
Weak KAM Theory on the Wasserstein Torus
with Multidimensional Underlying Space

WILFRID GANGBO
Georgia Institute of Technology

ADRIAN TUDORASCU
West Virginia University

Abstract

The study of asymptotic behavior of minimizing trajectories on the Wasserstein
space P.Td / has so far been limited to the case d D 1 as all prior stud-
ies heavily relied on the isometric identification of P.T / with a subset of the
Hilbert space L2.0; 1/. There is no known analogue isometric identification
when d > 1. In this article we propose a new approach, intrinsic to the Wasser-
stein space, which allows us to prove a weak KAM theorem on P.Td /, the
space of probability measures on the torus, for any d � 1. This space is analyzed
in detail, facilitating the study of the asymptotic behavior/invariant measures as-
sociated with minimizing trajectories of a class of Lagrangians of practical im-
portance. © 2013 Wiley Periodicals, Inc.
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1 Introduction
It is now well-known that some systems of PDEs have an underlying Hamilton-

ian structure in the space of probability measures with finite second moments. It
has been shown in [12] that such systems arise as Euler-Lagrange equations for
action-minimizing trajectories associated with certain Lagrangians defined on the
tangent bundle to the Wasserstein space [2]. However, most of the analysis per-
formed in [12] (for example, on existence of these minimizing trajectories) was
carried out in the case of one-dimensional underlying euclidean space and “me-
chanical” Lagrangians only. We note that the Lagrangian considered determines
the choice of the cost function associated to the optimal transport distance used in
the analysis (see [15], where the p-Wasserstein space appears). It is not our pur-
pose here to work in full generality (as far as the Lagrangians considered); instead
we shall restrict ourselves to the case of “mechanical” Lagrangians, which, at least
from the applications point of view, may be the most interesting. It remains an in-
teresting endeavor to extend the results of this paper to more general Lagrangians.

As far as the restriction to the one-dimensional setting is concerned, the main
reason was an apparent lack of necessary compactness in general, which, solely
in the d D 1 case, was offset by the isometric identification of the 2-Wasserstein
space with the convex cone of nondecreasingL2.0; 1/-functions. Subsequent work
[11, 13–15] upheld this restriction for the most part, although some interesting
homogenization results were proved in the general case in [15]. The authors have
searched for the correct setting and methodology to extend infinite-dimensional
weak KAM results from the P2.R/ case developed in [13, 14] to the P2.Rd /
case ever since those works were in progress.

In [13, 14] the manifold considered is an appropriate factorization of the set
of monotone nondecreasing L2.0; 1/-functions. This is isometric with the space
P.T / (Borel probabilities on the one-dimensional torus), which is compact in
the topology induced by the Z-periodic 2-Wasserstein distance (details in [13] and
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below). Said compactness remains true for the multidimensional torus Td , and
we show that the tangent bundle to P.Td / is relatively compact with respect to
an appropriate topology, so at least this important ingredient from classical, finite-
dimensional weak KAM is there for us.

A natural definition of gradient in the 2-Wasserstein space, along with the func-
tional indistinguishability of the support points for a probability given by an av-
erage of Dirac masses, yields that Rd fits the role of the de Rham cohomology
group for P.Td /. However, the similarities with the finite-dimensional case stop
there. One of the main differences, which also constitutes an analytical challenge,
is the nonuniqueness of the velocity field associated with an absolutely continuous
curve in P.Td /. Only one such velocity field (of minimal norm) lies in the tan-
gent bundle, but this is not always the relevant one, so an extension of the tangent
bundle is necessary. The relevant velocity (for a given absolutely continuous curve
in P.Td /) is the minimizer of the Lagrangian action. It turns out that for each
c 2 Rd there is a unique c-minimal velocity for an absolutely continuous curve on
P.Td /, all these velocities being distinguished by the choice of c.

The rotation vector of a continuous path Œ0;1/ 3 t ! x.t/ 2 Td is the
asymptotic limit of yx.t/=t , where yx is a lift of the path x to the universal cover
Rd . Any two such lifts differ by a constant (independent of t ) integer, so it is
clear that the rotation vector (if it exists) is well-defined (independently of the lift).
Things are different in the P.Td / case: first, due to the nonuniqueness of the
velocity field along a curve, the notion of lift does not make sense in the context
of lifting a continuous path of probabilities in P.Td / to a continuous path in
P2.Rd /. Instead, we have a well-defined notion of lift for a speed curve .�; v/,
where v is a velocity along the path � . Second, we have not been able to prove that
every speed curve can be lifted. However, that has no impact on our study, as we
only need to lift pairs .�; vc/, where vc is the c-minimal periodic velocity of � .

The treatment of some first-order nonlinear conservative systems of PDEs as
Hamiltonian flows in the context of optimal transport was initiated by Ambrosio
and Gangbo [1]. Given a Hamiltonian functional H defined on the Wasserstein
space P2.R2d /, a natural concept of gradient in P2.R2d / is used to make sense
of the system

(1.1) @t� Cr.y;p/ � ŒJrwH .�/� D 0;

where J is a constant 2d � 2d matrix so that J a ? a for all a 2 R2d . We have
denoted by rw the Wasserstein gradient (to be defined in what follows). When J
is the block matrix J D .0;�idd ; 0; idd / we get kinetic systems such as the linear
or nonlinear Vlasov, and Vlasov-Monge-Ampère. Under very general conditions
on the Hamiltonian H , the theory in [1] ensures existence of a solution to (1.1)
for any prescribed initial condition �jtD0 D �0. The paper by Gangbo et al. [9]
justifies the terminology “Hamiltonian ODE” for the system (1.1), as the connec-
tion with conventional, finite-dimensional Hamiltonian ODEs may initially seem
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unclear. After all, the Hamiltonian H is not defined on the cotangent bundle as is
customary, but on an extension (in some sense) of it.

When

H .�/ D
1

2

Z
Rd�Rd

jpj2�.dy; dp/CK .�/

where � is the y-marginal of �, the restriction of H to the set of measures of the
form � D .id � �/#� induces the Hamiltonian

(1.2) H.�; �/ D
1

2
k�k2� CK .�/:

It is perhaps not surprising that the Euler-Lagrange equation associated with this
Hamiltonian is the monokinetic version of the one associated with the “full” Hamil-
tonian H . Regarded as a function of the pair .�; �/, H appears as a natural gen-
eralization of a Hamiltonian defined on the cotangent bundle, a fact supported by
the observation that given � as an average of point masses x1; : : : ; xn 2 Rd and
associated values vi WD �.xi /, we have

H.�;‰/ D
1

2
jV j2n C F.x1; : : : ; xn/;

where V WD .v1; : : : ; vn/ 2 Rnd , F.x1; : : : ; xn/ WD W 2
2 .�; �/=2 (hereafter W2

denotes the 2-Wasserstein distance on P2.Rd /), and jV j2n WD .jv1j2 C � � � C
jvnj2/=n. This has the flavor of a finite-dimensional mechanical Hamiltonian. Gen-
eral Hamiltonians such as (1.2) have been considered in [11–15], with applications
ranging from action-minimizing solutions for the Euler-Poisson system to globally
minimizing trajectories of prescribed asymptotic behavior for the nonlinear Vlasov
or Vlasov-Poisson on the torus. The Euler-Lagrange equation for the correspond-
ing (to H ) Lagrangian

L.�; �/ D
1

2
k�k2� �K .�/ for � 2 L2.�/

reads

(1.3) @t .�v/Crx � .�v˝ v/ D ��rwK .�/ as distributions in .0; T / � Td :

This comes coupled with the continuity equation, which expresses the fact that
v is a velocity field along the critical path � ,

(1.4) @t� Crx � .�v/ D 0 as distributions in .0; T / � Td :

If F � 0, we deal with the pressureless Euler system. This is a special case of the
monokinetic nonlinear Vlasov system, which is obtained from an even potential
F 2 C 1.Td / by setting

(1.5) K .�/ WD
1

2

Z
Rd�Rd

F .x � y/�.dx/�.dy/;
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which yields

rwK .�/ D

Z
Rd

rF .x � y/�.dy/:

The attractive/repulsive Euler-Poisson system can also be formally brought within
this framework by considering a singular potential F (˙ˆd , where ˆd is the
fundamental solution for the Laplace equation in Rd ).

We would like to make clear from the beginning of this paper that our main goal
here is the complete departure from the one-dimensional setting. To that end we
embrace an intrinsic, optimal transport approach, where the analysis is performed
directly in the Wasserstein space. The other main achievements are:

(1) we obtain existence of weakly invariant measures of a prescribed rotation
vector,

(2) we prove a weak KAM theorem, and
(3) we obtain globally minimizing trajectories of a given rotation vector.

As mentioned early in this introduction, we are concerned with the infinite-dimen-
sional analogue/extension of mechanical Hamiltonians defined over the cotangent
bundles to finite-dimensional tori.

Earlier work by Cordero-Erausquin [5] introduced the Borel probability on the
torus as the � -finite measure

z� WD
X

k2Zd

�. � C k/;

where � is a Borel probability measure on Rd . The correspondence � ! z� is
not necessarily one-to-one. The set of all Borel probabilities with finite second
moments that yield the same measure via the above procedure is identified with
said measure. This way, any measure � 2 P2.Rd / can be considered a measure
in P.Td / as well, indistinguishable from all other � 2P2.Rd / such that z� D z�.
The quadratic Wasserstein distance on P2.Rd / induces canonically a distance on
P.Td /, called the periodic Wasserstein distance, which renders P.Td / compact.
The details are in Section 2. Differentiable paths t ! x.t/ on a Riemannian
manifold have tangent vectors Px.t/ belonging to the tangent space at x.t/, and
the pair f.x.t/; Px.t//gt2Œa;b� is called the speed curve [7] of the trajectory x. In
anticipation of having a need for a similar notion in our context, we define a tangent
bundle to P.Td / and an appropriate extension of it (where all velocities along a
given curve lie). Section 2 continues with the introduction of differentiability of
functionals defined on P.Td /; then we prove that there is a natural notion of
cohomology on P.Td /.

Section 3 is dedicated to issues regarding the absolutely continuous curves on
P.Td /, such as: periodic velocity, periodic velocity of the c-minimal norm, lifting
of curves from P.Td / to P2.Rd /, and rotation vectors associated to absolutely
continuous speed curves. We show that speed curves with c-minimal periodic ve-
locities can be lifted. We would like to stress the importance of these c-minimal



6 W. GANGBO AND A. TUDORASCU

velocities in the P.Td / context. It turns out (Section 4) that the c-calibrated
minimizing trajectories given by the weak KAM theorem (Theorem 4.14) have ve-
locities of c-minimal norm. For absolutely continuous curves on P2.Rd /, this
notion is trivial in the sense that the minimal norm velocity [2] coincides with the
c-minimal norm velocity for every c 2 Rd . However, this is no longer valid in the
periodic case, where the c-minimal velocity does change with c.

Given an initial condition .�0; v0/ existence of a flow (1.3)–1.4 remains a major
challenge in fluid mechanics for d � 2. Only recently has the case d D 1 been
settled in [3] in great generality. Thus, in Section 4 we define weakly invariant
measures on C P.Td /, whose definition does not rely on the existence of a flow
and is a natural and straightforward adaptation of the definition in [6]. For any
V 2 Rd , we prove that there exists a weakly invariant measure that minimizes
the Lagrangian action over C P.Td / among all weakly invariant measures with
rotation vector V .

Mañé’s argument [6] proving full-flow invariance for such measures can be eas-
ily extended to our case, provided that we have a well-defined flow. This provision
is satisfied by the nonlinear Vlasov system for sufficiently smooth potentials (see
Section 5). Next we prove a weak KAM theorem in the spirit of [7], and we show
that optimizing curves in the variational definition of the Lax-Oleinik semigroup
(called c-calibrated curves) exist, and they have a rotation vector equal to �r xH.c/
whenever the effective Hamiltonian xH is twice differentiable at c in the sense of
Alexandroff.

The Galilean invariant Hamiltonian corresponding to the nonlinear Vlasov sys-
tem is provided as an example ( xH is twice differentiable everywhere). When
F 2 C 1;1.T / is even and an initial measure is prescribed, there is a uniquely de-
fined solution to the Vlasov system on P.Td / (cf., e.g., [1] for existence and [18]
for uniqueness), and so, we have a well-defined flow.

Section 5 contains an alternate, finite- to infinite-dimensional blowup approach
in the case of a potential F that displays certain symmetry. It turns out that the
c-calibrated curves obtained for the monokinetic version satisfy the fully kinetic
Vlasov system, which is intrinsically interesting (note that a distributional solu-
tion for the monokinetic system does not necessarily give rise to a distributional
solution for the fully kinetic system). Imposing that solutions for the monoki-
netic system satisfy the fully kinetic Vlasov system can be viewed as a criterion
for uniquely selecting special solutions for the monokinetic system. The proba-
bility measures carried by the !-limits of these c-calibrated curves are invariant
(strongly) with respect to the Vlasov flow and have rotation vector �c. We are
able to draw stronger conclusions when F is even and attains its maximum at the
origin. We use xH.c/ D jcj2=2 [15] to show that the c-calibrated curves .�; v/
satisfy



 id
t
C c






L2.�t IRd /

�
C
p
t
C





 id
t
C c






L2.�0IRd /

; lim
t!1

kvt C ckL2.�0IRd / D 0:
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Results from [15] are heavily cited in this section: as the weak KAM solutions
are generally not unique (even in finite dimensions), we are not guaranteed that the
weak KAM solution constructed in Section 4 is the dimensional blowup limit of
finite-dimensional weak KAM solutions corresponding to appropriate discretiza-
tions of the Lagrangian. However, such solutions are crucial to our argument.
Thus, in Section 5 we show (skipping details, as simply referring to [15] provides
the whole picture) how to construct them on the basis of finite-dimensional weak
KAM solutions, each of them coming from a standard approximation. Then, some
c-calibrated curves are obtained as limits of c-calibrated curves corresponding to
the finite-dimensional weak KAM solutions.

2 Geometry of P.T d/P.T d/P.T d/

Some of the preliminary results from this section and Section 3 (such as exis-
tence of velocities along an absolutely continuous curve) can be found in a recent
study by Gigli [16] on P2.M/, where M is a Riemannian manifold. However,
the essence of what we cover here (c-minimality, lifting) is not discussed in said
reference. Thus, we incorporate our take on the matters, as it also is conceptually
and notationally subordinated to the present work.

2.1 A Characterization of the Wasserstein Torus P.Td/P.Td/P.Td/

We consider the commutative group Zd and its action on Rd given by .k; x/!
xCk, and let, as is customary, Td WD Rd=Zd . For each x 2 Rd there is a unique
xx 2 Q WD Œ0; 1/d that is equivalent to x. It is defined by xx D .x1 � yx1; : : : ;

xd � yxd /, wherey W R! Z is the greatest integer function. We sometimes denote
.yx1; : : : ; yxd / by yx and identify Œx�, the class of equivalence of x, with xx 2 Q WD
Œ0; 1/d . Recall that Td is endowed with the metric j � jTd defined by

jŒx� � Œy�jTd D min
a2Œx�;b2Œy�

ja � bj

for x; y 2 Rd . We also write jx � yjTd to mean jŒx� � Œy�jTd (the minus sign
should be taken at face value, as Td is not a vector space).

By a function � W Td ! R (or periodic function) we mean a function � W Rd !
R that satisfies �.x/ D �.y/ whenever Œx� D Œy�. We write X W Td ! Td when
X is a map of Rd into Rd that has the property

Œx� D Œy� H) ŒX.x/� D ŒX.y/�:

We define an equivalence relation on P2.Rd / (or, more generally, for any vector
measures of finite total variation) by

� � �”

Z
Rd

� d� D

Z
Rd

� d� for all � 2 C.Td /:

The class of equivalence of � 2 P2.Rd / is denoted by Œ��, and we denote the
collection of all classes of equivalence by P.Td /.
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If F WP2.Rd /! R is invariant under the action of� in the sense that F.�/ D
F.�/ whenever � � �, then we write F WP.Td /! R. If F 2 C

�
P2.Rd /

�
, we

write F 2 C
�
P.Td /

�
.

Given � 2 P2.Rd / there is a measure x� supported by Q that lies in Œ��. It is
the pushforward of � by x ! xx and can be written as

x�.A/ D
X
k2Zd

�.AC k/

for all Borel sets A � Q.
Let # W P2.Rd / ! P2.Rd / be the pushforward operator. Note that if X W

Td ! Td is a Borel map and F 2 C.Td /, then F ıX W Td ! R. If � and � are
equivalent in P2.Rd /, then so are X#� and X#�. We define X#Œ�� to be ŒX#��.

2.2 The Wasserstein Metric on P.Td/P.Td/P.Td/

Given �; � 2P2.Rd /, we set

W 2.�; �/ D inf

2�.�;�/

Z
Rd�Rd

jx � yj2Td 
.dx; dy/;

where �.�; �/ is the set of all joint probability distributions with marginals� and �
(in this order). According to [10],

(2.1) sup
.�;�/2U0

J.�; �/ D sup
.�;�/2U1

J.�; �/ D W 2.�; �/;

where

J.�; �/ D

Z
Rd

� d�C

Z
Rd

� d�:

We have set U0 to be the set of .�; �/ such that �; � W Rd ! Œ�1;1/ are upper-
semicontinuous and satisfy

�.x/C �.y/ � jx � yj2Td

for all .x; y/ 2 Rd �Rd . Also, U1 is the set of .�; �/ in U0 such that

(2.2) �.x/ D inf
y�2Rd

jx�y�j
2
Td��.y�/ and �.y/ D inf

x�2Rd
jx��yj

2
Td��.x�/

for all .x; y/ 2 Rd�Rd . One readily checks that if (2.2) holds, then �; � 2 C.Td /.
Hence, if we denote by U the set of .�; �/ in U1 such that �; � 2 C.Td /, then

(2.3) sup
.�;�/2U

J.�; �/ D W 2.�; �/:

The expression on the left-hand side of (2.3) is unchanged if we replace .�; �/ by
.��; ��/ such that �� 2 Œ�� and �� 2 Œ��. In other words,

(2.4) W .�; �/ D W .��; ��/:
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We define the distance between Œ�� and Œ�� to be W .�; �/ and exploit Lemma 2.1
below to check that W is a metric on P.Td /.

Given t 2 R, we define m.t/ D t � 2t C 1=2 and notice that jm.t/j D jt jT1 .
Thus, the range of m is Œ�1=2; 1=2/. As a consequence, if for s 2 R we set
m�.s; t/ D s �m.s � t /, then js �m�.s � t /j D js � t jT1 . This suggests that we
introduce the vector-valued Borel map T W Rd �Rd ! Rd �Rd defined by

T .x; y/ D .x; x � zm.x � y// where zm.´/ WD .m.´1/; : : : ; m.´d // for ´ 2 Rd :

Since the range of m is Œ�1=2; 1=2/ we conclude that the range of T1 � T2 is
Œ�1=2; 1=2/d , and so

(2.5) jx � yjTd D jT1.x; y/ �T2.x; y/j:

We have denoted by T2 the second projection of T and by T1 the first projection
of T . The fact that

T .x C k; y C l/ D T .x; y/C .k; k/

holds for all k; l 2 Zd yields that T W Td � Td ! Td � Td .

LEMMA 2.1. For any ��; �� 2P2.Rd /

(2.6) W .��; ��/ D min
�
fW2.��; �/ W � 2 Œ���g:

PROOF. As j � j � j � jTd , we only need to prove that in (2.6) the expression on
the left-hand side is greater than or equal to the expression on the right-hand side.
Suppose � 2 Œ��� and let 
 2 �.��; �/. Let 
� be the pushforward of 
 by T , and
let �0 be the pushforward of 
 by T2. Then 
� 2 �.��; �0/, and so

W 2
2 .��; �0/ �

Z
Rd�Rd

jx � yj2
�.dx; dy/

D

Z
Rd�Rd

jx �T2.x; y/j
2
.dx; dy/ D

Z
Rd�Rd

jx � yj2Td 
.dx; dy/;

where we have exploited (2.5). As 
 is an arbitrary element of �.��; �/, we have
then established that

W2.��; �0/ � W .��; �/:

To conclude the proof, it suffices to show that �0 2 Œ���. Take F 2 C.Td /.
Since t �m.t/ is an integer, T2.x; y/� y 2 Zd , and so F ıT2 D F . Using these
facts and the definition of �0, we conclude that �0 2 Œ���. �

Remark 2.2. Since j zm.x � y/j <
p
d=2, if �� is supported by Œ0; 1�d , then ��

must be supported by the ball of radius R WD 3
p
d=2. To see this, one can check

that jx � zm.x � y/j < R when x 2 Œ0; 1/d .

LEMMA 2.3. .P.Td /;W / is compact.
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PROOF. Let fŒ�n�gn � P.Td /. Then fx�ngn is relatively compact in P.Rd /,
and so it admits a subsequence that we still label fx�ngn converging to some � in
P.Rd /. By Lemma 2.1 we deduce that fŒ�n�gn converges to Œ�� in P.Td /. �

COROLLARY 2.4. For �; � 2P2.Rd / we define

�per.�; �/ WD

�

 2 �.�; �/ W

W 2.�; �/ D W 2
2 .�; �/ D

Z
Rd�Rd

jx � yj2Td 
.dx; dy/

�
:

By Lemma 2.1, for any �; � 2P2.Rd / there exists �� 2 Œ�� such that �per.�; �
�/

is nonempty.

2.3 Tangent Bundle and Its Extension
Fix � 2P2.Rd /. We denote by L2.�/ the set of functions � W Rd ! Rd that

are square-integrable with respect to �. We denote by h � ; � i� the standard inner
product of L2.�/ and by k � k� its induced norm. We denote by L2.Td ; �/ the
closure of C1.Td IRd / in L2.�/, and by T�P.Td / the closure of rC1.Td /

in L2.�/, where rC1.Td / is the set of r' such that ' 2 C1.Td /.
Let �1; �2 2 P2.Rd / and let �i 2 L2.�i /, i D 1; 2. We adopt the following

definition:

.�1; �2/ � .�2; �2/” �1 � �2 and �1�1 � �2�2:

We denote by Œ�; �� the class of equivalence of .�; �/ with respect to � and by

C P.Td / D fŒ�; �� W � 2P2.R
d /; � 2 L2.Td ; �/g:

Remark 2.5. Note that if �1 � �2 and �i 2 T�iP.Td /, i D 1; 2, then

.�1; �1/ � .�2; �2/”hrF; �1i�1 D hrF; �2i�2 for all F 2 C1.Td /:

PROOF. One implication is obvious. For the other, we start by taking a sequence
f�ngn � C

1.Td / such that r�n ! �1 in L2.�1/. We have

k�2k�2kr�nk�1 D k�2k�2kr�nk�2 � hr�n; �2i�2 D hr�n; �1i�1:

Passing to the limit yields k�2k�2 � k�1k�1 . Likewise, we get the opposite in-
equality. Therefore, k�2k�2 D k�1k�1 , which implies

kr� � �1k�1 D kr� � �2k�2 for all � 2 C1.Td /:

Consequently, a sequence f�ngn � C1.Td / satisfies r�n ! �1 in L2.�1/ if
and only if r�n ! �2 in L2.�2/. But hF;r�ni�1 D hF;r�ni�2 for any F 2
C.Td IRd / and all n. Pass to the limit in n to finish the argument. �
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The tangent bundle to P.Td / will then be defined as

T P.Td / WD fŒ�; �� W � 2P2.R
d /; � 2 T�P.Td /g:

Clearly, T P.Td / � C P.Td /. We point out that the above definitions are antic-
ipatory of the next section, where we shall see that the periodic velocity of minimal
norm for an absolutely continuous curve t ! �t on the torus (the counterpart in
the periodic case of the object defined in [2]) lies in T�tP.Td /. Nevertheless,
this velocity is, generally speaking, not the only periodic velocity associated to a
given absolutely continuous curve; however, any periodic velocity v will satisfy
vt 2 L2.Td ; �t /. This explains the need of extending T P.Td / to C P.Td /.
What we see here is exactly analogous to the tangent bundle to P2.Rd / being a
subset of

S
�2P2.Rd /

f�g � L2.�/ in the euclidean (nonperiodic) case [2].

Remark 2.6. Suppose Œ�; �� D Œ�; �� 2 C P.Td /.
(i) If c 2 Rd , then hc; �i� D hc; �i� .

(ii) By the definition of C P.Td / (also, see the proof of Remark 2.5), we have

(2.7) k�k� D sup
�

h�; �i� D sup
�

h�; �i� D k�k� ;

where the suprema are performed over the set of � 2 C.Td IRd / such that
k�k� � 1.

Remark 2.7. Let �; � 2P2.Rd / be such that � � �.
(i) Recall that T�P2.Rd / denotes the closure of rC1c .R

d / (gradients of
C1c -functions) in L2.�/ [2]. We have T�P.Td / � T�P2.Rd /.

(ii) Assume Œ�; �� D Œ�; �� 2 C P.Td /. By Remark 2.6(ii), note that fXngn
in C1.Td IRd / tends to � in L2.�/ if and only if it tends to � in L2.�/.
Furthermore, for any function F 2 C.Td � Rd / with at most quadratic
growth, we have

(2.8)
Z

Rd

F.x; �.x//�.dx/ D

Z
Rd

F.x; �.x//�.dx/:

PROOF. We prove (i). Let � 2 T�P.Td / and let � > 0. We are to show
existence of a '� in C1c .R

d / such that k� � r'"k� < �. First, choose ' 2
C1.Td / such that k� � r'k� < �=2. Second, choose n > 0 such that

4k'kC1.Td /�.B
c
n/ < �:

Third, let fn 2 C1c .R
d / be such that 0 � fn � 1, jrfnj � 1, fn � 1 on Bn,

and fn � 0 on BcnC2. Here, Bn � Rd is the open ball of radius n, centered at the
origin. We have that '� WD 'fn 2 C1c .R

d / and

k� � r'�k� � k� � r'k� C k.fn � 1/r'k� C k'rfnk�

� k� � r'k� C k'kC1.Td /�.B
c
n/ < �:
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This proves the remark. �

2.4 A Separable Topology on C P.Td/C P.Td/C P.Td/

Let f�ig1iD1 � C
1.Td / be a dense subset of C.Td IRd / for the uniform con-

vergence topology. We assume without loss of generality that �i 6� 0. For Œ�1; �1�
and Œ�2; �2� in C P.Td /, we define

Dist.Œ�1; �1�; Œ�2; �2�/ D W .�1; �2/C

1X
iD1

1

2i
jh�1; y�i i�1 � h�2;

y�i i�2 j;

where y�i D �i=k�ikW 1;1.Rd IRd /.
Let fŒ�n; �n�gn � C P.Td / and let Œ�; �� 2 C P.Td /. When needed, we will

assume that some of the following three possibilities hold:

lim
n!1

W .�n; �/ D 0;(2.9)

sup
n
k�nk�n <1;(2.10)

lim
n!1

h ; �ni�n D h ; �i� for all  2 C.Td
IRd /:(2.11)

Remark 2.8. Note that Dist defines a metric on C P.Td /. Furthermore, a sequence
fŒ�n; �n�gn � C P.Td / satisfying (2.10) converges to Œ�; �� in the metric Dist if
and only if (2.9) and (2.11) hold.

LEMMA 2.9. If C � 0, then BC WD fŒ�; �� W k�k� � C g is a compact subset of
.C P.Td /;Dist/.

PROOF. Let fŒ�n; �n�gn � C P.Td /. By Lemma 2.3, f�ngn is relatively com-
pact in P.Td /, and so, extracting a subsequence if necessary, we may assume
existence of a � such that f�ngn converges to � in P.Td /. Using Lemma 2.1 and
Remark 2.2, we may assume without loss of generality that

W .�n; �/ D W2.�n; �/;

� is supported by Œ0; 1�d , and �n is supported by BR, where R D 3
p
d=2. By [2,

theorem 5.4.4], there exists x� 2 L2.�/ such that (up to a subsequence)

(2.12) lim
n!1

h‰; �ni�n D h‰;
x�i� for all ‰ 2 C.Rd IRd /:

We conclude that (2.11) holds by setting � to be the projection of x� ontoL2.Td ; �/.
We use Remark 2.8 and the fact that k�nk�n � C to conclude the proof of the
lemma. �

An immediate consequence is the following:

COROLLARY 2.10. The metric space .C P.Td /;Dist/ is separable.
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2.5 Optimal Couplings and Their Properties
Throughout the remainder of this paper, �o.�; �/ will denote the set of optimal

couplings (with respect to W2) between � and �.

LEMMA 2.11. Suppose that

�0 D
1

N

NX
iD1

ıxi ; x�1 D
1

N

NX
iD1

ıxyi ; and W 2.�0; x�1/ D
1

N

NX
iD1

jxyi�xi j
2
Td :

Then there exists y1; : : : ; yN 2 Rd such that

�1 DW
1

N

NX
iD1

ıyi 2 Œ�0� and W2.�1; x�1/ � W .�0; x�1/:

PROOF. We define yi by setting its kth component yki to be

yki D xy
k
i �

ˇ̌
xyki � x

k
i

ˇ̌
T1 :

We have

yki � x
k
i D

�
xyki � x

k
i

�
�
ˇ̌
xyki � x

k
i

ˇ̌
T1 2 N;

and so �1 DW 1=N
PN
iD1 ıyi 2 Œ�0�. Note that

W 2
2 .�1; x�1/ �

1

N

NX
iD1

dX
kD1

ˇ̌
xyki � y

k
i

ˇ̌2
D

1

N

NX
iD1

dX
kD1

ˇ̌
xyki � x

k
i

ˇ̌2
T1 D W 2.�0; x�1/: �

PROPOSITION 2.12. Suppose that �0; �0; �1 2P2.Rd / are such that �1 2 Œ�0�
and there exists 
 2 �per.�0; �0/. Then there exists �1 2 Œ�0� and g 2 �per.�1; �1/

such that

(2.13)
Z

Rd�Rd

.x � y/ � F.x; y/g.dx; dy/ D

Z
Rd�Rd

.x � y/ � F.x; y/
.dx; dy/

for every F 2 C.Td � Td IRd /.

PROOF. We choose an increasing sequence of integers fNngn and, for each n, a
set of points f.xni ; y

n
i /g

Nn
iD1 � sptŒ
� such that

(2.14) lim
n!1

Z
Rd�Rd

f .x; y/
n.dx; dy/ D

Z
Rd�Rd

f .x; y/
.dx; dy/
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for any f 2 C.Rd � Rd / for which there exists C > 0 such that jf .x; y/j �
C.1C jxj2 C jyj2/ for all x; y 2 Rd . Here


n WD
1

Nn

NnX
iD1

ı.xn
i
;yn
i
/:

(Note that (2.14) simply expresses the fact that 
n converges to 
 in the Wasserstein
space P2.Rd�Rd /.) Let�n0 and �n0 be the x- and y-marginals of 
n, respectively.
Now (2.14) implies

lim
n!1

W2.�0; �
n
0/ D 0 and lim

n!1
W2.�0; �

n
0 / D 0:

Since 
 2 �per.�0; �0/ and f.xni ; y
n
i /g � sptŒ
�, the set f.xni ; y

n
i /g

Nn
iD1 is cyclically

monotone (as it belongs to the graph of the subdifferential of a convex function
[19]), and so

W 2
2 .�

n
0; �

n
0 / D

1

Nn

NnX
iD1

jxni � y
n
i j
2
D

1

Nn

NnX
iD1

jxni � y
n
i j
2
Td � W 2.�n0; �

n
0 /:

The fact that W � W2 yields

W 2
2 .�

n
0; �

n
0 / D

1

Nn

NnX
iD1

jxni � y
n
i j
2

D
1

Nn

NnX
iD1

jxni � y
n
i j
2
Td D W 2.�n0; �

n
0 /:

(2.15)

Next, choose a sequence of points fxyni g � Rd such that

(2.16) lim
n!1

W2.�1; x�
n
1/ D 0 where x�n1 D

1

Nn

NnX
iD1

ıxyn
i
:

By Lemma 2.11 there exist ´n1; : : : ; ´
n
Nn
2 Rd such that

(2.17) �n1 DW
1

Nn

NnX
iD1

ı´n
i
2 Œ�n0� and W2.�

n
1; x�

n
1/ � W .�n0; x�

n
1/:

Reordering the points if necessary, we may assume that ´ni 2 Œx
n
i �. Define kni WD

´ni � x
n
i 2 Zd and set

�n1 WD
1

Nn

NnX
iD1

ıyn
i
Ckn

i
; gn DW

1

Nn

NnX
iD1

ı.´n
i
;yn
i
Ckn

i
/:
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We have �n1 2 Œ�
n
0 � and

W 2
2 .�

n
1; �

n
1 / �

1

Nn

NnX
iD1

j´ni � .y
n
i C k

n
i /j

2

D
1

Nn

NnX
iD1

jxni � y
n
i j
2
Td D W 2.�n0; �

n
0 / D W 2.�n1; �

n
1 /:

We have used (2.15) to obtain the first two inequalities in the previous display.
This, together with the fact that W � W2, implies gn 2 �per.�

n
1; �

n
1 / and

(2.18) W 2
2 .�

n
1; �

n
1 / D W 2.�n1; �

n
1 / D

Z
Rd�Rd

jx � yj2Tdg
n.dx; dy/:

If F 2 C.Td � Td IRd /, then

1

Nn

NnX
iD1

.yni C k
n
i � ´

n
i / � F.´

n
i ; y

n
i C k

n
i / D

1

Nn

NnX
iD1

.yni � x
n
i / � F.x

n
i ; y

n
i /;

or, equivalently,

(2.19)
Z

Rd�Rd

.y�x/�F.x; y/gn.dx; dy/ D

Z
Rd�Rd

.y�x/�F.x; y/
n.dx; dy/:

We use the inequality in (2.17) and then the triangle inequality to obtain

W2.�
n
1; x�

n
1/ � W .�n0; x�

n
1/ � W .�n0; �1/CW .�1; x�

n
1/

D W .�n0; �0/CW .�1; x�
n
1/:

We exploit this and the inequality W � W2 to obtain

(2.20) W2.�n1; �1/ � W2.�
n
1; x�

n
1/CW2.x�

n
1; �1/ � W2.�

n
0; �0/C2W2.�1; x�

n
1/:

The uniform bound on the second moments of the gn and �n1 allows us to find
a subsequence of fgngn converging narrowly to some g 2 P2.Rd � Rd / and
a subsequence of f�n1 gn converging narrowly to some �1 2 P2.Rd /. Without
loss of generality, let us assume that the whole sequences converge. By (2.20),
f�n1gn converges to �1 in P2.Rd /. Hence, g 2 �.�1; �1/. We use the lower
semicontinuity property of

P2.R
d
�Rd / 3 �!

Z
Rd�Rd

jx � yj2�.dx; dy/

with respect to the narrow convergence to obtainZ
Rd�Rd

jx � yj2g.dx; dy/ � lim inf
n!1

Z
Rd�Rd

jx � yj2gn.dx; dy/
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D lim inf
n!1

W 2.�n1; �
n
1 / D W 2.�1; �1/:

We have used (2.18) to obtain the first equality above, and then we have used the
continuity of W with respect to narrow convergence to obtain the second equality.
Since W � W2, we conclude that g 2 �per.�1; �1/. Letting n tend to1 in (2.19),
we conclude that (2.13) holds. �

2.6 Differentials of Functions on P.Td/P.Td/P.Td/

PROPOSITION 2.13. Let Œ�0; �0� D Œ�1; �1� 2 C P.Td /. Let �0 2 P2.Rd / be
such that �per.�0; �0/ is nonempty and let 
0 2 �per.�0; �0/. Then there exist
�1 2 Œ�0� and 
1 2 �per.�1; �1/ such thatZ

Rd�Rd

�0.x/ � .y � x/
0.dx; dy/ D

Z
Rd�Rd

�1.x/ � .y � x/
1.dx; dy/:

PROOF. Since �0 2 L2.Td ; �0/, there exists a sequence f�ngn � C.Td IRd /
converging to it in L2.�0/. By Lemma 2.12, we get a measure �1 2 Œ�0� and an
optimal coupling 
1 2 �per.�1; �1/ such thatZ

Rd�Rd

�n.x/ � .y � x/
0.dx; dy/ DZ
Rd�Rd

�n.x/ � .y � x/
1.dx; dy/ for all n:

The x-marginal of 
0 is �0, which implies �n converges to �0 in L2.
0/ as well.
Likewise, the limit �1 of f�ngn in L2.�1/ is also the limit in L2.
1/. Thus, the
equality displayed above finishes the proof (by passage to the limit). �

DEFINITION 2.14. Let U WP.Td /! R and � 2P2.Rd /.
(i) We say that � 2 L2.Td ; �/ is in the differential of U at �, and we write
� 2 @U.�/, if

(2.21) sup
�;


ˇ̌̌̌
U.�/ � U.�/ �

Z
Rd�Rd

�.x/ � .y � x/
.dx; dy/

ˇ̌̌̌
D o.W .�; �//:

We denote by @U.�/ the differential of U at �. The supremum is per-
formed over the set of � 2P2.Rd / and 
 2 �per.�; �/.

(ii) If @U.�/ is nonempty, then it is a convex set and so it has a unique ele-
ment of minimal norm, which we denote by rwU.�/ and refer to as the
Wasserstein gradient of U .

(iii) If @U.�/ is nonempty for all � 2 P2.Rd / and � ! .�;rwU.�// is
continuous, we say that U is continuously differentiable, and we write
U 2 C 1.P.Td //.

Remark 2.15. Let Œ�; �� be an element of C P.Td /.
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(i) If x� 2 L2.Td ; �/ and �; x� 2 @U.�/, then x� � � is in the orthogonal
complement of T�P.Td / in L2.Td ; �/, denoted by ŒT�P.Td /�?.

(ii) By Proposition 2.13, if Œx�; x�� is equivalent to Œ�; ��, then � 2 @U.�/ if and
only if x� 2 @U.x�/.

(iii) Let � 2 ŒT�P.Td /�?, � 2P2.Rd /, and 
 2 �o.�; �/. According to the
proof of Proposition 2.13, one concludes thatZ

Rd�Rd

�.x/ � .y � x/
.dx; dy/ D 0:

(iv) If � is in @U.�/, then so is its projection x� onto T�P.Td /. As a conse-
quence, x� D rwU.�/, and so either @U.�/ is empty or it is of the form
rwU.�/C ŒT�P.Td /�?.

PROOF. We only prove (i) and (iv). For ' 2 C1.Td /, define


t WD Œid � .idC tr'/�#�; �t WD .idC tr'/#�:

For t small enough, 
t 2 �o.�; �t /. If �; x� 2 @U.�/, then

jhx� � �;r'i�j D
1

jt j
o.W2.�; �t // D

1

jt j
o.tkr'k�/:

Letting t tend to 0 and using that ' is arbitrary in C1.Td /, we conclude the proof
of (i).

If � 2 @U.�/, � 2 P2.Rd /, and 
 2 �per.�; �/, since � � x� is orthogonal to
T�P.Td /, we have (by (iii))

U.�/ � U.�/

Z
Rd�Rd

�.x/ � .y � x/
.dx; dy/ D

U.�/ � U.�/ �

Z
Rd�Rd

x�.x/ � .y � x/
.dx; dy/:

This, together with (2.21) implies

sup
�;


ˇ̌̌̌
U.�/ � U.�/ �

Z
Rd�Rd

x�.x/ � .y � x/
.dx; dy/

ˇ̌̌̌
D o

�
W .�; �/

�
;

the supremum being performed over the set of � 2 P2.Rd / and 
 2 �per.�; �/.
This proves (iv). �

LEMMA 2.16. All functions in C 1.P.Td // are Lipschitz-continuous.

PROOF. Let U 2 C 1.P.Td // and set

ƒ�� WD h�;rwU.�/i� for � 2P.Td /; � 2 C.Td
IRd /:

By Definition 2.14(iii), ƒ�� is continuous as a function of � for fixed �. As �
lies in a compact set, we deduce the family fƒ��g�2P.Td / is bounded in R for
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every � 2 C.Td IRd /. But, for every � 2 P.Td /, ƒ� is a bounded, linear
operator from C.Td IRd / (with the sup norm) into R, whose norm we claim
equals krwU.�/kL1.�IRd /. According to the uniform boundedness principle,
these norms are uniformly (with respect to �) bounded, which is the goal of the
first part of this proof.

Before moving to the next part, let us justify our claim by taking a sequence
f ngn � C.Td IRd / that converges to rwU.�/ in L2.�/, chosen such that

(2.22) sup
�2C.Td ;Rd /
k�k1�1

Z
Rd

j� � ŒrwU.�/ �  n�jd� �
1

n
:

But it is easy to see that the norm of the linear functional over C.Td IRd / given
by � ! h�; ni� is k nkL1.�IRd /. We then use

h�; ni� D h�;rwU.�/i� C h�; n � rwU.�/i�;

take the supremum of both sides over all � 2 C.Td IRd / of sup norm at most 1,
then use (2.22) to finish the proof of the claim.

Let n be a positive integer. SetU n.xn/ WD U.�xn/, where xn WD .xn1 ; : : : ; x
n
n/ 2

Tnd and �xn WD .1=n/
Pn
iD1 ıxni

. One can check that U n 2 C 1.Tnd / and

rxn
i
U n.xn/ D

1

n
rwU.�xn/.x

n
i /:

The uniform (with respect to n and xn) bound on

krwU.�xn/kL1.�xn IRd /
D
1

n

nX
iD1

jrwU.�xn/.x
n
i /j

shows that the l1-norm of the gradient of U n is bounded; thus U n is Lipschitz
on Tnd and its Lipschitz constant is independent of n. We conclude by using the
density of averages of Dirac masses in P.Td / and the continuity of U . �

2.7 Cohomology
The goal of this subsection is to prove that if rwU 2 C.P.Td //, then there

exists a unique zU 2 C 1.P.Td // and a unique c 2 Rd such that

U.�/ D zU.�/C c �
Z

Rd

x�.dx/:

To see this rather quickly, we define the functions U n W Rnd ! R by

U n.xn/ D U.�xn/ where �xn WD
1

n

nX
iD1

ıxn
i
:
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As mentioned earlier, one can show that U n is differentiable and rxiU
n.xn/ D

1
n
rwU.�xn/.xi /. Thus, rU n is .Zd /n-periodic, which implies the existence of a

unique periodic differentiable zU n W Rnd ! R and of a unique cn 2 Rnd such that

(2.23) U n.xn/ D zU n.xn/C
1

n
cn � xn;

where the � denotes the euclidean inner product in Rnd . The permutation invariance
of U n also readily implies that cn actually consists of n copies of a vector c 2 Rd ,
i.e., cn D .c; : : : ; c/. There is also consistency in the sense that c is independent
of n. Indeed, one can see that by considering xn D .x; : : : ; x/ for some x 2 Rd

to discover that c is, in fact, nothing but c1 from (2.23) with n D 1. With this c at
hand, let

zU.�/ WD U.�/ � c �
Z

Rd

x�.dx/;

which is clearly a real-valued, differentiable map on P2.Rd /. We also have
zU.�xn/ D zU

n.xn/, so the restriction of zU to the set of averages of Dirac masses
is periodic. But this set is dense in P2.Rd /, which implies that zU is P.Td /-
periodic.

PROPOSITION 2.17. There are closed forms on P.Td / that are not exact.

PROOF. Let c 2 Rd and Œ�� 2 P.Td /. For ' 2 C1.Td /, setting X D r'
we define

ƒ�.X/ D hc; Xi�:
One can check that dƒ D 0, and so ƒ is a closed form (cf. [9]). Let 
.t/ D ta
where a 2 Rd has integer components. Then 
 is a closed curve in P.Td /. ButZ




ƒ D c � a 6D 0

if a 2 Rd is not perpendicular to c, and so ƒ is not exact. �

3 Special Curves on P.T dP.T dP.T d/ and C P.T dC P.T dC P.T d/

3.1 Properties of Absolutely Continuous Paths on P.Td/P.Td/P.Td/

Given � 2 AC 2.0; T IP2.Rd // there exists [2] a Borel map v W .0; T /�Rd !
Rd such that t ! kvtk�t 2 L2.0; T / and

@t� Cr � .v�/ D 0 in D 0..0; T / �Rd /:

We say that v is a velocity associated to � . One defines AC 2.0; T IP.Td // as
the set of all paths Œ�� W Œ0; T � 3 t ! Œ�t � 2 P.Td / for which there exists
ˇ 2 L2.0; T / such that

(3.1) W .�s; �t / �

Z t

s

ˇ.�/d� for all 0 � s � t � T:
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The obvious inequality W .�; �/ � W2.�; �/ (cf. Lemma 2.1) shows that

AC 2.0; T IP2.R
d // � AC 2.0; T IP.Td //

and

(3.2) j� 0j.t/ � j� 0jTd .t/ for L 1-a.e. t 2 .0; T /:

We use j � j for the metric derivative on AC 2.0; T IP2.Rd // and j � jTd for that
on AC 2.0; T IP.Td //. A curve Œ0; T � 3 t ! �t 2 P2.Rd / is said to be Td -
narrowly continuous if

Œ0; T � 3 t !

Z
Rd

' d�t is continuous for all ' 2 C.Td /:

It is not difficult to prove that equality holds in (3.2) in the case where � is the
average of n point masses lying simultaneously on n paths in W 1;1.0; T IRd /.
The discussion below is intended to show that, in general, the inequality is strict.

In the remainder of the section, given Œ��; Œz�� 2 AC 2.0; T IP.Td //, we define
the measures † and z† on .0; T / �Rd byZ T

0

Z
Rd

Fd† WD

Z T

0

dt

Z
Rd

F.t; x/�t .dx/;

Z T

0

Z
Rd

Fd z† WD

Z T

0

dt

Z
Rd

F.t; x/z�t .dx/;

(3.3)

for every continuous, bounded function F W .0; T / �Rd ! R.

DEFINITION 3.1. Let Œ0; T � 3 t ! �t 2P2.Rd / and let v W .0; T / � Td ! Rd

be a Borel velocity field such that vt 2 L2.Td ; �t / for almost every t 2 .0; T /
and t ! kvk�t 2 L2.0; T /. If

(3.4)
Z T

0

Z
Rd

.@t' Cr' � vt /d�t dt D 0

for all ' 2 C1c ..0; T /IC
1.Td //, we say that v is a velocity associated to � in

the periodic sense.

THEOREM 3.2. Let Œ�� 2 AC 2.0; T IP.Td //. Then there exists a velocity v
associated to � in the periodic sense such that

(3.5) kvtk�t � j�
0
jTd .t/ for L 1-a.e. t 2 .0; T /:

The proof of theorem 8.3.1 in [2] can be reproduced to prove Theorem 3.2, with
obvious modifications required by our periodic setting.
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Remark 3.3. Let v and w be two periodic velocities for � 2 AC 2.0; T IP.Td //.
Clearly, we have that wt � vt 2 ŒT�tP.Td /�? for a.e. t 2 .0; T /. Throughout,
ŒT�P.Td /�? denotes the orthogonal complement of T�P.Td / in L2.Td ; �/.
But the velocity found in Theorem 3.2 lies in T�tP.Td / for a.e. t , which implies,
according to the previous observation, that for a.e. t it has the minimal L2.�t /-
norm among all possible periodic velocities. Thus, we call the velocity given by
Theorem 3.2 the velocity of minimal norm in the periodic sense, or simply the
periodic velocity of minimal norm associated to � .

The concept of minimal norm velocity in the periodic sense can be generalized
to the concept of c-minimal norm periodic velocity.

LEMMA 3.4. Let � 2 AC 2.0; T IP.Td //, andƒ W Œ0; T ��Rd ! Rd be a Borel
map such thatƒ.t; � / 2 L2.Td ; �t / for all t 2 Œ0; T � and kƒ.t; � /k�t 2 L

2.0; T /.
Write the decomposition

ƒ.t; x/ D ˆ.t; x/C‰.t; x/

where

ˆ.t; � / 2 T�tP.Td / and ‰.t; � / 2 ŒT�tP.Td /�?:

Then ˆ and ‰ are Borel maps in the sense that there exists a Borel map X W
Œ0; T � � Rd ! Rd such that for L 1-a.e. t 2 Œ0; T � we have ˆ.t; � / � X.t; � /

�t -a.e.

PROOF. Define the Borel measure† as in (3.3). Let M be the closure inL2.†/
of frx�.t; x/ W � 2 C.Œ0; T �IC 1.Td //g, and decompose orthogonallyƒ D ƒMC

ƒM? . Thus there exists a sequence f�ngn � C.Œ0; T �IC 1.Td // such that

lim
n!1

Z T

0

krx�
n.t; � / �ƒM .t; � /k2�t dt D 0:

Thus, for L 1-a.e. t 2 Œ0; T � we have ˆ.t; x/ � ƒM .t; x/ for �t -a.e. x 2 Rd . �

COROLLARY 3.5. Let � 2 AC 2.0; T IP.Td //. Then any c 2 Rd decomposes as

(3.6) c D zcC c? where zct 2 T�tP.Td / and c?t 2 ŒT�tP.Td /�?:

Furthermore, zc and c? are Borel maps as functions of .t; x/.

Now we can prove the following:

PROPOSITION 3.6. Let � 2 AC 2.0; T IP.Td // and v be its velocity of minimal
norm in the periodic sense. Then vc WD v�c? is the unique velocity in the periodic
sense that minimizes kwC ck2�t among all velocities in the periodic sense w.

PROOF. Every periodic velocity looks like w D vC  , where v is the minimal
norm periodic velocity and  W Œ0; T � � Rd ! Rd is a Borel map such that
 t 2 ŒT�tP.Td /�? for a.e. t 2 .0; T /. So wC c D vC  C c and

kwt C ck2�t D kvt Czctk
2
�t
C k t C c?t k

2
�t

for a.e. t 2 .0; T /:
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The lowest value is obtained for  D �c?. �

DEFINITION 3.7. The velocity for � 2 AC 2.0; T IP.Td // shown in Proposition
3.6 is called the periodic velocity of c-minimal norm associated to � .

DEFINITION 3.8. Let Œ�� D Œ��� 2 AC 2.0; T IP.Td //, let v; v� be veloci-
ties associated to �; ��, respectively, in the periodic sense. We say that .�; v/
and .��; v�/ are equivalent and write .�; v/ � .��; v�/ if .�t ; vt / � .��t ; v�t /
for almost every t 2 .0; T /. We denote by Œ�; v� the class of equivalence of
.�; v/ and by C .0; T IC P.Td // the set of classes of equivalence. Denote by
C .0;1IC P.Td // the intersection (for all T > 0) of C .0; T IC P.Td //.

We next show that if �; z� are two curves in P2.Rd / such that Œ�� D Œz�� 2

AC 2.0; T IP.Td //, then any periodic velocity v for � has, as expected, a coun-
terpart zv as a periodic velocity for z� in the sense that .�t ; vt / � .z�t ; zvt / for a.e.
t 2 Œ0; T � (written as Œ�; v� � Œz�; zv�).

PROPOSITION 3.9. Let � 2 AC 2.0; T IP.Td // and �; z� be two curves such that
�t ; z�t 2P2.Rd / and �t D Œ�t � D Œz�t � for all t 2 Œ0; T �. Then, for every periodic
velocity v for � there exists a periodic velocity zv for z� such that Œ�; v� � Œz�; zv�.

PROOF. Consider the Borel measures †; z† defined on Œ0; T � � Rd whose dis-
integrations are d�t dt and d z�t dt , respectively (see (3.3)). Set

(3.7) �

Z T

0

Z
Rd

@t' d† D L.rx'/ D zL.rx'/ D �

Z T

0

Z
Rd

@t' d z†;

which is a linear functional defined on the vector space of spatial gradients of
functions ' 2 C 1c .0; T IC

1.Td //. Since v is a periodic velocity for � , we know

L.rx'/ D

Z T

0

Z
Rd

v � rx' d†;

which yields that L can be extended to the closure of rxC 1c .0; T IC
1.Td // into

L2.†/ as a linear, continuous functional whose norm is at most kvkL2.†/. In
particular, due to (3.7), we have

j zL.rx'/j � kvk†krx'k† D kvkL2.†IRd /krx'kz†
for all ' 2 C 1c .0; T IC

1.Td //;

which means zL can also be extended into a linear, continuous functional defined on
the closure of rxC 1c .0; T IC

1.Td // into L2.z†/ and whose norm is at most kvk†.
By Riesz representation, there exists a Borel map zv W Œ0; T � �Rd ! Rd such that
zv 2 L2.z†/ and

zL.rx'/ D

Z T

0

Z
Rd

zv � rx' d z† for every ' 2 C 1c .0; T IC
1.Td //;
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which, in light of (3.7) and upon using '.t; x/ WD f .t/�.x/ with f 2 C 1c .0; T /
and � 2 C 1.Td /, yields the conclusion thanks to Remark 2.5. �

We now turn to the relationship between “full” velocities (in the [2] sense) and
periodic velocities.

PROPOSITION 3.10. Let � 2 AC 2.0; T IP2.Rd // and let v be a velocity associ-
ated to � . We define the measure † as in (3.3). Let E be the vector space obtained
as the closure in L2.†/ of the set C.Œ0; T �IC1.Td //, and denote its orthogonal
complement by E?. Write the orthogonal decomposition

v D vper
C w where vper

2 E and w 2 E?:

We have

(3.8) kvper
C ck† � kvC ck† for every c 2 Rd

and

(3.9) vper
t 2 L

2.Td ; �t / for almost every t 2 .0; T /:

Also, vper is a velocity associated to � in the periodic sense.

PROOF. Since

vC c D .vper
C c/C w; vper

C c 2 E ; and w 2 E?;

we obtain (3.8).
Next, choose a sequence fGng � C 1.Œ0; T �IC1.Td // such that

lim
n!1

Z T

0

Z
Rd

ˇ̌
vper
t .x/C c �Gnt .x/

ˇ̌2
†.dt; dx/ D 0:

Then up to a subsequence of fGng we have

lim
n!1

Z
Rd

ˇ̌
vper
t .x/C c �Gnt .x/

ˇ̌2
�t .dx/ D 0

for almost every t , which proves (3.9).
Let ' 2 C1c ..0; T /IC

1
c .T

d //. Since v � vper 2 E?, we haveZ T

0

dt

Z
Rd

.@t' C vper
� r'/�t .dx/ D

Z T

0

dt

Z
Rd

.@t' C v � r'/�t .dx/ D 0:

This, together with (3.9), proves that vper is a velocity associated to � in the periodic
sense. �

As a direct consequence of Proposition 3.10, we obtain the following proposi-
tion:
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COROLLARY 3.11. Let � 2 AC 2.0; T IP2.Rd // and let v W .0; T / � Rd ! Rd

be a velocity associated to � . For L 1-a.e. t 2 .0; T / let wt be the projection of vt
onto L2.Td ; �t /. Then w is a velocity associated to � in the periodic sense and

(3.10) kwtk�t < kvtk�t for L 1-a.e. t 2 .0; T /

unless vt 2 L2.Td ; �t /: In particular, the vector field w coincides with a Borel
map up to a set of zero measure.

THEOREM 3.12. Let � 2 AC 2.0; T IP2.Rd // and let v be a velocity associated
to � . Let w W .0; T / � Rd ! Rd be a velocity associated to � in the periodic
sense. Then, for almost every t 2 .0; T /, wt and vt have the same projection on
T�tP.Td /.

PROOF. Let ' 2 C 1.Td /. First we use that w is a velocity associated to � in
the periodic sense and then the fact that ' and r' are bounded to deduce

(3.11) hwt ;r'i�t D
d

dt

Z
Rd

' d�t D hvt ;r'i�t

in the sense of distributions. We conclude that there exists a set of zero measure
N � .0; T / such that (3.11) holds for all t 2 .0; T / nN and all ' 2 „, where
„ � C 1.Td / is countably dense in C.Td / for the uniform topology. Hence (3.11)
holds for all ' 2 C 1.Td /. �

We below recall a proposition whose proof is standard (see, e.g., [2] for the
nonperiodic case).

LEMMA 3.13. Let

(3.12) v 2 L2.0; T IW 1;1.Td
IRd //:

For any �0 2P2.Rd / there exists exactly one solution Œ�� 2 AC 2.0; T IP.Td //

to the continuity equation

@t� Crx � .v�/ D 0 in D 0..0; T / � Td /

with the property that Œ�.0; � /� � Œ�0�. This is given by �t � Xt#�0 for all t 2
.0; T /, where X is the classical flow of v.

3.2 c-Optimality
For c 2 Rd and �; � 2P2.Rd / we define

Wc.�; �/ WD W .�; .idC c/#�/ D W ..id � c/#�; �/

and

Wc.�; �/ WD W2.�; .idC c/#�/ D W2..id � c/#�; �/:

Remark 3.14. Let � and � be two Borel probability measures with bounded second
moments.
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(i) Observe that if 
 has � and � as its marginals, thenZ
Rd�Rd

jx � y � cj2
.dx; dy/ D

Z
Rd�Rd

jx � yj2
.dx; dy/C jcj2 C 2c �
Z

Rd

y�.dy/ � 2c �
Z

Rd

x�.dx/;

and so 
 minimizes the expression on the left-hand side of the previous identity if
and only if it minimizes the first expression on its right-hand side. In particular,

W 2
c .�; �/ D W

2
2 .�; �/C jcj

2
C 2c �

Z
Rd

y�.dy/ � 2c �
Z

Rd

x�.dx/:

(ii) Denote �c WD .id � c/#�. By Lemma 2.1, there exists �� 2 Œ�� and

c 2 �o.�c; ��/ (the set of optimal transport plans between �c and ��) such that

W 2.�c; �/ D W
2.�c; ��/ D

Z
Rd�Rd

jx � yj2
c.dx; dy/

D

Z
Rd�Rd

jx � yj2Td 
c.dx; dy/:

Let 
 WD Œ.�1 C c/ � �2�#
c and notice thatZ
Rd�Rd

jx � y � cj2Td 
.dx; dy/ D
Z

Rd�Rd

jx � yj2Td 
c.dx; dy/ D

Z
Rd�Rd

jx � yj2
c.dx; dy/ D

Z
Rd�Rd

jx � y � cj2
.dx; dy/:

According to (i), we necessarily have 
 2 �o.�; ��/. Furthermore, by the defini-
tions of Wc and Wc, we get

W 2
c .�; �/ D min

x���
W 2

c .�; x�/ D W
2

c .�; ��/ D

Z
Rd�Rd

jx � y � cj2Td 
.dx; dy/:

3.3 Approximation by Measures with Smooth Densities
For " > 0 take

�".x/ WD .2�"/�d=2 exp.�jxj2=.2"//

and introduce the periodic mollifying kernel

(3.13)
X

k2Zd

�". � C k/ DW E " 2 C1.Td /; E " > 0 in Rd :
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It is easy to see that the convergence of the series is absolute, so the properties
listed above follow.

Let � 2P2.Rd / and � 2 L2.�/, and set

(3.14) z�" D � � E "; Z" D .��/ � E "; �" D
Z"

z�"
; �" D z�"

ˇ̌
Q
;

where the convolution is standard, so that the integrals involved are performed
over Rd . We shall not make a notational distinction between measures absolutely
continuous with respect to L d and their densities. Note that the first three func-
tions defined at (3.14) are smooth and Zd -periodic. Since z�" is also everywhere
positive, it has infinite total mass. One checks that if ' 2 C.Td /, then

(3.15) E " � .'�Q/ D �
"
� ':

Setting ' � 1 in (3.15) we obtain that the total mass of �" is 1.

3.4 The Metric Derivative in Terms of the Velocity of Minimal Norm
We consider Td -narrowly continuous curve � W Œ0; T � ! P2.Rd / for which

there exists an associated velocity v in the periodic sense. Set

(3.16) z�"t D �t � E "; E"t D .vt�t / � E "; v"t D
E"t
z�"t
; x�"t D z�

"
t

ˇ̌
Q
;

where the periodic mollifying kernel is defined in (3.13). From the fact that

(3.17) W .x�"t ; �t / � "
2

Z
Rd

�.´/j´j2 d´

we see that the following holds:

LEMMA 3.15. The measures Œx�"t � converge to Œx�t � in P.Td / as " ! 0C, uni-
formly with respect to t 2 Œ0; T �.

We shall next state a lemma that carries some statements of [2, lemma 8.1.9] to
our context.

LEMMA 3.16. If v is a velocity associated to � in the periodic sense, v" is also a
velocity associated to x�" in the periodic sense. Moreover, for t 2 Œ0; T �,

(3.18) kv"tkx�"t � kvtk�t :

PROOF. Let ' 2 C 1c .0; T IC
1.Td //. We first use the fact that the convolution

operator is self-adjoint and then (3.15) to conclude thatZ T

0

dt

Z
Rd

v" � r't d x�"t D
Z T

0

dt

Z
Rd

vt � E " � .�Qr't /�t .dx/

D

Z T

0

dt

Z
Rd

vt � �" � r't d�t :
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Hence

(3.19)
Z T

0

dt

Z
Rd

v"t � r't d x�
"
t D

Z T

0

dt

Z
Rd

vt � r.�" � 't /d�t :

Similarly,

(3.20)
Z T

0

dt

Z
Rd

@t't d x�
"
t D

Z T

0

dt

Z
Rd

@t .�
"
� '/d�t :

Combining (3.19)–(3.20) we see that .x�"; v"/ satisfies (3.4). We have (cf. [2,
p. 178])

(3.21) jv"t .x/j
2�"t .x/ �

Z
Rd

jvt .y/j2E "t .x � y/�t .dy/:

Since Z
Q

E "t .x � y/dx D 1;

integrating both sides of (3.21) over Q we conclude the proof of the lemma. �

PROPOSITION 3.17.
(i) One has v" 2 L2.0; T IW 1;1.Td IRd //.

(ii) There exists a unique (flow) X" W Œ0; T � �Rd ! Rd such that

(3.22) PX"t .x/ D v"t
�
X"t .x/

�
; X"0.x/ D x; X"t .x C k/ D X"t .x/C k

for all x 2 Rd and k 2 Zd .
(iii) We have

(3.23) X"t#Œx�
"
0� D Œx�

"
t � in P.Td /

for all t 2 Œ0; T � and all " > 0.

PROOF.
(i) The time distributional derivative of z�" is

@t z�
"
t .x/ D �

Z
Rd

vt .y/ � rE ".x � y/�t .dy/;

and so
j@t z�

"
t .x/j � kE

"
t kW1;1kvtk�t :

This proves that for each x, t ! z�"t .x/ is 2-absolutely continuous, uniformly in
x, and so it is Hölder-continuous. Hence z�" is continuous in both variables .t; x/.
As it is pointwise positive and periodic in x, it is bounded below by a constant
depending only on ". But

krz�"tk1 � krE "k1; kE
"
t kW1;1 � kE

"
kW 1;1kxvtkx�t :



28 W. GANGBO AND A. TUDORASCU

These prove that v" 2 L2.0; T IW 1;1.Td IRd //.
(ii) Existence and uniqueness of a flow X" W Œ0; T � � Rd ! Rd satisfying

(3.22) follows from (i). By uniqueness and due to the periodicity of v"t we deduce
that

X"t .x C k/ D X"t .x/C k

for all k 2 Zd .
(iii) By Lemma 3.16 .x�"; v"/ satisfies (3.4). We use Lemma 3.13 to obtain (iii).

�

The Eulerian characterization of curves in AC 2.0; T IP.Td // follows.

THEOREM 3.18. Let Œ�� 2 AC 2.0; T IP.Td // and v be a velocity in the periodic
sense. If 0 � s < t � T and we set h D t � s, then

(3.24) Whc.�s; �t / �

Z t

s

kv� C ck��d� for every c 2 Rd :

As a consequence, by choosing c D 0 we get

(3.25) j� 0jTd .t/ � kvtk�t for L 1-a.e. t 2 .0; T /:

PROOF. Define
�"t D X

"
# x�
"
0 :

Note that for any 0 � s < t � T , we have that 
"s;t WD .X"s � X
"
t /#x�

"
0 belongs to

�.�"s ; �
"
t /. Thus,

W 2
hc.�

"
s ; �

"
t / �

Z
Rd

jX"t .x/C hc �X"s .x/j
2
Td x�

"
0.dx/

D

Z
Rd

ˇ̌̌̌Z t

s

. PX"� .x/C c/d�
ˇ̌̌̌2
Td
x�"0.dx/:

We then use Minkowski’s inequality to conclude that

(3.26)
Whc.�

"
s ; �

"
t / �

Z t

s



 PX"� .x/C c



x�"0
d�

D

Z t

s

kv"� .x/C ckx�"� d� �
Z t

s

kv� C ck�� d�:

We have used Lemma 3.16 to obtain the last inequality in (3.26). Thanks to Lemma
3.15, letting "! 0C in (3.26) we establish (3.24).

Setting c D 0 in (3.24) we conclude that (3.25) holds whenever t is a Lebesgue
point of � ! kv� C ck�� and j� 0jTd .t/ exists. �

Proposition 3.10 and Theorem 3.18 yield the following lemma:
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LEMMA 3.19. Let � 2 AC 2.0; 1IP2.Rd // and let w be a velocity associated
to � . Then

(3.27)
Z 1

0

kwt C ck2�t dt � W
2

c .�0; �1/ � W 2
c .�0; �1/ for all c 2 Rd :

Next, we shall show that there are cases where the inequalities in Lemma 3.19
can be reversed. We introduce the projections �1.x; y/ D x and �2.x; y/ D y.

LEMMA 3.20. Let �0; �1 2P2.Rd / and let 
 2 �.�0; �1/ be such that

W 2
c .�0; �1/ D W

2
c .�0; �1/ D

Z
Rd�Rd

jx � y � cj2Td 
.dx; dy/:

For t 2 Œ0; 1� we set
�t WD Œ.1 � t /�1 C t�2�#


and define † as in (3.3).

(i) Whenever 0 � s < t � 1 we have

W2.�t ; �s/ D .t � s/W2.�0; �1/;

and so � 2 AC 2.0; 1IP2.Rd //.
(ii) Let v W .0; 1/ �Rd ! Rd be implicitly defined byZ 1

0

Z
Rd

vt .x/ �Gt .x/†.dt; dx/ WDZ 1

0

dt

Z
Rd�Rd

.y � x/ �Gt
�
.1 � t /x C ty

�

.dx; dy/

for all continuous and bounded test functions G. Then v is the velocity of
the minimal norm associated to � and

(3.28) kvt C ck�t D Wc.�0; �1/ D Wc.�0; �1/ for almost every t 2 .0; 1/:

PROOF. The fact that v is a velocity associated to � is readily checked. We refer
to Section 7.2 [2] for the proof of (i) and for the fact that v is of minimal norm.

It remains to study its properties. Let � 2 C.Rd ;Rd / be a bounded function.
We have

h�; vt C ci�t D
Z

Rd�Rd

�..1 � t /x C ty/ � .y � x C c/
.dx; dy/

� k�k�tWc.�0; �1/:

Since � is arbitrary, we conclude that (3.28) holds. This, together with Lemma
3.19, proves that (3.28) holds for almost every t 2 .0; 1/. �
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3.5 Lifting with Curves of c-Minimal Velocity
Here our goal is to show that for any c 2 Rd , any curve in AC 2.0; T IP.Td //

admits a lift “of c-minimal velocity” onto AC 2.0; T IP2.Rd //. We begin with a
well-known proposition which is formulated so that it can also be adapted to the
periodic case. Let us fix T > 0.

PROPOSITION 3.21. Assume f�ngn � AC 2.0; T IP2.Rd // and vn is a velocity
associated to �n (respectively, vn is a velocity associated to �n in the periodic
sense). Let � 2 P2.Rd / and C0 �

p
d be such that W2.�nt ; �/ � C0 (respec-

tively, W .�nt ; �/ � C0) for all t 2 Œ0; T � and all integers n � 1, and

(3.29) sup
n2N

Z T

0

kvnt k
2
�nt
dt � C0:

Then there exists an increasing sequence fnkgk � N, a path � 2 AC 2.0; T I
P2.Rd // (respectively, � 2 AC 2.0; T IP.Td //), and v a velocity associated to
� (v a velocity associated to � in the periodic sense) such that

(i) f�nkt gk converges narrowly (respectively, in P.Td /) to �t for t 2 Œ0; T �,
and

(ii) it holds that

(3.30) lim inf
k!1

Z T

0

kvnk C ck2
�
nk
t

dt �

Z T

0

kvC ck2�t dt

for any c 2 Rd .

THEOREM 3.22. Let c 2 Rd , �� 2 AC 2.0; T IP.Td //, and v� be a velocity
associated to �� in the periodic sense. Then there exist � 2 AC 2.0; T IP2.Rd //
and a velocity v associated to � such that

(3.31)
Z T

0

kvt C ck2�t dt �
Z T

0

kv�t C ck2
��t
dt;

�0 D ��0 , and Œ�t � D Œ��t � for all t 2 Œ0; T �. Furthermore, v is associated to � in
the periodic sense.

PROOF. Let n � 1 be an integer and set h D T=n and tk D kh for k D
0; : : : ; n. We use Remark 3.14(ii) to inductively find �htk such that �h0 D �

�
0 ,

Whc
�
�htk�1 ; �

h
tk

�
D Whc

�
�htk�1 ; �

h
tk

�
D Whc

�
��tk�1 ; �

�
tk

�
;

and Œ�htk � D Œ�
�
tk
� for all k D 1; : : : ; n. Choose 
k 2 �.�htk�1 ; �

h
tk
/ such that

W 2
hc.�

�
tk�1

; ��tk / D

Z
Rd�Rd

jx � y � hcj2Td 
k.dx; dy/

D

Z
Rd�Rd

jx � y � hcj2
k.dx; dy/:
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(1) Remark 3.14(i) ensures that

W 2
2

�
�htk�1 ; �

h
tk

�
D

Z
Rd�Rd

jx � yj2
k.dx; dy/:

For t 2 Œtk�1; tk�, we set

�ht WD

��
1 �

t � tk�1

h

�
�1 C

t � tk�1

h
�2

�
#



and define a Borel measure †h on .0; T / �Rd byZ T

0

Z
Rd

G d†h D

Z T

0

dt

Z
Rd

Gt .x/�
h
t .dx/

for all continuous and bounded functions G W Œ0; T � � Rd ! R. We define the
vector field vh W .0; 1/ �Rd ! Rd byZ T

0

Z
Rd

G � vh d†h WD

nX
kD1

Z tk

tk�1

dt

Z
Rd�Rd

y � x

h
�Gt

�
x C .y � x/

t � tk�1

h

�

k.dx; dy/

for all continuous and bounded functions G W Œ0; T � �Rd ! Rd . We haveZ
Rd

vht .x/ �Gt .x/�
h
t .dx/ DZ

Rd�Rd

y � x

h
�Gt

�
x C .y � x/

t � tk�1

h

�

k.dx; dy/:

By Lemma 3.20, �h 2 AC 2.0; T IP2.Rd // and vh is the velocity of minimal
norm associated to �h. We haveZ

Rd

jvht j
2 d�ht D

Z
Rd�Rd

ˇ̌̌̌
y � x

h

ˇ̌̌̌2

k.dx; dy/

D
1

h2
W 2
2

�
�htk�1 ; �

h
tk

�
�
1

h2

�Z tk

tk�1

kv�s k��s ds
�2

for every t 2 .tk�1; tk/. We sum up over k D 1; : : : ; n and use Jensen’s inequality
to obtain

(3.32)
Z T

0

kvht .x/k
2

�ht
dt �

Z T

0

kv�t k
2
��t
dt;
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and so, using (3.1) we obtain

(3.33) W2.�
h
t ; �
�
0 / �

Z t

0

kvhs k�hs ds �
p
T

sZ T

0

kv�t k2��t dt:

Similarly,Z
Rd

jvht C cj2 d�ht D
Z

Rd�Rd

ˇ̌̌̌
y � x

h
C c

ˇ̌̌̌2

k.dx; dy/

D
1

h2
W 2
hc
�
�htk�1 ; �

h
tk

�
D

1

h2
W 2
hc
�
��tk�1 ; �

�
tk

�
for every t 2 .tk�1; tk/, and so

(3.34)
Z T

0

dt

Z
Rd

jvht C cj2 d�ht D
1

h

nX
kD1

W 2
hc.�

�
tk�1

; ��tk /:

Using (3.34) and combining Lemma 3.18 with Jensen’s inequality, we obtainZ T

0

dt

Z
Rd

jvht C cj2 d�ht �
nX
kD1

Z tk

tk�1

kv�t C ck2
��t
dt

D

Z T

0

dt

Z
Rd

jv�t C cj2 d��t :
(3.35)

Thanks to Proposition 3.21, (3.32) combined with (3.33) provides us with a
sequence f�hk ; vhkgk , � 2 AC 2.0; T IP2.Rd //, and a velocity v associated to �
such that f�hkt gk converges to �t in P2.Rd / for every t 2 Œ0; T � and

(3.36)
Z T

0

kvt C ck2�t dt � lim inf
k!1

Z T

0

kvhkt C ck2
�
hk
t

dt:

We combine (3.35) and (3.36) to obtain (3.31).
(2) We claim that Œ�t � D Œ��t � for all t 2 Œ0; T �. Indeed, if t 2 Œtk�1; tk�, then

W
�
�ht ; �

�
t

�
� W

�
�ht ; �

h
tk�1

�
CW

�
�htk�1 ; �

�
t

�
D W

�
�ht ; �

h
tk�1

�
CW

�
��tk�1 ; �

�
t

�
:

We use Lemma 3.20 to conclude that

W
�
�ht ; �

�
t

�
�
t � tk�1

h
W
�
��tk�1 ; �

�
tk

�
CW

�
��tk�1 ; �

�
t

�
� 2

Z tk

tk�1

kv�� k��� d�:

Replacing h by hk in the previous inequality and letting k tend to 1 yields that
f�
hk
t gk converges to ��t in P.Td / for every t 2 Œ0; T �, which proves the claim.
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(3) Define E as in Proposition 3.10 and let vper be the projection of v onto E .
We combine claim (2) and (3.34) and then combine Lemma 3.18 with Jensen’s
inequality to obtainZ T

0



vht C c


2
�ht
dt D

1

h

nX
kD1

W 2
hc.�tk�1 ; �tk / �

Z T

0



vper
t C c



2
�t
dt:

This, together with (3.36), yieldsZ T

0

kvt C ck2�t dt �
Z T

0



vper
t C c



2
�t
dt;

and so by (3.8), we have v D vper. �

This theorem has an interesting application when v� is a special periodic veloc-
ity.

COROLLARY 3.23. Let c 2 Rd and �� 2 AC 2.0; T IP.Td // with periodic ve-
locity of c-minimal norm denoted by v�c . There exists � 2 AC 2.0; T IP2.Rd //
such that:

(i) �0 D ��0 ;
(ii) If vc is the c-minimal norm periodic velocity for � , then Œ�; vc� � Œ�

�; v�c �;
(iii) vc is also a full (in the AC 2.0; T IP2.Rd //-sense) velocity for � ;
(iv) If c D 0, then v0 is the full velocity of minimal norm of � . Thus,

(3.37) j.��/0jTd .t/ D kv
�
0;tk��t D kv0;tk�t D j�

0
j.t/ for a.e. t 2 Œ0; T �:

PROOF. Let us consider the curve � 2 AC 2.0; T IP2.Rd // given by Theorem
3.22. By Proposition 3.9, we produce a periodic velocity w for � such that Œ�;w� �
Œ��; v�c �. Clearly, w must be the c-minimal norm periodic velocity for � , otherwise
we would take zw to be said velocity and Proposition 3.9 would give a counterpart
velocity zw� for ��, which, by Remark 2.6, would satisfy

kzw�t C ck��t D kzwC ck�t < kwC ck�t D kv
�
c C ck��c

for all t in a nonnegligible subset of .0; T /, which contradicts the c-minimality
of v�c .

Finally, consider the dual role (full and periodic) velocity given by Theorem
3.22 and denote it by vc. As w is the c-minimal norm periodic velocity for � , we
necessarily have

(3.38) kwt C ck�t � kvc;t C ck�t for a.e. t 2 .0; T /:

According to (3.31) and due to Œ�;w� � Œ��; v�c �, we getZ T

0

kvc;t C ck2�t dt �
Z T

0

kv�c;t C ck2
��t
dt D

Z T

0

kwt C ck2�t dt;

which, in view of (3.38), implies

kvc;t C ck�t D kv
�
c;t C ck��t D kwt C ck�t for a.e. t 2 .0; T /:
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Thus, for a.e. t we have vc;t � wt , �t -a.e., which means (i)–(iii) are proved. To
prove (iv), note that for a.e. t 2 Œ0; T � we have

j� 0j.t/ � kv0;tk�t D kv
�
0;tk��t D j.�

�/0jTd .t/ D j�
0
jTd .t/:

But the metric inequality W � W2 implies the obvious j� 0j � j� 0jTd ; thus the
display above consists of equalities only. In particular, j� 0j.t/ D kv0;tk�t for a.e.
t 2 Œ0; T �; i.e., v0 is the minimal norm full velocity of � . �

DEFINITION 3.24. Let � 2 AC 2.0; T IP.Td // and v be a periodic velocity. We
say that the pair .z�; zv/ is a lift of .�; v/ if:

(i) z� 2 AC 2.0; T IP2.Rd //;
(ii) z�0 D �0;

(iii) Œ�; v� � Œz�; zv�;
(iv) zv is a dual-role velocity for z� (both full and periodic).

Note that Corollary 3.23 proves that any pair Œ�; v� 2 C .0; T IC P.Td // such that
v is a c-minimal periodic velocity for � (for some c 2 Rd ) admits at least one lift.
It is not clear if this statement is true for general periodic velocities v.

PROPOSITION 3.25. Let Œ�; v� 2 C .0; T IC P.Td // and let .z�; zv/ be a lift of
.�; v/. Then

(3.39)
Z

Rd

xz�.t; dx/ D

Z
Rd

x�0.dx/C

Z t

0

Z
Rd

v� d�� d� for all t 2 Œ0; T �:

In other words, the mean (center of mass) of z� is lift invariant.

PROOF. The equality Œ�; v� � Œz�; zv� implies

(3.40)
Z

Rd

zvt d z�t D
Z

Rd

vt d�t for a.e. t 2 Œ0; T �:

But zv is also a full velocity for z� . By the definition of a full velocity [2], we have
that

Œ0; T � 3 t !

Z
Rd

�.x/�.t; dx/

is absolutely continuous for any continuous function � of at most quadratic growth.
Furthermore,

d

dt

Z
Rd

�.x/z�.t; dx/ D

Z
Rd

r�.x/ � zvc.t; x/z�.t; dx/ for a.e. t 2 Œ0; T �:

If we apply this to �i .x/ D xi , i D 1; : : : ; d , we get
d

dt

Z
Rd

xz�.t; dx/ D

Z
Rd

zv.t; x/z�.t; dx/ for a.e. t 2 Œ0; T �;



WEAK KAM THEORY ON THE WASSERSTEIN TORUS 35

which, by the absolute continuity recalled above, is equivalent toZ
Rd

xz�.t; dx/ D

Z
Rd

x�.0; dx/C

Z t

0

Z
Rd

zv.�; x/z�.�; dx/d� for all t 2 Œ0; T �:

We use (3.40) to finish the proof. �

This invariance allows us to make the following definition:

DEFINITION 3.26. Let � 2 AC 2.0; T IP.Td // and v be a periodic velocity for � .
We say that the speed curve .�; v/ has rotation vector V 2 Rd if

lim
t!1

1

t

Z
Rd

xz�.t; dx/ D V

for a lift .z�; zv/ of .�; v/.

Note that no lift may exist, or the limit above may not exist. In each case,
the rotation vector is undefined. It should be noted that if �t D ıx.t/, where
x.t/ 2 Td , then .�; v/ has rotation vector V if and only if .x.t/; Px.t// has rotation
vector V .

3.6 The Chain Rule
The proof of proposition 8.4.6 in [2] can be reproduced to obtain the following:

PROPOSITION 3.27. Let � 2 AC 2.0; T IP.Td // and let v be the velocity of
minimal norm associated to � in the periodic sense and characterized by vt 2
T�tP.Td /. Then, for almost every t 2 .0; T / the following properties hold: for
any 
h 2 �.�t ; ��tCh/ such that

��tCh 2 Œ�tCh� and 
 2 �per.�t ; �
�
tCh/;

we have

(3.41) lim
h!0

�
�1;

�2 � �1

h

�
#

h D .id � vt /#�t

and

(3.42) lim
h!0

W
�
�tCh; .idC hvt /#�t

�
jhj

D 0:

LEMMA 3.28. Let U 2 C 1.P.Td //, � 2 AC2.0; T IP.Td //, and v be the
velocity of minimal norm associated to � in the periodic sense. Then t ! U.�t / is
in W 1;2.0; T / and, in the sense of distributions, we have

(3.43)
d

dt
U.�t / D hrwU.�t /; vt i�t :



36 W. GANGBO AND A. TUDORASCU

PROOF. Since U is Lipschitz, t ! U.�t / is in W 1;2.0; T /. To prove the the-
orem, it remains to show that (3.43) holds almost everywhere. Let t be such that
(3.41) and (3.42) hold and

(3.44) lim
h!0

W .�t ; �tCh/

jhj
D j� 0jTd .t/:

Set � WD rwU.�t /. For h 2 R small enough, we first use Lemma 2.1 to choose
��
tCh
2 Œ�tCh�, and, second, choose 
h 2 �per.�t ; �

�
tCh

/. By the definition of �,
there exists � W R! R continuous at 0 such that �.0/ D 0 and

(3.45)

ˇ̌̌̌
U.�tCh/ � U.�t /

h
� h�; vt i�t

ˇ̌̌̌
� �

�
W .�t ; �tCh/

�
W .�t ; �tCh/

jhj

C

ˇ̌̌̌
h�; vt i�t �

Z
Rd�Rd

�.x/ �
y � x

h

h.dx; dy/

ˇ̌̌̌

Letting h tend to 0 in (3.45) and exploiting (3.41) and (3.44), we conclude that
(3.43) holds at t . �

4 Elements of Weak KAM theory
We assume we are given a function

(4.1) K 2 C 1.P.Td //:

We write K as the difference of its positive and negative parts: K D K C�K �.
As K is continuous and P.Td / is compact (cf. Lemma 2.3), K ˙ attains its
maximum, which we denote by K ˙

1 .
We define the Lagrangian

L.�;w/ D
1

2
‰.�;w/ �K .�/; ‰.�;w/ WD kwk2�;

� 2P2.R
d /; w 2 L2.�/:

We fix c 2 Rd and define

Lc.�;w/ D L.�;�w/C c �
Z

Rd

w d�:

Remark 4.1. By Remark 2.6, ‰, L, and Lc are defined on the quotient space
C P.Td /. One exploits the variational formulation (2.7) to obtain that‰ is lower-
semicontinuous on C P.Td /. Since F is continuous, we conclude thatL is lower-
semicontinuous on C P.Td /.
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Let � 2 AC 2.0; T IP.Td //, and let v be a velocity associated to � in the
periodic sense. We exploit again the variational formulation (2.7) to show that
t ! kvtk�t is lower-semicontinuous at almost every point t 2 .0; T /. Hence it
is a measurable function. Similarly, t ! hc; vt i�t is measurable. The function
t ! K .�t / is continuous as the composition of two continuous functions. We
conclude that t ! L.�t ; vt /; Lc.�t ; vt / are measurable.

4.1 Definition of Weakly Invariant Measures
Let m be a Borel probability measure on C P.Td /. We say that m is weakly

invariant and of rotation number V 2 Rd if

(4.2)
Z

C P.Td /

� Z
Rd

v d�
�
m.d�; dv/ D V

and

(4.3)
Z

C P.Td /

ıU dm D 0

for all U 2 C 1.P.Td // such that

.�; v/! ıU.�; v/ DW hrwU.�/; vi�
is continuous.

Remark 4.2. Note that � ! ıU.�;rwU.�// D krwU.�/k
2
� is continuous as a

composition of two continuous functions. Since P.Td / is compact, we conclude
that �! krwU.�/k� is bounded.

LEMMA 4.3. Let � 2 AC 2.0; T IP.Td //, let v be a velocity associated to � in
the periodic sense, and let C be such that kvtk�t � C for all t 2 Œ0; T �.

(i) If F is continuous on C P.Td /, then t ! F.�t ; vt / is Lebesgue measur-
able.

(ii) It makes sense then to define the measures mT on C P.Td / by setting

(4.4)
Z

C P.Td /

F dmT D
1

T

Z T

0

F.�t ; vt /dt

for any F continuous on C P.Td /. Here BC is the compact set defined in
Lemma 2.9.

PROOF.
(i) Due to the continuity of F , it suffices to show that .0; T / 3 t ! .�t ; vt / 2

C P.Td / is Lebesgue-measurable. By the definition of the topology of C P.Td /,
since t ! Œ�t � is continuous in the W -metric, it is enough to prove that the function
t ! h�; vt i�t is Lebesgue-measurable for all � 2 C.Td IRd /. We now refer to
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Corollary 3.23 in order to replace h�; vt i�t by h�; zvt iz�t , where .z�; zv/ is the lift
indicated there for c D 0 (so that zv is its minimal norm velocity).

Consider now the optimal maps rˆ.t; � / pushing the Lebesgue measure re-
stricted to Q forward to z�t for all t 2 Œ0; T �. By lemma 4.2 and remark 4.4 in [8],
the map .0; T / �Q 3 .t; x/! rˆ.t; x/ is L 1Cd -a.e. equal to a Borel map, say
‰. Thus, the map

.0; T / �Q 3 .t; x/! �.‰.t; x// � zvt .‰.t; x//

is Borel as a composition of Borel maps. Since zvt 2 L2.z�t / for a.e. t 2 .0; T / and
t ! kzvtkz�t lies in L2.0; T /, we deduce that jzvıƒj2 is integrable over .0; T /�Q,
where ƒ.t; x/ WD .t; ‰.t; x//. But � is bounded, so the map in the display above
is integrable as well over .0; T / � Q. We apply Fubini’s theorem to deduce that
t ! h�; zvt iz�t is integrable over .0; T /, which, in particular, yields the conclusion
(since � 2 C.Td IRd / is arbitrary).

(ii) By Lemma 2.9, BC is a compact Hausdorff space that contains the range
of t ! .�t ; vt /. By the Riesz representation theorem, the linear functional on
C.BC ; / F ! .1=T /

R T
0 F.�t ; vt /dt , defines uniquely a Borel measure mT on

BC . We extend that measure to C P.Td / by requiring that it be null on the com-
plement of BC . Observe that mT satisfies (4.4). �

LEMMA 4.4. Suppose that � is as in Lemma 4.3 and theL1-norm of t ! kvtk�t 2
L1.0; T / is bounded by a constant C independent of T . Then:

(i) fmT gT>0 has at least one cluster point m for the narrow convergence
topology.

(ii) All cluster points m satisfy (4.3).

PROOF.

(i) Recall that mT is supported by the compact set BC . Since BC is a Polish
space, in light of remark 5.1.5 in [2], we conclude that fmT gT>0 is precompact for
the narrow convergence. Thus, there exists an increasing sequence fTngn converg-
ing to1 such that fmTngn converges to a Borel probability m on BC .

(ii) Let m be a point of accumulation as in (i), and let U 2 C 1.P.Td // such
that ıU is continuous. Since ıU is continuous on BC , we use Lemma 3.28 to
conclude thatZ

BC

ıU dm D lim
n!1

Z
BC

ıU.�; v/mTn.d�; dv/ D lim
n!1

U.�Tn/ � U.�0/

Tn
D 0:

This concludes the proof of the lemma. �

Example 4.5. Let V 2 Rd , and define �t WD ıtV and vt WD V .

(i) The map t ! F.�t ; vt / is continuous as a composition of continuous
functions.
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(ii) By Lemma 2.9, the set BC is a compact Hausdorff space that contains the
range of t ! .�t ; V /. By the Riesz representation theorem there exists a unique
Borel measure mT on BC such that

(4.5)
Z

BC

F dmT D
1

T

Z T

0

F.�t ; vt /dt

for F 2 C.BC /. We extend this measure to the entire C P.Td / by setting it
equal to 0 on the complement of BC . Observe that (4.5) still holds for F 2
C.C P.Td //.

(iii) We have

(4.6)
Z

C P.Td /

� Z
Rd

v d�
�
mT .d�; dv/ D V:

We may choose an unbounded increasing sequence fTngn such that fmTngn con-
verges narrowly to some Borel m on BC . Since .�; v/! E.�; v/ WD

R
Rd v d� is

continuous, we use (4.6) to obtainZ
BC

� Z
Rd

v d�
�
m.d�; dv/ D lim

n!1

Z
BC

� Z
Rd

v d�
�
mTn.d�; dv/ D V:

In conclusion, for each V 2 Rd there exists a weakly invariant measure � of
rotation vector V .

4.2 Existence of Minimal Weakly Invariant Measures
LEMMA 4.6. Let F be a continuous function on C P.Td / such that there exists
C1 > 0 such that jF.�; v/j � C1kvk� on C P.Td /. Let C2 > 0 and define S to
be the set of Borel probability measures m on C P.Td / such thatZ

C P.Td /

Fdm D V and
Z

C P.Td /

‰2 dm � C2:

Then every sequence in S admits a subsequence that converges narrowly in S .

PROOF. Let fmngn � S . For each � 2 R, Lemma 2.9 asserts that f‰ � �g is
a compact set. Since C P.Td / is a Polish space and

sup
n

Z
C P.Td /

‰2 dmn � C2 <1;

we use remark 5.1.5 in [2] to conclude that fmngn admits a subsequence—which
we still label fmngn—that converges narrowly to some Borel probability m on
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C P.Td /. Remark 4.1 asserts that ‰ is lower-semicontinuous. Thus (cf., e.g., [2,
sec. 5.1.1])

(4.7)
Z

C P.Td /

‰2 dm � lim inf
n!1

Z
C P.Td /

‰2 dmn � C2:

Let fr 2 C.R/ be defined by

fr.t/ D

8̂<̂
:
r if t � r;
t if jt j � r;
�r if t � �r:

We haveZ
C P.Td /

jF � fr.F /jdmn � 2

Z
fjF j>rg

jF jdmn �
2

r

Z
fjF j>rg

jF j2 dmn �
2C2

r
:

Since m satisfies (4.7), the previous inequality holds if we substitute mn by m.
Consequently,ˇ̌̌̌ Z

F dmn �

Z
F dm

ˇ̌̌̌
�
4C2

r
C

ˇ̌̌̌ Z
fr.F /dmn �

Z
fr.F /dm

ˇ̌̌̌
;

where all the integrals above are over C P.Td /. Since fr.F / is continuous and
bounded, and fmngn converges narrowly to m, we have

(4.8) lim sup
n!1

ˇ̌̌̌ Z
C P.Td /

F dmn �

Z
C P.Td /

F dm

ˇ̌̌̌
�
4C2

r
:

We then let r tend to1 in (4.8) and use that mn 2 S to conclude that

V D

Z
C P.Td /

F dm:

This, together with (4.7), yields that m 2 S . �

THEOREM 4.7. Let V 2 Rd . Then there exists a Borel probability measurem that
minimizes

m! J.m/ WD

Z
C P.Td /

Ldm

over the set of weakly invariant Borel probability measures of rotation vector V .

PROOF. In light of Example 4.5, the set of weakly invariant Borel probability
measures of rotation vector V is nonempty. Pick an element m�. There exists a
minimizing sequence fmngn for J that we may assume satisfies

J.mn/ � J.m�/:
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Hence Z
C P.Td /

‰2 dmn � 2J.m�/C 2max F DW C 22 :

Let U 2 C 1.P.Td // be such that ıU is continuous. By Remark 4.2 there exists
a constant C such that krwU.�/k� � C on P.Td /. Thus, jıU.�; v/j � Ckvk�.
If we set a.�; v/ WD

R
Td v d�, Hölder’s inequality yields ja.�; v/j � kvk�. We

have that fmngn is contained in S , the set m of Borel probability measures on
C P.Td / such that (4.2), (4.3), andZ

C P.Td /

j‰j2 dm � C 22

hold. By Lemma 4.6, up to a subsequence, fmngn converges narrowly to some
m in S . This proves that m is a weakly invariant measure of rotation vector V .
By Remark 4.1, L is lower-semicontinuous on C P.Td /. Thus, (cf., e.g., [2,
sec. 5.1.1])

J.m/ � lim inf
n!1

J.mn/;

which implies that m minimizes J over the set of weakly invariant Borel probabil-
ity measures of rotation vector V . �

4.3 Actions
If Œ�� 2 AC 2.0; T IP.Td // and v is a velocity associated to � in the periodic

sense, we define the actions

A "
T .�; v/ WD

Z T

0

e�"tLc.�t ; vt /dt; AT .�; v/ WD
Z T

0

Lc.�t ; vt /dt:

If, in addition,

(4.9) t ! e�"tkvk2�t 2 L
1.0;1/;

then we define

A ".�; v/ WD
Z 1
0

e�"tLc.�t ; vt /dt:

CONVENTION. Let Œ��; v�� 2 C .0; T IC P.Td //. By Corollary 3.23 and Propo-
sition 3.9, we may choose � 2 AC 2.0; T IP2.Rd // such that � 2 Œ���, and v a
velocity associated to � in the periodic sense such that Œ�; v� � Œ��; v��. Thus,
unless explicitly stated otherwise, we tacitly assume that whenever we write Œ�; v�,
we have � 2 AC 2.0; T IP2.Rd //.

Remark 4.8.
(i) By Remark 2.6, if Œ�; �1� D Œ�; �2� 2 C P.Td /, then Lc.�; �1/ D

Lc.�; �2/, and so Lc is well-defined on the quotient space C P.Td /. As a con-
sequence, if .�; v/ and .��; v�/ are as in Definition 3.8, then for almost every
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t 2 .0; T /, we have Lc.�t ; vt / D Lc.�
�
t ; v�t /. Thus, for each " 2 .0; 1/, the

actions defined below are well-defined on C .0; T IC P.Td //.
(ii) Let � 2 AC 2.0; T IP2.Rd // and let v be a velocity associated to � . If wt

is the projection of vt onto L2.Td ; �t /, then

c �
Z

Rd

vt d�t D c �
Z

Rd

wt d�t for all c 2 Rd :

This, together with Corollary 3.11, proves that w is a velocity associated to � in
the periodic sense and A ".�;w/ � A ".�; v/.

For �; � 2P2.Rd / we consider the costs for transporting � onto � within time
T > 0:

C "
T .�; �/ D inf

Œ�;v�
fA "

T .�; v/ W �0 D �; �T 2 Œ��; Œ�; v� 2 C .0; T IC P.Td //g;

CT .�; �/ D inf
Œ�;v�
fAT .�; v/ W �0 D �; �T 2 Œ��; Œ�; v� 2 C .0; T IC P.Td //g:

4.4 Value Functions Depending on a Parameter
For � 2P2.Rd / we set

V ".�/ WD inf
.�;v/
fA ".�; v/ W .�; v/ 2 C".0;1IC P.Td //; Œ�0� D Œ��g:

By Remark 4.8

V ".�/ D inf
.�;v/
fA ".�; v/ W .�; v/ 2 C".0;1IT P2.R

d //; �0 D �g

D V ".x�/
(4.10)

if Œ�� D Œx��.

Remark 4.9. If � 2P2.Rd /, then

�
jcj2=2CK C

1

"
� V ".�/ �

2C 2jcj CK �
1

"
:

PROOF. The lower bound results from the fact that Lc � �.jcj2=2CK C
1 /. Let

� 2 P2.Rd / and denote by �0 the Lebesgue measure restricted to Œ0; 1�d . We
define � to be the geodesic of constant speed (cf. [2]) starting at x� at t D 0 and
ending at �0 at t D 1. Let v be the associated velocity of minimal norm. If we set

�t D �0; vt D �c for t 2 .1;1/;

then

Lc.�t ; vt / D �
1

2
jcj2 CK �

1 � K �
1 :

Using that kvtk2�t D W2.x�; �0/ � 2
p
d , we conclude that

Lc.�t ; vt / �
1

2
kvtk2�t C jcjkvtk�t CK �

1 � 2d.1C jcj/CK �
1 :
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These upper bounds on Lc.�t ; vt / for the above particular pair .�; v/ yield the
required upper bound on V ".�/. �

The following quantity will be useful:

(4.11) m.c/ WD max
�
2d.1C jcj/CK �

1 ;
jcj2

2
CK C

1

�
:

THEOREM 4.10. Let �; � 2P2.Rd /. Then

(4.12) V ".�/ D inf
��2P2.Rd /

C "
T .�; �

�/C e�"T V ".��/

and
jV ".�/ � V ".�/j � 2m.c/W .�; �/:

PROOF. The proof of (4.12) is a consequence of Œ�; v� 2 C .0;1IC P.Td //

implying
A ".�; v/ D A "

T .�; v/C e
�"TA ".��; v�/;

where
��t D �TCt ; v�t WD vTCt for t � 0:

Next, assume without loss of generality that V ".�/ � V ".�/. Let � be a geo-
desic of constant speed connecting � to � within time T (cf. [2]) and let v be its
velocity of minimal norm. We have

C "
T .�; �/ � A ".�; v/ D

Z T

0

e�"t
�
1

2
kvtk2�t C c �

Z
Rd

vt d�t �K .�t /

�
dt:

We use Hölder’s inequality and the fact that T kvtk�t D W2.�; �/ to conclude that

C "
T .�; �/ � T

�
1

2

W 2
2 .�; �/

T 2
C jcj

W2.�; �/

T
CK C

1

�
dt:

If � 6D � and T D W2.�; �/, we conclude that

(4.13) C "
T .�; �/ � W2.�; �/

�
1

2
C jcj CK C

1

�
:

This, together with (4.12), implies

V ".�/ � V ".�/ � V ".�/.e�"W2.�;�/ � 1/CW2.�; �/

�
1

2
C jcj CK C

1

�
;

which, by Remark 4.9, yields

jV ".�/ � V ".�/j � V ".�/"W2.�; �/CW2.�; �/

�
1

2
C jcj CK C

1

�
� 2m.c/W2.�; �/:
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We use (cf. equation (4.10)) the continuity of V " W P.Td / ! R and exploit
Lemma 2.1 to get

jV ".�/ � V ".�/j D min
��2Œ��;��2Œ��

jV ".��/ � V ".��/j � 2m.c/W .�; �/:

�

4.5 Lower-Semicontinuity Properties of Actions
COROLLARY 4.11. Let T > 0 and �0; �T 2 P2.Rd / be arbitrary. Then, there
exists a path Œ�; v� 2 C .0; T IC P.Td // such that �0 D �0, �T 2 Œ�T �, � 2
AC 2.0; T IP2.Rd //, and

CT .�0; �T / D

Z T

0

Lc.�t ; vt /dt:

PROOF. Take a sequence

fŒ�n; vn�gn � AC 2.0; T IP.Td //

such that fAT .�n; vn/gn converges to CT .�0; �T /. By Lemma 3.22, we can
assume without loss of generality that �n0 D �0, Œ�nT � D Œ�T � and f�ngn �
AC 2.0; T IP2.Rd //. Thanks to Proposition 3.21 we may assume existence of
a path � 2 AC 2.0; T IP2.Rd // and a velocity v associated to � in the periodic
sense such that f�nt gn converges to �t in P.Td / for all t 2 Œ0; T � and (3.30) holds.
Since K is continuous, we have that CT .�0; �T / �

R T
0 Lc.�t ; vt /dt . �

Remark 4.12. By the definition of Lc, we infer that v is the c-minimal norm peri-
odic velocity associated to � . By Corollary 3.23, the speed curve .�; v/ admits a
lift in the sense of Definition 3.26.

4.6 Compactness Properties of the Value Function
and a Fixed Point Theorem

Let V " be the value function defined in the previous subsection. As V " is a
Lipschitz map on P.Td / it attains its minimum there. We set

U " WD V " �minV ":

LEMMA 4.13. Up to a subsequence, fU "g" converges uniformly to a function U 2
C.P2.Td // such that jU.�/ � U.�/j � 2m.c/W .�; �/ for �; � 2 P2.Rd /.
The subsequence can be chosen so that f"V "g" converges uniformly to a constant
function, which we denote by xH.c/.

PROOF. It suffices to show the uniform convergence on P.Td /. By Remark
4.9, f"V "g" is bounded on P.Td /. Viewed as a function on that set, Theorem
4.10 ensures that the Lipschitz constant of "V " is no greater than 2"m.c/. The
Ascoli-Arzelà theorem yields uniform convergence of a subsequence of f"V "g" to
a function whose Lipschitz constant is null. That function must be a constant on
P.Td /.
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Since the minimum value of U " is 0 and U " is a 2m.c/-Lipschitz as a function
on P.Td / and a set whose diameter is smaller than or equal to 2

p
d , we conclude

that fU "g" is bounded. The Ascoli-Arzelà theorems yield uniform convergence
of a subsequence of the above subsequence to a function U 2 C.P.Td // whose
Lipschitz constant does not exceed 2m.c/. �

THEOREM 4.14. Let � 2P2.Rd / and let T > 0.
(i) We have

(4.14) U.�/ D inf
�2P2.Rd /

CT .�; �/C U.�/C T xH.c/:

(ii) Then there exists .�; v/ (independent of T ) such that �0 D �,

� 2 AC 2.0; T IP2.R
d //; Œ�; v� 2 C .0; T IC P.Td //;

and

(4.15) U.�/ � U.�T / D CT .�; �T /C T xH.c/:

PROOF.
(i) For all t 2 Œ0; T � we have 1 � "T � e�"T � e�"t � 1, so

(4.16) .1 � "T /CT � C "
T � CT :

By Theorem 4.10(i) we have

U ".�/ D min
�

CT .�; �/C e
�"TU ".�/CminV ".e�"T � 1/:

The uniform convergence of fU "g" and f"V "g" provided by Lemma 4.13
yields the proof of (i).

(ii) We use Corollary 4.11 to inductively find .� i ; vi / such that

� i 2 AC 2.i; .i C 1/IP2.R
d //; Œ� i ; vi � 2 C .i; .i C 1/IC P.Td //;

� iiC1 D �
iC1
iC1

and

(4.17) U.� ii / � U.�
i
iC1/ D C1.�

i
i ; �

i
iC1/C

xH.c/

for i D 0; 1; : : : . Set

�t D �
i
t if t 2 Œi; .i C 1/� and Œvt � D Œvit � if t 2 .i; .i C 1//:

Choose an integer m � 0 such that m < T � mC 1. As

C1.�m; �mC1/C xH.c/ �
�
CT�m.�m; �T /C .T �m/ xH.c/

�
C
�
CmC1�T .�T ; �mC1/C .mC 1 � T / xH.c/

�
;

(i) and (4.17) yield

(4.18) U.�m/ � U.�T / D CT�m.�m; �T /C .T �m/ xH.c/:
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Ifm D 0, this completes the proof of the theorem. Assume in what follows
that m > 0. By (4.17) and (4.18),

U.�0/ � U.�T / D

m�1X
iD0

U.�i / � U.�iC1/C U.�m/ � U.�T /

D

m�1X
iD0

C1.�
i
i ; �

i
iC1/C

xH.c/C CT�N .�m; �T /C .T �m/ xH.c/

� CT .�0; �T /C T xH.c/:

This, together with (i), completes the proof. �

Remark 4.15. Equations (4.14) and (4.15) imply uniqueness for xH.c/. Let us out-
line the argument. Indeed, if there exists another weak KAM solution (U satisfying
the properties listed in the above theorem is called a weak KAM solution) with its
own constant ˛ replacing xH.c/, then, according to (4.14), the optimal path for one
solution (which gives the equation (4.15) for said solution) yields an inequality in
(4.15) for the other solution. By subtraction and taking into account that the weak
KAM solutions are bounded, we obtain (by letting T ! 1) both ˛ � xH.c/ and
˛ � xH.c/. Thus, we may call xH.c/ the effective Hamiltonian.

THEOREM 4.16. Let xH be the function defined in Lemma 4.13. Then xH is convex.
Consequently, the set where xH fails to be differentiable in the sense of Alexandroff
is a set of null measure in Rd .

PROOF. For c 2 Rd arbitrary, we display the dependence in c in the value
function U. � I c/ and the curve �. � I c/ for which (4.15) holds. We are to show that
if c D .c1 C c2/=2, then

0 � � DW
xH.c1/C xH.c2/

2
� xH.c/:

As

U.�I ci / � U.�T .c/I ci / � CT .�; �T .c//C T xH.ci / for i D 1; 2;

(4.15) implies

f .T / WD

�
U.�I c1/C U.�I c2/

2
� U.�I c/

�
�

�
U.�T .c/I c1/C U.�T .c/I c2/

2
� U.�I c/

�
� T �:

(4.19)

By Lemma 4.13, the functions U. � I c1/, U. � I c2/, and U. � I c/ are Lipschitz, and
so f is bounded below. Hence (4.19) implies that � � 0. �
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THEOREM 4.17. Let � 2P2.Rd / and .�; v/ be as in Theorem 4.14. If xH is twice
differentiable at c in the sense of Alexandroff, thenˇ̌̌̌

r xH.c/C
1

T

Z T

0

� Z
Rd

vt d�t
�
dt

ˇ̌̌̌
�
xC
p
T
:

Here xC is a constant depending only on c.

PROOF. The proof we give here is an adaptation of what is done in the finite-
dimensional setting (cf., e.g., [17]). We use the notation U. � I c/ and �. � I c/ as in
the proof of Theorem 4.16. Assume that xH is twice differentiable at c. We denote
by v a velocity associated to �. � I c/ in the periodic sense and set � WD r xH.c/.

Choose ı; C > 0 depending on c such that

(4.20) j xH.c0/ � xH.c/ � � � .c0 � c/j � C jc0 � cj2 8jc � c0j � ı:

We only consider in the following c0 2 Rd such that jc � c0j � ı and T such that
the diameter of P.Td / is smaller than T ı2.

We use that

U.�I c0/ � U.�T .c/I c0/ �
Z T

0

�
Lc.�t .c/; vt /C xH.c0/

�
dt(4.21)

and

U.�I c/ � U.�T .c/I c/ D
Z T

0

�
Lc.�t .c/; vt /C xH.c/

�
dt(4.22)

to conclude that

U.�I c/ � U.�I c0/ � U.�T .c/I c/ � U.�T .c/I c0/

C

Z T

0

.hc � c0; vt i�t C xH.c/ � xH.c
0//dt:

(4.23)

Hence, by (4.20),

U.�I c/ � U.�I c0/ � U.�T .c/I c/ � U.�T .c/I c0/

C

Z T

0

.hc � c0; vt C �i�t � C jc
0
� cj2/dt:

(4.24)

By Lemma 4.13 we may choose a constant M > 0 depending only on c such
that the Lipschitz constant of U. � I c/ and U. � I c0/ is less than M . Thus,

(4.25) .U.�I c/�U.�T .c/I c//C .U.�T .c/I c0/�U.�I c0// � 2MW .�; �T .c//:

We use (4.24) and (4.25) to get

(4.26)
Z T

0

.hc � c0; vt C �id�t � C jc
0
� cj2/dt � 2MW .�; �T .c//:
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Now, choose

c0 WD c �
r

W .�; �T .c//
T

R T
0 dt

R
Rd .vt C �/d�t

j
R T
0 dt

R
Rd .vt .c/C �/d�t j

and substitute the expression of c0 in (4.26) to conclude that

�(4.27)
ˇ̌̌̌ Z T

0

dt

Z
Rd

.vt C �/d�t
ˇ̌̌̌
� .2M C C/

p
TW .�; �T .c//:

By Remark 4.12, we have the following:

COROLLARY 4.18. Let � 2 P2.Rd / and .�; v/ be as in Theorem 4.14. If xH is
twice differentiable at c in the sense of Alexandroff, then .�; v/ has rotation vector
�r xH.c/.

Remark 4.19. Note that for the Galilean invariant Lagrangian defined in [15], i.e.,
where

(4.28) K .�/ D
1

2

Z
Rd�Rd

F .x � y/�.dx/�.dy/

for some “nice” potential F , we proved that xH.c/ D jcj2=2 for all c 2 Rd . Thus,
the conclusion of the above theorem is satisfied at every c 2 Rd .

Remark 4.20. To each .�; v/ as in the statement of Theorem 4.17 we may associate
the probability measure 
T defined on C P.Td / as follows: if F is a continuous
function on C P.Td /, thenZ

C P.Td /

F d
T D
1

T

Z T

0

F.�t ; vt /dt:

Corollary 4.18 yields that every point of accumulation (such points always exist!)
of f
T gT�1 has rotation vector �r xH.c/.

5 The Nonlinear Vlasov System
The goal of this section is to show that more can be said in an important partic-

ular case: even if the Euler-Lagrange equation associated with the Lagrangian L
might fail to define a flow, its fully kinetic version does. We would like to show that
the c-calibrated curves given by Theorem 4.14 give rise to solutions for the fully
kinetic PDE. Some measures coming directly from the measures in Remark 4.20
are invariant with respect to the Vlasov flow and have rotation vector c (the sign
variation comes from considering the forward Lax-Oleinik semigroup in this sec-
tion, rather than the backward semigroup). Theorem 5.6 and Corollary 5.7 provide
interesting (and new, to our knowledge) asymptotic results on monokinetic solu-
tions starting at any initial measure in P2.Rd �Rd / supported on d -dimensional
graphs, which also have a prescribed asymptotic velocity.
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If K is the one considered in (4.28), the requirement

(5.1) F 2 C 1;1.Td /

is sufficient to ensure existence and uniqueness of solution for the nonlinear Vlasov
system

(5.2) @t�C v � rx� D rv � Œ�.rF � �/� where � D projx �;

when �0 is prescribed. We point the reader to [1, 18] for issues like existence,
uniqueness, and stability properties for the nonlinear Vlasov equation. We denote
by ˆ the Vlasov flow: �t D ˆ.t; �0/. Further assumptions on F will be made
below.

5.1 Discrete Approximations of Paths
Here we indicate how to approximate any curve � 2 AC 2.0; T IP.Td // by

curves of the form

�n.t/ D
1

nd

ndX
iD1

ıxin.t/;

where the curves t ! xin.t/ 2 Rd lie in H 1.0; T IRd /. The approximation is to
be understood in the sense presented by Proposition 5.1 below.

Let us denote by

Pn.Td / D

�
1

nd

ndX
iD1

ı´i W ´
i
2 Td ; i D 1; : : : ; nd

�
:

PROPOSITION 5.1. Let � 2 AC 2.0; T IP.Td // and " > 0 be given. Then there
exist a positive integer n and a curve �n 2 AC 2.0; T IPn.Td // such that

(5.3)

sup
t2Œ0;T �

W .�nt ; �t / � " andZ T

0

ˇ̌�
�nt
�0ˇ̌2

Td .t/dt � "C

Z T

0

ˇ̌
�0
ˇ̌2
Td .t/dt:

PROOF. We first periodically mollify � and its periodic minimal norm velocity
field v to .�ı ; vı/ for ı > 0 such that, according to Lemmata 3.15 and 3.16, we
have

vı 2 L2.0; T IW 1;2.Td ;Rd /; �ı D �ıL d ; �ı 2 W 1;1
�
.0; T / � Td

�
;

sup
t2Œ0;T �

W .�ıt ; �t / � "=2;

and

j.�ı/0jTd .t/ � kv
ı
t k�ıt

� kvtk�t D j�
0
jTd .t/ for a.e. t 2 .0; T /:
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Since vı and �ı are smooth, it is then easy to show that for n sufficiently large we
may choose �ı;n 2 AC 2.0; T IPn.Td // such that

sup
t2Œ0;T �

W .�ıt ; �
ı;n
t / � "=2 andZ T

0

j.�ı;n/0j2Td .t/dt � "=2C

Z T

0

j.�ı/0j2Td .t/dt

to conclude the proof. �

5.2 From Finite-Dimensional to Infinite-Dimensional Weak KAM
Here we add three assumptions on F , i.e.,

(5.4) F .´/ D F .�´/ � F .0/ D 0 for all ´ 2 Rd :

The fact that F is even is not restrictive in any way, as we pointed out in the In-
troduction. One can easily check that F .0/ D 0 can also be done away with, even
though the conclusions should be modified accordingly (the effective Hamiltonian
and the rotation vectors involved will take into account the maximum value F .0/).
This leaves 0 being a maximum point for F as the only serious restriction.

Remark 5.2. We have imposed the condition F .0/ D max F only to argue that the
function U kn. � I c/ defined in (5.10) when restricted to Pn.Td / coincides with
U n. � I c/ (cf. [15]) (note that Pn.Td / is a subset of Pkn.Td / for all integers
k; n � 1). This is called the consistency property. This can still be obtained under
fewer restrictions on F .

Let n � 1 be an integer and set m WD nd . The finite-dimensional weak KAM
theory [4, 7] (cf. also [15]) ensures the following:

PROPOSITION 5.3.

(i) For every c 2 Rd there exists a Lipschitz function zU n. � I c/ W Tmd ! R
such that for every T > 0 and x 2 AC 2.0;1ITmd / we have

(5.5) zU n.x.0/I c/� zU n.x.T /I c/ �
Z T

0

�
1

2m

mX
iD1

j PxiCcj2�
1

2m2
F .xi�xj /

�
dt:

(ii) Given X 2 Tmd there exists xn 2 AC 2.0;1ITmd /, an optimizer in
(5.5), i.e., such that

(5.6) zU n.xn.0/I c/ � zU n.xn.T /I c/ DZ T

0

�
1

2m

mX
iD1

j Pxni C cj2 �
1

2m2
F .xni � x

n
j /

�
dt



WEAK KAM THEORY ON THE WASSERSTEIN TORUS 51

for all T > 0. Here xn.0/ D X . The following Euler-Lagrange equations
are satisfied:

(5.7) Rxni .t/ D �
1

m

mX
jD1

rF .xni .t/ � x
n
j .t//; i D 1; : : : ; m:

We set

(5.8) �n D
1

m

mX
iD1

ıxn
i
2 AC 2.0; T IPn.Td //:

Note that the unique velocity associated to �n in the periodic sense is given by

(5.9) vnt .x
n
i .t// D Px

n
i .t/:

Due to the symmetric property of the actions, we minimize in (5.5); zU n. � I c/ is
invariant under any permutation of m letters. Hence, it is meaningful to define

(5.10)

U n. � I c/ WPn.Td /! R given by U n.�I c/ WD zU n.X I c/;

where � WD
1

m

mX
iD1

ıXi :

As in [15], one can show that property (5.4) implies that the Lipschitz constant
of U n. � I c/ is bounded by a constant independent of n. By this and the consistency
property (Remark 5.2), we see that there exists a Lipschitz functional U. � I c/ de-
fined on

S
n�1Pn.Td / (which is dense in P.Td /with the W -induced topology)

such that U. � I c/ � U n. � I c/ on Pn.Td /. Its extension by continuity to P.Td /

is therefore Lipschitz-continuous and we still denote it by U. � I c/. The following
result is immediate:

PROPOSITION 5.4.
(i) One has

(5.11) U.�.0/I c/ � U.�.T /I c/C
Z T

0

Lc.�.t/; v.t//dt C
1

2
T jcj2

for all � 2 AC 2.0;1IPn.Td // such that �.0/ D �n and all T > 0.
(ii) Given �n 2 Pn.Td /, there exists a path �n 2 AC 2.0;1IPn.Td //

with �n.0/ D �n such that equality is achieved in (5.11) for all T > 0.

This leads to the announced infinite-dimensional weak KAM solution obtained
by our dimensional blowup approach. Indeed, we have the following:

THEOREM 5.5.
(i) Let � 2P.Td /. One has

(5.12) U.�I c/ � U.�.T /I c/C
Z T

0

Lc.�.t/; v.t//dt C
1

2
T jcj2
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for all � 2 AC 2.0;1IP.Td // such that �.0/ D � and all T > 0.

(ii) There exists a path �� 2 AC 2.0;1IP.Td // with ��.0/ D � such that
equality is achieved in (5.12) for all T > 0.

PROOF. To prove (i) it suffices to approximate the path � by paths consisting of
averages of Dirac masses as in Proposition 5.1, then use (5.11).

For (ii) we take the optimal paths �n given by Proposition 5.4(ii), then use
Proposition 3.21 to pass to the limit as n!1. This yields a path � satisfying the
opposite (compared to (i)) inequality. We use (i) to finish the proof. �

The next statement brings up the fact that some c-calibrated speed curves .�; v/
from Proposition 5.5(ii) have the interesting property that the measures �t 2
P2.Td � Rd / that disintegrate as �t .dx; dv/ D �t .dx/ıvt .x/.v/ yield distribu-
tional solutions for the fully kinetic Vlasov equation in .0;1/ � Td �Rd . These
curves are obtained by a limiting procedure from the curves in (5.6).

THEOREM 5.6. For any c 2 Rd and any x� 2 P2.Rd / there exists a c-calibrated
speed curve .�; v/ 2 C .0;1IC P.Td // such that �0 D x� , v is a dual-role veloc-
ity for � , and the curve � defined by �t .dx; dv/ D �t .dx/ıvt .x/.dv/ solves the
Vlasov equation (5.2) in D 0..0;1/ � Td �Rd /.

PROOF. We assume that x� is supported by Œ0; 1/d . Approximate x� in the W2-
metric by �n0 D

1
m

Pm
iD1 ıxni .0/

where fxni .0/g
m
iD1 � Œ0; 1/d . Let �n be as in

(5.8), vn be as in (5.9), where fxni g
m
iD1 is as in Proposition 5.3. Recall that ˆ is the

Vlasov flow and observe that by (5.7)

(5.13) �nt D ˆ.t; �
n
0/ where �nt D

1

m

mX
jD1

ı.xn
i
.t/; Pxn

i
.t//:

In terms of �n, (5.6) can be written as

(5.14) U.�n0 I c/ D U.�
n
T I c/C

Z T

0

� Z
Rd�Rd

1

2
jvC cj2�nt .dx; dv/�F .�nt /

�
dt:

Since K is bounded and the Hamiltonian 1
2
kvnt k2�nt CK .�nt / is time independent,

we exploit (5.14) and the fact that U. � I c/ is bounded to conclude that f�nt gt;n
is bounded in P2.Rd � Rd /. Here we have used that the initial measure �n0 is
supported by Œ0; 1/d and used (5.7) to control the growth in time of the diameter of
the support of �nt . Extracting a subsequence if necessary, let us assume without loss
of generality that f�n0gn converges narrowly to some �0. Since F satisfies (5.1),
ˆ is continuous in the sense that f�nt gn converges narrowly to �t D ˆ.t; �0/ for
every t . Hence f�nt gn converges narrowly to �t , the x-marginal of �t .
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Letting n tend to1 in (5.14), we obtain

U.�0I c/ � U.�T I c/C
Z T

0

� Z
Rd�Rd

1

2
jv C cj2�t .dx; dv/ �K .�t /

�
dt

� U.�T I c/C
Z T

0

�
1

2
kzvt C ck2�t �K .�t /

�
dt

� U.�T I c/C
Z T

0

�
1

2
kvt C ck2�t �K .�t /

�
dt:

(5.15)

Here zv is obtained by disintegrating �t with respect to its x-marginal �t as follows:Z
Rd�Rd

'.x; v/�t .dx; dv/ D

Z
Rd

�t .dx/

Z
Rd

'.x; v/�xt .dv/;

and then setting

zvt .x/ D
Z

Rd

v�xt .dv/:

The periodic velocity vt is defined as the projection of zvt onto L2.Td ; �t /.
Since � solves (5.2), it suffices to pick a test function � 2 C 1.Td / and compute

d

dt

Z
Rd

� d�t D
d

dt

Z
Rd�Rd

�.x/�t .dx; dv/

D

Z
Rd�Rd

v � r�.x/�t .dx; dv/

D

Z
Rd

r�.x/ �

� Z
Rd

v�xt .dv/

�
�t .dx/ D

Z
Rd

r� � zvt d�t

to see that v is a velocity for � in the periodic sense. It follows that

U.�0I c/ � U.�T I c/C
Z T

0

�
1

2
kvt C ck2�t �F .�t /

�
dt;

which implies that all inequalities in (5.15) are, in fact, equalities. In particular,

(5.16) zvt � vt in L2.�t / for a.e. t > 0

and

(5.17)
Z T

0

Z
Rd�Rd

jv C cj2�t .dx; dv/dt D
Z T

0

kvt C ck2�tdt for all T � 0:
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On the other hand, by Jensen’s inequality,Z
Rd�Rd

jv C cj2�t .dx; dv/ D
Z

Rd

�t .dx/

Z
Rd

jv C cj2�xt .dv/

�

Z
Rd

�t .dx/

ˇ̌̌̌Z
Rd

.v C c/�xt .dv/
ˇ̌̌̌2
:

Hence Z
Rd�Rd

jv C cj2�.dx; dv/ � kzvt C ck2�t � kvt C ck2�t ;

and equality holds if and only if �xt D ıvt .x/. Hence, according to (5.17), for
almost every t we have

�xt D ıvt .x/:

By the optimality condition in (5.15) (recall that all inequalities are equalities),
.�; v/ satisfies the monokinetic system (since it minimizes the Lagrangian action
over Œ0; T � for all T > 0). By (5.16), v is a dual-role (both full and periodic)
velocity field for � . �

COROLLARY 5.7. Let �0 2 P2.Rd / and c 2 Rd be given. There exists a curve
� 2 AC 2.0;1IP2.Rd // originating at �0, along with a dual-role velocity v
associated to it, such that:

(i) The measures �t .dx; dv/ WD �t .dx/ıvt .x/.v/ solve the nonlinear Vlasov
equation (5.2).

(ii) We have



 id
t
C c






�t

�
C
p
t
C





 id
t
C c






�0

for a.e. t > 0; lim
t!1

kvt C ck�t D 0:

PROOF. The first part follows directly from Theorem 5.6. To prove (ii), in order
to concentrate on the main ideas, let us only deal with the case c D 0. As F � 0,
so is K . Thus, the optimal curve from Theorem 5.5 satisfies

(5.18)
Z 1
0

kvtk2�t dt <1:

The Hamiltonian energy is conserved along this curve, i.e.,

1

2
kvtk2�t CK .�t / D const for all t � 0:

Indeed, one can either prove this directly as in [11] or use the same property of the
discrete approximations �n and then pass to the limit. Thus,

(5.19) ˇ.t/ WD

Z 1
0

kvtk2�t dt D const � 2K .�t /:
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The AC 2-regularity of � shows that ˇ is absolutely continuous, and one can com-
pute its a.e. derivative to get

P̌.t/ D �2

Z
Rd�Rd

rF .x � y/ � vt .y/�t .dy/�t .dx/;

which implies j P̌.t/j � krFk1
p
ˇ.t/. But F 2 C.Td / and (5.19) imply ˇ 2

L1.0;1/, and the previous inequality and (5.18) lead to ˇ 2 W 1;1.0;1/ \

L1.0;1/. It follows that
lim
t!1

ˇ.t/ D 0:

Next, we use the fact that v is a full velocity for � to write
d

dt
kidk2�t D

Z
Rd

x � vt .x/�t .dx/ � kidk�tkvtk�t for a.e. t > 0;

which implies

kidk�t � kidk�0 �
Z t

0

kvsk�sds �
p
t

�Z t

0

kvsk2�s ds
�1=2

;

which, in view of (5.18), finishes the proof. �
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