strit onvexity of Bimplies that of P on its proper domain.To show that E is lower semiontinuous for the narrow onvergene on

P(RD) it suÆes to show that F and P are both lower semiontinuous. Let(�n)n ⊂ P(RD) be a sequene that onverges to � narrowly and assumethat supn E(�n) <∞:By Lemma 2.2 of [17℄, there exist %n : RD → [0;∞℄ and % : RD → [0;∞℄suh that�n = %nLD ; � = %LD ; %n; % ∈W 1;1lo (RD); |∇%n|√%n ; |∇%|√% ∈ L2(RD);lim infn F(�n) > F(�); (3.21)(√%n)n onverges to √%, strongly in L2(RD) and weakly in W 1;2(RD).Thus, every subsequene of (%n)n admits itself a subsequene whih on-verges almost everywhere to %. By (3.19),B(%n)+V %n+f∞
− > 0. Therefore,we an apply Fatou's Lemma to obtainlim infn→∞

∫

RD (B(%n) + V %n + f∞
−

) dx >

∫

RD (B(%) + V %+ f∞
−

) dx:Then, lim infn P (%n) > P (%): (3.22)By (3.21) and (3.22), E is lower semiontinuous.Convexity of F follows from that of L. Consequently, E is stritly onvexon its proper domain. �We shall see that solutions of (3.2) an be obtained by minimizing E.



AN OPTIMAL TRANSPORT APPROACH 131Remark 3.7. Reall that a set K ⊂ P
(
RD) is tight if

∀" > 0 ∃K" ompat in RD suh that � (RD\K") 6 " ∀� ∈ K:(3.23)Moreover, it an be veri�ed that (3.23) is equivalent to the following inte-gral ondition (f. Remark 5.1.5 in [3℄): there exists a funtion # : RD →[0;+∞℄, whose sublevels {x ∈ RD |# (x) 6 } are ompat in RD, suhthat sup�∈K

∫

RD # (x) d� (x) < +∞:Lemma 3.8. Consider a stritly onvex funtion B : R → [0;+∞℄, withB (∞) = ∞ and di�erentiable on (0;∞). Suppose there are stritly positiveBorel funtions %∞;� and %∞ suh that, on the set where these expressionsare positive, we have
−B′ (%∞) = V (3.24)and for some 0 < � < 1

−B′ (%∞;�) = �V; (3.25)and B (%∞;� (x)) + �V (x) %∞;� (x) ∈ L1 (RD) : (3.26)Assume V : RD → R is a Borel funtion whih satis�eslim
|x|→∞

V (x) = +∞ (3.27)and there exists V ∈ R suh that V (x) > V for almost every x ∈ RD.For any K > 0 there exists a onstant K̃ > 0 suh that if % ∈ L1 (RD) isnonnegative and
∫

RD (B (% (x)) + V (x) % (x)) dx 6 K; (3.28)then,
∫

RD V (x) % (x) dx 6 K̃:



132 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRAProof. If (3.28) holds, thenK >

∫

RD (B (% (x)) + �V (x) % (x) + (1− �) V (x) % (x)) dx= ∫
RD (B (% (x))− B′ (%∞;� (x)) % (x) + (1− �)V (x) % (x)) dx; (3.29)where we used (3.25) for the last expression. SineB (%) > B (%∞;�) +B′ (%∞;�) (%− %∞;�) ;(3.29) impliesK >

∫

RD (B (%∞;� (x))−B′ (%∞;� (x)) %∞;� (x) + (1− �)V (x) % (x)) dx= ∫
RD (B (%∞;� (x)) + �V (x) %∞;� (x) + (1− �)V (x) % (x)) dx=C + (1− �) ∫

RD V (x) % (x) dx; (3.30)where, due to (3.26), we have setC := ∫
RD (B (%∞;� (x)) + �V (x) %∞;� (x)) dx:By (3.30), ∫

RD V (x) % (x) dx 6
K − C1− � =: K̃: �Remark 3.9. Let F (s) = e−s, whih implies B (s) = s ln s. Then, all theassumptions in Lemma 3.8 are satis�ed if we have e−�V (x) ∈ L1 (RD) forsome 0 < � < 1.Theorem 3.10. Assume V : RD → R is a Borel funtion, bounded be-low and satisfying (3.27). Suppose F : R → R+ is stritly dereasing andis suh that for any � ∈ R the funtion in (3.1) assumes only �nite val-ues. Suppose further that B ∈ C1(0;∞) ∩ C([0;∞)) is suh that B′ =

−A−1, B(0) = 0 and (3.17) holds. Finally, assume that lims→0 sB′(s) = 0;



AN OPTIMAL TRANSPORT APPROACH 133B(%∞) +V %∞ ∈ L1(RD), and (3.26) holds. If E 6≡ ∞, then the minimiza-tion problem argmin�∈P2(RD)E (�) ;has a unique solution, �s = %sLD. Setting�s := 12 ||∇√%s||2L2 + ∫
RD (B′(%s) + V )%s dx;we have in the weak sense

−12△%s + |∇√%s|2 + 2(B′(%s) + V )%s = �s%s; (3.31)whih an be interpreted as (3.2).Proof. Part I: Existene and uniqueness of a minimizer. Let {�n}n∈N
bea minimizing sequene of E (�), i.e.,limn→∞

E (�n) = inf�∈P2(RD)E (�) :Sine both P and F are bounded below,supn F(�n) <∞:By Lemma 2.2 of [17℄, there exist %n : RD → [0;∞℄ suh that �n = %nLD .We have supn P (%n) <∞and hene, Lemma 3.8 impliessupn ∫

RD V %n dx <∞:Thus, by Remark 3.7, {�n}n is pre{ompat for the narrow onvergene.Extrating a subsequene if neessary, we assume without loss of generalitythat {�n}n onverges narrowly to some �s ∈ P2(RD). By Lemma 2.2of [17℄, there exists %s : RD → [0;∞℄ suh that�n = %nLD; �s = %sLD; %n; %s ∈ W 1;1lo (RD); |∇%n|√%n ; |∇%s|√%s ∈L2(RD):Furthermore, (√%n)n onverges to √%s, strongly in L2(RD) and weaklyin W 1;2(RD). By Lemma 3.6, E is lower semiontinuous for the narrowonvergene and hene, �s minimizes E over P2(RD).



134 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRAUniqueness of �s follows from the strit onvexity property of E on itsdomain (f. Lemma 3.6).Part II: Properties of the minimizer. SineP (%s) 6 inf�∈P2(RD)E (�) ; (3.32)we use the last statement in Lemma 3.8 and the fat that V is boundedbelow to dedue that %s|V | ∈ L1(RD): (3.33)By Remark 3.4B(%s)− 6 %sV −B(%∞)− %∞V ∈ L1(RD): (3.34)Thus, ombining (3.32), (3.33) and (3.34) we onlude thatB(%s) ∈ L1(RD): (3.35)Part III: The Euler{Lagrange equations. Let v ∈ C∞ (R) and setu0 = √%s; u� := u0 + �u0v
||u0 + �u0v||L2 ; �� = u2�LD:We have u2� = u20 + 2�u20a(v) + �2u20a�(v); (3.36)where a(v) := v − ∫

RD u20v dx and sup0<|�|<1 ||b�(v)||∞ <∞:We set S := (1 + ||2a(v)||L∞ + sup
|�|61 ||a�(v))||L∞

) 12 :We have∫
RD V u2� dx−

∫

RD V u20 dx = � ∫
RD V u20(2a(v) + �a�(v)) dx:Therefore, exploiting (3.33) we an apply the dominated onvergene the-orem to obtain dd� ∫

RD V u2� dx∣∣∣∣�=0= ∫
RD 2a(v)V u20 dx: (3.37)If D > 3, then 2DD − 2 > 2 + 2D:



AN OPTIMAL TRANSPORT APPROACH 135Sine by the Sobolev Embedding theorem W 1;2(RD) ⊂ L 2DD−2 (RD), weonlude that W 1;2(RD) ⊂ L2+ 2D (RD). The latter inlusion remains truewhen D ∈ {1; 2}. Consequently, u0 ∈ L2+ 2D (RD) and then, F∞ ∈ L1(RD)if we set F∞ := �1(u2+ 2D0 S2+ 2D + u20S2)+ |V |u20S2 − f∞:By Lemma 3.5
|B(u2� )| 6 �1(u2+ 2D� + u2�)+ V u2� − f∞

6 �1((u0S)2+ 2D + (u0S)2)+ |V |(u0S)2 − f∞ = F∞: (3.38)Let �� : RD → (0; 1) be suh that if u0 > 0 we have the �rst orderexpansion B(u2�)−B(u20) = (u2� − u20)B′
(u20 + ��((u2� − u20))):This means thatB(u2� )−B(u20) = �u20(2a(v) + �a�(v))B′

((u0��)2);where �� := (1 + ���[2a(v) + �a�(v)]) 12 :Reorganizing the expession, we haveB(u2�)−B(u20)� = (2a(v) + �a�(v))1 + ���[2a(v) + �a�(v)](u0��)2B′
((u0��)2): (3.39)This, together with Lemma 3.5, imply

∣∣∣∣
B(u2�)−B(u20)� ∣∣∣∣ 6

(��1(u0��)2+ 2D + ��2(u0��)2 + |V |
(u0��)2 − f∞

)

×

∣∣∣2a(v) + �a�(v)∣∣∣1 + ���[2a(v) + �a�(v)] :Thus, if |�| is small enough so that 2∣∣���[2a(v) + �a�(v)]∣∣ 6 1, then
∣∣∣∣
B(u2� )−B(u20)� ∣∣∣∣

6 2S2(��1(u0S)2+ 2D + ��2(u0S)2 + V (u0S)2 − f∞
)

∈ L1(RD): (3.40)



136 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRASine B(0) = 0 and u� ≡ 0 on {u0 = 0}; we onlude that
∫

RD B(u2�)−B(u20)� dx = ∫

{u0>0} B(u2�)−B(u20)� dx:Due to (3.40), we an apply the dominated onvergene theorem to on-lude that dd� ∫
RD B(u2�) dx∣∣∣∣�=0 = ∫

{u0>0} lim�→0 B(u2�)−B(u20)� dx:We then let � go to 0 in (3.39) to dedue thatdd� ∫
RD B(u2�) dx∣∣∣∣�=0 = 2 ∫

{u0>0} a(v)u20B′(u20) dx:Taking into aount the fat that lims→0 sB′(s) = 0, we getdd� ∫
RD B(u2�) dx∣∣∣∣�=0 = 2 ∫

RD a(v)u20B′(u20) dx: (3.41)Note that
|∇u�|2 = |∇u0|2 + 2�e(v) + �2(u20 + |u0∇u0|+ |∇u0|2)e�(v); (3.42)wheree(v) := 〈∇u0;∇(vu0)〉 − |∇u0|2 ∫

RD u20v dx and sup0<|�|<1 ||e�(v)||∞ <∞:Hene, applying the dominated onvergene theorem, we havedd� ∫
RD |∇u�|2 dx∣∣∣∣�=0 = ∫

RD 2e(v) dx: (3.43)We ombine (3.37), (3.41) and (3.43) to onlude thatdd�E(��)∣∣∣∣�=0 = ∫
RD e(v) dx+ 2 ∫

RD (B′(u20) + V )u20a(v) dx:Using the fat that E(��) ahieves its minimum at � = 0, we onlude that0 = dd�E(��)∣∣∣∣�=0 = ∫
RD (e(v) + 2(B′(u20) + V )u20a(v)) dx: (3.44)



AN OPTIMAL TRANSPORT APPROACH 137In other words,
∫

RD (〈∇u0;∇(u0v)〉 − l20u20v + 2(B′(u20) + V )u20v − 2u20l1v) dx = 0;where l0 := ||∇u0||L2 ; l1 := ∫
RD (B′(u20) + V )u20 dx:This implies that for all v ∈ C∞ (RD)0 = ∫

RD (〈u0∇u0;∇v〉+ (|∇u0|2 − l20u20 + 2(B′(u20) + V )u20 − 2u20l1)v) dx= ∫
RD (12〈∇%s;∇v〉+ (|∇√%s|2 + 2(B′(%s) + V − l1 − l202 )%s)v) dx:(3.45)This means that (3.31) holds in the distributional sense. �De�nition 3.11. Given G : P(RD) → (−∞;∞℄, we de�ne G∗ on the setof Borel funtions W : RD → (∞;∞℄ whih is bounded below, byG∗ (W ) = sup� 




∫

RD W (x)�( dx) −G (�) | � ∈ P(RD) :We refer to G∗ as the Legendre transform of G.The next result follows immediately from the de�nition of the Legendretranform.Lemma 3.12. If V and E are as in Theorem 3.10 and for any � ∈ P(RD)we de�ne G (�) :=  F (�) + ∫

RD B (%) dx; if � = %LD;
∞; otherwise,then

−G∗ (−V ) = inf% E (%LD) :



138 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRARemark 3.13. The onlusions in Theorem 3.10 remain valid if we re-plae RD by the torus TD. We keep the same assumptions on B and b,but on V we only assume that V : RD → R is a Borel funtion boundedbelow, skipping (3.27).
§4. Moreau{Yosida approximationIn the remainder of this paper, we develop an approximative version ofthe kineti Bohmian equation with the aim of applying the results obtainedin [2℄. As we shall see, this approximative version allows us to get aroundone of the main diÆulties of the kineti Bohmian equation when studiedin the ontext of Wasserstein Hamiltonian ows: the lak of �-onvexity ofthe orresponding Hamiltonian.We assume throughout this setion that d is an integer with d > 1 andD ∈ {d; 2d}. We also assume that � : P2(RD) → [0;∞℄ is proper andlower semiontinuous with respet to the narrow onvergene on boundedsubsets of P2(RD). If D = 2d we assume that

∅ 6= D(�) ⊂ {� ∈ P2(R2d) | �1#� ∈ Pr2 (Rd)}:Finally, when D = d, we assume that
∅ 6= D(�) ⊂ Pr2 (Rd):For � > 0 and � ∈ P2(R2d), we de�ne the Moreau{Yosida approxima-tion of � by �� (�) = inf� { 12� W 22 (�; �) + �(�)}: (4.1)We shall use the funtionM2(�) = 12 ∫

RD |z|2�(dz):We �x �∗ ∈ D(�) and setC� := 2� M2(�∗) + �(�∗):Remark 4.1. Existene of a solution in (4.1) is a standard result dueto the fat that � is lower semiontinuous for the narrow onvergene.Moreover, we de�ne the set of minimizersJ�� (�) := {� ∈ P2(RD) | �� (�) = 12� W 22 (�; �) + �(�)}:



AN OPTIMAL TRANSPORT APPROACH 139By abuse of notation, we denote by �� any element of J�� (�).If � ∈ Pr2 (RD), then W 22 (�; · ) is stritly onvex along geodesis of theL1{metri and hene, sine in addition � is onvex, J�� (�) redues to asingle element (f., e.g., [13℄ and [23℄).Lemma 4.2. The following hold:(i) −�� is (−1� )-onvex along geodesis of onstant speed.(ii) If � ∈ P2(RD), then0 6 �� (�) 6
1� M2(�) + C� :(iii) Let �0; � ∈ P2(RD); let G ∈ �o(�0; ��0) and denote by G��0�0 thebaryentri projetion of G. Let �G ∈ �o(�0; �). We have�� (�) 6 �� (�0) + ∫

RD×RD 〈w −G��0�0 (w)� ; z −w〉 �G(dw; dz) + 12� W 22 (�; �0):(iv) We onlude that id−G��0�0� ∈ ���� (�0):Proof. (i) Let �0; �1 ∈ P2(RD) and let (�t)t be a geodesi of onstantspeed onneting �0 to �1. Fix t ∈ (0; 1) and let ��t ∈ P2(RD) be suhthat �� (�t) = 12� W 22 (�t; ��t ) + �(��t ): (4.2)We have �� (�i) 6
12� W 22 (�i; ��t ) + �(��t ) ∀ i ∈ {0; 1}:Thus,(1−t)��(�0)+t��(�1) 6

1− t2� W 22 (�0; ��t )+ t2� W 22 (�1; ��t )+�(��t ): (4.3)Sine −1=2W 22 ( · ; ��t ) is (−1){onvex along geodesis of onstant speed(f., e.g., [3℄), we onlude thatW 22 (�t; ��t ) + t(1− t)W 22 (�0; �1) > (1− t)W 22 (�0; ��t ) + tW 22 (�1; ��t ):This, along with (4.3), yields(1− t)�� (�0) + t�� (�1) 6
12� W 22 (�t; ��t ) + 12� t(1− t)W 22 (�0; �1) +�(�t):



140 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRATherefore, by (4.2)(1− t)�� (�0) + t�� (�1) 6
12� t(1− t)W 22 (�0; �1) + �� (�t):This proves (i).(ii) We have 0 6 �� (�) 6

12� W 22 (�; �∗) + �(�∗):This, together with the triangle inequality(W2(�; �∗))2 6

(W2(�; Æ0) +W2(Æ0; �∗))2 6 4M2(�) + 4M2(�∗);gives (ii).(iii) Let �0; � ∈ P2(RD). We have�� (�) 6 �(��0)+ W 22 (�; ��0)2� = �� (�0)− W 22 (�0; ��0)2� + W 22 (�; ��0)2� : (4.4)By Theorem 7.3.2 [3℄,  := −1=2W 22 ( · ; ��0) is (−1)-onvex along geodesis.Sine id−G��0�0 ∈ �� (�0), by Theorem 10.3.6 [3℄, we have (�) >  (�0) + ∫

RD×RD 〈G��0�0 (w) − w; z − w〉 �G(dw; dz)− 12W 22 (�; �0):This, along with (4.4), yields (iii).We use (i), (iii) and Theorem 10.3.6 [3℄ to obtain (iv). �Remark 4.3. Let � ∈ P2(RD) and G ∈ �o(�; �� ). Furthermore, let G���be the baryentri projetion of G based at �� .(i) We haveG��� − id� ∈ ���(�� ); id−G���� ∈ ���� (�):(ii) We haveW 22 (�� ; �)�2 >

∥∥∥
id−G���� ∥∥∥

2�� ; ∥∥∥
id−G���� ∥∥∥

2�:(iii) If R > 0 and �1; �0 ∈ P2(RD) are suh that W2(�0; Æ0) 6 R andW2(�1; Æ0) 6 R, then for a onstant �C�;R depending on R and �
|�� (�1)− �� (�0)| 6 �C�;RW2(�1; �0):



AN OPTIMAL TRANSPORT APPROACH 141Proof. The �rst laim in (i) an be derived from Lemma 10.3.4 [3℄ whilethe seond laim is Lemma 4.2 (iv). The inequalities in (ii) are onse-quenes of Jensen's inequality.(iii) Assume R > 0 and �1; �0 ∈ P2(RD) are suh that M2(�0),M2(�1) 6 R. Without loss of generality, we may assume that 0 6 �� (�1)−�� (�0). Let �G ∈ �o(�0; �1), let G ∈ �o(�0; ��0) and denote by G��0�0 thebaryentri projetion of G. By Lemma 4.2 (iii)
|�� (�1)−�� (�0)| 6

∫

RD×RD 〈w −G��0�0 (w)� ; z−w〉 �G(dw; dz)+ 12� W 22 (�1; �0)and hene, by H�older's inequality
|�� (�1)− �� (�0)| 6

∥∥∥∥
w −G��0�0 (w)� ∥∥∥∥�0W2(�1; �0) + W 22 (�1; �0)2� :We then use (ii) to obtain

|�� (�1)− �� (�0)| 6 W2(�1; �0)(W2(��0 ; �0)�2 + W2(�1; �0)2� )

6 W2(�1; �0)(√�� (�0)� + W2(�1; �0)2� ):We use Lemma 4.2 (ii) to onlude. �Remark 4.4. Assume (�k)k ⊂ P2(RD) onverges narrowly to �∈P2(RD).If there exists � ∈ P2(RD) suh thatlimk→∞
W2(�k; �) =W2(�; �) (4.5)then (�k)k onverges in the Wasserstein metri to �; this is by now astandard result.Lemma 4.5. Suppose (�n)n is a bounded sequene in P2(RD) that on-verges narrowly to � ∈ P2(RD). Let ��n ∈ J�� (un) and let Gn ∈ �o(�n; ��n).(i) Up to a subsequene, (��n)n ⊂ P2(RD) onverges in the Wasser-stein metri to some �� . Furthermore, a subsequene of (Gn)nobtained from a seond extration has itself a subsequene whihonverges narrowly to some G ∈ �o(�; �� ).(ii) If J�� (�) = {��}, then the whole sequene (��n)n ⊂ P2(RD) on-verges in the Wasserstein metri to �� .



142 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRA(iii) If J�� (�) = {��} and �o(�; �� ) has a unique element G, then thewhole sequene (Gn)n onverges narrowly to G.Proof. (i) Assume (�n)n ⊂ P2(RD) narrowly onverges to �. Sine � > 0,we use Lemma 4.2 to onlude thatsupn W2(�n; ��n) <∞ and supn �(��n) <∞: (4.6)This, together with the fat that (�n)n is bounded in P2(RD), implies that(��n)n is bounded in P2(RD). Consider a subsequene (��nk )k ⊂ P2(RD).Sine bounded subsets of P2(RD) are tight (f., e.g., Remark 5.1.5 [3℄) wemay assume without loss of generality that (��nk )k ⊂ P2(RD) onvergesnarrowly to some �� ∈ P2(RD). Beause (G�nk )k ⊂ P(RD × RD) is tight,extrating a subsequene if neessary, we may assume that (G�nk )k on-verges narrowly to some G. By the stability of optimal transport plans forthe narrow onvergene (f., e.g., Proposition 7.1.3 [3℄), G ∈ �o(�; ��) andlim infk→∞
W2(�nk ; ��nk ) > W2(�; ��): (4.7)The lower semiontinuity of � for the narrow onvergene and the seondinequality in (4.6) allow us to assert that

∞ > lim infk→∞
�(��nk ) > �(��): (4.8)If � ∈ P2(RD) then�(�) + W 22 (�nk ; �)2� > �(��nk ) + W 22 (�nk ; ��nk )2� :Therefore, by (4.7) and (4.8)�(�) + W 22 (�; �)2� > �(��) + W 22 (�; ��)2� : (4.9)Hene, �� ∈ J�� (�). Would the inequality in (4.7) be strit, so would be theone in (4.9), yielding a ontradition. Thus,limk→∞

W2(�nk ; ��nk) =W2(�; ��):The identities
|W2(�; ��nk )−W2(�; ��)|= ∣∣∣(W2(�; ��nk )−W2(��nk ; �nk ))+ (W2(��nk ; �nk)−W2(�; ��))∣∣∣

6 W2(�; �nk) + ∣∣W2(��nk ; �nk )−W2(�; ��)∣∣



AN OPTIMAL TRANSPORT APPROACH 143yield limk→∞
W2(�; ��nk) =W2(�; ��):We apply Remark 4.4 to onlude that (��nk )n ⊂ P2(RD) onverges in theWasserstein metri to ��.(ii) By (i), if �� is unique, every subsequene of (�n)n admits itself asubsequene onverging to �� . Hene, the whole sequene must onvergeto �� .(iii) As in (ii), we use (i) to onlude that if �� is unique and G is theunique element of �o(�; �� ), then the whole sequene (Gn)n must onvergeto G. �

§5. Funtions on P2(R2d) depending only on firstmarginalsTo emphasize the di�erene between the spatial and veloity variables,we set M := Rd; TM :=M × Rd;and use notation suh as x ∈ M , (x; a) ∈ M ×M , (x; v) ∈ TM , and soforth.Suppose � : P2(TM) → (−∞;∞℄; � : P2(M) → (−∞;∞℄are lower semiontinuous for the narrow onvergene and�(�) = �(�1#�) ∀� ∈ P2(TM):In this setion we study the relation between the superdi�erential ofthe Moreau{Yosida approximations �� at � ∈ P2(R2D) and that of �� at�1#� ∈ P2(RD). The setS := {(x; v; a; b) ∈ TM × TM | v = b}plays an important role in our study.De�nition 5.1. Let � ∈ P2(TM), � ∈ P2(M), �1#� = % and let  ∈�o(%; �). Let (�x)x be the disintegration of � with respet to % in the sensethat ∫TM l(x; v)�( dx; dv) = ∫M %(dx) ∫
Rd l(x; v)�x(dv) ∀ l ∈ Cb(TM):



144 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRA(i) We de�ne the Borel measure G := G�; on TM × TM by
∫TM×TM g(x; v; a; b)G(dx; dv; da; db)= ∫M×M (dx; da) ∫

Rd g(x; v; a; v)�x(dv) ∀g ∈ C(TM × TM): (5.1)(ii) We de�ne the Borel measure m�; by
∫TM g(a; b)m�;(da; db)= ∫M×M (dx; da) ∫

Rd g(a; b)�x(db) ∀g ∈ C(TM): (5.2)Remark 5.2. Using the above notation, the following hold:(i) G�; is supported by the losed set S.(ii) G�; ∈ �o(�;m�;).(iii) �1#m�; = �.(iv) W2(%; �) =W2(�;m�;).Proof. (i) Observe that
∫TM×TM |v − b|2G�;(dx; dv; da; db) = ∫M×M (dx; da) ∫

Rd 0�x(dv) = 0;whih proves that G�; is supported by the losed set S.(ii) Let g ∈ C(TM). We have
∫TM×TMg(x; v)G�;(dx; dv; da; db) = ∫M×M (dx; da) ∫

Rd g(x; v)�x(dv)= ∫M %(dx) ∫
Rd g(x; v)�x(dv)= ∫TM %(dx)g(x; v)�(dx; dv): (5.3)



AN OPTIMAL TRANSPORT APPROACH 145Similarly,
∫TM×TMg(a; b)G�;(dx; dv; da; db) = ∫M×M (dx; da) ∫

Rd g(a; v)�x(dv)= ∫M×M (dx; da) ∫
Rd g(a; b)�x(db)=∫TM g(a; b)m�;(da; db): (5.4)

By (5.3) and (5.4), G�; ∈ �(�;m�;).To onlude that G ∈ �o(%; �0), it suÆes to show that the support of Gis ylially monotone (f. e.g. Setion 6.2.3 [3℄). Let {(xi; vi; ai; bi)}ni=1 ⊂sptG and let � be a permutation of n letters. By (i), bi = vi, and therefore,using the fat that {(xi; ai)}ni=1 ⊂ spt  and  ∈ �o(%; �0) we onlude thatn∑i=1 |(xi; vi)− (ai; bi)|2 = n∑i=1 |xi − ai|2 6

n∑i=1 |xi− a�(i)|2+ n∑i=1 |vi− b�(i)|2:Equivalently, this meansn∑i=1 |(xi; vi)− (ai; bi)|2 6

n∑i=1 |(x; vi)− (a�(i); b�(i))|2:Thus, the support of G�;�; is ylially monotone, whih onludes theproof of (ii).(iii) Let g ∈ C(M). We have
∫TM×TM g(a) �m(da; db) = ∫M×M �(dx; da) ∫

Rd g(a)�x(db)= ∫M×M g(a)�(dx; da) = ∫M g(a)�(da):Thus �1# �m = �.



146 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRA(iv) Using the fat that by (i) G�; is supported by S and by (ii) it isoptimal, we haveW 22 (�;m�;) = ∫TM×TM |(x; v) − (a; b)|2G�;(dx; dv; da; db)= ∫TM×TM |x− a|2G(dx; dv; da; db):Sine �1;3# G�; =  ∈ �o(%; �);the previous identity beomes W 22 (�;m�;) =W 22 (%; �). �Lemma 5.3. Let � ∈ P2(TM) and let %; � ∈ P2(M) be suh that �1#� = %.(i) We haveinfm∈P2(TM){W 22 (�;m) | m ∈ P2(TM); �1#m = �} =W 22 (%; �): (5.5)(ii) If  ∈ �o(%; �), then m�; minimizes (5.5).(iii) If �m minimizes (5.5) and �G ∈ �o(�; �m), then � := �1;3# �G ∈ �o(%; �)and �G is supported by S.(iv) If % ≪ LD, then �m = m�; is the unique minimizer in (5.5) and�o(�; �m) = {G�;}.Proof. Let m ∈ P2(TM) be suh that �1#m = � and let G ∈ �o(�;m).Set � := �1;3# G ∈ �(%; �). We haveW 22 (�;m) = ∫TM×TM|(x; v) − (a; b)|2G(dx; dv; da; db)= ∫TM×TM(|x− a|2 + |v − b|2)G(dx; dv; da; db)= ∫M×M|x− a|2�(dx; da) + ∫TM×TM|v − b|2G(dx; dv; da; db)
> W 22 (%; �): (5.6)

Observe that the inequality in (5.6) is strit unless � ∈ �o(%; �) and G issupported by S. In light of Remark 5.2 and (5.6)W 22 (�;m) > W 22 (%; �) =W 22 (�;m�;�;):



AN OPTIMAL TRANSPORT APPROACH 147Hene, we have established (i) and (ii).(iii) From the previous result, if �m is another minimizer in (5.5) and�G ∈ �o(�;m), then �G must be supported by S and we must have � :=�1;3# �G ∈ �o(%; �), otherwise the inequality in (5.6) would be strit.(iv) Assume now that % ≪ LD and let u : RD → (−∞;∞℄ be a lowersemiontinuous onvex funtion suh that (id × ∇u)#% = �. The �rst ofthe following identities is due to (iii). If g ∈ C∞ (TM × TM), then
∫TM×TM g(x; v; a; b) �G(dx; dv; da; db)= ∫TM×TM g(x; v;∇u(x); v) �G(dx; dv; da; db)= ∫TM g(x; v;∇u(x); v)�(dx; dv)= ∫M %(dx) ∫

RD g(x; v;∇u(x); v)�x(dv) (5.7)= ∫TM (dx; da) ∫
RD g(x; v;∇u(x); v)�x(dv)= ∫TM (dx; da) ∫
RD g(x; v; a; v)�x(dv)= ∫TM×TM g(x; v; a; b)G�;(dx; dv; da; db): �De�nition 5.4. Let (S; dist) be a metri spae and let � : S → [−∞;∞℄.If v ∈ D(�), we de�ne the global (metri) slope of � at v to be

|��|(v) = lim supw→v (�(v) − �(w))+dist(w; v) :Lemma 5.5. Let � ∈ P2(TM) and let �1#� = %. We have
|��|(�) = |��|(%):Proof. Lemma 5.3 implies not only the straightforward inequality

|��|(�) 6 |��|(%), but in fat, it implies that |��|(�) = |��|(%). �



148 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRALemma 5.6. Let � ∈ P2(TM), let �1#� = % and let (�x)x be the disinte-gration of � with respet to %.(i) We have ��1 ∈ ���(%) if� = ( �1�2 ) ∈ ���(�) and ��1(x) = ∫
Rd �1(x; v)�x(dv):(ii) We have

||�||� > ||�1||%and the inequality is strit unless �2 = 0 �−a.e. and �1(x; v) isindependent on v.(iii) If ���(�) 6= ∅, then ||∇��(�)||� > ||∇%�(%)||%.Proof. (i) Let � ∈ P2(M) and let  ∈ �o(%; �). Suppose � and �1 areas above. By Remark 5.2, G�; ∈ �o(�;m�;) and �1#m�; = �. Thus,(setting w = (x; v) and z = (a; b))�(�) − �(%) = �(m�;)− �(�)
6

∫TM×TM 〈�(w); z − w〉G�;�; + o(W2(�;m�;�;)): (5.8)By Remark 5.2 (iv), W2(�;m�;) =W2(%; �): (5.9)But
∫TM×TM 〈�(w); z − w〉G�;�;= ∫M×M (dx; da) ∫

Rd 〈�(w);( a− x0 )〉�x(dv): (5.10)We ombine (5.8), (5.9) and (5.10) to onlude that�(�)− �(%) 6

∫M×M 〈��1(x); a− x〉(dx; da) + o(W2(%; �));whih proves (i).



AN OPTIMAL TRANSPORT APPROACH 149(ii) Note that
||�||2� = ∫TM (|�1|2 + |�2|2)�(dx; dv)

>

∫TM |�1|2�(dx; dv) = ∫M %(dx) ∫
Rd |�1|2�x(dv);and equality holds if and only if ||�2||� = 0. Hene, by Jensen's inequality

||�||2� >

∫M %(dx)∣∣∣∫
Rd �1�x(dv)∣∣∣2 = ||�1||2%:The inequality is strit unless for � a.e. x we have �1(x; v) = ��1(x) fora.e. v.(iii) Follows from (i) and (ii). �Remark 5.7. Let � ∈ P2(TM) and let % = �1#�. Let G ∈ �o(�; �� ) andreall that G��� is its baryentri projetion onto �.(i) We have �� (�) = �� (%) and %� := �1#�� .(ii) We have �2(G��� (x; v)) ≡ v � a.e., with �2 de�ned by �2(x; v) = vfor (x; v) ∈ TM .Proof. (i) follows from Lemma 5.6.Assume G ∈ �o(�; �� ) and let A ∈ C(TM;Rd) be arbitrary. We exploitLemma 5.6 (iii) whih asserts that G is supported by S to obtain

∫TM 〈v − �2(G��� (x; v));A(x; v)〉�(dx; dv)= ∫TM×TM 〈v − b;A(x; v)〉G(dx; dv; da; db) = 0: �Proposition 5.8. Assume that D(�) ⊂ Pr2 (M) and that � is onvex forthe L1{metri. Let � ∈ P2(TM) and % = �1#� be suh that J�� (%) ontainsa unique element, %� , whih then belongs to Pr2 (M). Denote by  the uniqueelement of �o(%; %� ) and let G ∈ �0(�; �� ).(i) If � ∈ ���� (%) and %�% denotes the baryentri projetion of  onto%, then �%(�) = id− %�%� :



150 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRA(ii) Further assume that % ≪ Ld and let u : M → (−∞;∞℄ be alower semiontinuous onvex funtion suh that (∇u)#% = %� . IfX ∈ ���� (�), then��(X) = id−G���� =  id−∇u�0 

 :(iii) As a onsequene, if %≪ LD, then
∇%�� (%) = id−∇u� ; and ∇��� (�) =  ∇%�� (%)0 

 :Furthermore, J�� (�) = {m�;}.Proof. (i) Applying Lemma 4.2 to �� , we have ���� (%) 6= ∅. For U ∈C∞ (M) and for s ∈ R; we de�negs := id+ s∇U; and %s := gs#%:Observe that for |s| small enough, gs is the gradient of a onvex funtionand therefore, it is optimal among the maps that push % forward to %s,where optimality is measured against the ost (x; a) = |x − a|2 wherex; a ∈M . Hene, �s := (id× gs)#% ∈ �o(%; %s):By the fat that %�s ∈ J�� (%s) we have�� (%s)− �� (%) >
12� (W 22 (%s; %�s )−W 22 (%; %�s )): (5.11)By the fat that � ∈ ���� (%), there exists a funtion �� : R → R suh thatlimt→0 ��(t) = 0 and�� (%s)− �� (%) 6 W2(%; %s)��(W2(%; %s))+ ∫M×M 〈�(x); a− x〉�s(dx; da):This, together with (5.11), implies12� (W 22 (%s; %�s )−W 22 (%; %�s ))

6 W2(%; %s)��(W2(%; %s))+ ∫M×M 〈�(x); a − x〉�s(dx; da): (5.12)



AN OPTIMAL TRANSPORT APPROACH 151Let s ∈ �o(%s; %�s ) and de�ne on M ×M the Borel probability measure�s by
∫M×M l(x; a)�s(dx; da) = ∫M×M F (g−1s (a); y)s(da; dy) ∀ l ∈ Cb(M ×M):We have g−1s (a) = a− s∇U(a) + s22 ∇2U(a)∇U(a) + o(s2)and �s ∈ �(%; %�s ). Thus,W 22 (%s; %�s )−W 22 (%; %�s )

>

∫M×M |a− y|2s(dy; da)− ∫M×M |a− x|2�s(dx; da)= ∫M×M (|a− y|2 − |a− g−1s (y)|2)s(dy; da)= 2s ∫M×M 〈y − a;∇U(y)〉s(dx; da) + o(s): (5.13)
Reall that for |s| small enough, �s ∈ �o(%; %s) and hene,W 22 (%; %s) = ∫M×M |x− y|2�s(dx; dy) = ||s∇U ||2%: (5.14)We ombine (5.12), (5.13) and (5.14) to obtaino(s)s + ∫M×M 〈y − a� ;∇U(y)〉s(da; dy)

6 ||∇U ||�0��(||s∇U ||�0)+ ∫M 〈�(x);∇U(x)〉%(dx):Letting s→ 0 we onlude thatlim infs→0+ ∫M×M 〈y − a� ;∇U(y)〉s(da; dy) 6

∫M 〈�(x);∇U(x)〉%(dx): (5.15)



152 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRAObserve thatsup
|s|61W 22 (%s; Æ0) 6 sup

|s|61 ∫M |x+ s∇U(x)|2%(dx) <∞:This, together with Lemma 4.2 (ii), impliessup
|s|61W 22 (%�s ; Æ0) <∞:Thus, sup

|s|61W 22 (s; Æ(0;0)) <∞: (5.16)By Lemma 4.5, as s tends to 0, (s)s onverges narrowly to the uniqueelement  ∈ �o(%; %� ). Sine (5.16) holds and |a−x� ;∇U(x)| grows at mostlinearly as |x| and |a| tend to ∞; we onlude thatlim infs→0 ∫M×M 〈y − a� ;∇U(y)〉s(da; dy) = ∫M×M 〈y − a� ;∇U(x)〉(da; dy):This, together with (5.15), yields
∫M×M 〈y − a� ;∇U(y)〉(da; dy) 6

∫M 〈�(x);∇U(x)〉%(dx):Replaing U by −U we onlude that
∫M 〈�(x);∇U(x)〉%(dx) = ∫M×M 〈y − a� ;∇U(y)〉(da; dy)= ∫M 〈y − %�% (y)� ;∇U(y)〉%(dy):As a onsequene, �%(�) = �%( id− %�%� ) = id− %�%� ;sine by Theorems 8.5.5 and 12.4.4 [3℄, we know that %�% − id ∈ T%P2(M).(ii) Further assume that % ≪ Ld. Then as observed in Remark 4.1,J�� = {%�} redues to a single point suh that %� ≪ Ld. Thus, �o(%; %� ) =

{} also redues to a single point and  = (id×∇u)#% for a lower semi-ontinuous onvex funtion, u :M → (−∞;∞℄. By Lemma 5.3J�� (�) = {m�;}:



AN OPTIMAL TRANSPORT APPROACH 153That uniqueness result is all we need to repeat the same arguments as in(i) to onlude the �rst identity in (ii). Remark 5.7 asserts that�2(G��� (x; v)) ≡ vwhile by Lemma 5.3 �o(�; �m) = {G�;}:Thus, if A ∈ C(TM) is arbitrary, denoting by G��� the baryentri pro-jetion of G�; onto �, we have
∫TM 〈A(x; v);�1(G��� (x; v))〉�(dx; dv)= ∫TM×TM 〈A(x; v); a〉G�; (dx; dv; da; dv):Using the fat that  = (id×∇u)#%; we onlude that

∫TM 〈A(x; v);�1(G��� (x; v))〉�(dx; dv)= ∫TM×TM 〈A(x; v);∇u(x)〉G�; (dx; dv; da; dv)= ∫TM 〈A(x; v);∇u(x)〉�(dx; dv): (5.17)Therefore, �1(G��� (x; v)) = ∇u(x) = %�% � a.e.:In light of (i), (id − %�% )=� is the element of minimal norm in ���� (%);hene, the �rst identity in (iii) holds. Similarly, we use (ii) to obtain theseond identity in (iii). Sine J�� (%) ontains only %� ; we use Lemma 5.3(iv) to onlude that J�� (%) ontains only m�; . �

§6. Solutions to an approximate Hamiltonian systems inthe periodi settingTo avoid tehnial issues, in this setion, we shall study an approxima-tive version of the kineti Bohmian equation (1.1) on Td × Rd instead of
Rd × Rd. In the sequel, we set M := TD;



154 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRAand �x a funtion V ∈ C2(M). The funtion F ; de�ned in (2.6) (or equiv-alently in (3.5)) as 1=8 times the Fisher information, will be used in thissetion. For � ∈ P2(TM), we de�ne the funtion
H(�) =M12 (�) + �(�) + V(�)where

V(�) ≡ V(�1#�) := ∫TM V (x)�(dx; dv);�(�) := �(�1#�);M12 (�) = ∫TM |v|22 �(dx; dv);and � := F :Fix � > 0 and reall that if % ≪ Ld we denote by %� the unique measuresatisfying �� (%) = �(%� ) + W 22 (%; %� )2� :Similarly, Lemma 5.3 ensures that there is a unique �� ∈ P2(TM) suhthat �� (�) = �(�� ) + W 22 (�; �� )2� :We set
H� (�) =M12 (�) + �� (�) + V(�):Lemma 6.1. Let � ∈ Pr2 (TM) and assume that % := �1#�≪ LD. Then,

∇�H� (�)(x; v) =  ∇V (x) + t%�% (x)−x�v 
 =:H(x; v); (6.1)where t%�% is the optimal map that pushes % forward to %�Proof. By Proposition 5.8 ,

∇��� (�)(x; v) = ( t%�% (x)−x�0 ) :



AN OPTIMAL TRANSPORT APPROACH 155Sine
∇�M12 (�) ≡ ( 0v ) ; ∇�V(�) ≡ ( ∇V (x)0 )

∀ (x; v) ∈ TM;and
∇�M12 (�) ∈ ��M12 (�) ∩ ��M12 (�) and ∇�V(�) ∈ ��V(�) ∩ ��V(�)we onlude that if Z ∈ ��H� (�), thenZ −∇�M12 (�)−∇�V ∈ ���� (�):Furthermore, by Proposition 5.8

∇��� (�) = ��(Z −∇�M12 (�)−∇�V) = ��(Z)−∇�M12 (�)−∇�V :In partiular, setting Z := ∇�H� (�), we onlude the proof. �Theorem 6.2. Let �0 = f0L2D ∈ Pr2 (TM) and let � > 0.(i) There exists a path t → ���t suh that for eah T > 0 we have��� ∈ AC2(0; T ;P2(TM)) and�t��� +∇ ·
(���J∇�H� (��� )) = 0 D′((0; T )× TM)):(ii) We have ���t ≪ L2D for all t > 0.(iii) Given r →Mr ∈ (0;∞) there exists r → Lr ∈ (0;∞) suh thatf0 6 Mr on Br(0) =⇒ d���tdL2D 6 Lr on Br(0)(iv) Given r → mr ∈ (0;∞) there exists r → lr ∈ (0;∞) (dependingon �) suh thatf0 > mr on Br(0) =⇒ d���tdL2D > lr: on Br(0)(v) We have H� (���t ) = H� (�0).Proof. 1. Let �0 ∈ Pr2 (TM) and set %0 := �1#�0. Similarly, for any arbi-trary � ∈ Pr2 (TM) we set % := �1#�. Reall that t%�% is the optimal mapthat pushes % forward to %� . Sine t%�% :M →M and M is a bounded set,Lemma 6.1 supplies us with a onstant C depending on � , but independentof �, suh that

∣∣∣∇�H� (�)(x; v)∣∣∣ 6 C(|(x; v)| + 1); ∀(x; v) ∈ TM: (6.2)This is referred to as assumption (H1) in [2℄.



156 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRAAssume (�n)n ⊂ P2(TM) is a sequene of absolutely ontinuous mea-sures whih onverges narrowly to � ≪ L2d. Then (�n)n is bounded in
P2(TM) for the Wasserstein metri and (%n) := (�1#�n)n is a sequene ofabsolutely ontinuous measures that onverges narrowly to % ≪ Ld. Letun : Rd → R be onvex funtions suh that x → u(x) − |x|2=2 is on-vex, un(0) = 0 and ∇un = t%�n%n . By Remark 4.1 both J�� (%) = {%�} andJ�� (�) = {��} are of ardinality 1. By Lemma 4.5, (%�n)n onverges to %� .Sine M is a ompat set, (∇un)n is uniformly bounded on M . We usethe onvexity of un to onlude that (∇un)n is pre{ompat in Lp(M) forany 1 6 p < ∞. Any point of aumulation of (∇un)n in Lp(M); t, is anoptimal map for the Wasserstein metri, W2, among the maps that push% forward to %� . Sine suh an optimal map is unique, we onlude thatthe whole sequene (∇un)n onverges to t = t%�% . Using the expression of
∇�H� (�n) provided by Lemma 6.1 we onlude that (∇�H� (�n))n on-verges almost everywhere to ∇�H� (�). This is referred to as assumption(H2) in [2℄. By (H1) and (H2) we obtain (i){(iv).2. For the onservation of the Hamiltonian, [2℄ requires the Hamiltonianto be �{onvex. We now hek that �{onavity is suÆient as well.By Remark 4.3, �� is Lipshitz on bounded subsets of P2(TM). Sine
V and M12 are also Lipshitz on bounded subsets of P2(TM), so is H� =�� +M12 +V . Fix T > 0. Sine � ∈ AC2(0; T ;P2(TM)), we onlude thatt→ H(���t ) is Lipshitz on [0; T ℄. To show that H(���t ) is time independent,it suÆes to show that its derivative vanishes almost everywhere.LetW be the veloity of minimal norm for the path t→ ���t provided byTheorem 8.3.1 [3℄. Sine both W and J∇�H(��� ) are veloities for t→ ���t ,we have

∇ ·
(W − J∇�H(��� )) = 0 D′

((0; T )× TM):In other wordsT∫0 dt ∫TM 〈W −J∇�H(���t );∇F 〉���t (dx; dv) = 0 ∀F ∈ C10((0; T )×TM):Choosing F in the form F (t; x; v) = A(t)B(x; v) and using a density argu-ment, we onlude that for almost every t ∈ (0; T ) we have
∫TM 〈W − J∇�H(���t );∇B〉���t (dx; dv) = 0 ∀B ∈ C10 (TM):



AN OPTIMAL TRANSPORT APPROACH 157Thus, for almost every t ∈ (0; T ), Wt is the orthogonal projetion ofJ∇�H(���t ) onto the tangent spae T���t P2(TM) :Wt := ����t (J∇�H(���t )):By (8.4.6) [3℄, for almost every t ∈ (0; T ), if t + h ∈ (0; T ) and Gh ∈�o(���t ; ���t+h), then we have the following onvergene in the W2-metri:limh→0(��1; ��2 − ��1h )#Gh = (id×Wt)#���t : (6.3)Here, ��1(w; z) = w; ��2(w; z) = z ∀w := (x; v); z := (a; b) ∈ TM:Denote by |(���t )′| the metri derivative of t → ���t (f. e.g. De�nition 1.1.1[3℄). By de�nition limh→0 W2(���t ; ���t+h)h = |(���t )′|(t)for almost every t ∈ (0; T ). Hene, for these t,W 22 (���t ; ���t+h)h = o(h); (6.4)where o(h) depends on t. Note that by Lemma 4.2 (ii), �� is �−1{onave.Sine the seond derivatives of (x; v) → V (x) and that of (x; v) → |v|2are bounded, we onlude that there exists a onstant �C� suh that H� is�C� -onave. Thus,
H� (���t+h)−H� (���t )
6

∫TM×TM 〈∇�H(���t )(w); z − w〉Gh(dw; dz) + �C�W 22 (���t ; ���t+h):If t is suh that (6.3) holds, sine |〈∇�H� (���t ); z − w〉| grows at mostquadratially, we onlude that
H� (���t+h)−H� (���t )
6

∫TM h〈∇�H� (���t )(w);Wt(w)〉���t (dw) + �C�W 22 (���t ; ���t+h) + o(h): (6.5)



158 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRAWe use the fat that Wt is the projetion of J∇�H(���t ) onto T���t P2(TM)to onlude that
∫TM 〈∇�H(���t )(w);Wt(w)〉���t (dw)= ∫TM 〈∇�H(���t )(w); J∇�H(���t )(w)〉���t (dw) = 0:This, together with (6.4) and (6.5), implies

H(���t+h)−H(���t ) 6 o(h): (6.6)The map t → H(���t ) is Lipshitz on [0; T ℄. Therefore, it is di�erentiablealmost everywhere. If t is a point of di�erentiability, using alternativelyh > 0 and h < 0 in (6.6), we onlude thatddsH(���s )|s=t = 0:Sine the derivative of the Lisphitz funtion t → H(���t ) vanishes almosteverywhere, the funtion must be onstant. �Remark 6.3. If we replae Td by Rd then, beause of Remark 4.3, (H1')of [2℄ holds. [2℄ ensures that if (H2') also holds, then there is a solution toour Hamiltonian system. The proof of (H2') requires some e�ort and thisis why we worked on Td. Note that the above arguments go through if wereplae Td by any open bounded set.
§7. Ingredients toward a onvergene analysis in theperiodi settingLet �0 = f0L2d ∈ Pr2 (TM) and let T > 0. For � > 0 we de�ne t→ ���t ∈

Pr2 (TM) as in Theorem 6.2. Write���t = �f�t L2d; �1#���t = �%�tLd;�f�t (x; v) = �%�t (x) �F �t (x; v); with ∫

Rd �F �t (x; v)dv = 1:



AN OPTIMAL TRANSPORT APPROACH 1597.1. Continuity equation. Sine f0 ∈ L1(TM), we apply de la Vall�eePoussin Theorem to {f0}; a ompat subset of L1(TM), to onlude thatthere exists a super linear onvex funtion � : [0;∞) → [0;∞) suh that�(f0) ∈ L1(TM). We use Lemma 6.2 [2℄ to onlude thatsupt∈[0;T ℄ ∫TM �( �ft) dx dv 6

∫TM �( �f0) dx dv <∞: (7.1)We apply again de la Vall�ee Poussin Theorem to onlude that { �f� | � > 0}is a ompat subset of L1((0; T )× TM).Reall that sine �1#���t ≪ Ld, J�� (�%t) redues to a single element %�tLd.We have �� (�%�t ) = �(%�t ) + W 22 (%�t ; �%�t )2� : (7.2)By Theorem 6.2 (v)�� (�%�t )+∫M V (x)�%�t (x) dx+ 12 ∫TM |v|2���t (dx; dv) = H� (�0) 6 H(�0): (7.3)By Proposition 5.8
||∇%�� (�%�t )||�%�t = W2(%�t ; �%�t )� : (7.4)This, together with (7.3), yields�2 ||∇%�� (�%�t )||2�%�t + �(%�t ) 6 H(�0) + ||V ||∞: (7.5)De�ne �u�t (x) := ∫

Rd v �F �t (x; v)dv:We use (7.1) to dedue that up to a subsequene, ( �f� )� onverges weaklyto some �f in L1((0; 1)× TM).Proposition 7.1. The following hold:(i) �%� ∈ AC2(0; T ;P(M)).(ii) 12 ∫M |�u�t (x)|2 �%�t (x) dx 6 H(�0) + ||V ||∞:(iii) �t�%� +∇ · (�%� �u� ) = 0 D′((0; T )×M):



160 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRAProof. (i) We use that �1 is a ontration of (P2(TM);W2) into(
P2(M);W2) and use the fat that ��� ∈ AC2(0; T ;P2(TM)) to onludethe proof of (i).(ii) We use Jensen's inequality to dedue that

∫M |�u�t (x)|2 �%�t (x) dx 6

∫TM |v|2���t (dx; dv);whih, together with (7.3), yields (ii).(iii) The di�erential equation in Theorem 6.2 yields (iii). �7.2. Convergene in P(M). The goal of this subsetion is to establishsome onvergene results. We prove that the paths �%�n and %�n onvergeto the same limit �%. Setting���n := L1(0;T ) ⊗ ���nwe show that for the narrow onvergene topology, (��n)n ontains pointsof aumulation of the form L1(0;T ) ⊗ ��t where �%tLd is the projetion of ��tonto M .Proposition 7.2. There exists a sequene (�n)n dereasing to 0 suh thatthe following hold:(i) For any t ∈ (0; T ); ( �%�nt )n onverges in P(M) to �%t.(ii) For any t ∈ (0; T ); (%�nt )n onverges in P(M) to �%t.(iii) We have supt∈(0;T ) � (%t) <∞.(iv) (��n)n onverges narrowly on [0; T ℄×TM to some � = L1(0;T )⊗ ��t.(v) We have ��t (TM) = 1 for L1− a.e. t ∈ (0; T ).(vi) We have �1#��t = �%tLd for L1−a.e. t ∈ (0; T ).Proof. Reall that H� 6 H. Therefore, using Theorem 6.2 (v) we have
H� (���t ) = H� (�0) 6 H (�0) : (7.6)(i) By Proposition 7.1, ∣∣(�%� )′∣∣2 6 2H� (�0) + 2 ‖V ‖∞ exept maybe ona set of null measure. Thus,W2 (�%�t ; �%�s ) 6

t∫s ∣∣(�%� )′∣∣ (l) dl 6 |t− s|√2 (H (�0) + ‖V ‖∞):Now we an apply the Asoli-Arzela theorem (see Proposition 3.3.1 [3℄) toget (i).



AN OPTIMAL TRANSPORT APPROACH 161(ii) We exploit (7.6) to get
‖V ‖∞ +H (�0) > �� (�%�t ) = W 22 (�%�t ; %�t )2� + � (%�t ) : (7.7)Hene, W 22 (�%�t ; %�t ) 6 2� (H (�0) + ‖V ‖∞) ;whih, together with (i), yields (ii).(iii) We use (7.7) and the fat that � is lower semiontinuous for thenarrow onvergene to onlude that� (%t) 6 ‖V ‖∞ +H (�0) :(iv) By (7.3)T∫0 dt ∫TM (1 + |x|2 + |v|2) ���t (dx; dv)= T∫0 

1 + ∫M |x|2 �%�t (dx) dt+ 1∫0 ∫TM |v|2 ���t (dx; dv)
6 1 + (diamM)2 + 2 (H (�0) + ‖V ‖∞) :Hene, (���n)n is pre{ompat for the narrow onvergene. Extrating asubsequene if neessary, we obtain a Borel measure � on [0; 1℄×TM suhthat (���n)n onverges narrowly on [0; T ℄× TM to �. Sine the projetionof L1(0;T )���nt onto [0; T ℄ is less than 1, the same is true for the projetionof � (f. e.g. Theorem 2.28 [1℄). This onludes the proof of (iv).(v) Let ' ∈ Cb ([0; 1℄). Note that1∫0 ' (t) dt = limn 1∫0 ' (t) dt ∫TM ��nt (dx; dv)= limn ∫[0;T ℄×TM ' (t) ��n (dt; dx; dv) :We use (iv) to dedue that1∫0 ' (t) dt = 1∫0 ' (t) dt ∫TM ��t (dx; dv) :



162 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRASine t→ ∫TM ��t (dx; dv) belongs to L1 (0; 1), (v) follows.(vi) Let ' ∈ Cb ([0; 1℄) and  ∈ Cb (M). We �rst use (i) and then use(v) to obtainT∫0 ' (t) dt ∫M �%t (x) (x) dx = lim�n→0 T∫0 ' (t) dt ∫M �%�nt (x) (x) dx= limn ∫[0;T ℄×TM ' (t) ��n (dt; dx; dv) :Thus by (iv),T∫0 ' (t) dt ∫M �%t (x) (x) dx = T∫0 ' (t) dt ∫TM  (x) ��t (dx; dv) ;whih means that∫TM  (x) ��t (dx; dv) = ∫M �%t (x) (x) dx:Sine  ∈ Cb (M) is arbitrary, we onlude the proof of (vi). �7.3. Momentum equations for approximate solutions. Reall thataording to Setion 6, if t� is the unique gradient of a lower semiontin-uous onvex funtion suh that t�#%�t = �%�t , then�� := t� − id� ∈ ���(%�t ) and id− (t� )−1� ∈ ���(�%�t ):Thus, by Proposition 5.8, the Wasserstein gradient of �� , �%�t , and �� satisfythe relation �� = ∇%�� (�%�t ) ◦ t� : (7.8)Using �F � as introdued at the beginning of the urrent setion, we de�nethe averages v̂ ⊗ v��� (t; x) = ∫
Rd v ⊗ v �F �t (x; v) dv:De�nition 7.3. Let % ∈ AC2(0; T ;P(M)). Moreover, let� ∈ AC2(0; T ;P(M))



AN OPTIMAL TRANSPORT APPROACH 163be suh that %t is the projetion of �t on M and setv̂ ⊗ v� := ∫
Rd v ⊗ vFt(x; dv);where (Ft(x; · ))x is the disintegration of �t. Assume that � : (0; T )×M →

Rd is a Borel vetor �eld suh that �t ∈ L2(%t) for L1−a.e. t ∈ (0; 1). Wesay that (%; u; v̂ ⊗ v�; �) satis�es the momentum equation�t(%u) +∇ ·
(%v̂ ⊗ v�) = −%(∇V + �) (7.9)in the sense of distribution ifT∫0 dt ∫M (�tA+ v̂ ⊗ v�∇A)%t(dx) = T∫0 dt ∫M 〈A;∇V + �〉%t(dx);for all A ∈ C∞ ((0; T )×M ;Rd).Remark 7.4. The following hold:(i) If % belongs to the appropriate Sobolev spae, then it is smoothenough suh that we an write the Wasserstein gradient of � at %as

∇%�(%) = −12∇(△√%
√% ):Therefore (f., e.g., [15℄),%∇%�(%) = 12∇(△%)− div(∇√%⊗∇√%): (7.10)(ii) Sine � is the Fisher information up to a multipliative onstantand J�� (%�t ) = {%�t }; by Lemma 10.1.2 [3℄, �� is in the strong sub-di�erential of �. By Corollary 5.8 [13℄

√%�t ∈W 2;2(M): (7.11)(iii) If A ∈ C1((0; T ) ×M;Rd), then we an apply Corollary 5.8 [13℄to dedue that (7.10) holds for % = %� in the sense thatT∫0 dt ∫M 〈A; �� 〉%�t (x) dx= T∫0 dt ∫M (
−12(∇ ·A) △%�t + 〈∇A;∇√%�t ⊗∇√%�t 〉) dx: (7.12)



164 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRA(iv) Observe that Proposition 7.2 (iii) alone ensures that, for the lim-iting measures, we have √%�t ∈W 1;2 and therefore, the expressionon the right-hand side of (7.12) ontinues to make sense for thelimiting densities �% obtained in Proposition 7.2; it an be written asT∫0 dt ∫M (
−12△(∇ ·A) �%t + 〈∇A;∇√�%t ⊗∇√�%t〉) dx:For any vetor valued Borel �eld, �, onM of null average, we de�ne thenorm

||�||−1 = supA∈C∞ (M ;Rd){∫M 〈A; �(dx)〉 | ||∇A||∞ 6 1}:Theorem 7.5. Using the notation of Subsetion 7.1, the following hold:(i) (�%� ; �u� ; v̂ ⊗ v��� ;∇%�� (�%� )) satis�es the momentum equation (7.9)in the sense of distributions.(ii) In the sense of distributions, as given by De�nition 7.3 and (7.12),�t(�%� �u� ) +∇ ·
(�%� v̂ ⊗ v��� )= −�%�∇V +∇
(12∇(△%� )− div(∇√%� ⊗∇√%�))+~0� ;where ~0� := �%�∇%�(�%� )− %� �� :(iii) Further assume that there exists a sequene (�n)n dereasing to 0suh that for L1 a.e. t ∈ (0; T ) we havelimn→∞

��n(�%�nt )− �(%�nt ) = 0: (7.13)Then, for any p ∈ [1;∞) we havelimn→∞

T∫0 ||~0�nt ||p−1dt = 0:



AN OPTIMAL TRANSPORT APPROACH 165Proof. (i) By Theorem 6.2 for any L ∈ C∞ ((0; T )× TM) we haveT∫0 dt ∫TM (�tL+ 〈v;∇xL〉)���t (dx; dv)= T∫0 dt ∫TM 〈∇vL;V +∇%�� (�%� )〉���t (dx; dv)〉 = 0: (7.14)The uniform bound in (7.3) implies thatsupt;� ∫TM |v|2���t (dx; dv) <∞:Thus, if A ∈ C∞ ((0; T )×M), Bi(v) ≡ vi, sine Bi grows slower than |v|2at in�nity, by a standard approximation argument, we an use L(t; x; v) :=Bi(v)A(t; x) in (7.14) and read o� the proof of (i).(ii) Applying Remark 7.4 (iii), we obtain in the sense of distributions
∇
(12∇(△%� )− div(∇√%� ⊗∇√%�))+ %��� = 0:This, together with (i), implies (ii).(iii) For any A ∈ C∞ (M) suh that ||∇A||∞ 6 1, we have

∫M 〈∇%�� (�%�t );A〉�%�t (dx) = ∫M 〈∇%�� (�%�t ) ◦ t� ;A(t� )〉%�t (x) dx:Thus, using (7.8) we onlude that
∣∣∣
∫M 〈~0� ;A〉 dx∣∣∣ = ∣∣∣∫M 〈�� ;A(t� )−A(id)〉%�t (x) dx∣∣∣

6 ||�� ||%�t ||t� − id||%�t = ||�� ||%�tW2(%�t ; �%�t ):Sine by Remark 4.3 (ii)W2(%�t ; �%�t )||�� ||%�t 6
W 22 (%�t ; �%�t )� = 2(�� (�%�t )− �(%�t ));we obtain ∣∣∣

∫M 〈~0�t ;A〉 dx∣∣∣ 6 2(�� (�%�t )− �(%�t )):Hene,
||~0�t ||−1 6 2(�� (�%�t )− �(%�t )): (7.15)



166 W. GANGBO, J. HASKOVEC, P. MARKOWICH, J. SIERRAWe use the fat that � > 0 and (7.7) to obtain for any t ∈ (0; T ) and� ∈ (0; 1) �� (�%�t )− �(%�t ) 6 �� (�%�t ) 6 H(�0) + ||V ||∞:We an use (7.13) and the Lebesgue dominated onvergene theorem toonlude that for any p > 1limn→∞

T∫0 ||~0�nt ||p−1dt = 0: �

§8. Conluding remarksIt is important to mention that the previous results require the initialondition to be absolutely ontinuous with respet to the Lebesgue mea-sure, and therefore, the mono-kineti ase presented in the introdution isnot overed. It remains an interesting question to determine if our resultsmay be extended to an arbitrary initial measure if we onsider the seondmethod proposed in [2℄.On the other hand, the onvergene analysis needs to be improved inorder to verify that the limit of the approximative sheme satis�es thekineti Bohmian equation in a weak sense. We leave it as an open questionfor now to investigate if the ow exhange tehnique introdued in [17℄ forthe analysis of Wasserstein gradient ows may be extended to our problem,giving us the additional estimates that we need to pass to the limit in ourapproximative sheme. Referenes1. L. Ambrosio, N. Fuso, D. Pallara, Funtions of Bounded Variation and Free Dis-ontinuity Problems. | Clarendon Press Oxford, 254 (2000).2. L. Ambrosio, W. Gangbo, Hamiltonian ODEs in the Wasserstein spae of proba-bility measures.| Commun. Pure Appl. Math., 61, No. 1 (2008), 18{53.3. L. Ambrosio, N. Gigli, G. Savar�e, Gradient ows: in metri spaes and in the spaeof probability measures. Springer Siene Business Media (2008).4. L. Ambrosio, S. Lisini, G. Savar�e, Stability of ows assoiated to gradient vetor�elds and onvergene of iterated transport maps. |Manusripta Math., 121, No. 1(2006), 1{50.5. P. Cardaliaguet, J.-M. Lasry, P.-L. Lions, A. Porretta, Long time average of mean�eld games with a nonloal oupling. | Control and Optimization, SIAM, 51, No. 5(2013), 3558{3591.6. T. Cazenave, Semilinear Shr�odinger Equations, 10. | Courant Leture Notes,Vol. 10, Amer. Math. So. (2003).7. J. Cushing, S. Goldstein, A. Fine (eds.), Bohmian Mehanis and Quantum Theory:an appraisal. | Springer Siene Business Media, 184 (2013).
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