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Abstract. In this manuscript, given a metric tensor on the probability simplex, we define
differential operators on the Wasserstein space of probability measures on a graph. This allows
us to propose a notion of graph individual noise operator and investigate Hamilton-Jacobi
equations on this Wasserstein space. We prove comparison principles for viscosity solutions of
such Hamilton-Jacobi equations and show existence of viscosity solutions by Perron’s method.
We also discuss a model optimal control problem and show that the value function is the
unique viscosity solution of the associated Hamilton-Jacobi-Bellman equation.
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1. Introduction

Partial differential equations (PDE) in infinite dimensional and abstract spaces have been
studied steadily over the last several decades. The main interest has always been in Hamilton-
Jacobi-Bellman (HJB) equations related to deterministic and stochastic optimal control prob-
lems for control of PDE and stochastic PDE and other abstract differential equations. Recently
there has been a renewed interest in such equations in spaces of probability measures due to
their connection to mean field control and mean field game problems. The theory of first and
second order PDE in Hilbert spaces has been developed the most. A complete overview of var-
ious approaches, classical solutions, viscosity solutions, mild solutions, L2-solutions, solutions
using backward stochastic differential equations methods can be found in [43]. Results about
classical solutions of linear second order PDE can be found in [39] and earlier results about
mild solutions for first order PDE and solutions using convex regularization procedures can be
found in [4]. Viscosity solutions in Hilbert spaces have been originally introduced by Crandall
and P. L. Lions in [32, 33, 34, 35, 36, 37]. We refer to [43] for the full account of the theory
and further references. Some aspects of the theory for first order equations can also be found
in [68].

The original interest in the PDE in spaces of probability measures came from partially
observed optimal control problems through the study of fully observable so called separated
problems where one controls a new measure valued state process (unnormalized conditional
density of the original state with respect to the observation process) which satisfies the so-
called Duncan-Mortensen-Zakai equation. Early attempts to look at HJB equations in the
space of measures for such a problem was made in [60]. A Bellman equation in the space of
measures was also studied in [61]. A renewed interest in HJB equations in spaces of probability
measures started with the development of the theory of mass transport and a calculus in
the Wasserstein space of probability measures and later the study of mean field control and
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mean field game problems. The first definition of a viscosity solution using sub- and super-
differentials in the Wasserstein space appeared in [52] and later different notions of viscosity
solutions were introduced of equations in the space of probability measures and more abstract
metric spaces in various contexts. In particular a notion of the so-called L-viscosity solution
was introduced in [70] which “lifts” the equation from the Wasserstein space to an Hilbert space
of L2 random variables and this approach was developed further in [56] (see also [22, 23] for
more on the lifting procedure). We refer the readers to [5, 8, 10, 9, 11, 12, 13, 16, 17, 18,
20, 21, 29, 40, 41, 42, 50, 51, 53, 54, 58, 62, 63, 64, 74, 79, 80, 81] for equations related to
mean field control and optimal control/variational problems in spaces of probability measures.
In particular convergence problems for particle approximations have been studied using PDE
methods in [18, 20, 21, 40, 41, 50, 58, 74]. Equations related to control problems with partial
observation were studied in [6] and equations related to differential games were investigated
in [30, 65]. HJB equations in the Wasserstein and metric spaces with formal Riemannian
structure as well as completely regular spaces, mostly related to control of gradient flows, large
deviations and fluid dynamics were studied by different techniques in [27, 28, 44, 45, 46, 47, 48,
66, 67]. Various comparison theorems and uniqueness results for appropriately defined viscosity
solutions were proved in these papers. HJB equations in abstract metric spaces were studied
by various techniques in [1, 14, 15, 53, 55, 59, 71, 72, 77, 78]. Uniqueness of appropriately
defined viscosity solutions of first order HJB equations in the Wasserstein space was proved
in [5, 64]. Uniqueness of viscosity solutions of a second order Bellman master equation in the
Wasserstein space arising in stochastic optimal control problems for McKean-Vlasov diffusion
processes was established in [29]. In [9, 41] general comparison results for viscosity solutions
of second-order parabolic partial differential equations in the Wasserstein space were proved.
Other papers containing uniqueness results are [17], where a uniqueness result for a notion
of viscosity solution for a class of integro-differential Bellman equations of a special type was
shown, and [81], where well-posedness of viscosity solutions of parabolic master equations,
including HJB master equations associated with control problems for McKean-Vlasov stochastic
differential equations was established. There is also vast literature on master equations of mean
field games which are integro-differential PDE in the space of probability measures. We do not
discuss them here since they are not HJB equations.

In this manuscript we investigate Hamilton-Jacobi equations on the Wasserstein space of
probability measures on graphs. Discrete optimal transport calculus, in the space of probability
measures on graphs and gradient and Hamiltonian like flows on graphs, have been studied in
many papers; we refer for instance to [25, 38, 73, 75]. In particular, finite state mean field
games have received significant attention in recent years. Master equation for finite state mean
field games with Wright–Fisher common noise have been studied in [7] and [57] derived master
equations from finite state Hamilton-Jacobi equation which appear in potential games. However
very little is known about Hamilton-Jacobi equations in such spaces. The only results in this
direction are in [24] about Hamilton-Jacobi equations on complete graphs (every pair of distinct
vertices is connected by a unique edge). Therefore, the analysis in [24] does not involve a graph
structure and the underlying probability measure space is endowed with the flat Euclidean
metric `2. Note that the `2 differential structure is not comparable to the differential structures
considered in this manuscript. Indeed in our set up, each point µ ∈ P(G) comes with a metric
tensor g(µ), which naturally leads us to consider the Wasserstein space of probability measures
on general connected graphs. Our goal is to introduce a notion of viscosity solution and develop
a well-posedness theory. Since the set of probability measures on a graph with n vertices is
identified with a simplex in Rn, one may be tempted to recast our work within the theory of
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viscosity solutions in finite dimension on Riemannian manifolds with boundary (see Remark
4.4). We refer for instance to [3] for the theory of viscosity solutions on Riemannian manifolds.
The analogy we point out in Remark 4.4 does not facilitate our work even if in our case the
manifold (the simplex) is flat. Indeed, we have to deal with Hamiltonians which vanish near
the boundary of the simplex since we are working on the Wasserstein space. This makes our
study different from the classical theory of viscosity solutions. Hence, we present everything
from the beginning and with details.

We focus on initial value problems for a class of Hamilton-Jacobi-Bellman equations with
a convex and somehow coercive Hamiltonian which degenerates close to the boundary, which
also involves a linear operator obtained by discretizing the so–called individual noise operator
in Mean Field Games (cf. e.g. [26]). Of course different types of equations can be considered
and we expect the theory to be developed in various directions. It is certainly also interesting
to study initial boundary value problems on open subsets of the set of probability measures,
however in this paper we only consider equations on the whole space. We prove two compari-
son results, the main one for the initial value problem where the boundary is irrelevant and a
version of it for the initial boundary value problem. We also study the optimal control prob-
lem associated with a model Hamilton-Jacobi-Bellman equation and we prove that the value
function is continuous on the whole space and it is the unique viscosity solution of the HJB
equation. For our model control problem, the value function, and hence the unique viscosity
solution of the HJB equation which is continuous up to the boundary of the set of probability
measures, is predetermined on the boundary and cannot be prescribed there. Our viscosity
solutions are only defined on the interior of the set of probability measures and our comparison
theorem does not need any information about the behavior of viscosity sub/supersolutions on
the boundary. However, it may be possible to consider viscosity solutions to such problems on
the whole space or treat them as constrained viscosity solutions (solutions to state constraint
problems). This is left for future research. Finally, we also discuss the existence of viscosity
solutions by Perron’s method. Even though Perron’s method here is a rather straightforward
adaptation of the classical Perron’s method, we present full details for the sake of completeness.

Throughout this manuscript, we fix an undirected graphG = (V,E, ω), where V = {1, · · · , n}
is the set of vertices and E ⊂ V 2 is the set of edges. The weight ω = (ωij) is a n by n symmet-
ric matrix with nonnegative entries such that ωij > 0 if (i, j) ∈ E. As in [49], we assume for
simplicity that the graph is connected, simple, with no self-loops or multiple edges. We denote
by P(G) the probability simplex {

ρ ∈ [0, 1]n
∣∣∣ n∑
i=1

ρi = 1
}
.

We use a symmetric function g : [0, 1]2 → [0,∞), to induce an equivalence relation on Sn×n, the
set of n by n skew-symmetric matrices: if ρ ∈ P(G), we say that v, ṽ ∈ Sn×n are ρ-equivalent if
(vij − ṽij)gij(ρ) = 0 for all (i, j) ∈ E. We denote the quotient space by Hρ. Under appropriate
conditions which will later be specified, g is used to define a metric tensor on P(G) and endow
Hρ with an inner product and a discrete norm as follows:

(1.1) (v, ṽ)ρ :=
1

2

∑
(i,j)∈E

vij ṽijgij(ρ) and ‖v‖ρ :=
√

(v, v)ρ, ∀ v, ṽ ∈ Sn×n.

Here the coefficient 1/2 accounts for the fact that whenever (i, j) ∈ E then (j, i) ∈ E.
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If φ : V → Rn, its graph gradient denoted ∇Gφ is defined as

∇Gφ :=
√
ωij(φi − φj)(i,j)∈E .

The adjoint of ∇G for the (·, ·)ρ inner product is −divρ : Hρ → Rn given by

divρ(v) =

( n∑
j=1

√
ωijvjigij(ρ)

)n
i=1

, ∀ v ∈ Sn×n.

We call divρ the divergence operator. In this manuscript, we impose that

(1.2)
∫ 1

0

dr√
g(r, 1− r)

< +∞,

to ensure that the expressionW, defined below in (2.7), is a metric on P(G) (cf. [73] and [49]).

We fix T > 0 and assume that we are given F , U0 ∈ C(P(G)) and H ∈ C(P(G) × Sn×n).
We denote by L(ρ, ·) the Legendre transform of H(ρ, ·) with respect to the inner product (·, ·)ρ.
Setting

ḡ(s, t) :=
log s− log t

s− t
g(s, t),

for s 6= t such that s, t > 0, in this introduction, we will keep our focus on the cases where g
satisfies (2.5), or more generally when

(1.3) ḡ has a unique continuous extension to [0, 1]2.

As a consequence of (1.3), as a function a-priori defined on a subset of (0, 1)n,

(1.4) ρ→ divρ
(
∇G log ρ

)
has a unique continuous extension to [0, 1]n.

In light of (1.4), standard ODEs theory ensures that given v̄ ∈ L1(0, T ; Sn×n) and ~ ≥ 0, the
system of equations

(1.5) σ̇ + divσ

(
v̄ + ~∇G log σ

)
= 0

has a distributional solution σ : [0, T ]→ Rn, of class W 1,1.

When the range of σ is contained in P(G), we call v̄ a control for σ on [0, T ]. For t ∈ (0, T ]
we consider

(1.6) U(t, µ) = inf
(σ,v̄)

{
U0(σ0) +

∫ t

0

(
L(σ, v̄)ds−F(σ)

)
ds : σt = µ

}
,

where the infimum is performed over the set of (σ, v̄) such that v̄ is a control for σ over [0, t].
Formally at least, we expect U to satisfy a Hamilton–Jacobi equation, after defining a suitable
notion of Wasserstein gradient operator on the set of functions on P(G). More precisely, we
expect that U would satisfy, in a sense which remains to be specified, the equation

(1.7) ∂tU(t, µ) +H
(
µ,∇WU(t, µ)

)
+ F(µ) = ~∆indU(t, µ).

Here
∆indU(t, µ) :=

(
divµ

(
∇WU(µ)

)
, logµ

)
= −Oµ

(
∇WU(µ)

)
and we have set

Oµ(p) := −
(
p,∇G logµ

)
µ
, ∀(p, µ) ∈ P(G)× Sn×n.

We call ∆ind, the graph individual noise operator (see Subsection 3.4 for comments on how ∆ind

could be associated to stochastic processes which are time continuous Markov chains on V ).
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The assumption (1.3) ensures that Oµ(p) satisfies (6.1), an essential condition in the application
of Perron’s method to obtain the existence of a solution to (1.7). Note that Oµ(p) cannot be
incorporated into the Hamiltonian since the modified Hamiltonian would fail to satisfy (A-v)
and so, the conditions imposed on H(µ, p) and Oµ(p) are of different types.

In this manuscript, the existence of a solution to (1.7) will not rely on the control problem
(1.6), brought up here only to motivate the study of (1.7).

Observe that (1.7) is linear in U , when F ≡ 0, H ≡ 0 and g is given by Example 2.5, which
means ḡ(s, t) ≡ 1. When ~ = 1, the solution in to (1.7) case is given by (see subsection 3.4)

U(t, µ) := U0

(
eAtµ

)
,

where

(1.8) Aij =


ωij , if j ∈ N(i);
0, if j 6∈ N(i), j 6= i;
−
∑

k∈N(i) ωik, if j = i.

Here, N(i) := {j ∈ V : ωij > 0}. For each t ≥ 0, eAt is known to be a transition matrix
and A is a Q–matrix. Therefore, as we will explain in Subsection 3.4, there are Markov chains
associated to the paths (t, µ)→ eAtµ.

The plan of paper is the following. In Section 2 we present the definitions, notation and
the mathematical setup for the Wasserstein space of probability measures on a finite graph.
Section 3 collects preliminary material about calculus on the Wasserstein space on a graph
and in Definition 3.18, we introduce the so-called individual noise operator. In Section 4 we
introduce the definition of viscosity solution and in Section 5 we prove comparison results.
Existence of viscosity solutions by Perron’s method and some regularity results are presented
in Section 6. In Section 7 we discuss a model optimal control problem and show that the value
function is the unique viscosity solution of the associated HJB equation.

2. Definitions and Notation

We denote the set of skew–symmetric n × n matrices as Sn×n. Let G = (V,E, ω) denote
an undirected graph of vertices V = {1, ..., n} and edges E, with a weighted metric ω = (ωij)
given by an n by n symmetric matrix with nonnegative entries ωij and such that ωij > 0 if
(i, j) ∈ E. For simplicity, assume that the graph is connected and simple, with no self–loops or
multiple edges. We set

λ̄ω := sup
(i,j)∈E

ω−1
ij and Cω := sup

(i,j)∈E

√
ωij .

The range and kernel of the gradient operator. It is customary to identify a function
φ : V → R with a vector φ = (φi)

n
i=1 ∈ Rn. We use the standard inner product and norm on

Rn:

(φ, φ̃) :=

n∑
i=1

φiφ̃i and ‖φ‖ =
√

(φ, φ), ∀ φ, φ̃ ∈ Rn.

We denote by R(∇G) the range of ∇G (defined in the introduction) and by 1 ∈ Rn the vector
whose entries are all equal to 1. Since G is connected, the kernel of ∇G is the one dimensional
space spanned by 1. The orthogonal complement in Rn of the latter space is ker (∇G)⊥, the set
of h ∈ Rn such that

∑n
i=1 hi = 0.
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G-Divergence of vector field. The divergence operator associates to any vector field m
on G a function on V defined by

∇G · (m) = divG(m) :=
( ∑
j∈N(i)

√
ωijmji

)n
i=1
.

Set of probability measures and its boundary. We identify P(G), the set of probability
measures on V, with the simplex

P(G) =
{
ρ = (ρi)

n
i=1 ⊂ [0, 1]n

∣∣∣ n∑
i=1

ρi = 1
}
.

We denote for 0 ≤ ε < 1, Pε(G) := P(G) ∩ (ε, 1)n so that P0(G) is the interior of P(G). The
boundary of P(G) is P(G) \ P0(G).

The set Cts(ρ0, ρ1) of paths connecting probability measures. Given ρ0, ρ1 ∈ P(G)
and 0 ≤ s < t, we denote by Cts(ρ0, ρ1) the set of pairs (σ,m) such that

σ ∈ H1(s, t;P(G)), m ∈ L2(s, t;Sn×n), (σ(s), σ(t)) = (ρ0, ρ1)

and for i = 1, ..., n,

(2.1) σ̇i +
∑
j∈N(i)

√
ωijmji = 0, in the weak sense on (0, t).

Throughout this manuscript g : [0,∞)× [0,∞)→ [0,∞) satisfies the following assumptions:

(H-i) g is continuous on [0,∞)× [0,∞) and is of class C∞ on (0,∞)× (0,∞);
(H-ii) g(r, s) = g(s, r) for any s, r ∈ [0,∞);
(H-iii) min{r, s} ≤ g(r, s) ≤ max{r, s} for any r, s ∈ [0,∞);
(H-iv) g(λr, λs) = λg(r, s) for any λ, s, r ∈ [0,∞);
(H-v) g is concave.

We set
gij(ρ) = g(ρi, ρj), ∀ ρ ∈ Rn, ∀ i, j ∈ V.

The Hilbert spaces Hρ and integration by parts. If ρ ∈ P(G), we shall use the in-
ner product defined in (1.1). Similarly, if m, m̃ ∈ Sn×n, we set

(m, m̃) :=
1

2

∑
(i,j)∈E

mijm̃ij and ‖m‖ :=
√

(m,m).

If φ ∈ Rn and v ∈ Sn×n, we have the integration by parts formula

(2.2) (∇Gφ, v)ρ = −(φ, divρ(v)).

Using the notation from [49], we denote by TρP(G) the closure of the range of ∇G in Hρ. We
refer to TρP(G) as the tangent space to P(G). We denote by πρ the projection onto TρP(G).

Using the fact that by (H-iii) gij(ρ) ≤ ρi + ρj , one shows that

(2.3) ‖divρ(v)‖`2 ≤
√

2nCω ‖v‖ρ, and so, ‖divρ(v)‖`1 ≤
√

2nCω ‖v‖ρ.

Connected components. Let ρ ∈ P(G). We say that i, j ∈ V are g-connected if either i = j
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or i 6= j but there are i1, i2, ..., ik ∈ V such that i1 = i, ik = j, (il, il+1) ∈ E for l = 1, ..., k − 1
and

k∏
l=2

gil−1il(ρ) > 0.

Example 2.1. Examples of g satisfying (H-i)-(H-v) and (1.2) include

(2.4) g(r, s) =
r + s

2
,

(2.5) g(r, s) =

∫ 1

0
r1−tstdt =


r−s

log r−log s , if r 6= s;

0, if r = 0 or s = 0;

r, if r = s,

and

(2.6) g(r, s) =

{
0, if r = 0 or s = 0;
2

1
r

+ 1
s

, otherwise.

One can generate more examples by taking convex combinations of the g’s in (2.4)-(2.6).

The Monge-Kantorovich metric In P(G). For ρ0, ρ1 ∈ P(G), we define the 2-Monge-
Kantorovich metric by

(2.7) W(ρ0, ρ1) :=

(
inf

(σ,v)

{ ∫ 1

0
(v, v)σdt

∣∣∣ σ̇ + divσ(v) = 0, σ(0) = ρ0, σ(1) = ρ1
}) 1

2

.

Here the infimum is performed over the set of pairs (σ, v) such that σ ∈ H1 (0, 1;P(G)) and
v : [0, 1] → Sn×n is measurable. Recall that if Cg < +∞, then W(ρ0, ρ1) < +∞ for any
ρ0, ρ1 ∈ P(G) (see Proposition 3.7 [49]). There exists a minimizer (σ, v) in (2.7) such that
‖v‖σ = W(ρ0, ρ1) almost everywhere on (0, 1). Using the continuity equation and the second
identity in (2.3), we conclude that

(2.8) ‖σ̇(t)‖`∞ ≤
√

2nCωW(ρ0, ρ1).

This proves that the W 1,∞-norm of σ is bounded by a constant depending only on n, g,G, ω.
Further assume that γP (ρ0), γP (ρ1) > 0, where γP is the Poincaré function on G given in [49].
By Remark 6.5 and Theorem 7.5 [49], we can find a Borel map φ ≡ φ[ρ0, ρ1] : [0, 1]→ Rn such
that v = ∇Gφ and

(2.9) vij = ∇Gφ is uniquely determined on {t ∈ (0, 1) : gij(σ(t)) > 0}.
Under the stringent assumption that there exists ε > 0 such that ρ0, ρ1 ∈ Pε(G), Theorem 7.3
[49] asserts that ‖φ‖W 1,1(0,1) is bounded by a constant which is independent of ρ0 and ρ1, but
depends on ε. Thus,

(2.10) (ρ0, ρ1)→ φ[ρ0, ρ1](1) is continuous for the metric `1 on Pε(G)× Pε(G).

Remark 2.2. We recall that the (P(G),W) topology is the same as the (P(G), `1) topology (cf.
[73]) and thus it is also the same as the `2–topology. Therefore, P(G) is a compact set and the
notion of a continuous function is the same for all these three topologies. In particular, P0(G)
is a dense subset of P(G) for the W-topology. Since P(G) is a compact set, it has a finite
diameter.



8 GANGBO, MOU, AND ŚWIĘCH

Throughout the paper, for any r > 0 and µ ∈ P(G), we denote the open ball with radius r
centered at µ in (P(G), ‖ · ‖`2) by Br(µ). By Remark 2.2, Br(µ) is also an open neighborhood
of µ in (P(G),W) and in (P(G), ‖ · ‖`1). Similarly, for any t ∈ [0, T ], r > 0, µ ∈ P(G), we use
Br(t, µ) to denote the open ball with radius r centered at (t, µ) in [0, T ]× (P(G), ‖ · ‖`2).

3. Preliminaries

Throughout the section, we use the same notation as in Section 2 and assume that (H-i)-(H-v)
and (1.2) hold. For ρ ∈ P(G), we set

(3.1) λg(ρ) = sup
(i,j)∈E

{ √
2

√
ωij

n√
gij(ρ)

: gij(ρ) > 0

}
.

Note that λg(ρ) <∞ if ρ has a g-connected component of cardinality greater than or equal to
2.

Remark 3.1. If ε > 0 and ρ ∈ P(G) is such that ρi ≥ ε for all i ∈ V then λg(ρ) ≤
√

2λ̄ωε−1n.

3.1. Further properties of tangent vectors and tangent spaces. For ρ ∈ P(G) and
v ∈ TρP(G), denote by [v]ρ the set of ṽ ∈ TρP(G) such that v and ṽ are ρ–equivalent.

Lemma 3.2. For any ρ ∈ P(G) such that λg(ρ) < ∞, there exists Pρ : TρP(G) → Rn such
that if φ ∈ Rn and we set ψ := Pρ

(
[∇Gφ

]
ρ

)
then

(i) ∇Gψ and ∇Gφ are ρ-equivalent and so,
∥∥∇Gφ∥∥ρ =

∥∥∇Gψ∥∥ρ.
(ii) |ψi| ≤ λg(ρ)

∥∥∥∇Gφ∥∥∥
ρ
for all i ∈ V.

Proof. Let C1(ρ), · · · , CN (ρ) be all the g-connected components of ρ ∈ P(G) and for l ∈
{1, · · · , N}, set

kl := min
k∈Cl(ρ)

k.

Given φ : V → R, we define
ψi := φi − φkl , ∀i ∈ Cl(ρ).

Note that if i, j ∈ Cl(ρ) then

(3.2) ψkl = 0 and (∇Gψ)ij = (∇Gφ)ij .

This is enough to conclude that ∇Gψ and ∇Gφ are ρ-equivalent.

If i ∈ Cl(ρ) and i 6= kl, we can find l1 = kl, · · · , lαi = i such that gl1l2 , · · · , glαi−1lαi
> 0. The

identity
ψlm = ψlm−1 +

(
∇Gφ

)
lmlm−1

, ∀m ≥ 2

and ψl1 = 0 implies that the sequence
(
ψlm
)αi
m=1

is uniquely determined by ∇Gφ. This is
enough to conclude that the map Pρ is well–defined.

Let El be the set of (i, j) in E such that i, j ∈ Cl(ρ). We use the first identity in (3.2) to
conclude that

2
∥∥∥∇Gφ∥∥∥2

ρ
=

N∑
l=1

∑
(i,j)∈El

(
∇Gψ

)2
ij
gij(ρ).



WELL-POSEDNESS FOR HAMILTON-JACOBI EQUATIONS ON THE WASSERSTEIN SPACE ON GRAPHS 9

If i ∈ Cl(ρ) and i 6= kl, using the above notation, we have

2
∥∥∥∇Gφ∥∥∥2

ρ
≥ ωl1l2 ψ2

l2 gl1l2(ρ) +

αi∑
m=3

ωlm−1lm

(
ψlm−1 − ψlm

)2
glm−1lm(ρ).

One checks that ∣∣ψi∣∣ ≤ αi∑
m=2

√
2

√
ωlm−1lm

1√
glm−1lm(ρ)

∥∥∥∇Gφ∥∥∥
ρ
.

We conclude that (ii) holds for i in the union of the sets Cl(ρ) of a cardinality greater than
or equal to 2. It is obvious that (ii) continues to hold for i in the union of the sets Cl(ρ) with
cardinality 1. The proof of (iii) follows from the fact that ψi = φi − φ1 and ω1i |ψi|2 g1i(ρ) ≤∥∥∇Gφ∥∥2

ρ
. �

Corollary 3.3. By Lemma 3.2, if ρ ∈ P(G) and λg(ρ) < ∞, then for any v ∈ TρP(G) there
exists ψ ∈ Rn such that v = ∇Gψ and |ψi| ≤ λg(ρ)‖v‖ρ for all i ∈ V.

3.2. TheWasserstein metric and the space of absolutely continuous paths on (P(G),W).

Lemma 3.4. For any ρ, ρ̄ ∈ P(G), we have ‖ρ̄− ρ‖`1 ≤ 2
√
nCω W(ρ, ρ̄).

Proof. Since there exists a W geodesic connecting ρ to ρ̄, (cf. Theorem 4.5-(i) in [49]), we use
(2.8) to conclude. �

Lemma 3.5. If ε > 0 and ρ, ρ̄ ∈ P(G) are such that ρi, ρ̄i ≥ ε for all i ∈ V then
√
εW(ρ, ρ̄) ≤

√
2λ̄ωn ‖ρ̄− ρ‖`1 .

Proof. Setting
σ(t) = (1− t)ρ+ tρ̄, ∀t ∈ [0, 1],

we have σi(t) ≥ ε for i ∈ V and t ∈ [0, 1]. We then use Remark 3.1 to conclude that

(3.3) λg(σ(t))
√
ε ≤

√
2λ̄ωn.

We define

E(φ) :=

∫ 1

0

(1

2
‖∇Gφ‖2σ(t) − (φ, ρ̄− ρ)

)
dt, ∀φ ∈ L2(0, 1;Rn).

For φ ∈ L2(0, 1;Rn), using the operator Pσ(t) from Lemma 3.2 and setting ψ(t) = φ(t)− φ1(t),
we have

ψ ∈ L2(0, 1;Rn), ψ = Pσ
(
[∇Gφ(t)

]
σ

)
, E(φ) = E(ψ).

By (3.3),

E(ψ) ≥
∫ 1

0

( ε

4λ̄ωn3
‖ψ‖2`2 − ‖ψ‖`2 ‖ρ̄− ρ‖`2

)
dt.

This proves that E is bounded from below and if (ψk)k is a sequence in the range of Pσ such that(
E(ψk)

)
k
decreases to the infimum of E over L2(0, 1;Rn) then (ψk)k is bounded in L2(0, 1;Rn).

Hence, (ψk)k admits a point of accumulation ψ∞ for the weak topology. Since φ → E(φ) is a
quadratic and convex function, we conclude that

lim inf
k→+∞

E(ψk) ≥ E(ψ∞).
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We can assume without loss of generality that ψ∞ = Pσ
(
[∇Gψ∞

]
σ

)
. The Euler-Lagrange

equation satisfied by ψ∞ is

(3.4)
∫ 1

0

((
∇Gψ∞,∇Gφ

)
σ
− (ρ̄− ρ, φ)

)
dt = 0, ∀φ ∈ L2(0, 1;Rn).

This means that

(3.5) σ̇ + divσ(∇Gψ∞) = 0.

Using φ = ψ∞ in (3.4), we obtain∫ 1

0

∥∥∇Gψ∞∥∥2

σ
dt =

∫ 1

0
(ρ̄−ρ, ψ∞)dt ≤ ‖ρ̄−ρ‖`1

∫ 1

0
‖ψ∞‖`∞dt ≤ ‖ρ̄−ρ‖`1

∫ 1

0
λg(σ)‖∇Gψ∞‖σdt.

We first use (3.3) and then use Hölder’s inequality to conclude that∫ 1

0

∥∥∇Gψ∞∥∥2

σ
dt ≤ ‖ρ̄− ρ‖`1

√
2λ̄ωε−1n

√∫ 1

0
‖∇Gψ∞‖2σdt.

We simplify the previous identity and use the fact that, by (3.5), ∇Gψ∞ is a velocity for σ to
obtain

W
(
σ(0), σ(1)

)
≤
∫ 1

0
‖∇Gψ∞‖σdt ≤

√∫ 1

0
‖∇Gψ∞‖2σdt ≤ ‖ρ̄− ρ‖`1

√
2λ̄ωε−1n.

This concludes the proof. �

Remark 3.6. Let ε > 0 and let ρ ∈ P(G) be such that ρi ≥ ε for all i ∈ V. Suppose f ∈ Rn is
such that

∑n
i=1 fi = 0. As done in Lemma 3.5, one can show that there exists φ ∈ Rn such that

f + divρ(∇Gφ) = 0, ‖∇Gφ‖ρ ≤ ‖f‖`1
√

2λ̄ωε−1n.

Remark 3.7. Suppose that σ : [0, 1]→ P(G) and v : [0, 1]→ Rn is a Borel map such that

σ̇ + divσ(v) = 0 in the weak sense in (0, 1) and
∫ 1

0
‖v(t)‖2σ(t)dt < +∞.

By definition of W, we have that σ is an absolutely continuous curve on (P(G),W) since

W(σ(t), σ(s)) ≤
∫ t

s
‖v(τ)‖σ(τ)dτ, ∀0 ≤ s < t ≤ 1.

Hence, if we denote by |σ′|W the W metric derivative of σ, then |σ′|W ≤ ‖v‖σ a.e. on (0, 1).

We next show that v can be chosen in an optimal way.

Proposition 3.8. Suppose that σ : [0, 1]→ P(G) such that

(3.6) W(σ(t), σ(s)) ≤
∫ s

t
β(τ)dτ and β ∈ L2(0, 1).

Then there exists v : (0, 1)→ Sn×n Borel such that v(t) ∈ Tσ(t)P(G) for almost every t,

(3.7) σ̇ + divσ(v) = 0 in the weak sense in (0, 1)

and

(3.8) ‖v‖σ ≤ |σ′|W ≤ β, |σ̇| ≤
√

2nCω|σ′|W a.e. on [0, 1].

Proof. We skip the proof since it is similar to the proof of Theorem 8.3.1 of [2]. �
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3.3. The Wasserstein gradient on P(G).

Definition 3.9 (Wasserstein gradient). Let F : P(G)→ R and ρ ∈ P(G).

(i) We say that F is W-differentiable at ρ if there exist v ∈ TρP(G) and C > 0 such that:
for every ε > 0 there exists δ > 0 such that if ρ̄ ∈ P(G) and v̄ ∈ TρP(G) then

(3.9) ‖ρ̄− ρ‖`1 ≤ δ =⇒
∣∣F(ρ̄)−F(ρ)− (v̄, v)ρ

∣∣ ≤ εW(ρ̄, ρ) + C
∥∥ρ̄− ρ+ divρ(v̄)

∥∥
`1
.

(ii) We write F ∈ C1(P0(G),W) if F is W-differentiable everywhere on P0(G) and its
Wasserstein gradient ∇WF is continuous on P0(G).

Remark 3.10. Let F and ρ be as in Definition 3.9.

(i) We will later show that when there exists v as in Definition 3.9, it is uniquely determined.
If this is the case, we use the notation v = ∇WF(ρ) and call v the Wasserstein gradient
of F at ρ. One similarly defines Wasserstein sub and super gradients.

(ii) Observe that if ρ ∈ P0(G) then ‖ · ‖ρ and ‖ · ‖`2 are equivalent. Therefore in Definition
3.9, there is no confusion about what it means that ∇WF is continuous on P0(G).
However, if ρ ∈ ∂P(G), we may have ‖p‖ρ = 0 while we have ‖p‖`2 > 0.

Definition 3.11 (Fréchet derivative). Let F : P(G)→ R and let ρ ∈ P(G).

(i) We say that F has a Fréchet derivative at ρ if there exists p ∈ Rn such that

(3.10)
n∑
i=1

pi = 0, and lim
s→0+

F((1− s)ρ+ sρ̄)−F(ρ)

s
= (p, ρ̄− ρ), ∀ρ̄ ∈ P(G).

We will later show that there is at most one p ∈ Rn satisfying (3.10). When such p
exists, we write p = δF

δρ (ρ) and call it the Fréchet derivative at ρ. Lemma 3.15 shows a
relation between δF

δρ and ∇WF . One similarly defines Fréchet sub and super differentials.
(ii) We write that F ∈ C1(P0(G), `2) if F has a continuous Fréchet derivative everywhere

on P0(G).

Remark 3.12. Note that the Fréchet derivative is independent of the graph structure, i.e. the
edges E of the graph. However, the Wasserstein gradient depends on E and the metric tensor
g.

Lemma 3.13. If ∇WF(ρ) exists for some ρ ∈ P(G), then it is uniquely determined as an
element of the quotient space TρP(G).

Proof. Assume v, ṽ ∈ TρP(G) are Wasserstein gradients of F at ρ. We are to show that if
(i, j) ∈ E and gij(ρ) > 0 then vij = ṽij . We assume without loss of generality that ρi ≥ ρj .
Since by (H-iii) we have (ρi, ρj) 6= (0, 0), we conclude that ρi > 0. For 0 < a << 1, we set
vakl = 0 except that

(3.11) vaij = −vaji = −
√
ωij

gij(ρ)
a.

Note that divρ(v
a)k = 0 when k 6= i, j and

divρ(v
a)i = ωija = −divρ(v

a)j .

We set

(3.12) σ(s) = ρ− sdivρ(v
a), ρ̄ = σ(1), v̄a(s) = va

gij(ρ)

gij(σ(s))
, ∀s ∈ [0, 1].
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Since 0 < a << 1, the range of σ is contained in P(G) and the range of gij ◦ σ lies in (0,∞).

Let ε > 0 and let δ > 0 be such that (3.9) holds for v and ṽ. Assuming 2ωija ≤ δ we get
‖ρ̄− ρ‖`1 ≤ δ. Since ρ̄− ρ+ divρ(v̄) = 0, we conclude that∣∣F(ρ̄)−F(ρ)− (va, v)ρ

∣∣, ∣∣F(ρ̄)−F(ρ)− (va, ṽ)ρ
∣∣ ≤ εW(ρ̄, ρ)

and so,

(3.13)
∣∣(va, v − ṽ)ρ

∣∣ ≤ 2εW(ρ̄, ρ).

But,

(3.14)
∣∣(va, v − ṽ)ρ

∣∣ =
√
ωija|vij − ṽij | and divρ(v

a) = divσ(v̄a).

The first identity in (3.12) and the last identity in (3.14) yield σ̇ + divσ(v̄a) = 0. Thus,

W2(ρ̄, ρ) ≤
∫ 1

0
‖v̄a(s)‖2σ(s)ds = a2ωij

∫ 1

0

1

g(ρi − ωijas, ρj + ωijas)
ds.

We conclude that for a sufficiently small, we have

(3.15) W2(ρ̄, ρ) ≤
∫ 1

0
‖v̄a(s)‖2σ(s)ds = a2C2ωij , C2 :=

2

gij(ρ)
.

This, together with (3.13) and the first identity in (3.14), implies
√
ωija|vij − ṽij | ≤ 2

√
ωijεaC.

Since ε > 0 is arbitrary, we conclude that |vij − ṽij | = 0. �

Lemma 3.14. If δF
δρ (ρ) exists for ρ ∈ P(G), then it is uniquely determined.

Proof. Suppose ξ, ξ̃ ∈ Rn are Fréchet derivatives of F at ρ. The second identity in (3.10) implies
that (ξ̃− ξ, ρ̄−ρ) = 0 for all ρ̄ ∈ P(G). This means that ξ̃− ξ is parallel to 1 := (1, · · · , 1). The
first identity in (3.10) implies that ξ̃ − ξ is perpendicular to 1. Consequently, ξ̃ − ξ = 0. �

Lemma 3.15. Let F : P(G)→ R and ρ ∈ P(G).

(i) If F has both the Fréchet derivative and the Wasserstein gradient at ρ then ∇WF(ρ) =
∇G(δF/δρ)(ρ).

(ii) If F has the Fréchet derivative in an `1-neighborhood of ρ and if δF/δρ is continuous
at ρ for the `1 metric, then F has the Wasserstein gradient at ρ and v := ∇WF(ρ) =
∇G(δF/δρ)(ρ).

Proof. (i) Suppose that F has both the Fréchet derivative and the Wasserstein gradient at ρ
and set v1 = ∇G(δF/δρ)(ρ), v2 = ∇WF(ρ). We are to show that whenever (i, j) ∈ E is such
that gij(ρ) > 0, we have v1

ij = v2
ij . We can assume without loss of generality that ρi ≥ ρj . For

0 < a << 1, let va be as in (3.11) and let σa(s) ∈ P(G) be as in (3.12). We first use the fact
that F has the Wasserstein gradient at ρ and then use that F has the Fréchet derivative at ρ
to obtain (

va, v2
)
ρ

= lim
s→0+

F(σa(s))−F(ρ)

s
= −

(
δF
δρ

(ρ), divρ(v
a)

)
=
(
va, v1

)
ρ
.

This means

−a
√
ωij

gij(ρ)
v2
ij = −a

√
ωij

gij(ρ)
v1
ij , ∀0 < a << 1
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and so, v1
ij = v2

ij .

(ii) Assume that F has the Fréchet derivative in an `1-neighborhood of ρ and δF/δρ is
continuous at ρ for the `1 metric. Thanks to Lemma 3.4, we may choose a constant c ≡ c(G, g)
such that ‖ · − · ‖`1 ≤ cW(·, ·). Let δ0 > 0 be such that F has the Fréchet derivative in B, the
closed `1-ball of radius δ0 and centered at ρ. Let ε > 0 and choose δ ∈ (0, δ0) such that

2c sup
η∈B

∥∥∥δF
δρ

(η)− δF
δρ

(ρ)
∥∥∥
`∞
≤ ε.

Assume
ρ̄ ∈ P(G) and ‖ρ̄− ρ‖`1 ≤ δ0, v̄ ∈ TρP(G).

Set ρt := ρ+t(ρ̄−ρ). If t ∈ (0, 1) and |h| is small enough, since ρt+h = ρt+h(ρ̄−ρt), t→ F(ρt) is
differentiable on (0, 1) and its Fréchet derivative is

(
δF/δρ(ρt), ρ̄−ρ

)
. Since δF/δρ is continuous

at ρ, its absolute value is bounded by a constant M on B. Thus, t → F(ρt) is Lipschitz and
so,

F(ρ1)−F(ρ0) =
(δF
δρ

(ρ), ρ̄− ρ
)

+

∫ 1

0

(δF
δρ

(ρt)−
δF
δρ

(ρ), ρ̄− ρ
)
dt.

Thus,

F(ρ1)−F(ρ0) =

(
∇G

δF
δρ

(ρ), v̄

)
ρ

+

(
δF
δρ

(ρ), ρ̄− ρ+ divρ(v̄)

)
+

∫ 1

0

(
δF
δρ

(ρt)−
δF
δρ

(ρ), ρ̄− ρ
)
dt.

Hence,∣∣∣F(ρ̄)−F(ρ)−
(
v, v̄
)
ρ

∣∣∣ ≤ ∥∥∥δF
δρ

(ρ)
∥∥∥
`∞
‖ρ̄− ρ+ divρ(v̄)‖`1 + sup

η∈B

∥∥∥δF
δρ

(η)− δF
δρ

(ρ)
∥∥∥
`∞
‖ρ̄− ρ‖`1 .

We bound the `1 norm by the W-metric and use the condition on ε to conclude (ii). �

Lemma 3.16. Let T > 0 and σ ∈ AC2((0, T ) ; (P(G),W)) and let v be the velocity given by
Proposition 3.8. The proposition asserts that T , the set of t0 ∈ (0, T ) such that the metric
derivative of σ at t0 exists, v(t0) ∈ Tσ(t0)P(G), σ is differentiable at t0 and

(3.16) σ̇(t0) + divσ(t0)(v(t0)) = 0,

is of full measure in (0, T ). If F : P(G)→ R has the Wasserstein gradient at σ(t0) and t0 ∈ T
then

d

dt
F(σ(t))

∣∣∣
t=t0

=
(
∇WF(σ(t0)), v(t0)

)
σ(t0)

.

If we further assume that δF
δρ (σ(t0)) exists, then

d

dt
F(σ(t))

∣∣∣
t=t0

=

(
δF
δσ

(σ(t0)), σ̇(t0)

)
.

Proof. Let t0 ∈ T and let C > 0 be such that for every ε > 0 there exists δ > 0 such that if
ρ ≡ σ(t0) and v̄ ∈ Tσ(t0)P(G) then (3.9) holds. Let ō : (−1, 1) → R be a function continuous
at 0 and such that ō(0) = 0 and

σ(t)− σ(t0) + (t− t0)divσ(t0)(v(t0)) = (t− t0)ō(t− t0).
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For ‖σ(t)− σ(t0)‖`1 << 1, we use (3.9) to infer∣∣∣∣F(σ(t))−F(ρ))

t− t0
−
(
∇WF(ρ), v(t0)

)
ρ

∣∣∣∣ ≤ εW
(
σ(t), ρ

)
|t− t0|

+ C‖ō(t− t0)‖`1 .

Hence,

lim sup
t→t0

∣∣∣∣F(σ(t))−F(ρ))

t− t0
−
(
∇WF(ρ), v(t0)

)
ρ

∣∣∣∣ ≤ ε|σ′|(t0),

which proves the first statement of the lemma, as ε > 0 is arbitrary. In light of Lemma 3.15,
we now conclude that the second statement of the lemma holds. �

Corollary 3.17. Assume that F : P0(G)→ R has a local minimum at ρ ∈ P0(G).

(i) If F ∈ C1
(
P0(G),W) then ∇WF(ρ) = 0.

(ii) If F ∈ C1
(
P0(G), `2) then δF

δρ (ρ) = 0.

Proof. (i) Assume that F ∈ C1
(
P0(G),W). Let (σ, v̄a) be as in the proof of Lemma 3.13,

except that now, we can choose δ > 0 such that σ : [−δ, δ] → P0(G). Recall the weighted
metric satisfies ωij > 0 for any (i, j) ∈ E. By Lemma 3.16 and the minimality property of F
and ρ, the following proves (i):

0 =
F(σ(t))−F(ρ)

t
=
(
∇WF(ρ), v̄a(0)

)
ρ

= a

(
∇WF(ρ)

)
ij
ωij

gij(ρ)
.

(ii) Assume that F ∈ C1
(
P0(G), `2). For any f ∈ Rn such that

∑n
i=1 fi = 0, t→ F(ρ+ tf)

achieves its minimum at t = 0 and so, its derivative at t = 0 is null, which means (f, δFδρ (ρ)) = 0.

We choose f = δF
δρ (ρ) to conclude that δF

δρ (ρ) = 0. �

Definition 3.18. If u : P(G) → R is differentiable at ρ ∈ P0(G), the graph individual noise
operator 4ind is defined by

(3.17) 4indu(ρ) :=
(

divρ
(
∇Wu(ρ)

)
, log ρ

)
.

When (1.3) holds, we can extend the definition of 4indu(ρ) up to the boundary of P(G).
Integrating by parts (cf. (2.2)), we conclude that

(3.18) 4indu(ρ) = −
(
∇Wu(ρ),∇G log ρ

)
ρ
.

Remark 3.19. In the continuum setting, the individual noise operator is known to be a second
order differential operator, obtained by differentiating Wasserstein derivatives with respect to
spatial derivatives. However, in the discrete setting, the individual noise operator is obtained
just as a special combination of first order Wasserstein derivatives. Here, the spatial graph
gradient exists for every function since there is no notion of smoothness with respect to the
graph gradient.

3.4. The individual noise operator4ind. The goal this section is to comment on the relation
between the individual noise operator 4ind and some continuous time discrete state Markov
chains. For the sake of illustration, we keep our focus on the case where g satisfies (2.5). Let
A be the matrix given in (1.8). It satisfies the following properties:

(a) Aij ≥ 0 for all (i, j) ∈ V 2 such that i 6= j;
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(b) Aii = −
∑

j 6=iAij for all i ∈ V,

which, according to standard terminology in probability theory, makes A a rate–matrix (or a
Q–matrix). Therefore (cf. e.g. [69]), there exists a probability space (Ω,F ,P) such that for
any µ ∈ P(G), we can find a Markov chain S : [0, T ] × Ω → V such that P

(
S(0, ·) = i

)
= µi

and
P
(
S(t+ h, ·) = i |S(t, ·) = j

)
=
(
ehA
)
ji
, ∀t, h ≥ 0,

for all i, j ∈ V such that P(S(t, ·) = j) 6= 0. Setting

σi(t) = P
(
S(t, ·) = i

)
, ∀i ∈ V,

it is apparent that

σi(t+ h) =

n∑
j=1

(
ehA
)
ji
σj(t) =

(
1 +Aiih+ o(h)

)
σi(t) +

n∑
j 6=i

(
Ajih+ o(h)

)
σj(t).

Hence, if A is symmetric, using (b), we conclude that

σi(t+ h)− σi(t)
h

=

n∑
j 6=i

Aji

(
σj(t)− σi(t)

)
+
o(h)

h
,

and so, if t is a point of differentiability for σ then

(3.19) σ̇i(t) =

n∑
j 6=i

Aji
(
σj(t)− σi(t)

)
for all i ∈ V. By (1.8), (3.19) is equivalent to

(3.20) σ̇(t) = divσ(t)

(
∇G(logσ(t))

)
.

Thus, the unique solution to (3.19), or equivalently the unique solution to (3.20), is given by

σ(t) = etAµ.

Given a sufficiently smooth function U0 : P(G)→ R, we define U : [0,+∞)× P(G)→ R by

U(t, µ) := U0

(
σ(t)

)
.

In the introduction, we recalled that for each t ≥ 0, eAt is known to be a transition matrix.
One checks that there exists a continuous function t → Ct ∈ (0,+∞) such that if µi ≥ ε for
all i ∈ V then (e−Atµ)i ≥ Ctε for all i ∈ V . Therefore, if σ(t) ∈ P0(G) then for h > 0 small
enough, the path h→ ν(h) := e−Ahσ(t) belongs to P0(G) and satisfies the identity

ν̇(h) + divν(h)

(
∇G(logν(h))

)
= 0.

Since U(t+ h, ν(h)) = U0(σ(t)), we use Lemma 3.16 to infer

0 =
d

dh
U(t+ h, ν(h)) = ∂tU(t+ h, ν(h)) +

(
∇WU(t+ h, ν(h)),∇G log ν(h)

)
ν(h)

.

Setting h = 0, we conclude that

0 = ∂tU(t, σ(t))−∆indU(t, σ(t)).

This links the laws of the Markov chains (St)t≥0 to the PDE

(3.21) ∂tU = ∆indU , on (0,+∞)× P(G), U(0, ·) = U0.
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4. Viscosity solutions on P(G).

In this section we introduce a notion of viscosity solution. We assume that (1.2) holds. We
fix T > 0 and assume that F ∈ C(P(G)) and H ∈ C(P(G)× Sn×n).

Recall that we denote by C1(P0(G), `2) the set of real valued functions on P0(G) which have
a continuous Fréchet derivative and we denote by C1(P0(G),W) the set of real valued functions
on P0(G) which have a continuous Wasserstein gradient. By Lemma 3.15 (ii),

C1
(
P0(G), `2

)
⊂ C1

(
P0(G),W

)
.

Note that for ν ∈ P(G), the function

(4.1) µ→ J (µ, ν) := 1/2‖µ− ν‖2`2
is of class C1(P0(G), `2). Similarly, J (µ, ·) is of class C1(P0(G), `2) and we have

∇WJ (·, ν)(µ) ≡ ∇G(µ− ν) and ∇WJ (µ, ·)(ν) ≡ ∇G(ν − µ).

We also consider the function

(4.2) µ→ I(µ) :=
n∑
i=1

1

µi
=

n∑
i=1

Ii(µ), ∀µ ∈ P0(G),

which is of class C1(P0(G), `2).

For each µ ∈ P(G), we assume to be given a linear functional

Oµ : Sn×n → R

such that µ→ Oµ(p) is continuous for all p ∈ Sn×n.

Remark 4.1. Any H̄ : P(G)× Sn×n → R, can be written as H̄(µ, p) = H(µ, p) + F(µ), where

H(µ, p) := H̄(µ, p)− H̄(µ, 0), F(µ) := H̄(µ, 0).

In the sequel, we chose to adopt the notation H(µ, p) + F(µ) only to emphasize the fact that
we will impose assumptions on H̄(µ, p)−H̄(µ, 0). Therefore, H(µ, p) +F(µ) represents a large
class of Hamiltonians and is not limited to the class of the discrete analogue of the so-called
“separable Hamiltonians”. Observe that the separable Hamiltonians are widely used in the mean
field control and mean field game literature, see e.g. [19, 23, 51, 76]. In the sequel, we adopt
the notation H(µ, p) + F(µ) only to emphasize the fact that we are making assumptions on
H̄(µ, p)− H̄(µ, 0).

Given U0 : P(G)→ R, we consider the Hamilton-Jacobi equation

(4.3) ∂tu(t, µ) +H
(
µ,∇Wu(t, µ)

)
+ F(µ) = Oµ

(
∇Wu(t, µ)

)
, u(0, ·) = U0

for a class of Hamiltonian functions H which will be specified later.

Definition 4.2.

(i) A function u ∈ USC([0, T ) × P0(G)) is a viscosity subsolution to (4.3) if u(0, ·) ≤ U0

and for every (t0, ρ0) ∈ (0, T )× P0(G) and every ϕ ∈ C1
(
(0, T )× P0(G), `2

)
such that

u− ϕ has a local maximum at (t0, ρ0), we have

∂tϕ(t0, ρ0) +H(ρ0,∇Wϕ(t0, ρ0)) + F(ρ0) ≤ Oρ0
(
∇Wϕ(t0, ρ0)

)
.
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(ii) A function u ∈ LSC([0, T )× P0(G)) is a viscosity supersolution to (4.3) if u(0, ·) ≥ U0

and for every (t0, ρ0) ∈ (0, T )× P0(G) and every ϕ ∈ C1
(
(0, T )× P0(G), `2

)
such that

u− ϕ has a local minimum at (t0, ρ0), we have

∂tϕ(t0, ρ0) +H(ρ0,∇Wϕ(t0, ρ0)) + F(ρ0) ≥ Oρ0
(
∇Wϕ(t0, ρ0)

)
.

(iii) A function u is a viscosity solution of (4.3) if it is both a viscosity subsolution and a
viscosity supersolution.

Remark 4.3. By Corollary 3.17, every ϕ ∈ C1
(
(0, T ) × P0(G), `2

)
which achieves a local

maximum at (t, µ) ∈ (0, T ) × P0(G), satisfies ∂tϕ(t, µ) = 0 and ∇Wϕ(t, µ) = 0. Hence, every
smooth function for which (4.3) holds pointwise on (0, T )×P0(G), is also a viscosity solution.
An analogous conclusion can be drawn for viscosity subsolutions and supersolutions.

Remark 4.4. For any (i, j) ∈ E such that 1 ≤ i < j ≤ n, we define eij ∈ Rn to be such that
all its entries are null, except that the i-th entry is −1 and the jth entry is 1. If u : P(G)→ R
and its Fréchet derivative exists at ρ ∈ P0(G), we can define the following limit when it exists:

∇eiju(ρ) := lim
t→0

u(ρ+ teij)− u(ρ)

t
.

When the Fréchet derivative of u exists in a neighborhood of ρ and is continuous at ρ, then

∇Wu(ρ) = ∇G
(
δu

δρ

)
(ρ)

and so, √ωij∇eiju(ρ) are the entries of ∇Wu(ρ).

Thus, if we consider P0(G) to be a flat Riemannian manifold, ∇Wu(ρ) only depends on the
derivatives of u in the directions that span the tangent space. Hence, we can conclude that if u
is a Wasserstein-viscosity solution to

∂tu(t, ρ) +H(ρ,∇Wu(t, ρ)) + F(ρ) = Oρ
(
∇Wu(t, ρ)

)
then at least formally, u is a viscosity solution to

∂tu(t, ρ) +H
(
ρ, (
√
ωij∇eiju(t, ρ))

)
+ F(ρ) = Oρ

(
(
√
ωij∇eiju(t, ρ))

)
which we can consider to be a PDE on a flat Riemannian manifold. Moreover, after a change
of coordinates, the equation can be transformed into an equation on (0, T )× Ω, where Ω is an
open subset of Rn−1.

5. Comparison principles

The goal of this section is to show a comparison principle for viscosity solutions to equation
(4.3) and its version for a boundary value problem.

We now introduce the assumptions on H and O. We fix κ > 1 and assume that and there
exist positive constants t∗ > 1 and non-negative functions γ, γ̄, ω∗ ∈ C([0,∞)) such that for
any µ, ν ∈ P0(G), and p, q ∈ Sn×n, the following hold:

(A-i) H ∈ C
(
P0(G)× Sn×n

)
and H(µ, ·) is convex.

(A-ii) limt→1+ γ̄(t) = 1, γ(t) > 1 for any t ∈ (1, t∗) and we have

tγ(t)H(µ, p) ≤ H(µ, tp) ≤ γ̄(t)H(µ, p), ∀t > 0.

(A-iii) For every 0 < ε < 1 there exists θε > 0 such that θε‖p‖κµ ≤ H(µ, p) for all µ ∈ Pε(G).
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(A-iv) We have H(µ, 0) = 0 and there are moduli ωε and constants Cε for 0 < ε < 1 such that

H(µ, p)−H(ν, p) ≥ −ωε(‖µ− ν‖`2)‖p‖κµ − Cε
∣∣‖p‖µ − ‖p‖ν∣∣(‖p‖κ−1

µ + ‖p‖κ−1
ν

)
, ∀µ ∈ Pε(G).

(A-v) If I is as in (4.2) then

|H(µ, p)| ≤ C‖p‖κµI(µ)−κ, ∀(µ, p) ∈ P0(G)× Sn×n.
(O) There exist a constant C ≥ 0 and for every 0 < ε < 1 a constant Cε such that for every

b1, b2 ≥ 0 (if J is as in (4.1))

Oµ
(
b1∇WJ (·, ν)(µ) + b2∇WI(µ)

)
+Oν

(
b1∇WJ (µ, ·)(ν) + b2∇WI(ν)

)
≤ Cεb1‖µ− ν‖2`2 + Cb2(‖∇WI(µ)‖µI(µ)−1 + ‖∇WI(ν)‖νI(ν)−1), ∀µ, ν ∈ Pε(G).

(5.1)

Example 5.1. Let a ∈ C(P(G)) be non-negative such that aIκ is bounded from above and for
every ε > 0, there exists θε > 0 such that a ≥ θε when µ ∈ Pε(G). Setting H(µ, p) := a(µ)‖p‖κµ,
we have

H(µ, p) = H(ν, q) +
(
a(µ)− a(ν)

)
)‖p‖κµ + a(ν)

(
‖p‖κµ − ‖q‖κν

)
.

We choose ω∗ to be the modulus of continuity of a and we use the fact that∣∣∣‖p‖κµ̄ − ‖q‖κν ∣∣∣ ≤ κ∣∣‖p‖µ − ‖q‖ν∣∣ (‖p‖κ−1
µ + ‖q‖κ−1

ν

)
,

to conclude that (A-i)-(A-v) hold.

Observe that the `2-Lipschitz constant of the function J := I−1 on P0(G) is less than or
equal to 1 and so, J admits a unique Lipschitz extension on P(G) which we continue to denote
by J . Since on P0(G), J(µ) ≤ µi for all i ∈ V , one concludes that nJ ≤

∑
i∈V µi = 1 on P(G),

and J vanishes on the boundary of P(G). Therefore, (A-i)-(A-v) hold for

a(µ) := C0J
κ(µ), θε = C0ε

κn−κ, Cε := κC0n
−κ.

Remark 5.2. Since I−1 is bounded from above by n, (A-v) implies that

(5.2) |H(µ, p)| ≤ Cn−κ‖p‖κµ, ∀(µ, p) ∈ P(G)× Sn×n.

Example 5.3. Assume that Oµ is the graph individual noise operator so that

Oµ(p) = −
(
p,∇G logµ

)
µ
.

We have

Oµ
(
∇WI(µ)

)
=− 1

2

∑
(k,l)∈E

(
∇WI(µ)

)
kl
gkl(µ)

(
∇G logµ

)
kl

=− 1

2

∑
(k,l)∈E

( n∑
j=1

∇WIj(µ)
)
kl
gkl(µ)

(
∇G logµ

)
kl
.

One checks that
(5.3)

δIj
δµ

(µ) =
1

µ2
j

( 1

n
, · · · , 1

n
,

1

n
−1,

1

n
, · · · , 1

n

)T
, ∇G

(
δIj
δµ

)
(µ) =


0 if k, l 6= j or k = l = j,

−√ωjlµ−2
j if k = j, l 6= j,

√
ωjkµ

−2
j if k 6= j, l = j.
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Hence,

Oµ
(
∇WI(µ)

)
=
∑

(j,l)∈E

ωjlgjl(µ)
1

µ2
j

(
logµj − logµl

)
=

∑
(j,l)∈E,j<l

ωjlgjl(µ)

(
1

µ2
j

− 1

µ2
l

)(
logµj − logµl

)
=−

∑
(j,l)∈E,j<l

ωjlgjl(µ)

(
µl + µj
µ2
jµ

2
l

)(
logµj − logµl

)
(µj − µl) ≤ 0,(5.4)

where we have used the fact that
(

logµj − logµl
)
(µj − µl) ≥ 0.

Note that

Oµ
(
∇WJ (·, ν)(µ)

)
= −1

2

∑
(i,j)∈E

ωij
(
(µi − νi)− (µj − νj)

)(
logµi − logµj

)
gij(µ).

We similarly compute Oν
(
∇WJ (µ, ·)(ν)

)
to conclude that

Oµ
(
∇WJ (·, ν)(µ)

)
+Oν

(
∇WJ (µ, ·)(ν)

)
=− 1

2

∑
(i,j)∈E

ωij
(
(µi − νi)− (µj − νj)

)((
logµi − logµj

)
gij(µ)−

(
log νi − log νj

)
gij(ν)

)
.

We denote by Eij each one of the expressions in the above sum. Since

Eij =− 1

2
ωij
(
(µi − νi)− (µj − νj)

)((
logµi − log νi

)
+
(

log νj − logµj
))
gij(µ)

− 1

2
ωij
(
(µi − νi)− (µj − νj)

)(
log νi − log νj

)
(gij(µ)− gij(ν)),

we conclude that
Eij ≤ Cε‖µ− ν‖2`2

where
Cε := 2Cω log

(1

ε

)
Lip(g|[ε,1]2) +

2Cω
ε
.

Hence,
Oµ
(
∇WJ (·, ν)(µ)

)
+Oν

(
∇WJ (µ, ·)(ν)

)
≤ n2Cε‖µ− ν‖2`2 .

This concludes the proof of (5.1).

Remark 5.4. The conclusion (5.4) in Example 5.3 continues to hold if instead of I(µ) =∑
i∈V 1/µi, we take I(µ) =

∑
i∈V `(µi) for any positive function ` ∈ C∞(0,+∞) such that

`′ < 0.

Let u be a viscosity subsolution and v be a viscosity supersolution to (4.3) such that u and
−v are bounded above. For any a, β, ε, δ ∈ (0, 1], λ ∈ (1

2 , 1], we define

Ψ0(t, s, µ, ν) := λu(t, µ)− v(s, ν)− β

T − t
− β

T − s
and

Ψa,ε,δ(t, s, µ, ν) := Ψ0(t, s, µ, ν)−
‖µ− ν‖2`2

2ε
− (t− s)2

2δ
− a

n∑
i=1

( 1

µi
+

1

νi

)
.
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We set
M := sup

[0,T )×P0(G)
Ψ0(t, t, µ, µ),

Ma := sup
[0,T )×P0(G)

(
Ψ0(t, t, µ, µ)− 2a

n∑
i=1

1

µi

)
,

Ma,ε := sup
[0,T )×P0(G)2

(
Ψ0(t, t, µ, µ)−

‖µ− ν‖2`2
2ε

− a
n∑
i=1

( 1

µi
+

1

νi

))
,

Ma,ε,δ := sup
[0,T )2×P0(G)2

Ψa,ε,δ.

Since for every β, a, ε, δ ∈ (0, 1] and 1
2 ≤ λ ≤ 1, Ma,ε,δ ≤ M∗ for some constant M∗, it is easy

to see (see e.g. [31], Proposition 3.7 for such argument) that

(5.5) lim
δ→0

Ma,ε,δ = Ma,ε,

(5.6) lim
δ→0

Ma,ε = Ma,

(5.7) lim
δ→0

Ma = M.

Theorem 5.5 (Comparison Principle). Assume that H satisfies (A-i)-(A-v) and F ∈ C(P(G)).
Assume further that O is as above and satisfies (O). If u is a viscosity subsolution to (4.3),
v is a viscosity supersolution to (4.3), u,−v are bounded above and u(0, ·) ≤ v(0, ·) on P0(G),
then u ≤ v in [0, T )× P0(G).

Proof. Suppose on the contrary that u ≤ v in [0, T )× P0(G) fails. Let (t̃, µ̃) ∈ (0, T )× P0(G)
be such that 3e := u(t̃, µ̃)− v(t̃, µ̃) > 0.

Step 1. Properties of maximizer of Ψa,ε,δ. We will use the notation Ψ in place of Ψa,ε,δ and to
alleviate the notation, we simply denote a maximizer of Ψa,ε,δ by (t̄, s̄, µ̄, ν̄), without displaying
the dependence in β, a, ε, δ. It is clear that there exist 0 < λ0 < 1, β0 > 0, a0 > 0 such that if
λ0 < λ < 1, 0 < β < β0 and 0 < a < a0, then Ψ(t̄, s̄, µ̄, ν̄) > 2e and λu(0, µ̄) − v(0, µ̄) < e.
Moreover, we always have

(5.8) µ̄i, ν̄i ≥ c1a, ∀i ∈ V

for some independent constant c1.

We start by observing that

(5.9) Ma,ε,δ +
(t̄− s̄)2

4δ
= Ψ(t̄, s̄, µ̄, ν̄) +

(t̄− s̄)2

4δ
≤Ma,ε,2δ

and

(5.10) Ma,ε,δ +
‖µ̄− ν̄‖2

4ε
+

(t̄− s̄)2

4δ
≤Ma,2ε,2δ.

Thus, (5.9), together with (5.5), implies that

(5.11) lim
δ→0

(t̄− s̄)2

δ
= 0, ∀a, ε > 0.
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Now (5.5), (5.6) and (5.10) give us

(5.12) lim
ε→0

lim sup
δ→0

‖µ̄− ν̄‖2`2
ε

= 0.

Similarly, since

(5.13) Ma,ε,δ +
a

2
(I(µ̄) + I(ν̄)) +

‖µ̄− ν̄‖2

4ε
+

(t̄− s̄)2

4δ
≤Ma/2,2ε,2δ,

(5.5), (5.6) and (5.7) yield

(5.14) lim
a→0

lim sup
ε→0

lim sup
δ→0

a(I(µ̄) + I(ν̄)) = 0.

Since Ψ is upper semicontinuous, in particular it follows from (5.8), (5.11) and (5.12) (even
though the full conclusions of (5.8), (5.11), (5.12) are not necessary) that for λ0 < λ < 1, 0 <
β < β0, 0 < a < a0 and for sufficiently small ε, δ, we must have t̄, s̄ > 0.

Step 2. Control on gradients of C1 functions which touch u from above or touch v from
below.
Observe that,

ϕ : (t, µ)→ β

λ(T − t)
+
J (µ, ν̄)

λε
+

(t− s̄)2

2λδ
+
a

λ

n∑
i=1

1

µi

belongs to C1
(
(0, T ) × P0(G), `2

)
and is such that u − ϕ achieves its maximum at (t̄, µ̄) in

(0, T )× P0(G). Since u is a viscosity subsolution, we infer

β

(T − t̄)2
+
t̄− s̄
δ

+ λH
(
µ̄,
p̄

λ

)
+ λF(µ̄) ≤ λOµ̄

( p̄
λ

)
,

where we have set

p̄ :=
∇WJ (·, ν̄)(µ̄)

ε
+ a∇WI(µ̄) =: p̄1 + p̄2.

Let F∞ ∈ R be such that |F| ≤ F∞. We have

(5.15)
β

T 2
+
t̄− s̄
δ

+ λH
(
µ̄,
p̄

λ

)
+ F(µ̄)−Oµ̄(p̄) ≤ (1− λ)F∞.

By (5.3), we can find a constant C independent of µ such that

(5.16) ‖∇WI(µ̄)‖µ̄ ≤ C
n∑
i=1

1

µ̄2
i

.

Since H(µ̄, ·) is a convex function and η := (1 + λ)/2 is between 0 and 1, we have

λH
(
µ̄,
p̄

λ

)
≥ λ

η
H
(
µ̄, η

p̄1

λ

)
− λ(1− η)

η
H
(
µ̄,

η

1− η
p̄2

λ

)
.

Using (5.16) and (A-v), we obtain for a constant C̄ > C independent of a, ε, δ such that

λH
(
µ̄,
p̄

λ

)
≥ λ

η
H
(
µ̄, η

p̄1

λ

)
− C̄

∣∣∣∣ η

(1− η)λ

∣∣∣∣κ
(
aκ

n∑
i=1

1

µ̄2κ
i

)
1

I(µ̄)κ
.

By (5.14), we can find ω(a, ε, δ) such that lima→0 lim supε→0 lim supδ→0 ω(a, ε, δ) = 0 and

λH
(
µ̄,
p̄

λ

)
≥ λ

η
H
(
µ̄, η

p̄1

λ

)
− ω(a, ε, δ).
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Now (A-ii) and (5.15) imply

(5.17)
β

T 2
+
t̄− s̄
δ

+ γ
(η
λ

)
H(µ̄, p̄1) + F(µ̄)−Oµ̄(p̄) ≤ (1− λ)F∞ + ω(a, ε, δ).

Similarly,

ϕ̃ : (s, ν)→ β

T − s
+
J (µ̄, ν)

ε
+

(t̄− s)2

2δ
+ a

n∑
i=1

1

νi

belongs to C1
(
(0, T ) × P0(G), `2

)
and is such that v + ϕ̃ achieves its minimum at (s̄, ν̄) in

(0, T )× P0(G). Using the fact that v is a viscosity supersolution, we infer

(5.18) − β

T 2
− s̄− t̄

δ
+H(ν̄, q̄) + F(ν̄)−Oν̄(q̄) ≥ 0.

Here, we have set

q̄ := −1

ε
∇WJ (µ̄, ·)(ν̄)− a∇WI(ν̄) =: −q̄1 − q̄2.

We notice that −q̄1 = p̄1.

Since η > λ, in light of (A-ii), for τ < 1 sufficiently close to 1 we have

r := γ
(η
λ

)
− τ γ̄

(1

τ

)
> 0.

Similarly as before, we use the convexity of H(ν̄, ·), (A-ii) and (A-v), to obtain

H
(
ν̄, q̄
)
≤ τH

(
ν̄,
p̄1

τ

)
+ (1− τ)H

(
ν̄,− 1

1− τ
q̄2

)
≤ τ γ̄

(1

τ

)
H
(
ν̄, p̄1

)
+ ω(a, ε, δ),

where ω is as before. This, together with (5.18) implies that

− β

T 2
− s̄− t̄

δ
+ τ γ̄

(1

τ

)
H(ν̄, p̄1) + F(ν̄)−Oν̄(q̄) + ω(a, ε, δ) ≥ 0.

We combine this with (5.17) to conclude that

γ
(η
λ

)
H(µ̄, p̄1)− τ γ̄

(1

τ

)
H(ν̄, p̄1) + F(µ̄)−F(ν̄)

≤ (1− λ)F∞ − 2βT−2 +Oµ̄(p̄)−Oν̄(q̄) + ω(a, ε, δ).

By (5.1), (5.12), (5.14) and (5.16),

γ
(η
λ

)
H(µ̄, p̄1)− τ γ̄

(1

τ

)
H(ν̄, p̄1) + F(µ̄)−F(ν̄) ≤ (1− λ)F∞ − 2βT−2 + ω(a, ε, δ)

(for a different ω(a, ε, δ) satisfying the same properties) and hence, using (A-iii),

τ γ̄
(1

τ

)(
H
(
µ̄, p̄1

)
−H

(
ν̄, p̄1

))
+ F(µ̄)−F(ν̄) + rθac1‖p̄1‖κµ̄ ≤ (1− λ)F∞ − 2βT−2 + ω(a, ε, δ).

Thanks to (A-iv), we conclude that if ωF is the `2-modulus of continuity of F then

− τ γ̄
(1

τ

)(
ωac1(‖µ̄− ν̄‖`2)‖p̄1‖κµ̄ + Cac1

∣∣‖p̄1‖µ̄ − ‖p̄1‖ν̄
∣∣ (‖p̄1‖κ−1

µ̄ + ‖p̄1‖κ−1
ν̄

))
+ rθac1‖p̄1‖κµ̄

≤(1− λ)F∞ − 2βT−2 + ωF
(
‖µ̄− ν̄‖`2

)
+ ω(a, ε, δ).

(5.19)
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Step 3. Relative smallness of
∣∣‖p̄1‖µ̄ − ‖p̄1‖ν̄

∣∣. Using the fact that µi, νi ≥ ac1 for all
i = 1, ..., n, we easily have∣∣‖p̄1‖µ̄ − ‖p̄1‖ν̄

∣∣ ≤ ∣∣‖p̄1‖2µ̄ − ‖p̄1‖2ν̄
∣∣ 12

=

1

2

∣∣∣∣ ∑
(i,j)∈E

(p̄1)2
ij

(
gij(µ̄)− gij(ν̄)

)∣∣∣∣
 1

2

≤ Ka‖p̄1‖µ̄‖‖µ̄− ν̄‖
1
2
`2

and
‖p̄1‖ν̄ ≤ Ka‖p̄1‖µ̄

for some constant Ka.

Putting it all together in (5.19) we obtain that for some constant Ka

−Ka

(
ωac1(‖µ̄− ν̄‖`2) + ‖µ̄− ν̄‖

1
2
`2

)
‖p̄1‖κµ̄ + rθac1‖p̄1‖κµ̄

≤(1− λ)F∞ − 2βT−2 + ωF
(
‖µ̄− ν̄‖`2

)
+ ω(a, ε, δ).

We now take λ so that (1−λ)F∞ < βT−2 and then take lima→0 lim supε→0 lim supδ→0 of both
sides of the above and use (5.12) to obtain a contradiction. �

We next show that a comparison principle still holds even if we weaken the assumptions on H
and Oµ, provided we have additional information about how u and v behave on [0, T )×∂P(G).

Theorem 5.6 (Comparison Principle, Boundary Condition). Let the assumptions of Theorem
5.5 be satisfied except that we now only require H to satisfy (A-i)-(A-iv) and Oµ to satisfy (O)
with b2 = 0. If u ∈ USC([0, T ) × P(G)) is a viscosity subsolution to (4.3), v ∈ LSC([0, T ) ×
P(G)) is a viscosity supersolution to (4.3), u,−v are bounded above, u(0, ·) ≤ v(0, ·) on P(G)
and u ≤ v on [0, T )× ∂P(G), then u ≤ v in [0, T )× P(G).

Proof. Since the arguments here are similar to those of the proof of Theorem 5.5, we just sketch
the necessary adjustments. Suppose that u 6≤ v on [0, T )×P(G). For 0 < λ < 1, β, ε, δ > 0 we
consider the function

Ψε,δ(t, s, µ, ν) := λu(t, µ)− v(s, ν)−
‖µ− ν‖2`2

2ε
− (t− s)2

2δ
− β

T − t
− β

T − s
and we denote its maximizer by (t̄, s̄, µ̄, ν̄). It is easy to see that there exist 0 < λ0 < 1, β0 > 0
such that for every λ0 < λ < 1, 0 < β < β0 there is η > 0 (depending only on λ, β) such that
for sufficiently small ε, δ > 0, we have η < t̄, s̄ < T − η, µ̄, ν̄ ∈ Pη. The proof now repeats the
lines of the proof of Theorem 5.5 and is easier since we do not need to deal with terms coming
from the functions I(µ) and I(ν). We have in place of (5.15)

β

T 2
+
t̄− s̄
δ

+ γ(
1

λ
)H
(
µ̄, p̄
)

+ F(µ̄)−Oµ̄(p̄) ≤ (1− λ)F∞,

where

p̄ :=
∇WJ (·, ν̄)(µ̄)

ε
.

The part from (5.15) to (5.17) is skipped and we have in place of (5.18)

− β

T 2
− s̄− t̄

δ
+H(ν̄, p̄) + F(ν̄)−Oν̄(p̄) ≥ 0.
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We set r = γ( 1
λ)− 1 > 0 and we obtain instead of (5.19),

− ωη(‖µ̄− ν̄‖`2)‖p̄‖κµ̄ − Cη
∣∣‖p̄1‖µ̄ − ‖p̄1‖ν̄

∣∣ (‖p̄1‖κ−1
µ̄ + ‖p̄1‖κ−1

ν̄

)
+ rθη‖p̄1‖κµ̄

≤ (1− λ)F∞ − 2βT−2 + ωF
(
‖µ̄− ν̄‖`2

)
+ Cη

‖µ̄− ν̄‖2`2
ε

.(5.20)

This allows us to conclude as in Step 3 of the proof of Theorem 5.5 by taking limε→0 lim supδ→0

of both sides of the above. �

6. Perron’s method

The goal of this section is to use Perron’s method to show the existence of a viscosity
solution to (4.3). Throughout the section, we assume that F ∈ C(P(G)), H is continuous on
P0(G)×Sn×n and Oµ : Sn×n → R is linear, µ→ Oµ(p) is continuous for all p ∈ Sn×n and there
exists a constant CO such that

(6.1) |Oµ(p)| ≤ CO‖p‖`2 , ∀(µ, p) ∈ P0(G)× Sn×n.
For example when (1.3) holds, the individual noise operator satisfies (6.1).

When S is a topological space, for a function f defined on a subset of Q ⊂ S, we will write f∗
to denote its upper semicontinuous envelope and f∗ to denote its lower semicontinuous envelope,
i.e.

f∗(y) = lim sup
z→y

f(z) and f∗(y) = lim inf
z→y

f(z).

In Lemma 6.1 we do not consider the initial condition to be part of the definition of viscosity
subsolution and we consider viscosity subsolutions to be functions on (0, T )× P0(G).

Lemma 6.1. Let S be a family of viscosity subsolutions to (4.3). Let v := sup{w ; w ∈ S} and
assume that v∗ < +∞ on (0, T )× P0(G). Then v∗ is a viscosity subsolution to (4.3).

Proof. Suppose that ϕ ∈ C1
(
(0, T )× P0(G), `2

)
and there exists r > 0 and (t0, µ0) ∈ (0, T )×

P0(G) such that v∗−ϕ achieves its maximum on B̄r(t0, µ0) at (t0, µ0). We may assume without
loss of generality that B̄r(t0, µ0) ⊂ (0, T )×P0(G). By the definition of v∗, there exists (tn, µn)
and wn ∈ S such that

(6.2) (tn, µn)→ (t0, µ0) and wn(tn, µn)→ v∗(t0, µ0) as n→ +∞.
Set

ϕδ(t, µ) := ϕ(t, µ) + δ|t− t0|2 + δ‖µ− µ0‖2`2 on (0, T )× P0(G).
Note that ϕδ is of class C1

(
(0, T )× P0(G), `2

)
. Furthermore, (t0, µ0) is a strict maximizer for

v∗(t, µ) − ϕδ(t, µ) on B̄r(t
0, µ0). For any n ∈ N, let (t̂n, µ̂n) be a maximizer of wn − ϕδ over

B̄r(t
0, µ0). Observe that

wn(tn, µn)− ϕδ(tn, µn) ≤ wn(t̂n, µ̂n)− ϕδ(t̂n, µ̂n) ≤ v∗(t̂n, µ̂n)− ϕδ(t̂n, µ̂n).

Thus, if (t∞, w∞) is a point of accumulation for
(
(t̂n, µ̂n)

)
n
then by (6.2), we have

v∗(t0, µ0)− ϕδ(t0, µ0) = lim sup
n→+∞

(wn(tn, µn)− ϕδ(tn, µn)) ≤ lim sup
n→+∞

(v∗(t̂n, µ̂n)− ϕδ(t̂n, µ̂n)).

We use the fact that v∗ is upper semicontinuous to conclude that

v∗(t0, µ0)− ϕδ(t0, µ0) ≤ v∗(t∞, µ∞)− ϕδ(t∞, µ∞).
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Since (t0, µ0) is the unique maximizer of v∗ − ϕδ over B̄r(t0, µ0), we conclude that (t0, µ0) =
(t∞, w∞) and so, (t0, µ0) is the unique point of accumulation of

(
(t̂n, µ̂n)

)
n
. Thus, the whole se-

quence
(
(t̂n, µ̂n)

)
n
converges to (t0, µ0) and so, for n large enough, (t̂n, µ̂n) belongs to Br(t0, µ0).

Note that

∂tϕδ(t, µ) = ∂tϕ(t, µ) + 2δ(t− t0) and ∇Wϕδ(t, µ) = ∇Wϕ(t, µ) + 2δ∇G(µ− µ0).

Since wn ∈ S and (t̂n, µ̂n) maximizes wn − ϕδ over B̄r(t0, µ0), we obtain that

∂tϕ(t̂n, µ̂n) + 2δ(t̂n − t0) +H
(
µ̂n,∇Wϕ(t̂n, µ̂n) + 2δ∇G(µ̂n − µ0)

)
+ F(µ̂n)

≤Oµ̂n
(
∇Wϕ(t̂n, µ̂n)

)
+ 2δOµ̂n

(
∇W∇G(µ̂n − µ0)

)
.

Observe that since µ0 ∈ P0(G), ‖ · ‖µ̂n and ‖ · ‖`2 are equivalent.

Letting n→ +∞ and using the continuity of F ,H,Oµ, and (6.1), we obtain

∂tϕ(t0, µ0) +H(µ0,∇Wϕ(t0, µ0)) + F(µ0) ≤ Oµ
(
∇Wϕ(t0, µ0)

)
.

This concludes the proof of the lemma. �

Lemma 6.2. Suppose that u is a viscosity subsolution to (4.3) such that u∗ is not a viscos-
ity supersolution to (4.3). Then, there exist (t0, µ0) ∈ (0, T ) × P0(G), δ, r > 0, such that
B2r(t

0, µ0) ⊂ (0, T )×P0(G) and a viscosity subsolution v to (4.3) such that the following hold.

(i) v ≥ u on [0, T )× P0(G) and v = u on ([0, T )× P0(G)) \Br(t0, µ0).
(ii) There exists a sequence

(
(tn, µn)

)
n
⊂ (0, T )× P0(G) such that

(tn, µn)→ (t0, µ0), u(tn, µn)→ u∗(t
0, µ0), v(tn, µn)− u(tn, µn)→ δ as n→ +∞.

Proof. Since u∗ is not a supersolution to (4.3), there exists ϕ ∈ C1
(
(0, T )×P0(G), `2

)
, r > 0 and

(t0, µ0) ∈ (0, T )×P0(G) such that u∗−ϕ attains the minimum value 0 at (t0, µ0) ∈ (0, T )×P0(G)
on B2r(t

0, µ0) ⊂ (0, T )× P0(G) and

∂tϕ(t0, µ0) +H(µ0,∇Wϕ(t0, µ0)) + F(µ0) < Oµ
(
∇Wϕ(t0, µ0)

)
.

By a continuity argument, if δ, γ > 0 are sufficiently small, reducing the value of r if necessary,
we obtain that

(t, µ)→ ϕδ,γ(t, µ) := ϕ(t, µ) + δ − γ‖µ− µ0‖2`2 − γ|t− t
0|2

is a classical subsolution to (4.3) on Br(t0, µ0) ⊂ (0, T )×P0(G). Thus, by Remark 4.3, ϕδ,γ is
a viscosity subsolution to (4.3) on Br(t0, µ0). Observe that

u(t, x) ≥ u∗(t, x) ≥ ϕ(t, x) on Br(t
0, µ0).

If we choose δ = r2γ
8 , then

u(t, µ) > ϕδ,r(t, µ) on Br(t
0, µ0) \ B̄ r

2
(t0, µ0).

Setting

(6.3) v(t, µ) =

{
max{u(t, µ), ϕδ,γ(t, µ)}, on Br(t

0, µ0),
u(t, µ), otherwise,

we conclude that v = u on the open set

Ω := (0, T )× P0(G) \ B̄ r
2
(t0, µ0).
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Thus, v is a viscosity subsolution to (4.3) on Ω. Since, by Lemma 6.1, v = max{u, ϕδ,γ} is a
viscosity subsolution to (4.3) on Br(t0, µ0) and since the union of the open sets Ω and Br(t0, µ0)
is (0, T )× P0(G), we conclude that v is a viscosity subsolution to (4.3) on [0, T )× P0(G).

Let {(tn, µn)}n∈N ⊂ (0, T )× P0(G) be such that

lim
n→+∞

(tn, µn) = (t0, µ0) and lim
n→+∞

u(tn, µn) = u∗(t
0, µ0).

We have

lim
n→+∞

(v(tn, µn)− u(tn, µn)) ≥ ϕδ,γ(t0, µ0)− u∗(t0, µ0) = u∗(t
0, µ0) + δ − u∗(t0, µ0) = δ,

which completes the proof of (ii). �

Theorem 6.3 (Perron’s Method). Let the assumptions of Theorem 5.5 be satisfied, let (6.1)
hold and let U0 ∈ C(P0(G)). Suppose that u is a bounded viscosity subsolution to (4.3), ū is
a bounded viscosity supersolution to (4.3) and in addition u∗(0, µ) = ū∗(0, µ) = U0(µ) for all
µ ∈ P0(G). Then, setting

S :=
{
w : u ≤ w ≤ ū on [0, T )× P0(G) and w is a viscosity subsolution to (4.3)

}
,

the function u := supw∈S w is a viscosity solution to (4.3).

Proof. By Lemma 6.1, u∗ is a viscosity subsolution to (4.3). Since u ≤ u ≤ ū, we have
u ≤ u∗ ≤ ū and U0(µ) = u∗(0, µ) ≤ u∗(0, µ) ≤ u∗(0, µ) ≤ ū∗(0, µ) =: U0(µ) and so, u∗(0, µ) =
u∗(0, µ) = U0(µ) for µ ∈ P0(G). By the maximality property of u, this implies that u = u∗ and
so, u is a viscosity subsolution to (4.3). If u∗ fails to be a viscosity supersolution to (4.3), let v
be the viscosity subsolution to (4.3) provided by Lemma 6.2. Observe that v(0, ·) = U0(·). By
the comparison principle, v ≤ ū on [0, T ) × P0(G). Also u ≤ u ≤ v by the construction of v.
Hence v ∈ S and so, by the maximality property of u, we have v ≤ u, which contradicts (ii)
of Lemma 6.2. Thus, u∗ is also a viscosity supersolution to (4.3) and then comparison yields
u∗ ≤ u∗. Therefore u = u∗ = u∗ is a viscosity solution to (4.3). �

In light of Theorems 5.5 and 6.3, to show that (4.3) has a unique viscosity solution, it suffices
to construct a viscosity subsolution u and a viscosity supersolution ū to (4.3). We show how
this can be done in the rest of this section.

Proposition 6.4. Let the assumptions of Theorem 5.5 be satisfied (recall that we assume (6.1)
in this section). Suppose that U0 : P0(G)→ R is a function such that one of the following two
conditions holds:

(i) U0 is `2-Lipschitz;
(ii) O ≡ 0 and U0 is W-Lipschitz.

Then there exists a constant C0 > 0 which depends only on U0,H,F such that the functions

u(t, µ) = −C0t+ U0(µ), u(t, µ) = C0t+ U0(µ)

are respectively a viscosity subsolution and a viscosity supersolution to (4.3). Moreover, if u is
a bounded viscosity solution to (4.3) then u(·, µ) is C0-Lipschitz on [0, T ) for every µ ∈ P0(G)
and for every ε > 0 there is a constant Kε such that

(6.4) |u(t, µ)− u(t, ν)| ≤ Kε‖µ− ν‖`2 for all t ∈ [0, T ], µ, ν ∈ Pε(G).
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Proof. In the case (i), we assume l0 is the `2–Lipschitz constant of U0. We fix C0 > C > 0 whose
value will be specified later and set u(t, µ) ≡ −C0t+ U0(µ). Let ϕ ∈ C1

(
(0, T )×P0(G), `2

)
be

such that there are r > 0 and (t0, ρ0) such that B̄r(t0, ρ0) ⊂ (0, T )×P0(G) and u−ϕ achieves
its maximum on B̄r(t0, ρ0) at (t0, ρ0). Note that ∂tϕ(t0, ρ0) = −C0 and

∥∥ δϕ
δµ (t0, µ0)

∥∥
`2
≤ l0 and

so,
‖∇Wϕ(t0, µ0)‖µ0 ≤ 2n2l0Cω.

Set
C := COl0 + sup

(µ,p)

{∣∣H(µ, p) + F(µ)
∣∣ : µ ∈ P0(G), p ∈ Sn×n, ‖p‖µ ≤ 2n2l0Cω

}
.

We have

∂tϕ(t0, ρ0) +H(ρ0,∇Wϕ(t0, ρ0)) + F(ρ0)−Oρ0
(
∇Wu(t0, ρ0)

)
≤ −C0 + C.

This proves that u is a viscosity subsolution to (4.3) such that u(0, ·) = U0. In a similar manner,
we construct a viscosity supersolution ū to (4.3), which is such that ū(0, ·) = U0. We apply
Theorems 5.5 and 6.3 to conclude the proof in case (i).

In the case (ii), one shows that if u−ϕ achieves a local maximum at (t0, ρ0) ∈ (0, T )×P0(G),
then ‖∇Wϕ(t0, µ0)‖µ0 ≤ nl0C. We follow the same lines of arguments to conclude the proof in
the case (ii) when CO = 0.

To show Lipschitz continuity in t, we notice that comparison principle gives us

(6.5) − C0t+ U0(µ) ≤ u(t, µ) ≤ C0t+ U0(µ) = C0t+ U0(µ)

for any t ∈ [0, T ) and µ ∈ P0(G). Let s > 0 and define v(t, µ) = u(t + s, µ). Since H is time
independent, v is a viscosity solution to (4.3) such that v(0, ·) = u(s, ·). We have

v(0, ·)− ‖v(0, ·)− u(0, ·)‖∞ ≤ u(0, ·) ≤ v(0, ·) + ‖v(0, ·)− u(0, ·)‖∞.
By the comparison principle,

v(t, ·)− ‖v(0, ·)− u(0, ·)‖∞ ≤ u(t, ·) ≤ v(t, ·) + ‖v(0, ·)− u(0, ·)‖∞ on (0, T − s)× P0(G).

Thanks to (6.5), we conclude that

−C0s ≤ −‖u(s, ·)−u(0, ·)‖∞ ≤ u(t+s, ·)−u(t, ·) ≤ ‖u(s, ·)−u(0, ·)‖∞ ≤ C0s on (0, T−s)×P0(G).

Thus, u(·, µ) is C0-Lipschitz on [0, T ) for µ ∈ P0(G).

To prove (6.4), for every δ > 0 we define the sup-convolution of u in the µ variable by

uδ(t, µ) = sup
ρ∈P0(G)

{
u(t, ρ)−

‖µ− ρ‖2`2
2δ

}
.

Let ρ̄ be a maximizing point. It is easy to see that we must have

‖µ− ρ̄‖`2 ≤ 2
√
‖u‖∞δ =: Cδ.

Let now 0 < t < T, µ ∈ PCδ(G). Then ρ̄ ∈ P0(G). Suppose uδ − ϕ has a maximum at (t, µ).
Then

(6.6) u(t, ρ̄)−
‖µ− ρ̄‖2`2

2δ
− ϕ(t, µ) ≥ u(s, ρ)−

‖ν − ρ‖2`2
2δ

− ϕ(s, ν)

for all s, ν, ρ. If we set ν = ρ+ (µ− ρ̄) we thus have

u(t, ρ̄)− ϕ(t, µ) ≥ u(s, ρ)− ϕ(s, ρ+ (µ− ρ̄))

so u−ϕ(·, ·+(µ−ρ̄)) has a maximum at (t, ρ̄). Thus, using the definition of viscosity subsolution,
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(6.7) ∂tϕ(t, µ) +H(ρ̄,∇Wϕ(t, µ)) + F(ρ̄) ≤ Oρ̄
(
∇Wϕ(t, µ)

)
≤ CO‖∇Wϕ(t, µ)‖`2 .

Assume in the sequel that µ ∈ Pε(G) and δ is sufficiently small so that Cδ < ε
2 . Since

u(·, µ) is C0-Lipschitz, |∂tϕ(t, µ)| ≤ C0. We use in (6.7), (A-iii) and the fact that by (H-iii)
‖ · ‖ρ̄ ≥

√
ε‖ · ‖`2 on Pε(G), to deduce that

θ ε
2
ε
κ
2 ‖∇Wϕ(t, µ))‖κ`2 ≤ CO‖∇Wϕ(t, µ)‖`2 + C0 + F∞,

where |F| ≤ F∞. Thus, some constant Kε independent of δ we have

(6.8) ‖∇Wϕ(t, µ)‖`2 ≤ Kε.

Setting s = t, ρ = ρ̄ in (6.6) we also see that the function

ν → −
‖ν − ρ̄‖2`2

2δ
− ϕ(t, ν)

has a maximum at µ so

(6.9)
δϕ

δρ
(t, µ) =

ρ̄− µ
δ

.

Since G is connected ∇Gp = 0 if and only if pi = pj = 0 for all i, j and thus, on the set
of null average p, ‖∇Gp‖`2 and ‖p‖`2 are two equivalent norms. Hence, since ∇Wϕ(t, µ) =

∇G( δϕδρ )(t, µ), there is a constant C such that∥∥∥δϕ
δρ

(t, µ)
∥∥∥
`2
≤ Cε‖∇Wϕ(t, µ)‖`2 .

Thus, (6.8) and (6.9) imply

(6.10) ‖ ρ̄− µ
δ
‖`2 ≤ Kε

for some constant Kε.

The set of points (t, µ) such that uδ − ϕ has a maximum at (t, µ) for a smooth function ϕ
is dense in (0, T ) × P0(G) (where in P0(G) we take the ‖ · ‖`2 norm). This can be seen by
considering for every (t0, µ0) ∈ (0, T )× P0(G), n = 1, 2, ..., the functions

uδ(t, µ)− n((t− t0)2 + ‖µ− µ0‖2`2)

which, for large n, will have maxima close to (t0, µ0). We thus conclude from (6.10) that for
every (t, µ) ∈ (0, T )×Pε(G) there is a sequence (tn, µn) such that if ρ̄n is the maximizing point
for uδ(tn, µn), then ∥∥∥ ρ̄n − µn

δ

∥∥∥
`2
≤ Kε.

Thus, by passing to a subsequence, we obtain that for every (t, µ) ∈ (0, T )×Pε(G), there exists
a maximizing point ρ̄ for uδ(t, µ) such that (6.10) holds.

Let now t ∈ (0, T ), µ, ν ∈ Pε(G). We define the function

ψδ(s) = uδ(t, µ+ s(ν − µ)), ∀s ∈ [0, 1].
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The function ψδ is Lipschitz and hence differentiable a.e. Let 0 < s̄ < 1 be a point of differen-
tiability of ψδ and let h ∈ C1(R) be a function such that ψδ −h has a maximum at s̄. Let ρ̄ be
a maximizing point for uδ(t, µ+ s(ν − µ)) satisfying (6.10). Then the function

s→ u(t, ρ̄)−
‖µ+ s(ν − µ)− ρ̄‖2`2

2δ
− h(s)

has a maximum at s̄. Therefore

h′(s̄) =

(
ρ̄− (µ+ s(ν − µ))

δ
, ν − µ

)
and thus |h′(s̄)| ≤ Kε‖ν − µ‖`2 . We now conclude that

|uδ(t, ν)− uδ(t, µ)| = |ψδ(1)− ψδ(0)| ≤ Kε‖ν − µ‖`2 .
It remains to send δ → 0. �

If U0 ∈ C(P(G)) (and hence U0 is uniformly continuous), let uδ0 for 0 < δ < 1 be the
sup-convolution of U0 defined as in the proof of Proposition 6.4. Then uδ0 is `2-Lipschitz and
U0 ≤ uδ0 ≤ U0 + aδ, where aδ → 0 as δ → 0. Therefore for every 0 < δ < 1 there is a constant
Cδ > 0 such that

uδ(t, µ) := Cδt+ uδ0(µ)

is a viscosity supersolution to (4.3). Then the function

u := inf
0<δ<1

uδ

is a bounded continuous viscosity supersolution to (4.3) such that u(0, µ) = U0(µ) for all
µ ∈ P0(G). We can construct a bounded continuous viscosity subsolution u in the same way
by approximating U0 by its inf-convolutions.

7. Optimal control problem

In this section we apply our results to a model optimal control problem and show that the
value function is a unique viscosity solution of the associated Hamilton-Jacobi equation. The
Hamiltonian for our model problem is of the type from Example 5.1 and Oµ = 0. Throughout
this section we assume that

U0, F ∈ C
(
P(G)

)
,

and c > 0 is such that |U0|, |F| ≤ c.

We define the function L̄ : P(G)× Sn×n → [0,+∞] by

(7.1) L̄(µ,m) =


0, if µ ∈ ∂P(G), m = 0;

+∞, if µ ∈ ∂P(G), m 6= 0;

1
2a(µ)

∑
(i,j)∈E

m2
ij

gij(µ) , if µ ∈ P0(G),

where
a(µ) :=

1

I2(µ)
.

It is easy to see that if µ ∈ P0(G) then

sup
m∈Sn×n

{
(p,m)− L̄(µ,m)

}
=

1

2
a(µ)‖p‖2µ =: H̄(µ, p), ∀p ∈ Sn×n.
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Moreover, if µ ∈ ∂P(G)

sup
m∈Sn×n

{
(p,m)− L̄(µ,m)

}
= sup

m∈Sn×n
(p,m) =

{
0, if p = 0;

+∞, if p 6= 0.

Recall that, given ρ0, ρ1 ∈ P(G), we denote by Ct0(ρ0, ρ1) the set of pairs (σ,m) such that

σ ∈ H1(0, t;P(G)
)
, m ∈ L2

(
0, t;Sn×n

)
, (σ(0), σ(t)) = (ρ0, ρ1)

and
σ̇ + divG(m) = 0, in the weak sense on (0, t).

Given ρ ∈ P(G), we define Ct0(·, ρ) to be the union of all Ct0(ρ0, ρ) such that ρ0 ∈ P(G), and
similarly we define Cts(·, ρ) for 0 < s < t.

Lemma 7.1. Let ρ ∈ P(G) and fix i ∈ {1, · · · , n}. Suppose that (σ,m) ∈ CT0 (·, ρ) is such that
L̄(σ,m) ∈ L1(0, T ). Then there exists a positive constant C independent of σ such that the
following hold.

(i) We have ‖m‖2L2(0,T ) ≤ 2n2‖L̄(σ,m)‖L1(0,T ) and ‖σ̇‖L2(0,T ) ≤
√
C‖m‖L2(0,T ).

(ii) If there exist t0, t1 ∈ [0, T ] such that t0 < t1 and σi([t0, t1]) ⊂ (0,+∞) then

2C(t1 − t0)

∫ t1

t0

L̄(σ,m)ds ≥
(

log
(
σi(t1)

)
− log

(
σi(t0)

))2
.

(iii) Either σi0([0, T ]) ⊂ (0,+∞) or σi0([0, T ]) = {0}.

Proof. 1. We use the fact that a ≤ n2 and gij ≤ 1 to obtain

(7.2) L̄(σ,m) ≥ 1

2n2
‖m‖2.

Furthermore, the identity

(7.3) σ̇i +
∑
j∈N(i)

√
ωijmij = 0,

implies that for some positive constant C independent of σ, we have

(7.4) |σ̇i|2 ≤ C
∑
j∈N(i)

m2
ij .

This concludes the proof of (i).

2. Suppose that t0, t1 ∈ [0, T ] are such that t0 < t1 and σi([t0, t1]) ⊂ (0,+∞). Then

(7.5) L̄(σ,m) =
1

2

(∑
k∈V

1

σk

)2 ∑
(k,j)∈E

m2
kj

gjk(σ)
≥ 1

2

(∑
k∈V

1

σk

)2 ∑
j∈N(i)

m2
ij

gij(σ)
≥ 1

2C

σ̇2
i

σ2
i

.

Thanks to Hölder’s inequality, we have

(7.6) (t1 − t0)

∫ t1

t0

σ̇2
i

σ2
i

ds ≥
(∫ t1

t0

|σ̇i|
σi
ds

)2

≥
(∫ t1

t0

σ̇i
σi
ds

)2

=

(
log
(
σi(t1)

)
− log

(
σi(t0)

))2

.

Combining (7.5) and (7.6) we thus obtain (ii).

3. Suppose now that there exists t̄ ∈ [0, T ] such that σi(t̄) = 0. Assume to the contrary that
we can find s̄ such that σi(s̄) > 0. The open set {s ∈ (0, T ) : σi(s) > 0} has a connected
component I which contains s̄. We have that I is an open interval of the form (a, b) such that
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either σi(a) = 0 or σi(b) = 0. Suppose for instance that σi(b) = 0. Then by (ii), whenever
0 < r < b− s̄, we have

2CT

∫ T

0
L̄(σ,m)ds ≥

(
log
(
σi(b− r)

)
− log

(
σi(s̄)

))2
.

Letting r → 0+, we obtain a contradiction. �

If t ≥ 0 and (σ,m) ∈ Ct0(·, ρ) for some ρ ∈ P(G), we set

At0(σ,m) := U0(σ(0)) +

∫ t

0

(
L̄(σ,m)−F(σ)

)
ds.

We define the value function

U(t, ρ) := inf
(σ,m)

{
At0(σ,m) : (σ,m) ∈ Ct0(·, ρ)

}
.

Setting
σ(s) := ρ, m(s) := 0, ∀s ∈ [0, t],

we have (σ,m) ∈ Ct0(·, ρ) and so,

−c(t+ 1) ≤ U(t, ρ) ≤ t
(
L̄(ρ, 0)−F(ρ)

)
+ U0(ρ).

Since L̄(ρ, 0) = 0, we conclude that

(7.7) |U(t, ρ)| ≤ (t+ 1)c.

Thus, if (σ,m) ∈ Ct0(·, ρ) is such that

(7.8) U0(σ(0)) +

∫ t

0

(
L̄(σ,m)−F(σ)

)
ds ≤ U(t, ρ) + 1,

we have ∫ t

0
L̄(σ,m)ds ≤ U(t, ρ) + 1 +

∫ t

0
F(σ)ds− U0(σ(0)) ≤ 2(t+ 1)c+ 1.

and so by (7.2), we have

(7.9)
1

2n2

∫ t

0
‖m‖2ds ≤ 2(t+ 1)c+ 1.

Theorem 7.2. For every t ∈ [0, T ], ρ ∈ P(G), there exists (σ∗,m∗) ∈ Ct0(·, ρ) such that

U(t, ρ) = At0(σ∗,m∗).

Proof. If ρ ∈ ∂P(G), in light of Lemma 7.1, we have that the only pair (σ,m) ∈ Ct0(·, ρ) for
which At0(σ,m) < +∞ is the trivial pair σ(s) = ρ,m(s) = 0 for s ∈ [0, t] so we are done.

Assume in the sequel that ρ ∈ P0(G) and let (σk,mk) ∈ Ct0(·, ρ) be such that limk→∞At0(σk,mk) =
U(t, ρ). We use Lemma 7.1 to conclude that (σk)k is bounded in H1(0, t;Rn) and (mk)k is
bounded in L2(0, t;Rn×n). Passing to a subsequence if necessary, we can assume without loss
of generality that there is (σ∗,m∗) ∈ H1(0, t;Rn)×L2(0, t; Sn×n) such that σk → σ∗ uniformly
and mk ⇀m∗ weakly in L2(0, t;Sn×n). We use Lemma 7.1 to conclude that the range of each
σk is contained on P0(G). Due to the uniform convergence property of (σk)k and the fact that
each σk([0, t]) is a compact set we can assume that that there exists ε > 0 such that

(7.10) σk([0, t]) ⊂ Pε(G), ∀k ∈ N.
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One checks that σ∗([0, t]) ∈ Pε/2(G) and (σ∗,m∗) ∈ Ct0(·, ρ). Since (7.10) expresses the fact
that the range of σk is uniformly aways from ∂P(G), one uses standard method of the calculus
of variations to conclude, since L̄ is continuous on P0(G)× Sn×n and L̄(µ, ·) is convex, that

lim inf
k→+∞

∫ t

0
L̄(σk,mk)ds ≥

∫ t

0
L̄(σ∗,m∗)ds.

Since (σk)k converges uniformly and F and U0 are continuous, we deduce that

At0(σ∗,m∗) ≤ lim inf
k→+∞

At0(σk,mk).

�

Theorem 7.3. The value function U is continuous on [0, T ]× P(G).

Proof. Let t0 ∈ [0, T ], ρ0 ∈ P(G). Let {(tk, ρk)}+∞k=1 be an arbitrary sequence in [0, T ] × P(G)
such that |tk − t0| → 0 and W(ρ0, ρk) → 0 as k → +∞. By Remark 2.2, this is equivalent to
‖ρk − ρ0‖`2 → 0.

Lower semicontinuity of U . To simplify the argument we assume that limk→+∞ U(tk, ρk) =
lim inf(t,ρ)→(t0,ρ0) U(t, ρ). We fix δ > 0 and suppose that tk ≤ t0 + δ for all k ∈ N. Let (σ∗k,m

∗
k)

be optimal paths for U(tk, ρk). We consider the extensions to [0, t0 + δ] and still use the same
notation to denote them, that is we set

(7.11) σ∗k(t) :=

{
σ∗k(t), t ∈ [0, tk];
ρk, t ∈ [tk, t0 + δ],

m∗k(t) :=

{
m∗k(t), t ∈ [0, tk];
0, t ∈ [tk, t0 + δ],

By Lemma 7.1,∫ t0+δ

0
‖m∗k‖2ds ≤ 2n2

∫ t0+δ

0
L̄(σ∗k,m

∗
k)ds = 2n2U(tk, ρk) + 2n2

∫ t0+δ

0
F(σ∗k)ds− U0(σ∗k(0))

and so, by (7.7), (mk)k is bounded in L2(0, t0 +δ; Sn×n). As it was done in the proof of Theorem
7.2, we may assume without loss of generality that there is a pair (σ̄, m̄) such that

σk → σ̄ in C([0, t0 +δ];Rn), mk ⇀ m̄ weakly in L2(0, t0 +δ;Sn×n), σ̄ ∈ H1(0, t0 +δ;Rn).

We have
(σ̄, m̄) ≡ (ρ0, 0) on [0, t0 + δ] and (σ̄, m̄) ∈ Ct00 (·, ρ0).

Note that

lim
k→+∞

U(tk, ρk) = lim
k→+∞

Atk0 (σ∗k,m
∗
k) = lim

k→+∞

(
At0+δ

0 (σ∗k,m
∗
k) + (t0 + δ − tk)F(ρk)

)
Case 1. If ρ0 ∈ P0(G) we now argue as in the proof of Theorem 7.2 to conclude that

lim
k→+∞

U(tk, ρk) ≥ At0+δ
0 (σ̄, m̄) + (t0 + δ − t0)F(ρ) = At00 (σ̄, m̄) + δF(ρ) ≥ U(t0, ρ0) + δF(ρ).

We use the fact that δ > 0 is arbitrary to conclude that limk→+∞ U(tk, ρk) ≥ U(t0, ρ0).

Case 2. Suppose ρ0 ∈ ∂P(G) and (ρ0)i = 0. If ρk ∈ ∂P(G) then by Lemma 7.1(iii), we have
(σ∗k,m

∗
k) ≡ (ρk, 0). If ρk ∈ P0(G), then, again by Lemma 7.1, we must have for every t ∈ [0, tk]

C1 ≥ C2

∫ tk

0
L̄(σ∗k,m

∗
k)ds ≥

(
log
(
(ρk)i

)
− log

(
(σ∗k)i(t)

))2
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for some absolute constants C1, C2 > 0. This implies that max{(σ∗k)i(t) : t ∈ [0, tk]} → 0 and
hence ∫ tk

0
‖m∗k‖2ds→ 0.

We thus conclude that (σ̄, m̄) ≡ (ρ0, 0) on [0, t0 + δ]. It now easily follows that

lim
k→+∞

U(tk, ρk) ≥ U0(ρ0)− t0F(ρ0) = U(t0, ρ0).

Upper semicontinuity of U . Let us assume now that limk→+∞ U(tk, ρk) = lim sup(t,ρ)→(t0,ρ0)

U(t, ρ). In the argument below, we distinguish between the case t0 = 0 and the case t0 > 0.
Setting

(7.12) mk ≡ 0, σk ≡ ρk on [0, tk],

we have (σk,mk) ∈ Ctk0 (·, ρk) and so,

(7.13) U(tk, ρk) ≤ Atk0 (σk,mk) = −
∫ tk

0
F(ρk)ds+ U0(ρk),

When t0 = 0, since F and U0 are continuous, (7.13) implies that limk→+∞ U(tk, ρk) ≤ U0(ρ).
Thus U is upper semicontinuous at (0, ρ0). In the sequel, we assume that t0 > 0 and fix an
optimal couple (σ∗,m∗) in U(t0, ρ0).

Case 1. Suppose that ρ0 ∈ ∂P(G). Let i be such that (ρ0)i = 0. Since by (7.7) L̄(σ∗,m∗) ∈
L1(0, t0), we use Lemma 7.1 to conclude that σ∗i ([0, t0]) = {0} and so, σ∗([0, t0]) ⊂ ∂P(G).
Thus L̄(σ∗,m∗) ≡ 0 on (0, t0) and so, m∗ ≡ 0 on (0, t0). This proves that (σ∗,m∗) ≡ (ρ0, 0) on
(0, t0). We choose (σk,mk) as in (7.12) and apply (7.13) to conclude that

lim
k→+∞

U(tk, ρk) ≤ −
∫ t0

0
F(ρ0)ds+ U0(ρ0) = At00 (σ∗,m∗) = U(t0, ρ0).

Case 2. Suppose that ρ0 ∈ P0(G). By Lemma 7.1, there is ε > 0 such that σ∗([0, t0]) ⊂
Pε(G). Choose δ ∈ (0, t0) and assume without loss of generality that −δ/2 ≤ tk − t0 ≤ δ for
all k so that

(7.14) δ/2 ≤ tk − t0 + δ ≤ 2δ, ∀k ∈ N.

We first integrate (7.3) and use (7.4) and (7.2) to conclude that

(7.15) ‖σ∗(t0)− σ∗(t0− δ)‖2 ≤ 2Cδ

∫ t0

t0−δ
‖m∗‖2ds ≤ 4n2Cδ

∫ t0

t0−δ
L̄(σ∗,m∗)ds =: 4n2Cδω(δ).

We define

(7.16) σk(t) :=

{
σ∗(t), t ∈ [0, t0 − δ];(

1− tk−t
tk−t0+δ

)
ρk + tk−t

tk−t0+δσ
∗(t0 − δ), t ∈ [t0 − δ, tk].

We note that σk([0, tk]) ⊂ Pε(G) and

σ̇k =
ρk − σ∗(t0 − δ)
tk − t0 + δ

, on (t0 − δ, tk).

We use Remark 3.6 to find φ ∈ Rn such that

σ̇k + divρ(∇Gφ) = 0 and ‖∇Gφ‖2ρ0 ≤ ‖σ̇
k‖2`1

2nλ̄ω
ε

.
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Setting
mk
ij = gij(ρ0)

(
∇Gφ

)
ij
,

we conclude that (σk,mk) ∈ C(·, ρk) and

1

2

∑
(i,j)∈E

(mk
ij)

2

gij(ρ0)
≤ 2λ̄ωn

ε
‖σ̇k‖2`1 =

2λ̄ωn

ε

‖ρk − σ∗(t0 − δ)‖2`1
(tk − t0 + δ)2

.

Since gij(ρ0) ≤ 1, we infer

‖mk‖2 ≤4λ̄ωn

ε

‖ρk − σ∗(t0)‖2`1 + ‖σ∗(t0)− σ∗(t0 − δ)‖2`1
(tk − t0 + δ)2

≤4λ̄ωn
2

ε

‖ρk − σ∗(t0)‖2`2 + ‖σ∗(t0)− σ∗(t0 − δ)‖2`2
(tk − t0 + δ)2

.

This, together with (7.14) and (7.15) implies

(7.17) ‖mk‖2 ≤ 16λ̄ωn
2

εδ2

(
‖ρk − σ∗(t0)‖2`2 + 4n2Cδω(δ)

)
.

Since (σk,mk) ∈ Ctk0 (·, ρk), we have

U(tk, ρk) ≤ Atk0 (σk,mk) = At0−δ0 (σ∗,m∗) +

∫ tk

t0−δ

(
L̄(σk,mk)−F(σk)

)
ds

We use the fact that σk([0, tk]) ⊂ Pε(G) to infer gij(σk) ≥ ε and a(σk) ≥ ε2/n2 and so,

L̄(σk,mk) ≤ n2

ε3
‖mk‖2

Since mk is a constant on [t0 − δ, tk] and |F| ≤ c, we have

U(tk, ρk) ≤ At0−δ0 (σ∗,m∗) + (tk − t0)
(n2

ε3
‖mk‖2 + c

)
.

We now use (7.17) and the fact that |tk − t0| ≤ δ to obtain

U(tk, ρk) ≤ At0−δ0 (σ∗,m∗) + cδ +
16λ̄ωn

4

ε4

(
‖ρk − ρ0‖2`2

δ
+ 4n2Cω(δ)

)
.

We first let k → +∞ and then δ → 0+ to infer

lim
k→+∞

U(tk, ρk) ≤ At00 (σ∗,m∗) = U(t0, ρ0).

Thus, U is upper semicontinuous at (t0, ρ0). �

Theorem 7.4. U(t, ρ) satisfies the Dynamic Programming Principle (DPP), i.e. for any
(t0, ρ0) ∈ [0, T ]× P(G) and t ∈ (0, t0]

(7.18) U(t0, ρ0) = inf
(σ,m)

{∫ t0

t

(
L̄(σ(s),m(s))−F(σ(s))

)
ds+U(t, σ(t)) : (σ,m) ∈ Ct0t (·, ρ0)

}
.

Theorem 7.5. U is the unique bounded viscosity solution to (4.3).
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Proof. The uniqueness part follows directly from Theorem 5.5. We only need to show that U
is a viscosity solution to (4.3). It is obvious that U(0, µ) = U0(µ).

Viscosity subsolution. Let ϕ ∈ C1
(
(0, T ) × P0(G), `2

)
be such that u − ϕ has a local

maximum at (t0, ρ0) ∈ (0, T ) × P0(G). Let ψ ∈ Rn. We denote v = ∇Gψ. Since ρ0 ∈ P0(G),
there exists a constant r ∈ [0, t0] and σ ∈ C1

(
[t0 − r, t0]; (P0(G), `2)

)
which solves

σ̇(s) + divσ(s)(v) = 0, σ(t0) = ρ0.

Thus, for any t ∈ [t0 − r, t0], we have by Theorem 7.4

0 ≤ U(t0, ρ0)− ϕ(t0, ρ0)− U(t, σ(t)) + ϕ(t, σ(t))

t0 − t

≤ 1

t0 − t

(∫ t0

t

(
L̄(σ(s), divσ(s)(v))−F(σ(s))

)
ds− ϕ(t0, ρ0) + ϕ(t, σ(t))

)
.(7.19)

Letting t→ t−0 in (7.19) and using Lemma 3.16, we now have

0 ≤ L̄(ρ0, divρ0(v))−F(ρ0)−
(

divρ0(v),∇Wϕ(t0, ρ0)
)
− ∂tϕ(t0, ρ0)

Therefore, taking the infimum above over all v = ∇Gψ and using the fact that ∇Wϕ(t0, ρ0) ∈
Tρ0P(G), we obtain

0 ≤ −∂tϕ(t0, ρ0)−F(ρ0) + inf
{
L̄(ρ0,divρ0(v))−

(
divρ0(v),∇Wϕ(t0, ρ0)

)
: v = ∇Gψ,ψ ∈ Rn

}
= −∂tϕ(t0, ρ0)−F(ρ0) + inf

{
L̄(ρ0,m)−

(
m,∇Wϕ(t0, ρ0)

)
: m ∈ Sn×n

}
= −∂tϕ(t0, ρ0)−F(ρ0)− H̄(ρ0,∇Wϕ(t0, ρ0)).

Viscosity supersolution. Let ϕ ∈ C1
(
(0, T ) × P0(G), `2

)
be such that u − ϕ has a local

minimum at (t0, ρ0) ∈ (0, T ) × P0(G). Then, for any sufficiently small ε > 0 and r ∈ (0, t0],
there exists (σ,m) ∈ Ct0t0−r(·, ρ0) such that

0 ≥ U(t0, ρ0)− ϕ(t0, ρ0)− U(t0 − r, σ(t0 − r)) + ϕ(t0 − r, σ(t0 − r))(7.20)

≥ −ε0r +

∫ t0

t0−r

(
L̄(σ(s),m(s))−F(σ(s))

)
ds− ϕ(t0, ρ0) + ϕ(t0 − r, σ(t0 − r)).

Using Lemma 7.1, we have σ(t) ∈ P0(G) for any t ∈ [t0 − r, t0]. Dividing by r on (7.20), we
can get by Lemma 3.16

ε ≥ 1

r

(∫ t0

t0−r

(
L̄(σ(s),m(s))−F(σ(s))

)
ds− ϕ(t0, ρ0) + ϕ(t0 − r, σ(t0 − r))

)
=

1

r

∫ t0

t0−r

(
L̄(σ(s),m(s))−F(σ(s))− ∂tϕ(s, σ(s))−

(
∇Wϕ(s, σ(s)),m(s)

))
ds

≥ 1

r

∫ t0

t0−r

(
− ∂tϕ(s, ϕ(s))− H̄(σ(s),∇Wϕ(s, σ(s)))−F(σ(s))

)
ds.

Sending r → 0+ and then ε→ 0+, we obtain

∂tϕ(t0, ρ0) + H̄(ρ0,∇Wϕ(t0, ρ0)) + F(ρ0) ≥ 0.

�
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