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Abstract. A theory of viscosity solutions in metric spaces based on local slopes was ini-
tiated in [39]. In this manuscript we deepen the study of [39] and present a more complete
account of the theory of metric viscosity solutions of Hamilton–Jacobi equations. Several
comparison and existence results are proved and the main techniques for such metric viscos-
ity solutions are illustrated.

1. Introduction

The study of first order Hamilton–Jacobi–Bellman (HJB) equations in infinite dimen-

sional Hilbert spaces or Banach spaces with the Radon-Nikodym property or a differentiable

norm started several decades ago [6, 17, 18, 19, 21, 22, 24, 25]. However there is a need

to go beyond these spaces as last decade has witnessed many studies connecting first order

Hamilton–Jacobi equations on spaces of measures or more general metric spaces to sev-

eral areas. Such equations arise for instance in statistical mechanics and large deviations

[8, 9, 10, 11, 12, 13, 31, 32, 33], fluid mechanics [29, 32, 33, 34, 35, 36, 37, 38], Mean Field

Games [15, 50, 51], optimal control [30, 32, 33], study of functional inequalities [5, 40, 41, 52]

and other areas [3, 4, 16, 42]. Also the study of partially observed stochastic optimal control

problems, rewritten in the form of optimal control of the Zakai equation, naturally leads to

the investigation of second order HJB equations in the space of measures, and attempts in

this direction have been made in [43, 45].

There is a substantial literature on HJB equations in Hilbert and Banach spaces. The

reader may consult the book [6] for earlier results in Hilbert spaces covering mostly the case

of regular solutions and connections with optimal control. M. G. Crandall and P-L. Lions

introduced the theory of viscosity solutions in Hilbert and Banach spaces in a series of papers

[17, 18, 19, 21, 22, 24, 25] for equations with bounded and unbounded terms, and later other

notions of viscosity solution appeared, see for instance [14, 48, 54, 55], and the subject is

relatively well established. There is also a well developed theory of viscosity solutions for

second order HJB equations in Hilbert spaces.

Much less is known about equations in spaces of measures and general metric spaces.

Several approaches and definitions of viscosity solution for special and more general HJB equa-

tions in the Wasserstein space have been proposed, see [1, 15, 16, 29, 30, 31, 32, 33, 35, 46, 51]
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and also a short discussion about them in the introduction of [39]. In [44] regular solutions

for an equation in the space of probability measures were studied. As regards equations in

metric spaces, Hamilton–Jacobi semigroups, and pointwise differential inequalities involving

local slopes satisfied by them have been investigated in [3, 4, 5, 40, 41, 52], mostly in con-

nection with applications to various functional inequalities. A definition of metric viscosity

solution was introduced in [42] for eikonal equation which can possibly be extended to a class

equations which are similar in type to these considered in this paper. It looks at the behav-

ior of functions along curves and it is substantially based on the sub- and super-optimality

inequalities of dynamic programming. We introduced a different notion of metric viscosity

solution in [39] which is based on local slopes and the use of appropriate test functions. The

definition was influenced by the definition of strict viscosity solution in [19]. Similar in the

spirit definition of metric viscosity solution appeared independently in [1] and well posedness

of the equations was proved there. We compare our definition with that of [1] in Section 2.

There is some overlap between [1] and this paper however the majority of the results here

are different.

In this manuscript we have endeavored to develop a more complete theory of metric

viscosity solutions began in [39] which encompasses a large class of Hamiltonians. We will

consider time dependent problems

(1.1) ∂tu+H(t, x, u, |∇u|) = 0, in (0, T ) × Ω,

(1.2)

{

u(t, x) = f(t, x) on (0, T ) × ∂Ω,
u(0, x) = g(x) on Ω,

and stationary equations

(1.3) H(x, u, |∇u|) = 0, in Ω,

(1.4) u(x) = f(x) on ∂Ω,

where H : [0, T ]×Ω×R× [0,+∞) → R is continuous, Ω is an open subset of a geodesic metric

space, and |∇u| is the local slope of u (see Definition 2.1). In [39] results were proved for

equation (1.1)-(1.2) with special Hamiltonians of the form H(|∇u|) + f(x) even though the

techniques developed there would apply for more general equations. In the current manuscript

we prove a range of comparison and existence results that apply to a wide range of equations

and we present a sample of techniques that the reader can apply in other cases. Comparison

theorems are proved for equations with Hamiltonians that are sublinear and superlinear in the

local slope variable and some other more special cases, for instance for equations of eikonal

type. We also prove a domain of dependence theorem. Existence of metric viscosity solutions

is established for general equations by Perron’s method and Perron’s method together with
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approximation. In a particular case of equations with convex Hamiltonians associated with

variational problems, existence of metric viscosity solutions is also established by showing

directly that the value function is a metric viscosity solution (cf. Subsection 4.2 ). The results

of this paper, together with these of [39], create a foundation for a theory of metric viscosity

solutions that can be applied and expanded in various directions. We point out that after

the basic definitions and techniques are properly set up, the methods are inspired by these in

finite dimensional spaces [23, 7] or in infinite dimensional Hilbert or Banach spaces [17, 18, 19,

21, 22, 24, 25, 48]. Although it should be easy for the readers familiar with viscosity solutions

to make a transition to the metric case, we have made an effort to include computations other

readers may be unfamiliar with.

2. Definitions

Throughout this manuscript, we assume that (S, d) is a complete metric space which is a

geodesic space. A metric space is a geodesic space if for every x, y ∈ S there exists a geodesic

of constant speed xt, 0 ≤ t ≤ 1, connecting x and y, i.e. a curve such that

x0 = y, x1 = x, d(xs, xt) = |s− t|d(x, y), 0 ≤ t ≤ s ≤ 1.

Let T > 0 and let Ω ⊂ S be open.

Definition 2.1. ([2, 3, 40, 52]). Let v : (0, T ) × Ω → R. The upper and lower local slopes of

v at (t, x) are defined respectively by

(2.5) |∇+v(t, x)| := lim sup
y→x

[v(t, y) − v(t, x)]+
d(y, x)

, |∇−v(t, x)| := lim sup
y→x

[v(t, y) − v(t, x)]−
d(y, x)

.

The local slope of v at (t, x) is defined by

|∇v(t, x)| := lim sup
y→x

|v(t, y) − v(t, x)|
d(y, x)

.

It is easy to see that |∇−v| = |∇+(−v)|.
For a function f defined on a subset of Q ⊂ [0, T ] × S (or Q ⊂ S) we will write f∗ to

denote its upper semicontinuous envelope, and f∗ to denote its lower semicontinuous envelope,

i.e.

f∗(t, x) = lim sup
(s,y)→(t,x)

f(s, y), f∗(t, x) = lim inf
(s,y)→(t,x)

f(s, y).

We will say that a function f is locally bounded in Q (or just locally bounded) if it is

bounded on bounded subsets of Q. A function ρ : [0,+∞) → [0,+∞) is called a modulus if ρ

is continuous, nondecreasing, subadditive, and ρ(0) = 0. If lims→∞ ρ(s)/s < +∞ we can also

assume without loss of generality that ρ is concave, and for every ǫ > 0 there is a constant

Cǫ such that ρ(s) ≤ ǫ+ Cǫs, s ≥ 0.

We recall the definitions of viscosity solution of (1.1)-(1.2) and (1.3)-(1.4) from [39].
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Definition 2.2. A function ψ : (0, T ) × Ω → R is a subsolution test function (ψ ∈ C) if

ψ(t, x) = ψ1(t, x) + ψ2(t, x), where ψ1, ψ2 are Lipschitz on every bounded and closed subset

of (0, T ) × Ω, |∇ψ1(t, x)| = |∇−ψ1(t, x)| is continuous, and ∂tψ1, ∂tψ2 are continuous. A

function ψ : (0, T ) × Ω → R is a supersolution test function (ψ ∈ C) if −ψ ∈ C.

If the equation is time independent the test functions in C and C are assumed to be time

independent.

Lemma 2.3. (Lemma 7.2 of [39]) Let ψ1(t, x) = k(t) + k1(t)ϕ(d2(x, y)), where y ∈ S, ϕ ∈
C1([0,+∞)), ϕ′ ≥ 0, k, k1 ∈ C1((0, T )), k1 ≥ 0. Then

|∇−ψ1(t, x)| = |∇ψ1(t, x)| = 2k1(t)ϕ
′(d2(x, y))d(x, y).

In particular |∇ψ1(t, x)| is continuous and thus the function can be used as the ψ1 part of a

test function.

For notational purposes we extend H to s < 0 by setting

(2.6) H(t, x, r, s) = H(t, x, r, 0) for s < 0.

However the definition of a metric viscosity solution works for any continuous extension of

H. We define for η ≥ 0

Hη(t, x, r, s) := inf
|τ−s|≤η

H(t, x, r, τ), Hη(t, x, r, s) := sup
|τ−s|≤η

H(t, x, r, τ).

Remark 2.4. Suppose a, b ≥ 0, r0, r1 ≥ 0 and |b− a| ≤ r0 + r1. Then there exists a number

c between a and b such that |c− a| ≤ r1 and |b− c| ≤ r0. As a consequence

Hr1(t, x, r, a) ≥ H(t, x, r, c) ≥ Hr0(t, x, r, b).

Definition 2.5. A locally bounded upper semicontinuous function u : [0, T ) × Ω → R is a

metric viscosity subsolution of (1.1)-(1.2) if u(t, x) ≤ f(t, x) on (0, T ) × ∂Ω, u(0, x) ≤ g(x)

on Ω, and whenever u− ψ has a local maximum at (t, x) for some ψ ∈ C, then

(2.7) ∂tψ(t, x) +H|∇ψ2(t,x)|∗(t, x, u(t, x), |∇ψ1(t, x)|) ≤ 0.

A locally bounded lower semicontinuous function u : [0, T ) × Ω → R is a metric viscosity

supersolution of (1.1)-(1.2) if u(t, x) ≥ f(t, x) on (0, T ) × ∂Ω, u(0, x) ≥ g(x) on Ω, and

whenever u− ψ has a local minimum at (t, x) for some ψ ∈ C, then

(2.8) ∂tψ(t, x) +H |∇ψ2(t,x)|∗(t, x, u(t, x), |∇ψ1(t, x)|) ≥ 0.

A continuous function u : [0, T ) × Ω → R is a metric viscosity solution of (1.1)-(1.2) if it is

both a metric viscosity subsolution and a metric viscosity supersolution of (1.1)-(1.2).
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Definition 2.6. A locally bounded upper semicontinuous function u : Ω → R is a metric

viscosity subsolution of (1.3)-(1.4) if u(x) ≤ f(x) on ∂Ω, and whenever u − ψ has a local

maximum at x for some ψ ∈ C, then

(2.9) H|∇ψ2(x)|∗(x, u(x), |∇ψ1(x)|) ≤ 0.

A locally bounded lower semicontinuous function u : Ω → R is a metric viscosity supersolution

of (1.3)-(1.4) if u(x) ≥ f(x) on ∂Ω, and whenever u−ψ has a local minimum at x for some

ψ ∈ C, then

(2.10) H |∇ψ2(x)|∗(x, u(x), |∇ψ1(x)|) ≥ 0.

A continuous function u : Ω → R is a metric viscosity solution of (1.3)-(1.4) if it is both a

metric viscosity subsolution and a metric viscosity supersolution of (1.3)-(1.4).

Compared to the definition in [39] we added the requirement that metric viscosity sub-

solution/supersolutions be locally bounded. This is not essential but it allows to weaken some

of the conditions on the Hamiltonian H. We will mostly work with Ω = S. We stated the

definition of viscosity solution for equation (1.1)-(1.2) defined in (0, T )×Ω, however we may

often need to use the notion of viscosity subsolution/supersolution in an open subset Q of

(0, T )× S without reference to initial and boundary conditions. We will then say that an up-

per/lower semicontinuous function u : Q→ R is a metric viscosity subsolution/supersolution

of (1.1) in Q if (2.7)/(2.8) is satisfied whenever u− ψ has a local maximum/minimum in Q.

Initial and boundary conditions are disregarded in this case.

There are many similarities and several differences between our definition of metric

viscosity solution and the one in [1]. The basic principle is similar however the approach is

different. The authors in [1] take a very restrictive class of test functions, basically enough

functions to prove comparison principle, and then define upper and lower versions of the

Hamiltonian for the subsolution and the supersolution test functions. This seems to be rather

cumbersome from the practical point of view, for instance if one wants to use a different

perturbed optimization technique or use a different cut-off function one has to redefine the

upper and lower Hamiltonians. Having few test functions is also restrictive. For instance the

sum of two test functions in [1] is not a test function, and the product of a test function

and a smooth function of time is not a test function. It would be impossible to prove the

results of Section 3 without using test functions which are more general than these allowed

in [1]. Many viscosity solution techniques require a wider class of test functions. This issue is

rather technical but we think it is better to have a definition that allows for more flexibility

in the use of test functions and is not tied to any specific form of them as in [1]. Another

difference between the results of [1] and these in our paper is that in [1] the assumptions
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were introduced through the Lagrangian. We introduce the assumptions directly through the

Hamiltonian. This makes the conditions more transparent from the PDE point of view.

Definition 2.7. We say that ψ is a strong metric subsolution of (1.1) in an open subset Q

of (0, T ) × S if ψ = ψ1 + ψ2 ∈ C and

(2.11) ∂tψ(t, x) +H |∇ψ2(t,x)|∗
(

t, x, ψ(t, x), |∇ψ1(t, x)|
)

≤ 0 for (t, x) ∈ Q.

We say that ψ is a strong metric supersolution of (1.1) in an open subset Q of (0, T ) × S if

ψ = ψ1 + ψ2 ∈ C and

(2.12) ∂tψ(t, x) +H|∇ψ2(t,x)|∗
(

t, x, ψ(t, x), |∇ψ1(t, x)|
)

≥ 0 for (t, x) ∈ Q.

Strong metric viscosity sub/super-solutions of time independent equations are defined

similarly. We want to alert the reader that strong metric subsolutions are supersolution test

functions and strong metric supersolutions are subsolution test functions, H |∇ψ2(t,x)|∗ is used

in (2.11) instead of H|∇ψ2(t,x)|∗ in (2.7), and H|∇ψ2(t,x)|∗ is used in (2.12) instead of H |∇ψ2(t,x)|∗

in (2.8). Thus inequalities (2.7) and (2.8) are stronger than (2.11) and (2.12).

Lemma 2.8. If ψ is a strong metric subsolution (respectively, supersolution) of (1.1) in an

open set Q ⊂ (0, T ) × S then it is a metric viscosity subsolution (respectively, supersolution)

of (1.1) in Q.

Proof. We will only do the proof for the subsolution case. Suppose that ψ = ψ1 + ψ2 ∈ C
satisfies (2.11) inQ and let ψ−ψ̃ have a local maximum at (t, x) ∈ Q for some ψ̃ = ψ̃1+ψ̃2 ∈ C.

Then ∂tψ̃(t, x) = ∂tψ(t, x) and

(2.13) |∇+(ψ1 − ψ̃1)(t, x)| ≤ |∇+(ψ̃2 − ψ2)(t, x)| ≤ |∇(ψ̃2 − ψ2)(t, x)|.

Therefore

|∇+(ψ̃2 − ψ2)(t, x)| ≥ lim sup
y→x

[(ψ1 − ψ̃1)(t, y)) − (ψ1 − ψ̃1)(t, x))]+
d(y, x)

≥ lim sup
y→x

[ψ1(t, y)) − ψ1(t, x)]+
d(y, x)

− lim sup
y→x

|ψ̃1(t, y) − ψ̃1(t, x)|
d(y, x)

= |∇+ψ1(t, x)| − |∇ψ̃1(t, x)| = |∇ψ1(t, x)| − |∇ψ̃1(t, x)|.

Likewise we obtain

|∇+(ψ̃2 − ψ2)(t, x)| ≥ |∇+(−ψ̃1)(t, x)| − |∇ψ1(t, x)|
= |∇−ψ̃1(t, x)| − |∇ψ1(t, x)|
= |∇ψ̃1(t, x)| − |∇ψ1(t, x)|.

It thus follows from the above two inequalities and (2.13) that
∣

∣

∣
|∇ψ̃1(t, x)| − |∇ψ1(t, x)|

∣

∣

∣
≤ |∇(ψ̃2 − ψ2)(t, x)| ≤ |∇ψ2(t, x)| + |∇ψ̃2(t, x)|
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We apply Remark 2.4 with

a := |∇ψ1(t, x)|, b := |∇ψ̃1(t, x)|, r1 := |∇ψ2(t, x)|, r0 := |∇ψ̃2(t, x)|

and use (2.11) to obtain

∂tψ̃(t, x) +H|∇ψ̃2(t,x)|∗
(t, x, ψ(t, x), |∇ψ̃1(t, x)|) ≤ 0

which completes the proof.

The following result is a combination of Ekeland’s lemma [26] and a smooth perturbed

optimization technique of [27, 53]. It follows from the proof of the Theorem on page 82, in

[49]. The result in [49] was stated in a Banach space, however the proof is the same if a

Banach space is replaced by a complete metric space. The statement of the lemma below

is simpler than the statement of the corresponding Lemma 7.4 in [39] which was based on

Borwein-Preiss variational principle, however each can be used to give the same results.

Lemma 2.9. Let K be a real Hilbert space with norm | · |K , and let D be a bounded, closed

subset of S×K. Let Φ : D → [−∞,+∞) be upper semicontinuous, bounded from above and not

be identically equal to −∞. Then for every ǫ > 0 there exist (x̄, ȳ) ∈ D and pǫ ∈ K, |pǫ|K < ǫ,

such that

Φ(x, y) − ǫd(x, x̄) + 〈pǫ, y〉
has a maximum over D at (x̄, ȳ), and

Φ(x̄, ȳ) > sup
Ω

Φ − ǫ.

3. General Hamiltonians with Sublinear Growth

We will only study the case Ω = S. Let x0 be a fixed element of S. The Hamiltonian H

was initially defined on (0, T )×S×R× [0,+∞) and then extended by (2.6). Here we assume

from the beginning that H is defined on (0, T ) × S × R × R. Thus all the results are true for

possibly other extensions of the original H. We make the following assumptions.

• (A1) H is uniformly continuous on bounded subsets of (0, T ) × S × R × R.

• (A2) There exists ν ≥ 0 such that for every (t, x, r1, r2, s) ∈ (0, T ) × S × R × R × R

H(t, x, r1, s) −H(t, x, r2, s) ≥ ν(r1 − r2) if r1 ≥ r2.

• (A3) For every R > 0 there is a modulus ωR such that for every (t, r, s) ∈ (0, T ) ×
R × R, x, y ∈ S

|H(t, x, r, s) −H(t, y, r, s)| ≤ ωR

(

d(x, y)(1 + |s|)
)

if max(d(x, x0), d(y, x0), |r|) ≤ R.

• (A4) There is L ≥ 0 such that for every (t, x, r, s, τ) ∈ (0, T ) × S × R × R × R

|H(t, x, r, s) −H(t, x, r, τ)| ≤ L
(

1 + d(x, x0)
)

|s− τ |.
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• (A5) For every R > 0 there is a modulus σR such that

|g(x) − g(y)| ≤ σR(d(x, y)) if max(d(x, x0), d(y, x0)) ≤ R.

Remark 3.1. Observe that by (A4)

|H(t, x, r, s) −Hη(t, x, r, s)|, |H(t, x, r, s) −Hη(t, x, r, s)| ≤ L
(

1 + d(x, x0)
)

η.

3.1. Preliminaries. We recall a technique that will be used in many proofs (see also [48]).

Suppose (A1 − A5) are satisfied. Let u be a metric viscosity subsolution of (1.1) and v be a

metric viscosity supersolution of (1.1) such that there are constants c, k̄ ≥ 0 such that

(3.14) u(t, x),−v(t, x) ≤ c(1 + dk̄(x, x0)), for all t ∈ [0, T ), x ∈ S.

Fix µ > 0, k > k̄, k ≥ 1 and set M = Lk + 1. We define

Ψ0(t, s, x, y) = u(t, x) − v(s, y) − µ

T − t
− µ

T − s
,

for t, s ∈ [0, T ) and x, y ∈ S. For these variables and for δ, ǫ, β > 0 we define

Ψδ(t, s, x, y) = Ψ0(t, s, x, y) − δ
(

eMtdk(x, x0) + eMsdk(y, x0)
)

,

Ψδ,ǫ(t, s, x, y) = Ψδ(t, s, x, y) −
d2(x, y)

2ǫ
, Ψδ,ǫ,β(t, s, x, y) = Ψδ,ǫ(t, s, x, y) −

(t− s)2

2β
.

For η, γ,R > 0 we consider the sets

Eη = {(t, s, x, y) ∈ [0, T )2 × S
2 : |t− s| < η}

Eη,γ = {(t, s, x, y) ∈ Eη : d(x, y) < γ}
Eη,γ,R = {(t, s, x, y) ∈ Eη,γ : d(x, x0) + d(y, x0) ≤ R}.

We set

m := lim
R→+∞

lim
γ→0

lim
η→0

sup
{

Ψ0(t, s, x, y) : (t, s, x, y) ∈ Eη,γ,R
}

∈ (∞,∞](3.15)

mδ := lim
γ→0

lim
η→0

sup
Eη,γ

Ψδ(t, s, x, y)

mδ,ǫ := lim
η→0

sup
Eη

Ψδ,ǫ, mδ,ǫ,β := sup
[0,T )2×S2

Ψδ,ǫ,β.

Remark 3.2. The following hold:

m = lim
δ→0

mδ,(3.16)

mδ = lim
ǫ→0

mδ,ǫ,(3.17)

mδ,ǫ = lim
β→0

mδ,ǫ,β.(3.18)

Proof. We only prove (3.16) and (3.17) and omit the proof of (3.18) which is similar to that

of (3.17). We have

sup
Eη,γ

Ψδ ≥ sup
Eη,γ,R

Ψδ ≥ sup
Eη,γ,R

Ψ0 − 2RkδeMT .
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Thus,

(3.19) lim
δ→0

mδ ≥ lim
δ→0

lim
γ→0

lim
η→0

sup
Eη,γ,R

(Ψ0 − 2RkδeMT ) = lim
γ→0

lim
η→0

sup
Eη,γ,R

Ψ0.

Letting R tend to +∞ in (3.19) we obtain m ≤ limδ→0mδ. Moreover, because of (3.14), for

every δ > 0 there is Rδ such that limδ→0R
δ = +∞ and

sup
Eη,γ

Ψδ = sup
E

η,γ,Rδ

Ψδ.

Therefore

lim
δ→0

mδ = lim
δ→0

lim
γ→0

lim
η→0

sup
E

η,γ,Rδ

Ψδ ≤ lim
δ→0

lim
γ→0

lim
η→0

sup
E

η,γ,Rδ

Ψ0 = m.

We have

sup
Eη,γ

Ψδ = sup
Eη,γ

{d2(x, y)

2ǫ
+ Ψδ,ǫ

}

≤ γ2

2ǫ
+ sup

Eη,γ

Ψδ,ǫ ≤
γ2

2ǫ
+ sup

Eη

Ψδ,ǫ.

Hence,

(3.20) mδ = lim
γ→0

lim
η→0

sup
Eη,γ

Ψδ ≤ lim
γ→0

lim
η→0

(γ2

2ǫ
+ sup

Eη

Ψδ,ǫ

)

= mδ,ǫ,

which implies mδ ≤ limǫ→0mδ,ǫ.

We fix δ > 0. For η, ǫ > 0, let (tǫη, s
ǫ
η, x

ǫ
η, y

ǫ
η) be points in ⊂ [0, T )2 × S

2 such that

|tǫη − sǫη| < η and

(3.21) sup
Eη

Ψδ,ǫ ≤ η + Ψδ,ǫ(t
ǫ
η, s

ǫ
η, x

ǫ
η , y

ǫ
η).

Because of (3.14) and (3.21) it is clear that we must have d(xǫη , y
ǫ
η) < Cδ

√
ǫ for some constant

Cδ. Therefore, by (3.21),

mδ = lim
γ→0

lim
η→0

sup
Eη,γ

Ψδ = lim
ǫ→0

lim
η→0

sup
Eη,Cδ

√
ǫ

Ψδ

≥ lim
ǫ→0

lim
η→0

Ψδ,ǫ(t
ǫ
η, s

ǫ
η, x

ǫ
η, y

ǫ
η) ≥ lim

ǫ→0
lim
η→0

(sup
Eη

Ψδ,ǫ − η) = lim
ǫ→0

mδ,ǫ.

3.2. Time dependent problems.

Proposition 3.3 (A comparison principle). Let (A1 − A5) be satisfied. Let u be a metric

viscosity subsolution of (1.1) and v be a metric viscosity supersolution of (1.1)-(1.2) such that

(3.14) holds and

(3.22) lim
t→0

([u(t, x) − g(x)]+ + [v(t, x) − g(x)]−) = 0

uniformly on bounded subsets of S. Then for every 0 < T1 < T

(3.23) lim
R→+∞

lim
γ→0

lim
η→0

sup
{

u(t, x) − v(s, y) : (t, s, x, y) ∈ Eη,γ,R, 0 ≤ t, s < T1

}

≤ 0.

In particular u ≤ v.
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Proof. Let k > k̄, k ≥ 1, and let M = Lk + 1. Suppose that (3.23) is not true. Then for

sufficiently small µ > 0, defining m as in (3.15), we have m > 0.

We notice that there is a constant c1 (depending only on L, k) such that

(3.24) Mrk − Lk(1 + r)rk−1 ≥ c1, for all r ≥ 0.

Moreover if ψ̃(t, x) = eMtdk(x, x0), we have

(3.25) |∇ψ̃(t, x)|∗ = keMtdk−1(x, x0).

In the sequel, we use the function Ψ in place of Ψδ,ǫ,β and we set Ψ(t, s, x, y) = −∞ if either

t = T or s = T . Since Ψ(t, s, x, y) → −∞ as min(d(x, x0), d(y, x0)) → +∞, uniformly for

t, s ∈ [0, T ] and ǫ, β, using Lemma 2.9 in [0, T ] × [0, T ] × B̄Rδ
(x0) × B̄Rδ

(x0) for big enough

Rδ, for every n ≥ 1 there are an, bn ∈ R, |an| + |bn| ≤ 1
n , and (t̄, s̄, x̄, ȳ) ∈ [0, T ] × [0, T ] ×

B̄Rδ
(x0) × B̄Rδ

(x0) such that

Ψ(t, s, x, y) + ant+ bns−
1

n
(d(x, x̄) + d(y, ȳ))

has a global maximum over [0, T ] × [0, T ] × S × S at (t̄, s̄, x̄, ȳ). Thus if δ is fixed, for some

constant R̃δ, independent of ǫ, β, n, we have

(3.26) d(x̄, x0), d(ȳ, x0), |u(t̄, x̄)|, |v(s̄, ȳ)| ≤ R̃δ.

Moreover we have

(3.27) mδ,ǫ,β ≤ Ψ(t̄, s̄, x̄, ȳ) +
1

n
.

We can then conclude

(3.28) mδ,ǫ,β +
(t̄− s̄)2

4β
≤ Ψ(t̄, s̄, x̄, ȳ) +

(t̄− s̄)2

4β
+

1

n
≤ mδ,ǫ,2β +

1

n

and

(3.29) mδ,ǫ,β +
d2(x̄, ȳ)

4ǫ
+

(t̄− s̄)2

4β
≤ mδ,2ǫ,2β +

1

n
.

It thus follows from (3.28) and (3.18) that

(3.30) lim
β→0

lim sup
n→+∞

(t̄− s̄)2

β
= 0 for every δ, ǫ > 0.

Moreover (3.17), (3.29) and (3.30) imply

(3.31) lim
ǫ→0

lim sup
β→0

lim sup
n→∞

d2(x̄, ȳ)

ǫ
= 0 for every δ > 0.

It now follows from (3.16), (3.17), (3.18), (3.27), (3.30) and (3.31) that there are m̃ > 0, δ0 > 0

such that for δ < δ0

(3.32) lim inf
ǫ→0

lim inf
β→0

lim inf
n→∞

(u(t̄, x̄) − v(s̄, ȳ)) ≥ m̃ > 0.
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Thus (3.32), together with (3.22), (3.30), (3.31) and (A5), implies that if δ, ǫ, β are small

enough and n is sufficiently big we must have 0 < t̄, s̄ < T .

Setting ψ = ψ1 + ψ2 where

ψ1(t, x) =
d2(x, ȳ)

2ǫ
, ψ2(t, x) = −ant+

1

n
d(x, x0) +

µ

T − t
+ δeMtdk(x, x0) +

(t− s̄)2

2β
,

we have ψ ∈ C and

(3.33) |∇ψ1|(t, x) =
d(x, ȳ)

ǫ
, |∇ψ2|∗(t, x) ≤ δ|∇ψ̃2(t, x)|∗ +

1

n
= δkeMtdk−1(x, x0) +

1

n
.

Thus, by the definition of metric viscosity subsolution and the maximality property of u−ψ

at (t̄, x̄),

µ

(T − t̄)2
+
t̄− s̄

β
+ δMeMt̄dk(x̄, x0) − an +H|∇ψ2(t̄,x̄)|∗

(

t̄, x̄, u(t̄, x̄),
d(x̄, ȳ)

ǫ

)

≤ 0.

This, together with Remark 3.1, (3.24) and (3.33) yields

µ

T 2
+
t̄− s̄

β
+H

(

t̄, x̄, ū,
d̄

ǫ

)

≤ H

(

t̄, x̄, ū,
d̄

ǫ

)

−Hδ|∇ψ̃(t̄,x̄)|∗+ 1

n

(

t̄, x̄, ū,
d̄

ǫ

)

− δMeMt̄dk(x̄, x0) + an

≤ L
(

1 + d(x̄, x0)
)

(

δkeMt̄dk−1(x̄, x0) +
1

n

)

− δMeMt̄dk(x̄, x0) + an

= an +
L

n

(

1 + d(x̄, x0)
)

+ δeMt̄dk−1(x̄, x0)(Lk(1 + d(x̄, x0)) −Md(x̄, x0))

≤ 1

n
+
L

n

(

1 + R̃δ
)

+ |c1|δeMT =: ρ1(δ, n),(3.34)

where, we have set

ū := u(t̄, x̄), d̄ = d(x̄, ȳ).

We notice that

lim
δ→0

lim
n→+∞

ρ1(δ;n) = 0.

Similarly, since v is a metric viscosity subsolution,

(3.35)
µ

T 2
− t̄− s̄

β
−H

(

s̄, ȳ, v̄,
d̄

ǫ

)

≤ ρ1(δ, n).

It follows from (A1) and (3.26) that

(3.36)

∣

∣

∣

∣

H

(

s̄, ȳ, v̄,
d̄

ǫ

)

−H

(

t̄, ȳ, v̄,
d̄

ǫ

)∣

∣

∣

∣

≤ ρ2(δ, ǫ;β, n),

where

lim
β→0

lim sup
n→+∞

ρ2(δ, ǫ;β, n) = 0.
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Therefore, (3.32), (3.35) and (3.36), give

(3.37)
µ

T 2
− t̄− s̄

β
−H

(

t̄, ȳ, ū,
d̄

ǫ

)

≤ ρ1(δ, n) + ρ2(δ, ǫ;β, n)

if δ < δ0, and ǫ, β, 1/n are small enough.

Adding (3.34) to (3.37) and using (A3) we obtain for such δ, ǫ, β, n

2µ

T 2
≤ H

(

t̄, ȳ, ū,
d̄

ǫ

)

−H

(

t̄, x̄, ū,
d̄

ǫ

)

+ 2ρ1(δ, n) + ρ2(δ, ǫ;β, n)

≤ ωR̃δ

(

d(x̄, ȳ) +
d2(x̄, ȳ)

ǫ

)

+ 2ρ1(δ, n) + ρ2(δ, ǫ;β, n).(3.38)

It remains to take limδ→0 lim supǫ→0 lim supβ→0 lim supn→+∞ in (3.38) and use (3.31) to ob-

tain a contradiction.

Theorem 3.4 (Existence and uniqueness for bounded initial value functions). Let (A1)−(A5)

be satisfied, let g be bounded, and let for every M > 0

(3.39) sup {|H(t, x, r, 0)| : (t, x) ∈ (0, T ) × S, |r| ≤M} = KM < +∞.

Then there exists a unique bounded metric viscosity solution u of (1.1)-(1.2) satisfying

(3.40) lim
t→0

|u(t, x) − g(x)| = 0

uniformly on bounded subsets of S. The solution u is uniformly continuous on bounded subsets

of [0, T ) × S.

Proof. We need to produce a metric viscosity subsolution and a a metric viscosity supersolu-

tion of (1.1). The existence of a metric viscosity solution is then obtained by Perron’s method

which was established in [39] for a slightly less general equation. However the method and

its proof remain the same for the current case and therefore will not reproduce it here.

We explain how to show the existence of a supersolution. Given C > 0, using (A2) we

have

C +H(t, x, Ct+ ‖g‖∞, 0) ≥ C +H(t, x, 0, 0) ≥ C −K0.

In light of (3.39) and Lemma 2.8 we conclude that if C > 0 is large enough, the function

w(t, x) = Ct+ ‖g‖∞ is a metric viscosity supersolution of (1.1). Let R > 0 and let σR be the

modulus of continuity of g on {x : d(x, x0) ≤ R + 1}. For ǫ > 0 let aǫ,R > 0 be such that

σR(s) ≤ ǫ+aǫ,Rs, s ≥ 0 and aǫ,R > CT +2‖g‖∞. Then for every y ∈ S such that d(y, x0) ≤ R,

g(y) + ǫ+ aǫ,Rd(x, y) ≥ g(x) x ∈ S, g(y) + ǫ+ aǫ,Rd(x, y) > w(t, x) t ∈ (0, T ), d(x, y) ≥ 1.

Therefore it follows from (A2), (A4), (3.39) and Lemma 2.8 that there are constants Cǫ,R > 0

such that if d(y, x0) ≤ R then the function wǫ,y(t, x) := Cǫ,Rt+ g(y) + ǫ+ aǫ,Rd(x, y) satisfies

w(0, x) ≥ g(x) x ∈ S, wǫ,y(t, x) > w(t, x) t ∈ (0, T ), d(x, y) ≥ 1,
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and the function wǫ,y is a strong metric (and hence viscosity) supersolution of (1.1) in (0, T )×
{x : d(x, y) < 1}. Then the function wǫ,y := min(w,wǫ,y) is a metric viscosity supersolution

of (1.1)-(1.2) in [0, T )×S. Repeating the proof of Step 1 of Theorem 7.6 of [39] it is now easy

to see that the function

u(t, x) := (inf{wǫ,y(t, x) : ǫ > 0, y ∈ S})∗
is a bounded metric viscosity supersolution of (1.1) which satisfies

lim
t→0

[(u)∗(t, x) − g(x)]+ = 0

uniformly on bounded subsets of S. A bounded metric viscosity subsolution u of (1.1)-(1.2)

satisfying

lim
t→0

[(u)∗(t, x) − g(x)]− = 0

uniformly on bounded subsets of S is constructed by the same arguments applied to the

subsolution case. We remind that by Proposition 3.3, comparison principle holds for bounded

(in fact polynomially growing) sub- and supersolutions of (1.1)-(1.2) satisfying 3.22. It follows

from construction and comparison that u ≤ (u)∗ and (u)∗ ≤ u and hence comparison ensures

that u ≤ u. Therefore, by Perron’s method, the function

u(t, x) = sup{v(t, x) : v is a metric viscosity subsolution of (1.1), u ≤ v ≤ u}

is the unique bounded metric viscosity solution of (1.1)-(1.2). The uniform continuity of u on

bounded subsets of [0, T ) × S follows from (3.23) applied with v = u.

The next theorem is a domain of dependence type result. Results of this type are known

in Euclidean spaces, see Lemma VI.1 of [20], and in Hilbert spaces, see [21]. Our proof is an

adaptation of the proof of Lemma VI.1 of [20] to the metric case. For R > 0 we denote

∆R := {(t, x) ∈ (0, T ) × S : d(x, x0) < Re−Lt − 1}.

Theorem 3.5 (Domain dependence and a comparison principle). Let (A1)−(A4) be satisfied.

Let u be a metric viscosity subsolution of (1.1)-(1.2) with initial condition g1 and v be a metric

viscosity supersolution of (1.1)-(1.2) with initial condition g2. Let g1, g2 satisfy (A5) and let

(3.41) lim
t→0

([u(t, x) − g1(x)]+ + [v(t, x) − g2(x)]−) = 0

uniformly on bounded subsets of S. Then for every R > 0

(3.42) sup
∆R

(u− v) ≤ sup{[g1(x) − g2(x)]+ : d(x, x0) < R− 1}.

In particular, if (A1)−(A5) are true then there is at most one viscosity solution of (1.1)-(1.2)

among functions in C([0, T ) × S) satisfying (3.40) uniformly on bounded subsets of S.
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Proof. Let R > 0. We define for m ≥ 1, h > 0 the functions

wm(t, x) := exp
(

m
[

eLt
(

1 + d(x, x0)
)

−R
])

and the sets

∆h
R := {(t, x) ∈ (0, T ) × S : d(x, x0) < (R+ h)e−Lt − 1}.

We notice that

(3.43) lim
m→+∞

wm(t, x) = 0 for every (t, x) ∈ ∆R.

We consider for µ > 0, ǫ > 0, β > 0 the function

Ψ(t, s, x, y) = u(t, x) − v(s, y) − µ

T − t
− µ

T − s
− wm(t, x) − wm(s, y) − d2(x, y)

2ǫ
− (t− s)2

2β

on ∆
h
R × ∆

h
R, and we set Ψ(t, s, x, y) = −∞ if either t = T or s = T . Since u and v

are locally bounded, the function ψ is bounded above on ∆
h
R ×∆

h
R. Furthermore, it is upper

semicontinuous there, and so by Lemma 2.9, for every n ≥ 1 there are an, bn ∈ R, |an|+ |bn| ≤
1
n , and (t̄, s̄, x̄, ȳ) ∈ ∆

h
R × ∆

h
R such that

Ψ̃(t, s, x, y) := Ψ(t, s, x, y) + ant+ bns−
1

n
(d(x, x̄) + d(y, ȳ))

has a maximum over ∆
h
R × ∆

h
R at (t̄, s̄, x̄, ȳ). Similarly as in the proof of Proposition 3.3 we

obtain

(3.44) lim
β→0

lim sup
n→+∞

(t̄− s̄)2

β
= 0 for every m,µ, ǫ > 0,

(3.45) lim
ǫ→0

lim sup
β→0

lim sup
n→∞

d2(x̄, ȳ)

ǫ
= 0 for every m,µ.

Since

lim
m→+∞

inf{wm(t, x) : (t, x) ∈ ∂∆h
R ∩ (0, T ) × S} = +∞,

it follows that for large m we must have

(t̄, x̄, s̄, ȳ) 6∈ ∂(∆h
R × ∆h

R) ∩
(

(0, T ] × S × (0, T ] × S

)

.

If

(3.46) sup
∆R

(u− v) > sup{[g1(x) − g2(x)]+ : d(x, x0) < R− 1},

then there is (t, x) ∈ ∆R and γ > 0 such that

u(t, x) − v(t, x) > sup{[g1(x) − g2(x)]+ : d(x, x0) < R− 1} + 3γ.
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It then follows from (3.43) that

Ψ̃(t, t, x, x) > sup
{

[g1(x) − g2(x)]+ : d(x, x0) < R− 1
}

+ 3γ

− 2µ

T − t
− 2wm(t, x) + (an + bn)t−

1

n

(

d(x, x̄) + d(x, ȳ)
)

> sup
{

[g1(x) − g2(x)]+ : d(x, x0) < R− 1
}

+ 2γ

if µ < µ0, m > m0, n > n0 for some µ0, m0, n0 independent of ǫ and β. Therefore, since

g1, g2 satisfy (A5), we can assume that for µ < µ0, m > m0, n > n0

sup
∆h

R×∆h
R

ψ̃ > sup{[g1(x) − g2(x)]+ : d(x, x0) < R+ h− 1} + γ

if 0 < h < h0 for some h0 > 0, and moreover

(3.47) u(t̄, x̄) > v(s̄, ȳ).

Now, (A5), (3.41), (3.44) and (3.45) imply that 0 < t̄, s̄ < T whenever µ < µ0, m > m0,

n > n0 and ǫ, β are sufficiently small. By the definition of metric viscosity subsolution we

thus have

µ

(T − t̄)2
+
t̄− s̄

β
+mLeLt̄(1+d(x̄, x0))wm(t̄, x̄)−an+H|∇wm(t̄,x̄)|∗+1/n

(

t̄, x̄, u(t̄, x̄),
d(x̄, ȳ)

ǫ

)

≤ 0,

which, together with (A4) and |∇wm(t̄, x̄)|∗ = meLt̄wm(t̄, x̄), gives

t̄− s̄

β
+H

(

t̄, x̄, u(t̄, x̄),
d(x̄, ȳ)

ǫ

)

≤ − µ

T 2
+ ρ1(

1

n
),

for some modulus ρ1. Similarly we have

t̄− s̄

β
+H

(

s̄, ȳ, v(s̄, ȳ),
d(x̄, ȳ)

ǫ

)

≥ µ

T 2
− ρ̄1(

1

n
).

Therefore, using (A1), (A2), (3.30) and (3.47) implies

2µ

T 2
≤ H

(

t̄, ȳ, u(t̄, x̄),
d(x̄, ȳ)

ǫ

)

−H

(

t̄, x̄, u(t̄, x̄),
d(x̄, ȳ)

ǫ

)

+ ρ2(ǫ;β, n)

for µ < µ0,m > m0, where limβ→0 lim supn→+∞ ρ2(ǫ;β, n) = 0. This yields a contradiction

after we invoke (A3), (3.31), and take limǫ→0 lim supβ→0 lim supn→+∞ as in the proof of

Proposition 3.3. Therefore (3.42) must be true.

The uniqueness of viscosity solutions is a direct consequence of (3.42) when g1 = g2.

Theorem 3.6 (Existence and uniqueness for general initial value functions). Let (A1)−(A5)

be satisfied. Then there exists a metric viscosity solution u of (1.1)-(1.2). The solution u is

uniformly continuous on bounded subsets of [0, T ) × S and is unique among functions in

C([0, T ) × S) satisfying (3.40).
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Proof. Let h ∈ C∞
0 (R) be such that 0 ≤ h ≤ 1 and h(τ) = 1 for |τ | ≤ 1. Define for n ≥ 1,

hn(τ) := h(τ/n), and

Hn(t, x, r, s) := hn(d(x, x0))H(t, x, r, s), gn(x) := hn(d(x, x0))g(x).

It is easy to see that Hn, gn satisfy (A1)− (A5), with possibly different ωR, σR, however with

the same constant L in (A4). Moreover Hn satisfies (3.39). Therefore, by Theorem 3.4, for

every n ≥ 1 the problem

(3.48)

{

∂tun +Hn(t, x, un, |∇un|) = 0, in (0, T ) × S,
un(0, x) = gn(x) on S,

has a unique bounded metric viscosity solution un which is uniformly continuous on bounded

subsets of [0, T ) × S. By Theorem 3.5 we have un = um on ∆n if m > n. Since for every

m > n, Hn(t, x, r, s) = Hm(t, x, r, s) = H(t, x, r, s) on (0, T )×∆n×R×S, it thus follows that

the function

u(t, x) := lim
n→+∞

un(t, x)

is uniformly continuous on bounded subsets of [0, T ) × S, u = un on ∆n for every n ≥ 1,

u(0, x) = g(x) on S, and u is a metric viscosity solution of
{

∂tu+H(t, x, u, |∇u|) = 0, in (0, T ) × S,
u(0, x) = g(x) on S.

The uniqueness follows from Theorem 3.5.

3.3. Further results. We show here how to relax some conditions in a comparison theorem

if we know in advance that either a subsolution or a supersolution is Lipschitz continuous.

To minimize technicalities we only consider Hamiltonians H = H(x, s) however the result

would also hold for more general H. Theorem 3.7 can also be regarded as an improvement of

Theorem 4.2 if a subsolution or a supersolution is Lipschitz continuous, since no convexity

of H(x, ·) nor any restrictions on its growth are required. We make the following assumption

which is weaker than (A4):

• (A4w) For every R > 0 there is a constant LR ≥ 0 such that for every (x, r, s) ∈
S × R × R

|H(x, s) −H(x, r)| ≤ LR

(

1 + d(x, x0)
)

|s− r| if max(|r|, |s|) ≤ R.

Theorem 3.7 (A comparison principle). Assume H ≡ H(x, s) satisfies (A3), (A4w) and let

g satisfy (A5). Let u be a metric viscosity subsolution of (4.57) and v be a metric viscosity

supersolution of (4.57) satisfying (3.22) uniformly on bounded subsets of S. Suppose also

that u, v satisfy (3.14) with k̄ = 1, and that either u(t, ·) or v(t, ·) is Lipschitz continuous,

uniformly for 0 < t < T . Then (3.23) holds.
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Proof. Without loss of generality we assume that there exists L ≥ 0 such that

(3.49) |u(t, x) − u(t, y)| ≤ Ld(x, y) for t ∈ (0, T ), x, y ∈ S.

Let R := L + 18ec + 1, where c is from (3.22), and we set K := 4LR. We define T2 :=

min(T, 1/K)/2, T3 := 2T2. We will first prove (3.23) for 0 ≤ t, s < T2. The proof initially

proceeds like the proof of Proposition 3.3. If (3.23) does not hold for 0 ≤ t, s < T2, we define

the function

Ψ(t, s, x, y) = u(t, x) − v(s, y) − µ

T3 − t
− µ

T3 − s
− d2(x, y)

2ǫ
− (t− s)2

2β

− δeKt
(

1 + d2(x, x0)
)

− δeKs
(

1 + d2(y, x0)
)

and for every n ≥ 1 there are an, bn ∈ R, |an|+|bn| ≤ 1
n , and (t̄, s̄, x̄, ȳ) ∈ [0, T3]×[0, T3])×S×S

such that

Ψ(t, s, x, y) + ant+ bns−
1

n
(d(x, x̄) + d(y, ȳ))

has a global maximum over [0, T3] × [0, T3] × S × S at (t̄, s̄, x̄, ȳ). We also have that (3.26),

(3.30), (3.31) hold, and if µ, δ, ǫ, β are sufficiently small and n is sufficiently large then

(3.50) Ψ(t̄, s̄, x̄, ȳ) > 0

and 0 < t̄, s̄ < T3. By the definition of viscosity subsolution we thus get

(3.51)
µ

(T3 − t̄)2
+
t̄− s̄

β
+ δKeKt̄(1 + d2(x̄, x0))− an +H2δeKt̄d(x̄,x0)+1/n

(

x̄,
d(x̄, ȳ)

ǫ

)

≤ 0,

If follows from (3.22) and (3.50) that

c
(

2 + d(x̄, x0) + d(ȳ, x0)
)

≥ u(t̄, x̄) − v(s̄, ȳ) > δ
(

eKt̄
(

1 + d2(x̄, x0)
)

+ eKs̄
(

1 + d2(ȳ, x0)
)

)

≥ δ
(

2 + d2(x̄, x0

)

+ d2
(

ȳ, x0)
)

≥ δ

3

(

1 + d(x̄, x0) + d(ȳ, x0)
)2
.

This gives us

(3.52) δ
(

1 + d(x̄, x0) + d(ȳ, x0)
)

≤ 6c.

Since

Ψ(t̄, s̄, x̄, ȳ) + ant̄+ bns̄ ≥ Ψ(t̄, s̄, ȳ, ȳ) + ant̄+ bns̄−
1

n
d(ȳ, x̄),

we obtain

Ld(x̄, ȳ) ≥ u(t̄, x̄) − u(t̄, ȳ) ≥ d2(x̄, ȳ)

ǫ
+ δeKt̄(d2(x̄, x0) − d2(ȳ, x0)) −

1

n
d(ȳ, x̄)

≥ d2(x̄, ȳ)

ǫ
− δe(d(x̄, x0) + d(ȳ, x0))d(ȳ, x̄) − 1

n
d(ȳ, x̄).

Therefore, by (3.52), we obtain

(3.53)
d(x̄, ȳ)

ǫ
≤ L+ 6ec +

1

n
.
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and thus, since Kt̄ ≤ 1,

(3.54)
d(x̄, ȳ)

ǫ
+ 2δeKt̄d(x̄, x0) ≤ L+ 6ec+ 1 + 2δed(x̄, x0) ≤ L+ 18ec + 1 = R.

Using (A4w) it thus follows from (3.51)

t̄− s̄

β
+H

(

x̄,
d(x̄, ȳ)

ǫ

)

≤ − µ

T 2
3

− δKeKt̄(1 + d2(x̄, x0)) + 2δeKt̄LR(1 + d(x̄, x0))d(x̄, x0) + ρ1(µ, δ, ǫ, β;n)

≤ − µ

T 2
3

+ ρ1(µ, δ, ǫ, β;n),(3.55)

where limn→+∞ ρ1(µ, δ, ǫ, β;n) = 0. Similarly we obtain

(3.56)
t̄− s̄

β
+H

(

ȳ,
d(x̄, ȳ)

ǫ

)

≥ µ

T 2
3

− ρ1(µ, δ, ǫ, β;n).

Set Rδ := max(6c/δ, L + 6ec + 1). Combining (3.55) and (3.56) and using (A3) now gives

2µ

T 2
3

≤ ωRδ

(

d(x̄, ȳ)

(

1 +
d(x̄, ȳ)

ǫ

))

+ 2ρ1(µ, δ, ǫ, β;n)

which produces a contradiction in light of (3.31) for µ, δ sufficiently small after we let

limǫ→0 lim supβ→0 lim supn→+∞ above.

We can now reapply the procedure on intervals [T2/2, 3T2/2], [T2, 2T2], ..., [kT2/2, T ),

where k ≥ 1 is such that the last interval has length less than or equal to T2, to conclude the

proof. We remark that we do not have an exact equivalent of condition (3.22) at time T2/2,

however (3.23) on [0, T2] gives a replacement for (3.22) and implies that the procedure can

be restarted at T2/2.

We remark that [20] contains several results on viscosity solutions of Hamilton-Jacobi

equations with superlinear gradient terms in finite dimensional spaces that may be adaptable

to the metric space case.

4. Hamiltonians Convex in the Momentum Variables

4.1. A Comparison Principle. The next result is a comparison theorem for equations with

superlinear growth in the local slope variable of the form

(4.57)

{

∂tu+H(x, |∇u|) − f(x) = 0, in (0, T ) × S,
u(0, x) = g(x) on S.

We could include the dependence on t in the equation however we omit this easy extension

since the presentation is already very technical. Our approach is different from that of [1].

Techniques of the type we use derive from the ideas of [47]. We remark that when H is

independent of x, Theorem 7.5 of [39] gives comparison for (4.57) for metric viscosity sub- and

supersolutions growing at most linearly, without any restrictions on H besides its continuity.
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We make the following assumptions.

• (B1) H is uniformly continuous on bounded subsets of S × R, and for every x ∈ S,

H(x, ·) is convex and nondecreasing.

• (B2) There exist C ≥ 0, 0 ≤ κ ≤ 1,m > 1 such that for every (x, s) ∈ S × [0,+∞)

H(x, s) ≤ C(1 + d(x, x0))
κsm.

• (B3) There exist functions γ(t), γ(t) such that γ(t) > 1 for 1 < t < t0, γ(t) → 1 as

t→ 1, such that for every t > 0 and (x, s) ∈ S × [0,+∞)

tγ(t)H(x, s) ≤ H(x, ts) ≤ γ(t)H(x, s).

• (B4) There exists θ > 0 such that for every (x, s) ∈ S × [0,+∞)

H(x, s) ≥ θsm.

• (B5) For every R > 0 there is a modulus ωR such that if (x, y, s) ∈ S × S × [0,+∞)

and max(d(x, x0), d(y, x0)) ≤ R, then

|H(x, s) −H(y, s)| ≤ ωR(d(x, y))(1 + sm).

• (B6) There exists a constant M such that

f ≥M on S.

We define α to be the solution of α = κ+m(α− 1), i.e.

α = 1 +
1 − κ

m− 1
.

Example 4.1. It is easy to see that the Hamiltonian

H(x, s) =

{

a(x)sm s ≥ 0,
0 s < 0,

satisfies conditions (B1) − (B5) if a is uniformly continuous on bounded subsets of S, and

0 < θ ≤ a(x) ≤ C(1 + d(x, x0))
κ, x ∈ S.

We remark that since H(x, ·) is nondecreasing, Hη(x, s) = H(x, s + η) and Hη(x, s) =

H(x, s − η), x ∈ S, s ∈ R, η > 0.

Theorem 4.2. Let (B1)− (B6) be true and let f, g satisfy (A5). Let u be a metric viscosity

subsolution of (4.57) and v be a metric viscosity supersolution of (4.57) satisfying (3.22)

uniformly on bounded subsets of S. Suppose also that

(4.58) lim sup
d(x,x0)→+∞

sup
t∈[0,T )

u(t, x)

1 + dα(x, x0)
≤ 0, lim sup

d(x,x0)→+∞
sup
t∈[0,T )

−v(t, x)
1 + dα(x, x0)

≤ 0.

Then u ≤ v.
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Proof. The proof initially proceeds like the proof of Proposition 3.3. Suppose that sup(u−v) ≥
2ν1 > 0. Then if λ0 < 1 is sufficiently close to 1 we also have sup(λu−v) ≥ ν1 for λ0 < λ < 1.

We define for λ0 < λ < 1, µ > 0, δ > 0, ǫ > 0 and β > 0 the function

Ψ(t, s, x, y) = λu(t, x) − v(s, y) − µ

T − t
− µ

T − s
− d2(x, y)

2ǫ
− (t− s)2

2β

− δet(1 + dα(x, x0)) − δes(1 + dα(y, x0)),

Ψ(t, s, x, y) = −∞ if either t = T or s = T . We have by (4.58), Ψ(t, s, x, y) → −∞ as

max(d(x, x0), d(y, x0)) → +∞, uniformly for t, s ∈ [0, T ] and ǫ, β. Therefore, using Lemma

2.9, for every n ≥ 1 there are an, bn ∈ R, |an| + |bn| ≤ 1
n , and (t̄, s̄, x̄, ȳ) ∈ [0, T ] × [0, T ] ×

BRδ
(x0) ×BRδ

(x0) for some Rδ > 0 such that

Ψ(t, s, x, y) + ant+ bns−
1

n
(d(x, x̄) + d(y, ȳ))

has a maximum over [0, T ]× [0, T ]×S×S at (t̄, s̄, x̄, ȳ). Arguing as in the proof of Proposition

3.3 we have that (3.30) and (3.31) are satisfied and there is µ0 > 0 such that if 0 < µ <

µ0, λ0 < λ < 1, and δ, ǫ, β, 1/n are sufficiently small, we must have 0 < t̄ and s̄ < T . It then

follows from the definition of viscosity subsolution that

µ

(T − t̄)2
+
t̄− s̄

β
+ δet̄(1 + dα(x̄, x0)) + λH

(

x̄,
1

λ

(d(x̄, ȳ)

ǫ
− δαet̄dα−1(x̄, x0) −

1

n

)

)

≤ an + λf(x̄).

Since by (B6)

−λf(x̄) ≥ −f(x̄) + (1 − λ)M,

we thus obtain

t̄− s̄

β
+ δet̄(1 + dα(x̄, x0)) + λH

(

x̄,
1

λ

(

d(x̄, ȳ)

ǫ
− δαet̄dα−1(x̄, x0)

))

≤ f(x̄) − µ

T 2
+ ρ1(n) − (1 − λ)M,(4.59)

where limn→+∞ ρ1(n) = 0 for fixed λ, µ, δ, ǫ, β. Since for every a, b ∈ R, 0 < η < 1,

ηa = η(a− b) + (1 − η)

(

η

1 − η
b

)

,

the convexity of H(x̄, ·) implies

H(x̄, ηa) ≤ ηH(x̄, a− b) + (1 − η)H

(

x̄,
η

1 − η
b

)

.

Applying this with

η =
1 + λ

2
, a =

d(x̄, ȳ)

λǫ
, b =

δαet̄dα−1(x̄, x0)

λ
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we obtain

λH

(

x̄,
1

λ

(d(x̄, ȳ)

ǫ
− δαet̄dα−1(x̄, x0)

)

)

≥ λ

η
H

(

x̄,
η

λ

d(x̄, ȳ)

ǫ

)

− (1 − η)λ

η
H

(

x̄,
η

1 − η

δαet̄dα−1(x̄, x0)

λ

)

≥ γ
(1 + λ

2λ

)

H

(

x̄,
d(x̄, ȳ)

ǫ

)

− C1(α, λ, T )δm
(

1 + d(x̄, x0)
)κ
dm(α−1)(x̄, x0)(4.60)

where we used (B2) and (B3) to get the last inequality. Since m > 1 it thus follows by the

definition of α that if δ is sufficiently small, say δ < δ0 = δ0(λ, T, α, κ,m), then

(4.61) + δet̄(1 + dα(x̄, x0)) −C1(α, λ, T )δm(1 + d(x̄, x0))
κdm(α−1)(x̄, x0) ≥ 0.

Therefore, for δ < δ0, we finally have using (4.59), (4.60) and (4.61)

(4.62)
t̄− s̄

β
+ γ

(

1 + λ

2λ

)

H

(

x̄,
d(x̄, ȳ)

ǫ

)

− f(x̄) ≤ − µ

T 2
+ ρ1(n) − (1 − λ)M.

Similarly, using the definition of viscosity supersolution, we have

(4.63)
t̄− s̄

β
− δes̄(1 + dα(ȳ, x0)) +H

(

ȳ,
d(x̄, ȳ)

ǫ
+ δαes̄dα−1(ȳ, x0)

)

− f(ȳ) ≥ µ

T 2
− ρ1(n)

for some function, still denoted by ρ1, such that limn→+∞ ρ1(n) = 0 for fixed λ, µ, δ, ǫ, β. We

choose τ such that

(4.64) r := γ

(

1 + λ

2λ

)

− τγ

(

1

τ

)

> 0.

The convexity of H, together with (B2) and (B3), implies

H

(

ȳ,
d(x̄, ȳ)

ǫ
+ δαes̄dα−1(ȳ, x0)

)

≤ τH

(

ȳ,
1

τ

d(x̄, ȳ)

ǫ

)

+ (1 − τ)H

(

ȳ,
1

1 − τ
δαes̄dα−1(ȳ, x0)

)

≤ τγ

(

1

τ

)

H

(

ȳ,
d(x̄, ȳ)

ǫ

)

+ C2(α, λ, T )δm(1 + d(ȳ, x0))
κdm(α−1)(ȳ, x0)(4.65)

Combining (4.63) with (4.65) we thus again have that for δ < δ1 = δ1(λ, T, α, κ,m)

(4.66)
t̄− s̄

β
+ τγ

(

1

τ

)

H

(

ȳ,
d(x̄, ȳ)

ǫ

)

− f(ȳ) ≥ µ

T 2
− ρ1(n).

Subtracting (4.66) from (4.62) and using (4.64) we obtain

rH

(

x̄,
d(x̄, ȳ)

ǫ

)

+ τγ

(

1

τ

)(

H

(

x̄,
d(x̄, ȳ)

ǫ

)

−H

(

ȳ,
d(x̄, ȳ)

ǫ

))

+ f(ȳ) − f(x̄)

≤ −2µ

T 2
+ 2ρ1(n) − (1 − λ)M
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which, by (B4), (B5) and (A5), implies

rθ

(

d(x̄, ȳ)

ǫ

)m

− τγ

(

1

τ

)

ωRδ
(d(x̄, ȳ))

(

1 +

(

d(x̄, ȳ)

ǫ

)m)

≤ σRδ
(d(x̄, ȳ)) − 2µ

T 2
+ 2ρ1(n) − (1 − λ)M.

We now take λ0 < λ < 1 such that

−2µ

T 2
− (1 − λ)M ≤ − µ

T 2
.

Then, for such λ, 0 < µ < µ0, 0 < δ < min(δ0, δ1), and ǫ, β, 1/n sufficiently small, we have
(

rθ − τγ

(

1

τ

)

ωRδ
(d(x̄, ȳ))

)(

d(x̄, ȳ)

ǫ

)m

≤ − µ

T 2
+ τγ

(

1

τ

)

ωRδ
(d(x̄, ȳ)) + σRδ

(d(x̄, ȳ)) + 2ρ1(n).(4.67)

Taking limǫ→0 lim supβ→0 lim supn→+∞ in (4.67) and using (3.31) gives a contradiction since

the left hand side will become nonnegative and the right hand side will become negative.

4.2. Existence of a solution; The value function. Throughout this subsection we assume

that L ∈ C
(

S × [0,∞)
)

, for each x ∈ S, L(x, ·) is monotone nondecreasing, and there exist

a monotone nondecreasing function 0 ≤ ̺ ∈ C([0,∞) and for each R > 0 there exists a

modulus ω̄R such that if d(x, x0), d(y, x0) ≤ R then for r ≥ 0 we have

(4.68) |L(x, r) − L(y, r)| ≤ ̺(r)ω̄R
(

d(x, y)
)

.

We also assume there are functions L : [0,∞) → R and W : S → R such that if r ≥ 0 and

x ∈ S then

(4.69) L(x, r) ≥ L(r) −W(x),

where there are real numbers C0, C1 ≥ 0, θ ≥ 1 and a continuous function α : [0,+∞) →
[0,+∞) such that limr→+∞ α(r) = +∞ and

(4.70) L(r) ≥ α(r)rθ − C0, r ≥ 0,

(4.71) W(x) ≤ C1

(

dθ(x0, x) + 1
)

, x ∈ S.

Moreover we assume that g satisfies (A5) and

(4.72) − g(x) ≤ C1

(

dθ(x0, x) + 1
)

.

We define the Hamiltonian

(4.73) H(x, s) = sup
r>0

{sr − L(x, r)} , s ≥ 0.

The proof of the following lemma is elementary and will be skipped.

Lemma 4.3. We have:
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(i) For each x ∈ S, H(x, ·) is monotone nondecreasing.

(ii) If 0 ≤ s < η, then

Hη(x, s) = H(x, 0) = sup
r>0

{(s − η)r − L(x, r)} .

We define the value function u:

u(t, x) = inf
σ
{
∫ t

0
L
(

σ(s), |σ′|(s)
)

ds+ g(σ(0)) : σ(t) = x},

where the infimum is performed over the set of absolutely continuous paths σ : [0, t] → S,

and |σ′|(s) is the metric derivative of σ, see [2], pages 23-24.

The path σ(s) ≡ x is used to obtain

(4.74) u(t, x) ≤ tL(x, 0) + g(x).

Remark 4.4. Let t ∈ (0, T ], let x ∈ S and let σ : [0, t] → S be an absolutely continuous curve

such that σ(t) = x.

(i) There is a constant C2 independent of x and z ∈ S such that

(4.75) − g(z), W (z) ≤ C2

(

dθ(z, x) + dθ(x, x0) + 1
)

, z ∈ S.

(ii) There is a constant CT independent of t, x, σ, such that

(4.76)

∫ t

0
L(σ(s), |σ′|(s))ds + g(σ(0)) ≥ 1

2

∫ t

0
α(|σ′|(τ))|σ′|θ(τ)dτ − CT (dθ(x, x0) + 1).

(iii) For every R > 0 there exists a constant C(R) depending only on R such that if

d(x0, x) ≤ R and

(4.77) u(t, x) ≥ −1 +

∫ t

0
L
(

σ(s), |σ′|(s)
)

ds+ g(σ(0))

then

(4.78)

∫ t

0
α(|σ′|(τ))|σ′|θdτ ≤ C(R) and W(σ(s)) ≤ C(R).

Proof. (i) Using the fact that a→ aθ is a convex function, (4.71) and (4.72) yield (4.75).

(ii) We recall Jensen’s inequality:
(

∫ t

0
|σ′|dτ

)θ
≤ tθ−1

∫ t

0
|σ′|θdτ.

We set z = σ(s) in (4.75), where s ∈ [0, t] and first use the fact that d(σ(s), σ(t)) ≤
∫ t
0 |σ′|dτ

and then Jensen’s inequality to obtain

− g(σ(0)), W (σ(s)) ≤ C2

(

(

∫ t

0
|σ′|dτ

)θ
+ dθ(x, x0) + 1

)

≤ C

(

tθ−1

∫ t

0
|σ′|θdτ + dθ(x, x0) + 1

)

(4.79)
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and so,
∫ t

0
−W (σ(s))ds+ g(σ(0)) ≥ −C̃T

(
∫ t

0
|σ′|θdτ + dθ(x, x0) + 1

)

.

This, together with (4.69) and (4.70 ) yields
∫ t

0
L(σ(s), |σ′|(s))ds + g(σ(0)) ≥

∫ t

0

(

L(|σ′|) − C̃T |σ′|θ
)

dτ − C̃T (dθ(x, x0) + 1)

≥ 1

2

∫ t

0
α(|σ′|(τ))|σ′|θ(τ)dτ − CT (dθ(x, x0) + 1)

for some CT .

(iii) We combine (4.74), (4.76) and (4.77) to obtain
∫ t

0
α(|σ′|)|σ′|θdτ ≤ 2(1 + CT (dθ(x, x0) + 1) + u(t, x))

≤ 2(1 + CT (dθ(x, x0) + 1) + g(x) + tL(x, 0)) ≤ C(R)

for some constant C(R) by (A5) and (4.68). This, together with (4.79) completes the proof

of (iii) after we readjust C(R).

Lemma 4.5. If σ is a path satisfying (4.77), σ(t) = x, and d(x, x0) ≤ R, then there is a

modulus of continuity ρR, independent of t, x, σ, such that

(4.80) d
(

σ(s1), σ(s2)
)

≤ ρ̄R(|s2 − s1|), 0 ≤ s1, s2 ≤ t.

Moreover there is a constant C1(R) such that

(4.81) d(σ(s), x0) ≤ C1(R), 0 ≤ s ≤ t.

Proof. We will only deal with the case θ = 1 since the case θ > 1 follows easily from Hölder’s

inequality. If (4.80) is not true then there is δ > 0, points 0 ≤ tn ≤ T, xn ∈ S, d(xn, x0) ≤ R,

paths σn, σn(tn) = xn, and 0 ≤ s1n ≤ s2n ≤ tn, such that s2n − s1n =: ǫn → 0 as n→ +∞ and

d
(

σ(s1n), σ(s2n)
)

≥ δ.

Denote

An :=

{

s : s1n ≤ s ≤ s2n, |σ′n|(s) ≥
δ

2ǫn

}

.

Since
∫ s2n

s1n

|σ′n|ds ≥ δ,

we must have
∫

An

|σ′n|ds ≥
δ

2
.

Thus, by (4.78),

C(R) ≥
∫

An

α(|σ′n|)|σ′n|ds ≥ α

(

δ

2ǫn

)
∫

An

|σ′n|ds ≥ α

(

δ

2ǫn

)

δ

2
.
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This gives a contradiction if n is large enough. Inequality (4.81) now follows from

d(σ(s), x0) ≤ d(σ(s), σ(t)) + d(x, x0) ≤ ρR(t) + d(x, x0) ≤ ρR(T ) +R =: C1(R).

Lemma 4.6. Assume 0 ≤ t < t+ h ≤ T and x ∈ S is such that d(x0, x) ≤ R,R > 0. Then

there exists a modulus of continuity eR depending only on R such that

|u(t+ h, x) − u(t, x)| ≤ eR(h).

Proof. For each ǫ ∈ (0, 1), let σǫ : [0, t] → S be a path such that σǫ(t) = x and

(4.82) u(t, x) ≥ −ǫ+

∫ t

0
L
(

σǫ(s), |σ′ǫ|(s)
)

ds+ g(σǫ(0)).

We extend σǫ to (t, t + h] by setting its value to be x there, and we continue to denote the

extension σǫ. We have

u(t+ h, x) ≤
∫ t+h

0
L
(

σǫ(s), |σ′ǫ|(s)
)

ds+ g(σǫ(0)) ≤ ǫ+ u(t, x) +

∫ t+h

t
L
(

x, 0
)

ds.

We set r = 0 and y = x0 in (4.68) and use the fact that ǫ is arbitrary to obtain a constant

c0(R) > 0 such that

(4.83) u(t+ h, x) − u(t, x) ≤ c0(R)h.

For each ǫ ∈ (0, 1), let σǫ : [0, t+ h] → S be a path such that σǫ(t+ h) = x and

(4.84) u(t+ h, x) ≥ −ǫ+

∫ t+h

0
L
(

σǫ(s), |σ′ǫ|(s)
)

ds+ g(σǫ(0)).

By (4.80) and (4.81 ) we have

(4.85) d
(

σǫ(s1), σǫ(s2)
)

≤ ρ̄R(|s2 − s1|), d(σǫ(s), x0) ≤ C1(R), 0 ≤ s1, s2 ≤ t+ h.

Therefore (4.69) and (4.71) yield for s ∈ [0, t+ h]

(4.86) L(σǫ(s), |σ′ǫ|(s)) ≥ −C0 − C1

(

1 + (C1(R))θ
)

.

Define

σ̄ǫ(s) := σǫ(s+ h) s ∈ [0, t].

We have σ̄ǫ(t) = x and so,

u(t+ h, x) − u(t, x) ≥ −ǫ+

∫ t+h

0
L
(

σǫ(s), |σ′ǫ|(s)
)

ds+ g(σǫ(0))

−
∫ t

0
L
(

σ̄ǫ(s), |σ̄′ǫ|(s)
)

ds− g(σ̄ǫ(0))

= −ǫ+ g(σǫ(0)) − g(σǫ(h)) +

∫ h

0
L
(

σǫ(s), |σ′ǫ|(s)
)

ds(4.87)
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We use (4.85) and the fact that g satsifies (A5) to obtain

|g(σǫ(0)) − g(σǫ(h))| ≤ σC1(R)

(

d(σǫ(0), σǫ(h))
)

≤ σC1(R)

(

ρ̄(h)
)

.

This, together with (4.86), gives

u(t+ h, x) − u(t, x) ≥ −ǫ− σC1(R)

(

ρ̄(h)
)

−
(

C0 + C1

(

1 + (C1(R))θ
))

h.

We can now send ǫ → 0 in this inequality and combine it with (4.83) to conclude the proof

of the lemma.

Proposition 4.7. Under the assumptions of this section, for every R > 0, u is uniformly

continuous on [0, T ] × {x : d(x, x0) ≤ R}.

Proof. Fix R > 0 and let t ∈ [0, T ]. Let x, y ∈ S be such that d(x, x0), d(y, x0) ≤ R. We

set s := d(x, y). Substituting x by y if necessary, we assume without loss of generality that

u(t, x) ≤ u(t, y).

For ǫ > 0 arbitrary, we choose σǫ as in (4.82). We extend σǫ to (t, t+ s] to be a geodesic

connecting x to y so that the extension, which we continue to denote σǫ, satisfies

|σ′ǫ|(τ) =
d(x, y)

s
= 1, τ ∈ (t, t+ s).

Using the fact that σǫ(t+ s) = y and that (4.82) holds, we have

u(t, y) ≤
∫ t+s

s
L
(

σǫ(τ), |σ′ǫ|(τ)
)

dτ + g(σǫ(s))

≤ ǫ+ u(t, x) −
∫ s

0
L
(

σǫ(τ), |σ′ǫ|(τ)
)

dτ +

∫ t+s

t
L
(

σǫ(τ),
d(x, y)

s

)

dτ + g(σǫ(s)) − g(σǫ(0)).

We have

d(σǫ(τ), x) ≤ d(x, y) =⇒ d(σǫ(τ), x0) ≤ 3R.

Moreover, denoting t1 = min(s, t), we have by (4.80)

|g(σǫ(s)) − g(σǫ(0))| ≤ |g(σǫ(s)) − g(σǫ(t1))| + |g(σǫ(t1)) − g(σǫ(0))|
≤ σ3R(s − t1) + σ3R(ρ̄(t1)) ≤ σ3R(d(x, y)) + σ3R(ρ̄(d(x, y))).

These, together with (4.68), (4.70 ) (4.71), yield for some constant C3(R)

|u(t, y) − u(t, x)| ≤ ǫ+ C3(R)d(x, y) + d(x, y) sup
d(z,x0)≤3R

|L
(

z, 1
)

|

+ σ3R(d(x, y)) + σ3R(ρ̄(d(x, y))).

The lemma follows by sending ǫ→ 0 above and invoking Lemma 4.6.

We will use the principle of optimality called the Dynamic Programming Principle. It

states that for every 0 ≤ t− ǫ ≤ t ≤ T and x ∈ S,

(4.88) u(t, x) = inf
σ
{
∫ t

t−ǫ
L
(

σ(s), |σ′|(s)
)

ds+ u(t− ǫ, σ(t− ǫ)) : σ(t) = x},
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where the infimum is taken over the set of absolutely continuous paths σ : [0, t] → S. Its proof

is the same as for finite dimensional spaces (see e.g. [28]) and will be omitted.

Theorem 4.8. Let the assumptions of this section be satisfied. Then:

(i)

lim
t→0+

|u(t, x) − g(x)| = 0

uniformly on bounded subsets of S.

(ii) u is a metric viscosity subsolution of

(4.89) ∂tu+H(x, |∇u|) = 0, u(0, ·) = u0.

(iii) u is a metric viscosity supersolution of (4.89).

Proof. For all x ∈ S we have u(0, x) = g(x) and (i) follows from Proposition 4.7.

Viscosity sub-solution. Let ψ ∈ C be such that u − ψ achieves its local maximum at

(t, x) ∈ (0, T ) × S. Fix r > 0 arbitrary. Since |∇−ψ1| = |∇ψ1| there exists a sequence

{xn}n ⊂ S such that

(4.90) |∇−ψ1(t, x)| = lim
n→+∞

ψ1(t, x) − ψ1(t, xn)

dist(xn, x)
.

Set

ǫn =
dist(xn, x)

r
.

Note that if σn is a geodesic of constant speed connecting xn and x between times t− ǫn and

t then, whenever t1, t2 ∈ [0, t],

(4.91) |σ′n| =
dist(xn, x)

ǫn
= r, dist(σn(t2), σn(t1)) = |t2 − t1|

dist(xn, x)

ǫn
= |t2 − t1|r.

By the Dynamic Programming Principle (4.88)

u(t, x) ≤ u(t− ǫn, xn) +

∫ t

t−ǫn

L(σn, |σ′n|)ds,

or equivalently, thanks to (4.91) and using that σn(t) = x,

(4.92) u(t, x) ≤ u(t− ǫn, xn) + ǫnL(x, r) +

∫ t

t−ǫn

(

L(σn(s), r) − L(σn(t), r)
)

ds.

Setting t2 = t in (4.91) we conclude that

(4.93) dist(x0, σn(t1)) ≤ rt+ d(x, x0) =: R.

We use the modulus of continuity provided by (4.68) to obtain
∫ t

t−ǫn

∣

∣

∣
L(σn(s), r) − L(σn(t), r)

∣

∣

∣
ds ≤

∫ t

t−ǫn

̺(r)ω̄R

(

dist(σn(s), σn(t))
)

ds.
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This, together with the second identity in (4.91), yields
∫ t

t−ǫn

∣

∣

∣
L(σn(s), r) − L(σn(t), r)

∣

∣

∣
ds ≤

∫ t

t−ǫn

̺(r)ω̄R

(

|t− s|r
)

ds ≤ ǫn̺(r)ω̄(ǫnr)

and so, by (4.92),

(4.94) u(t, x) ≤ u(t− ǫn, xn) + ǫnL(x, r) + ǫnω̄R(ǫnr)̺(r).

Observe that, by the local maximality of u− ψ at (t, x) and (4.90),

u(t, x) − u(t− ǫn, xn)

ǫn
≥ ψ(t, x) − ψ(t− ǫn, xn)

ǫn

=
ψ1(t, x) − ψ1(t, xn)

ǫn
+
ψ2(t, x) − ψ2(t, xn)

ǫn
+
ψ(t, xn) − ψ(t− ǫn, xn)

ǫn

≥ (|∇ψ1(t, x)| − |∇ψ2(t, x)| + γ1(n))r +

∫ t

t−ǫn

∂tψ(s, xn)

ǫn
ds

= (|∇ψ1(t, x)| − |∇ψ2(t, x)|)r + ∂tψ(t, x) + γ2(n),(4.95)

where limn→+∞ γ1(n) = limn→+∞ γ2(n) = 0. Therefore (4.95), together with (4.94), implies
(

|∇ψ1(t, x)| − |∇ψ2(t, x)|
)

r + ∂tψ(t, x) + γ2(n) ≤ L(x, r) + ̺(r)ω̄R(ǫnr).

Letting n tend to +∞ we get

(4.96)
(

|∇ψ1(t, x)| − |∇ψ2(t, x)|
)

r − L(x, r) + ∂tψ(t, x) ≤ 0.

Maximizing over r > 0 in (4.96), Lemma 4.3 thus yields

(4.97) H|∇ψ2(t,x)|

(

x, |∇ψ1(t, x)|
)

+ ∂tψ(t, x) ≤ 0.

Viscosity super-solution. Let ψ ∈ C̄ be such that u − ψ achieves its local minimum at

(t, x) ∈ (0, T ) × S. For each ǫ > 0 there exists σǫ : [0, t] → S such that σǫ(t) = x and

(4.98) u(t, x) ≥ −ǫ2 +

∫ t

0
L(σǫ, |σ′ǫ|)ds + g(σǫ(0)).

Thus, setting σǫ(t− ǫ) = xǫ, we must also have

(4.99) u(t, x) ≥ −ǫ2 + u(t− ǫ, xǫ) +

∫ t

t−ǫ
L(σǫ, |σ′ǫ|)ds.

By Lemma 4.5, (4.98) implies limǫ→0 d(x, xǫ) = 0. By the minimality of u− ψ at (t, x)

(4.100)
ψ(t, x) − ψ(t− ǫ, xǫ)

ǫ
≥ u(t, x) − u(t− ǫ, xǫ)

ǫ
.

Similarly as before one checks that

ψ(t, x) − ψ(t− ǫ, xǫ)

ǫ
≤
(

|∇ψ1(t, x)| + |∇ψ2(t, x)| + γ3(ǫ)
)dist(xǫ, x)

ǫ
+ ∂tψ(t, x) + γ3(ǫ)

for some modulus γ3. Therefore we conclude that

(4.101)

ψ(t, x) − ψ(t− ǫ, xǫ)

ǫ
≤
(

|∇ψ1(t, x)| + |∇ψ2(t, x)| + γ3(ǫ)
)

∫ t
t−ǫ |σ′ǫ|ds

ǫ
+ ∂tψ(t, x) + γ3(ǫ).

28



We combine (4.99), (4.100) and (4.101) to obtain

−ǫ− γ3(ǫ) ≤
1

ǫ

∫ t

t−ǫ

(

(

|∇ψ1(t, x)| + |∇ψ2(t, x)| + γ3(ǫ)
)

|σ′ǫ| − L(σǫ, |σ′ǫ|)
)

ds+ ∂tψ(t, x).

Thus,

−ǫ− γ3(ǫ) ≤
1

ǫ

∫ t

t−ǫ
H
(

σǫ, |∇ψ1(t, x)| + |∇ψ2(t, x)| + γ3(ǫ)
)

ds+ ∂tψ(t, x).

Using the equicontinuity of σǫ and the fact that H is continuous, and letting ǫ tend to 0, we

conclude that

0 ≤ H
(

x, |∇ψ1(t, x)| + |∇ψ2(t, x)|
)

+ ∂tψ(t, x)

= H |∇ψ2(t,x)|
(

x, |∇ψ1(t, x)|
)

+ ∂tψ(t, x).

Remark 4.9. The proof of Theorem 4.8 would also work in the case when L(x, ·) is not

nondecreasing. The only difference would be that in the proof of the subsolution part, if

|∇ψ1(t, x)| − |∇ψ2(t, x)| < 0 we would get instead of (4.97)

H̃|∇ψ2(t,x)|

(

x, |∇ψ1(t, x)|
)

+ ∂tψ(t, x) ≤ 0,

where H̃(x, s) = supr>0{sr − L(x, r)}, s ∈ R. We have H̃(x, s) = H(x, s) if s ≥ 0 however

we would need to use this extension of H to define a metric viscosity subsolution. Thus we

would obtain that u is a metric viscosity solution of (4.89) with H replaced by H̃. This kind

of extension was also used in [1]. However using negative values for the local slope variable

seems rather artificial. We suggest an idea how one can get around this even though we do

not pursue it here. If we take L̄(x, s) = H∗(x, s) := supr>0{sr − H(x, r)}, then (L̄)∗ = H

but L̄(x, ·) is nondecreasing. Assuming that L̄ has properties similar to these of L, one can

then show that the value function ū for the problem associated with L̄ is continuous and ū is

a metric viscosity solution of (4.89) (with the original H). Since H̃r ≤ Hr, ū is also a metric

viscosity solution of (4.89) with H replaced by H̃. So u and ū are both viscosity solutions

of the same equation. If H̃ satisfies the properties needed for comparison theorem we then

obtain ū = u, i.e. u is a metric viscosity solution of the original equation (4.89). This is why

we stated the assumptions in this paper for Hamiltonians which are also defined for negative

values of the local slope variable.

5. Stationary Equations

We present three comparison theorems. The first is a typical result for time independent

equations with Hamiltonians that have at most linear growth in the local slope variable. The
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second is a stationary version of Theorem 4.2, and the third is a result for equations of eikonal

type.

5.1. Hamiltonians with sublinear growth.

Theorem 5.1 (A comparison principle for bounded solutions). Let Ω = S. Let (A1), (A3), (A4),

and (A2) with ν > 0 be satisfied. Let u be a metric viscosity subsolution of (1.3) and v be a

metric viscosity supersolution of (1.3) such that u and −v are bounded from above. Then

(5.102) m := lim
R→+∞

lim
γ→0

sup
{

u(x) − v(y) : d(x, y) < γ, d(x, x0) + d(y, x0) ≤ R
}

≤ 0.

In particular u ≤ v in S.

Proof. The proof follows the lines of the proof of Proposition 3.3. Suppose m > 0. Define for

ǫ, δ > 0

Ψ(x, y) = u(x) − v(y) − δd2(x, x0) − δd2(y, x0) −
d2(x, y)

2ǫ
,

and let, for n ≥ 1, x̄, ȳ ∈ S be such that

Ψ(x, y) − 1

n
(d(x, x̄) + d(y, ȳ))

has a maximum over S × S at (x̄, ȳ). Obviously d(x̄, x0) + d(ȳ, x0) ≤ Rδ for some Rδ > 0.

Similarly to the proof in the time dependent case we show that

(5.103) lim
ǫ→0

lim sup
n→∞

d2(x̄, ȳ)

ǫ
= 0 for every δ > 0,

(5.104) lim
δ→0

lim sup
ǫ→0

lim sup
n→∞

δ(d2(x̄, x0) + d2(ȳ, x0)) = 0,

and that for sufficiently small δ, ǫ and sufficiently large n

(5.105) lim
δ→0

lim sup
ǫ→0

lim sup
n→∞

(u(x̄) − v(ȳ)) >
m

2
.

We now have

H2δd(x̄,x0)+1/n

(

x̄, u(x̄),
d(x̄, ȳ)

ǫ

)

≤ 0,

which by Remark 3.1 and (5.104) implies

H

(

x̄, u(x̄),
d(x̄, ȳ)

ǫ

)

≤ L(1 + d(x̄, x0))(2δd(x̄, x0) + 1/n) ≤ σ(δ, ǫ, n),

where limδ→0 lim supǫ→0 lim supn→∞ σ(δ, ǫ, n) = 0. In the same way we obtain

H

(

ȳ, v(ȳ),
d(x̄, ȳ)

ǫ

)

≥ −σ(δ, ǫ, n).

Therefore, by (A2) and (A3),

ν(u(x̄) − v(ȳ)) ≤ H

(

ȳ, u(x̄),
d(x̄, ȳ)

ǫ

)

−H

(

x̄, u(x̄),
d(x̄, ȳ)

ǫ

)

+ 2σ(δ, ǫ, n)

≤ ωR̃δ

(

d(x̄, ȳ)
(

1 +
d(x̄, ȳ)

ǫ

)

)

+ 2σ(δ, ǫ, n)
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for some R̃δ > 0. This, together with (5.103) and (5.105), produces a contradiction.

5.2. Hamiltonians with superlinear growth. We consider the equation

(5.106) u+H(x, |∇u|) − f(x) = 0 in S.

Theorem 5.2 (A comparison principle for solutions which may be unbounded). Let (B1)−
(B6) be true and let f satisfy (A5). Let u be a metric viscosity subsolution of (5.106) and v

be a metric viscosity supersolution of (5.106) satisfying

(5.107) lim sup
d(x,x0)→+∞

u(x)

1 + dα(x, x0)
≤ 0, lim sup

d(x,x0)→+∞

−v(x)
1 + dα(x, x0)

≤ 0.

Then u ≤ v.

Proof. The proof mostly repeats the arguments of the proof of Theorem 4.2. If sup(u− v) ≥
2ν1 > 0 then there is λ0 < 1 such that sup(λu − v) ≥ ν1 for λ0 < λ < 1. We define for

λ0 < λ < 1, δ > 0, ǫ > 0 the function

Ψ(x, y) = λu(x) − v(y) − δ(1 + dα(x, x0)) − δ(1 + dα(y, x0)) −
d2(x, y)

2ǫ
.

Since by (5.107), Ψ(x, y) → −∞ as min(d(x, x0), d(y, x0)) → +∞, uniformly for ǫ, using

Lemma 2.9, for every n ≥ 1 there are (x̄, ȳ) ∈ BRδ
(x0) ×BRδ

(x0) for some Rδ > 0 such that

Ψ(x, y) − 1

n
(d(x, x̄) + d(y, ȳ))

has a maximum over S× S at (x̄, ȳ). Moreover by an argument as in the proof of Proposition

3.3, (5.103) is satisfied and, for λ sufficiently close to 1,

(5.108) lim
δ→0

lim sup
ǫ→0

lim sup
n→∞

(λu(x̄) − v(ȳ) − δ(1 + dα(x̄, x0)) − δ(1 + dα(ȳ, x0))) >
ν1

2
.

By the definition of viscosity subsolution we have

(5.109) u(x̄) +H

(

x̄,
1

λ

(d(x̄, ȳ)

ǫ
− δαdα−1(x̄, x0)

)

)

− f(x̄) ≤ ρ1(n),

where limn→+∞ ρ1(n) = 0 for fixed λ, δ, ǫ. Repeating the arguments that led to (4.60) we

obtain

H

(

x̄,
1

λ

(d(x̄, ȳ)

ǫ
− δαdα−1(x̄, x0)

)

)

≥ 1

η
H

(

x̄,
η

λ

d(x̄, ȳ)

ǫ

)

− (1 − η)

η
H

(

x̄,
η

1 − η

δαdα−1(x̄, x0)

λ

)

≥ 1

λ
γ

(

1 + λ

2λ

)

H

(

x̄,
d(x̄, ȳ)

ǫ

)

− C1(α, λ)δm(1 + d(x̄, x0))
κdm(α−1)(x̄, x0),(5.110)

where η = (1 + λ)/2 and we used (B2) and (B3). Since for δ < δ0 = δ0(λ, α, κ,m)

C1(α, λ)δm(1 + d(x̄, x0))
κdm(α−1)(x̄, x0) ≤

δ

λ
(1 + dα(x̄, x0)),
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it thus follows from (5.109) and (5.110) that for δ < δ0

u(x̄) − δ

λ
(1 + dα(x̄, x0)) +

1

λ
γ

(

1 + λ

2λ

)

H

(

x̄,
d(x̄, ȳ)

ǫ

)

− f(x̄) ≤ ρ1(n),

which, by (B6) implies

(5.111) λu(x̄) − δ(1 + dα(x̄, x0)) + γ

(

1 + λ

2λ

)

H

(

x̄,
d(x̄, ȳ)

ǫ

)

− f(x̄) ≤ ρ1(n) − (1 − λ)M.

Defining τ and r as in (4.64) and arguing like in (4.65) we also obtain for δ < δ1 =

δ1(λ, α, κ,m)

(5.112) v(ȳ) + δ(1 + dα(ȳ, x0)) + τ γ̄

(

1

τ

)

H

(

ȳ,
d(x̄, ȳ)

ǫ

)

− f(ȳ) ≥ −ρ1(n).

Subtracting (5.112) from (5.111) yields

λu(x̄) − v(ȳ) − δ(1 + dα(x̄, x0)) − δ(1 + dα(ȳ, x0))

≤ −rH
(

x̄,
d(x̄, ȳ)

ǫ

)

− τ γ̄

(

1

τ

)(

H
(

x̄,
d(x̄, ȳ)

ǫ

)

−H
(

ȳ,
d(x̄, ȳ)

ǫ

)

)

+ f(x̄) − f(ȳ) + 2ρ1(n) − (1 − λ)M

≤ −rθ
(

d(x̄, ȳ)

ǫ

)m

+ τγ

(

1

τ

)

ωRδ
(d(x̄, ȳ))

(

1 +
(d(x̄, ȳ)

ǫ

)m
)

+ σRδ
(d(x̄, ȳ)) + 2ρ1(n) − (1 − λ)M(5.113)

We now obtain a contradiction if we choose λ0 < λ < 1 such that −(1 − λ)M < ν1/4, take

limδ→0 lim supǫ→0 lim supn→∞ in (5.113), and use (5.103) and (5.108).

5.3. Eikonal type equations. In this section we consider equations which are not “proper”,

i.e. they are not strictly monotone in the zero order variable. In such cases a typical tech-

nique is to perturb a subsolution/supersolution so that a perturbed function is a subsolu-

tion/supersolution of the equation with strict inequality. There are various ways to do it.

Here we present a standard technique which applies to equations of eikonal type. We refer to

[47] for more on such techniques in domains of R
n.

Let Ω be an open and bounded subset of S. We consider the equation

{

a(x)|∇u| − f(x) = 0, in Ω,
u(x) = g(x) on ∂Ω.

Defining

H(x, s) =

{

a(x)s s ≥ 0,
0 s < 0,

we rewrite the above equation as

(5.114)

{

H(x, |∇u|) − f(x) = 0, in Ω,
u(x) = g(x) on ∂Ω.

We assume that
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• (D1)

|a(x) − a(y)| ≤ Cd(x, y), for all x, y ∈ Ω.

Theorem 5.3. Let Ω be an open and bounded subset of S, let (D1) be true, and let f satisfy

(A5) on Ω and (B6) on Ω with M > 0. Let g be uniformly continuous on ∂Ω. Let u be a

metric viscosity subsolution of (5.114) and v be a metric viscosity supersolution of (5.114).

Suppose that

(5.115) u(y) ≤ g(x) + σ0(d(x, y)), v(y) ≥ g(x) − σ0(d(x, y)) for all x ∈ ∂Ω, y ∈ Ω,

for some modulus σ0. Then u ≤ v in Ω.

Proof. Recall that since Ω is bounded and u is locally bounded, u is bounded on Ω. If u 6≤ v

then for 0 < λ < 1 sufficiently close to 1, we have supΩ(λu − v) ≥ 2ν1 > 0. By Lemma 2.9,

for 0 < λ < 1, ǫ > 0, n ≥ 1 there are points (x̄, ȳ) ∈ Ω × Ω such that the function

Ψ(x, y) := λu(x) − v(y) − d2(x, y)

2ǫ
− 1

n
(d(x, x̄) + d(y, ȳ))

has a maximum over Ω × Ω at (x̄, ȳ). Moreover as before we have that (5.103) is satisfied.

Since Ω is a bounded set and (x̄, ȳ) maximizes Ψ then for n large enough

(5.116) λu(x̄) − v(ȳ) = Ψ(x̄, ȳ) +
d2(x̄, ȳ)

2ǫ
> ν1.

If we assume for instance that x̄ ∈ ∂Ω then, since u(x̄) ≤ g(x̄) and (5.115) holds,

(5.117) λu(x̄)−v(ȳ) ≤ λg(x̄)−v(ȳ) ≤ −(1−λ)g(x̄)+σ0

(

d(x̄, ȳ)
)

≤ −(1−λ)u(x̄)+σ0

(

d(x̄, ȳ)
)

.

Thus, since |λ− 1| << 1 and d(x̄, ȳ) << 1 if ǫ and 1/n are small, (5.116) contradicts (5.117).

Consequently, (x̄, ȳ) ∈ Ω × Ω if λ is sufficiently close to 1 and ǫ, 1/n are sufficiently small.

Therefore by the definition of viscosity subsolution

H1/(nλ)

(

x̄,
1

λ

d(x̄, ȳ)

ǫ

)

− f(x̄) ≤ 0,

which implies

(5.118) H

(

x̄,
d(x̄, ȳ)

ǫ

)

− λf(x̄) ≤ ρ1(λ, ǫ;n),

where limn→+∞ ρ1(λ, ǫ;n) = 0 for fixed λ, ǫ. Since f ≥M > 0, it follows

−λf(x̄) ≥ −f(x̄) +M(1 − λ),

and thus we obtain in (5.118)

(5.119) H

(

x̄,
d(x̄, ȳ)

ǫ

)

− f(x̄) ≤ −M(1 − λ) + ρ1(λ, ǫ;n).
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(We remark that the same argument shows that in fact λu is a metric viscosity subsolution

of H(x, |∇u|) − f +M(1 − λ) = 0.) Using the definition of viscosity supersolution we obtain

(5.120) H

(

ȳ,
d(x̄, ȳ)

ǫ

)

− f(ȳ) ≥ −ρ1(λ, ǫ;n).

Subtracting (5.119) from (5.120) we thus have

M(1 − λ) ≤ H

(

ȳ,
d(x̄, ȳ)

ǫ

)

−H

(

x̄,
d(x̄, ȳ)

ǫ

)

+ f(x̄) − f(ȳ) + 2ρ1(λ, ǫ;n)

≤ d(x̄, ȳ)

ǫ
|a(ȳ) − a(x̄)| + σ(d(x̄, ȳ)) + 2ρ1(λ, ǫ;n)

≤ C
d2(x̄, ȳ)

ǫ
+ σ(d(x̄, ȳ)) + 2ρ1(λ, ǫ;n)(5.121)

which gives a contradiction if we let limǫ→0 lim supn→∞ above and use (5.103).

We remark that if we know in advance that either u or v is more regular then condition

(D1) can be relaxed. In particular (see the proof of Theorem 3.7) if either u or v is Lipschitz

continuous, then (D1) can be replaced by the uniform continuity of a.
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[4] L. Ambrosio, N. Gigli and G. Savaré, Heat flow and calculus on metric measure spaces with Ricci curvature
bounded below - the compact case, preprint, 2012, ArXiv:1205.3288.

[5] Z. M. Balogh, A. Engulatov, L. Hunziker and O. E. Maasalo, Functional inequalities and Hamilton–Jacobi
equations in geodesic spaces, Potential Anal. 36 (2012), no. 2, 317–337.

[6] V. Barbu and G. Da Prato, Hamilton-Jacobi equations in Hilbert spaces, Research Notes in Mathematics,
no. 86, Pitman, Boston, MA, 1983.

[7] M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman
equations. With appendices by Maurizio Falcone and Pierpaolo Soravia, Systems & Control: Foundations
& Applications, Birkhuser Boston, Inc., Boston, MA, 1997.

[8] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio and C. Landim, Macroscopic fluctuation theory for
stationary non-equilibrium states, J. Statist. Phys., 107 (2002), no. 3–4, 635–675.

[9] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio and C. Landim, Large deviations for the boundary
driven symmetric simple exclusion process, Math. Phys. Anal. Geom., 6 (2003), no. 3, 231–267.

[10] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio and C. Landim, Minimum dissipation principle in
stationary non-equilibrium states, J. Statist. Phys., 116 (2004), no. 1–4, 831–841.

[11] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio and C. Landim, Stochastic interacting particle
systems out of equilibrium, J. Stat. Mech. Theory Exp., (2007), no. 7, 35 pp.

[12] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio and C. Landim, Action functional and quasi-potential
for the Burgers equation in a bounded interval, Comm. Pure Appl. Math., 64 (2011), no. 5, 649–696.

[13] L. Bertini, D. Gabrielli and J. L. Lebowitz, Large deviations for a stochastic model of heat flow, J. Stat.
Phys., 121 (2005) no. 5–6 843–885.

[14] P. Cannarsa, Piermarco and M. E. Tessitore, Infinite-dimensional Hamilton-Jacobi equations and Dirichlet
boundary control problems of parabolic type, SIAM J. Control Optim. 34 (1996), no. 6, 1831–1847.

34



[15] P. Cardialaguet, Notes on mean-field games (from P-L. Lions’ lectures at Collège de France), 2013,
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