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Abstract. We prove that viscosity solutions of Hamilton-Jacobi-Bellman (HJB) equations
corresponding either to deterministic optimal control problems for systems of n particles or to
stochastic optimal control problems for systems of n particles with a common noise converge
locally uniformly to the viscosity solution of a limiting HJB equation in the space of probability
measures. We prove uniform continuity estimates for viscosity solutions of the approximating
problems which may be of independent interest. We pay special attention to the case when the
Hamiltonian is convex in the gradient variable and equations are of first order and provide a
representation formula for the solution of the limiting first order HJB equation. We also propose
an intrinsic definition of viscosity solution on the Wasserstein space.
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1. Introduction

We consider the problem of approximation of Hamilton-Jacobi-Bellman (HJB) equations in
spaces of probability measures by equations in finite dimensional spaces. More precisely, we study
if appropriately interpreted viscosity solution of such HJB equations can be approximated locally
uniformly by viscosity solutions of finite dimensional problems. This is related to the problem
of whether value functions of variational or optimal control problems in spaces of probability
measures can be approximated by value functions corresponding to problems for finite particle
systems. Similar convergence problems have been recently studied in the context of mean field
games [15, 16, 18, 20, 21, 28, 37, 41, 50, 53]. In particular it was proved in [18] that classical
solutions of finite dimensional second order Nash systems converge, in a suitable sense, to classical
solutions of the corresponding master equations. Also convergence of functionals of empirical
measures of the marginal laws of particle systems for McKean-Vlasov stochastic differential
equations was studied recently in [20, 23] using calculus in the space of measures, stochastic
analysis and partial differential equations the space of measures. Explicit convergence estimates
were obtained in [20, 23]. The problems investigated there are different from the one here. They
studied the case of independent noises and no controls so they dealt with partial differential
equations which are linear, have slightly different form and have smooth solutions. We refer to
the references in [20, 23] for the discussion of other earlier results in this direction. Regularity
and convergence problems for finite dimensional approximations of first order HJB equations in
spaces of probability measures were studied in [37, 39, 41, 52], either when solutions were regular
or when the Hamiltonian was quadratic. Some results are also mentioned in [15] without proofs,
while some results may be considered to be part of a folklore of the theory. In this paper we
want to investigate the problem rigorously from the point of view of viscosity solutions.

We will be concerned with first and second order degenerate HJB equations of the form

(1.1)
{
∂tU − κ∆wU +H(µ, µ,∇µU) + F(µ) = 0 in (0, T )× P2(Rd)
U(0, µ) = U0(µ) on P2(Rd),
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where ∆wU is the partial Laplacian of U , see [24], T > 0, κ ≥ 0,P2(Rd) is the Wasserstein
space of probability measures on Rd with bounded second moments, F : P2(Rd) → Rd and, for
µ1, µ2 ∈ P2(Rd), ξ ∈ L2

µ1(Rd;Rd), the Hamiltonian H is defined by

H(µ1, µ2, ξ) =

∫
Rd
H(x, µ2, ξ(x))µ1(dx)

for some function H : Rd × P2(Rd) × Rd → R which satisfies Hypothesis 2.1 below. We bring
to the reader’s attention the fact that the dependence of H in (1.1) on the first µ is linear,
whereas the dependence on the second µ comes from the integrand function H. Moreover, the
function F cannot be simply absorbed into H: otherwise, the restriction of µ to averages of Dirac
masses would not yield (1.2) below. Indeed, part of the goal of this paper is to justify that the
approximating finite dimensional problems should have the form

(1.2)


∂tun − κTr(AnD

2un) + 1
n

∑n
i=1H(xi,

1
n−1

∑n
j 6=i δxj , nDxiun)

+F( 1
n

∑n
i=1 δxi) = 0 in (0, T )× (Rd)n,

un(0, x1, · · · , xn) = U0( 1
n

∑n
i=1 δxi) on (Rd)n,

where for n ∈ N, An is the nd× nd matrix composed of n2 block matrices Id.
Equation (1.1) will be interpreted in the L2 sense, that is, we will look at the “lifted” version

of (1.1) in the space
E := L2(Ω;Rd),

where Ω is an atomless probability space. This technique was introduced in [15, 50] and its de-
tailed exposition and recent developments can be found in [20, 21, 43]. Without loss of generality
we can assume that Ω = (0, 1) with the standard Lebesgue measure L1. We denote by 〈·, ·〉1 the
inner product in L2(Ω;R) and, for X,Y ∈ L2(Ω;Rd), we set

〈X,Y 〉d :=
(
〈X1, Y1〉1, · · · , 〈Xd, Yd〉1

)
,

〈X,Y 〉 := 〈X1, Y1〉1 + · · ·+ 〈Xd, Yd〉1 and |X| =
√
〈X,X〉

where X1, . . . , Xd, Y1, . . . , Yd are the components of X and Y respectively. We denote the
canonical basis in Rd by {e1, · · · , ek} and consider its elements as constant functions in E. We
define the functions U0, F : E → R by

U0(X) = U0(X]L1), F (X) = F(X]L1),

where ] denotes pushforward. Thus X]L1 is the law of the random vector X, and is an element
of P2(Rd). If U : E → R is twice differentiable and such that U(µ) = U(X) if µ is the law of X
then we have the crucial formula

∆wU(µ) ◦X =

d∑
k=1

〈D2U(X)ek, ek〉;

see Section 5 below.
For X,P ∈ E, µ ∈ P2(Rd), we define

H̃(X,µ, P ) :=

∫
Ω
H(X(ω), µ, P (ω))dω.

We rely on the theory of viscosity solutions in Hilbert spaces and consider functions U :
[0, T )× E → R which are viscosity solutions of

(1.3)


∂tU − κ

d∑
k=1

〈D2Uek, ek〉+ H̃(X,X]L1, DU) + F (X) = 0 in (0, T )× E

U(0, X) = U0(X) on E.
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Here, DU,D2U stand for the Fréchet derivatives of U with respect to the X variable. We refer
the readers to [29] for the theory of viscosity solutions in Hilbert spaces and extensive references.

We have the following definition.

Definition 1.1. Let U : [0, T ) × P2(Rd) → R and define U : [0, T ) × E → R by U(t,X) =
U(t,X]L1).

(i) We say that U is an L-viscosity subsolution of (1.1) on the Wasserstein space if U is a
viscosity subsolution of (1.3) on [0, T )× E.

(ii) We say that U is an L-viscosity supersolution of (1.1) on the Wasserstein space if U is a
viscosity supersolution of (1.3) on [0, T )× E.

(ii) When U is both an L-viscosity subsolution and an L-viscosity supersolution of (1.1) on
the Wasserstein space, we say that it is an L-viscosity solution of (1.1) on the Wasserstein
space.

We remark that another definition of viscosity solution to HJB master equations in the
Wasserstein space, also called an L-viscosity solution, was introduced in [59]. The definition in
[59] uses the framework of path dependent PDE and is not related to Definition 1.1 here, even
though both notions have the same name.

We also propose an intrinsic definition of viscosity solution on the Wasserstein space and
show in Section 5 that the notion of L-viscosity solution provides a way to select particular
intrinsic viscosity solutions. Only when the Hamiltonian is convex in the momentum variables
and κ = 0 it is known that the notions of L-viscosity solution and intrinsic viscosity solution are
equivalent [43].

The main result of the manuscript is the following convergence theorem.

Theorem 1.2. Let Hypothesis 2.1 be satisfied and let κ ≥ 0. Suppose that for n ≥ 1 the functions
un : [0, T ) × (Rd)n → R are the viscosity solutions of (1.2) Then, for every bounded set B in
P2(Rd),

lim
n→∞

sup

{∣∣un(t, x1, · · · , xn)− U(t,
1

n

n∑
i=1

δxi)
∣∣ :

(t, x1, · · · , xn) ∈ [0, T )× (Rd)n,
1

n

n∑
i=1

δxi ∈ B

}
= 0,

where U is the unique L-viscosity solution of (1.1) on the Wasserstein space.

The assumptions of Hypothesis 2.1 will be introduced in Section 2. To prove Theorem 1.2
we first obtain appropriate uniform continuity estimates for the solutions un of (1.2). This is
done in Theorem 3.3 for a more general case when the second order coefficients An may depend
on x. Theorem 3.3 is the main technical result of the paper and is of independent interest. We
then convert the functions un into functions of empirical measures by defining new functions

Vn(t, µx) := un(t,x), where µx :=
1

n

n∑
i=1

δxi , x = (x1, · · · , xn),

which are well defined since the functions un are invariant with respect to permutations of the
variables of x. The estimates of Theorem 3.3 guarantee that Vn are uniformly continuous in the
topology of [0, T ]× Pr(Rd), where 1 < r < 2. We then extend Vn to [0, T ]× P2(Rd) preserving
its modulus of continuity and then use the Arzelà-Ascoli theorem to pass to the limit, along a
subsequence, to a function V defined on [0, T ]×P2(Rd). We then prove directly that its “lifted”
version V : [0, T ] × E → R is a viscosity solution of (1.3). Uniqueness of viscosity solutions of
(1.3) then guarantees that the whole sequence Vn converges to V. Thus we completely avoid
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dealing with equation (1.1) in the space of probability measures which may not have a unique
viscosity solution in the sense of [38] (see [43]). In Section 6 we show that if κ = 0 and H
is convex in the gradient variable then the functions un, which are value functions of optimal
control problems for n-particle systems, converge to the value function of a variational problem
in P2(Rd), thus giving a representation formula for the solution of (1.1). Finally we prove a few
technical results in the Appendix.

Equations (1.2) correspond either to deterministic optimal control problems for systems of
n particles or to stochastic optimal control problems for systems of n particles with a common
noise. Theorem 1.2 solves the problem of convergence for a large class of general first order
HJB equations, even though the identification of the limit as a value function is only obtained
for the convex case and κ = 0. However, using the methods of this paper we were not able
to obtain a result similar to Theorem 1.2 for other stochastic particle systems, for instance for
systems of n particles with non-constant diffusion coefficients, in which case the matrices An are
functions like in Hypothesis 3.1, or for systems of n particles with independent noises, in which
case An = Ind. We also remark that some assumptions of Hypothesis 2.1 could be changed or
relaxed while some may pose a bigger problem. This is worth investigating. The main challenge
is in proving uniform continuity estimates of Theorem 3.3. We do not consider other cases here
as Hypothesis 2.1 is sufficiently general and we do not want to overburden the presentation with
too many technicalities. Our main goal is to convey the basic ideas. The readers can explore
various generalizations.

Hamilton-Jacobi-Bellman equations and master equations for mean field games or mean field
control problems in spaces of probability measures have been studied a lot in recent years using
various approaches. We refer the readers to [6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24,
28, 37, 38, 39, 41, 43, 45, 46, 52, 53, 54, 57, 58, 59]. Equations related to differential games were
studied in [25, 47], equations related to control problems with partial observation were studied
in [4, 5] and HJB equations mostly related to large deviations and fluid dynamics problems were
investigated with slightly different techniques in [30, 31, 32, 33, 34]. In particular an abstract
method of relaxed-limits for viscosity solutions was introduced in [31] for applications in large
deviations and this technique was recently generalized in [48, 49]. HJB equations in metric spaces
were studied by various techniques in [1, 12, 13, 39, 40, 44, 51, 55, 56]. Finally we refer the readers
to [26, 35] for an introduction to the theory of viscosity solutions of partial differential equations
in Rd and to [29] and the references there for the overview of the theory of viscosity solutions of
second order HJB equations in Hilbert spaces.

2. Notation, assumptions and definitions

We denote by Pr(Rd), r ≥ 1 the space of Borel probability measures on Rd with finite r-th
moments, equipped with the Wasserstein r-metric

dr(µ, ν) := inf
γ∈Γ(µ,ν)

(∫
Rd×Rd

|x− y|rγ(dx, dy)

) 1
r

,

where Γ(µ, ν) is the set of all Borel probability measures γ on Rd×Rd with marginals µ, ν. The
set of optimal measures in Γ(µ, ν) will be denoted by Γ0(µ, ν). When x = (x1, ..., xn) ∈ (Rd)n
we set

µx :=
1

n

n∑
i=1

δxi , and |x|r =
1

n1/r
(

n∑
i=1

|xi|r)1/r.

We have
dr(µx, µy) = inf

σ
|x− yσ|r,

where the infimum is taken over all permutations σ of {1, ..., n} and yσ = (yσ(1), ..., yσ(n)).
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We use L1 to denote the Lebesgue measure on R. If X ∈ Lr(Ω;Rd), then its Lr norm will
be denoted by |X|r. If r = 2 we will just write |X| as in the introduction. For X ∈ Lr(Ω;Rd),
law(X) := X]L1 denotes the measure in Pr(Rd) which is the push forward of L1 by X.

When µ ∈ P2(Rd), we denote as L2
µ(Rd;Rd) the set of Borel vector fields ξ : Rd → Rd

such that
∫
Rd |ξ|

2µ(dx) < ∞. The tangent space at µ, denoted by TµP2(Rd), is the closure of
∇C∞c (Rd) in L2

µ(Rd;Rd).
For x ∈ Rm we will be also using the notation |x| to denote the standard Euclidean norm

in Rm and we will write x · y for x, y ∈ Rm to denote the dot product in Rm.
If A is a matrix or a bounded operator in a Hilbert space, we will write ‖A‖ to denote the

operator norm of A. We denote by S(m) the set of m ×m symmetric matrices. If A ∈ S(m),
Tr(A) means the trace of A.

For an open set O ⊂ Rm, we will write C1(O), C2(O) for the standard spaces of once and
twice continuously differentiable functions on O.

IfW is a Hilbert space, we denote by C1,2((0, T )×W ) the space of functions ϕ : (0, T )×W →
R, such that ∂tϕ,Dϕ,D2ϕ are continuous on (0, T )×W , where Dϕ,D2ϕ stand for the Fréchet
derivatives of ϕ with respect to the Hilbert space variable.

Throughout the paper we will always identify a Hilbert space with its dual. Thus, with this
identification, Dϕ : (0, T )×W → W and D2ϕ : (0, T )×W → S(W ), where S(W ) is the space
of bounded self-adjoint operators in W .

We make the following assumptions about the Hamiltonian function H.

Hypothesis 2.1. Let 1 < r < 2.

(i) The function H : Rd × Pr(Rd)× Rd → R is such that

(2.1) |H(x, ν, p)−H(x, ν, q)| ≤ C(1 + |p|+ |q|)|p− q| ∀ p, q, x ∈ Rd, ν ∈ Pr(Rd),

(2.2) |H(x, µ, p)−H(y, ν, p)| ≤ σ
(
(|x− y|+ dr(µ, ν))(1 + |p|)

)
∀ p, x, y ∈ Rd, µ, ν ∈ Pr(Rd)

for some concave modulus of continuity σ and

(2.3) |H(x, µ, p)| ≤ C(1 + |p|2) ∀ p, x ∈ Rd, µ ∈ Pr(Rd).
(ii) The functions U0,F ∈ UCb(Pr(Rd)) (the space of bounded and uniformly continuous

functions).

We notice that it easily follows from (2.1) and (2.3) that for all X,P,Q ∈ E,

(2.4) |H̃(X,µ, P )− H̃(X,µ,Q)| ≤ C(1 + |P |+ |Q|)|P −Q|.
and

(2.5) |H̃(X,µ, P )| ≤ C(1 + |P |2).

Moreover, by the concavity of σ and Jensen’s inequality, we obtain that for all X,Y, P ∈ E,
µ, ν ∈ Pr(Rd),

|H̃(X,µ, P )− H̃(Y, ν, P )| ≤
∫

Ω
σ
(
(|X(ω)− Y (ω)|+ dr(µ, ν))(1 + |P (ω)|)

)
dω

≤ σ
(∫

Ω
(|X(ω)− Y (ω)|+ dr(µ, ν))(1 + |P (ω)|)dω

)
≤ σ ((|X − Y |+ dr(µ, ν))(1 + |P |)) .(2.6)

Let m1 be a modulus of continuity for U0 and F . Since
|U0(X)− U0(Y )| = |U0(X]L1)− U0(Y]L1)| ≤ m1 (dr(X]L1, Y]L1)) ≤ m1 (|X − Y |r)
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we conclude

(2.7) |U0(X)− U0(Y )| ≤ m1 (|X − Y |) .
Similarly,

(2.8) |F (X)− F (Y )| ≤ m1 (|X − Y |) .
Moreover, for x,y ∈ (Rd)n,
(2.9) |U0(µx)− U0(µy)| ≤ m1 (|x− y|r) ,

(2.10) |F(µx)−F(µy)| ≤ m1 (|x− y|r) .
Let W be a real Hilbert space with an inner product 〈·, ·〉 and the norm | · |. We recall the

definitions of parabolic second-order jets (see [26], Section 8 and [27], Section 3).
Given u : (0, T )×W → R and (t̄, x̄) ∈ (0, T )×W , the parabolic second-order superjet of u

at (t̄, x̄), P2,+u(t̄, x̄) is defined by

P2,+u(t̄, x̄) :=

{
(a, p, S) ∈ R×W × S(W ) :

lim sup
(s,y)→(t̄,x̄)

u(s, y)− u(t̄, x̄)− a(s− t̄)− 〈p, y − x̄〉 − 1
2 〈S(y − x̄), y − x̄〉

|s− t̄|+ |y − x̄|2
≤ 0

}
.(2.11)

The parabolic second-order subjet of u at (t̄, x̄), P2,−u(t̄, x̄), is defined by reversing the inequality
and replacing lim sup by lim inf in (2.11). The closure P2,+

u(t̄, x̄) of P2,+u(t̄, x̄), is defined as
follows.

P2,+
u(t̄, x̄) :=

{
(a, p, S) ∈ R×W × S(W ) : there exist (tn, xn) and

(an, pn, Sn) ∈ P2,+u(tn, xn) s.t. (tn, xn, u(tn, xn), pn, Sn)→ (t̄, x̄, u(t̄, x̄), a, p, S)

}
,

The closure P2,−
u(t̄, x̄) of P2,−u(t̄, x̄) is defined similarly. We recall the definition of viscosity

solution of an equation

(2.12)
{
∂tu+G(t, x, u,Du,D2u) = 0 in (0, T )×W
u(0, x) = g(x) on W,

where G : (0, T )×W × R×W × S(W )→ R is continuous.

Definition 2.2. An upper semicontinuous function u : [0, T )×W → R is a viscosity subsolution
of (2.12) if u(0, x) ≤ g(x) on W and whenever ϕ ∈ C1,2((0, T ) × W ) and u − ϕ has a local
maximum at (t, x) ∈ (0, T )×W , then

∂tϕ(t, x) +G(t, x, u(t, x), Dϕ(t, x), D2ϕ(t, x)) ≤ 0.

A lower semicontinuous function u : [0, T ) ×W → R is a viscosity supersolution of (2.12) if
u(0, x) ≥ g(x) on W and whenever ϕ ∈ C1,2((0, T ) ×W ) and u − ϕ has a local minimum at
(t, x) ∈ (0, T )×W , then

∂tϕ(t, x) +G(t, x, u(t, x), Dϕ(t, x), D2ϕ(t, x)) ≥ 0.

A function u is a viscosity solution of (2.12) if it is a viscosity subsolution of (2.12) and a
viscosity supersolution of (2.12).
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It is easy to see that (a, p, S) ∈ P2,+u(t̄, x̄) (respectively, (a, p, S) ∈ P2,−u(t̄, x̄)) if and only
if there exists ϕ ∈ C1,2((0, T )×W ) such that u−ϕ has a local maximum at (t̄, x̄) (respectively,
u− ϕ has a local minimum at (t̄, x̄)) and

a = ∂tϕ(t̄, x̄), p = Dϕ(t̄, x̄), S = D2ϕ(t̄, x̄).

The proof when W = Rm is in [35], Lemma 4.1, and it easily generalizes to the case of an
infinite dimensional Hilbert space. Thus, since G is continuous, Definition 2.2 is equivalent to
the definition using the closures of parabolic jets.

Proposition 2.3. An upper semicontinuous function u : [0, T )×W → R is a viscosity subsolution
of (2.12) if u(0, x) ≤ g(x) on W and

a+G(t, x, u(t, x), p, S) ≤ 0 for all (t, x) ∈ (0, T )×W and (a, p, S) ∈ P2,+
u(t, x).

A lower semicontinuous function u : [0, T ) ×W → R is a viscosity supersolution of (2.12) if
u(0, x) ≥ g(x) on W and

a+G(t, x, u(t, x), p, S) ≥ 0 for all (t, x) ∈ (0, T )×W and (a, p, S) ∈ P2,−
u(t, x).

Remark 2.4. If equation (2.12) is of first order, that is if G : (0, T ) × W × R × W → R
then the test functions ϕ in Definition 2.2 are replaced by functions C1((0, T ) × W ) and the
parabolic second-order superjet and subjets of u, P2,+u and P2,−u are replaced by the first order
superdifferentials and subdifferentials D+u and D−u respectively. Proposition 2.3 is then still
true if P2,+

u(t, x) and P2,−
u(t, x) are replaced by the closures D+

u(t, x) and D−u(t, x) which
are defined similarly as the closures of the parabolic jets.

3. Estimates for finite dimensional equations

In this section we will consider a more general version of equations (1.2), with second order
coefficients An depending on x or being more general constant matrices.

Hypothesis 3.1. For x = (x1, ..., xn), let An(x), n = 1, 2, ..., the nd × nd matrix composed of
n2 block matrices a(xi)a

∗(xj), i, j = 1, 2, ..., n such that the function a : Rd → S(d) is bounded
and there exists L ≥ 0 such that

(3.1) ‖a(x)− a(y)‖ ≤ L|x− y| for all x, y ∈ Rd.

The proof of the main theorem of this section uses the following simplified version of a well
known lemma (cf. Lemma 3.80 of [29]).

Lemma 3.2. Let δ > 0, and let σ1 be a modulus of continuity. Then there exist a nondecreasing,
concave, C2 function ϕδ on [0,+∞) such that ϕδ(0) < δ and

(3.2) σ1(ϕ′δ(s)s+ s) ≤ ϕδ(s) for 0 ≤ s ≤ 2.

Theorem 3.3. Let Hypothesis 2.1 be satisfied. Let An(x) satisfy Hypothesis 3.1, or, let An(x) =
An, where An is any sequence of nd × nd symmetric matrices with constant coefficients such
that An ≥ 0 and Tr(An) ≤ L̃n for some L̃ ≥ 0. Suppose that for n ≥ 1 the functions un :
[0, T ]× (Rd)n → R are the viscosity solutions of

(3.3)


∂tun − κTr

(
AnD

2un
)

+ 1
n

∑n
i=1H

(
xi,

1
n−1

∑n
j 6=i δxj , nDxiun

)
+F( 1

n

∑n
i=1 δxi) = 0 in (0, T )× (Rd)n,

un(0, x1, · · · , xn) = U0( 1
n

∑n
i=1 δxi) on (Rd)n,

Then there exists a modulus of continuity ρ such that for every n,

(3.4) |un(t,x)− un(s,y)| ≤ ρ(|t− s|+ |x− y|r) ∀ t, s ∈ [0, T ],x,y ∈ (Rd)n.
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Proof. We first note that if u is a bounded viscosity subsolution of (3.3) and v is a bounded
viscosity supersolution of (3.3) and if we replace un(t,x)−un(t,y) by u(t,x)−v(t,y) in the proof
of continuity estimates below, the same arguments work and we obtain that u(t,x)− v(t,x) ≤ 0
for all (t,x). Thus the comparison theorem holds for bounded viscosity subsolutions and bounded
viscosity supersolutions of equation (3.3). Moreover, since the function

x 7−→ g(x) = U0

( 1

n

n∑
i=1

δxi

)
is bounded and uniformly continuous on (Rd)n, if (gm)∞m=1 ⊂ C2((Rd)n) have bounded first and
second derivatives and 0 ≤ gm − g ≤ am → 0 as m → ∞, then for sufficiently large Cm > 0
the functions gm(x) + Cmt and gm(x)− am − Cmt are respectively viscosity supersolutions and
viscosity subsolutions of (3.3) for all m = 1, 2, · · · Thus the functions

u(t,x) := inf
m≥1

(gm(x) + Cmt), u(t,x) := sup
m≥1

(gm(x)− am − Cmt)

are respectively a viscosity supersolution and viscosity subsolution of (3.3) such that u(0,x) =
u(0,x) = g(x) on (Rd)n. Therefore the unique bounded continuous viscosity solution un of (3.3)
can be constructed, for instance, by means of Perron’s method (see [26]).

It is also easy to see that there exists M > 0 such that ‖un‖∞ ≤M,n = 1, 2, · · · . To show
this, let K > 0 be such that ‖F‖∞ ≤ K, ‖U0‖∞ ≤ K. Recall that we have ‖H(·, ·, 0)‖∞ ≤ C,
where C is from (2.3). Then w1(t,x) := −K − (C + K)t is a bounded viscosity subsolution of
(3.3) and w2(t,x) := K + (C +K)t is a bounded viscosity supersolution of (3.3). Therefore, by
comparison we obtain that for every n

w1 ≤ un ≤ w2 on [0, T ]× (Rd)n.
This gives the required bound with M = K + (C +K)T .

For δ > 0, let ϕδ be the function from Lemma 3.2 applied to the modulus

σ1(s) = (1 + T )σ(3s) +m1(s) + (2κdL2(1 + T ) + 2M + 1)s.

In particular we have

(3.5) ϕδ(1) ≥ 2M + 1, ϕδ(s) ≥ m1(s).

First, we are going to show that for every δ > 0

(3.6) un(t,x)− un(t,y) ≤ ϕδ(|x− y|r)(1 + t),

if t ∈ [0, T ] and (x,y) ∈ (Rd)n.
We define smooth approximations of |z|r. For γ > 0, let

ψγ(z) =
1

n1/r

(
n∑
i=1

(γ + |zi|2)
r
2

) 1
r

.

We now set
ϕ(t,x,y) := ϕδ (ψγ (x− y)) (1 + t).

Suppose that there exist γ, µ > 0 such that

(3.7) sup
x,y∈(Rd)n,t∈[0,T ]

(un(t,x)− un(t,y)− µ

T − t
− ϕ(t,x,y)) > 0.

Then, for every α > 0 small enough and h(x) := (1 + |x|2)1/2,

(3.8) sup
x,y∈(Rd)n,t∈[0,T ]

(un(t,x)− un(t,y)− µ

T − t
− ϕ(t,x,y)− α(h(x) + h(y))) > 0.
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Moreover, since un is bounded and α(h(x) + h(y)) → +∞ as x, y → ∞, the supremum of the
above expression over [0, T ]× (Rd)n× (Rd)n is attained at some point (t̄, x̄, ȳ). Obviously t̄ < T
and it follows from the definition of the function ϕ(t,x,y) and (3.5) that we must have 0 < t̄.
It also follows from (3.5) that s̄ = ψγ (x̄− ȳ) < 1. Also x̄ 6= ȳ since if x̄ = ȳ, the expression in
(3.8) is negative. We compute

Dxiϕ(t̄, x̄, ȳ)) = ϕ′δ(s̄)
(x̄i − ȳi)(γ + |x̄i − ȳi|2)

r
2
−1

ns̄
r
r′

(1 + t̄),

where 1/r + 1/r′ = 1. Also, using the concavity of ϕδ, we have

D2
xϕ(t̄, x̄, ȳ)) = B1 −B2,

where B1 is a diagonal matrix composed of n diagonal d× d blocks

B1i = ϕ′δ(s̄)
(γ + |x̄i − ȳi|2)

r
2
−1

ns̄
r
r′

(1 + t̄)Id,

and B2 ≥ 0 is a symmetric matrix. Therefore

D = D2ϕ(t̄, x̄, ȳ) =

(
B1 −B1

−B1 B1

)
−
(
B2 −B2

−B2 B2

)
=: D1 −D2,

where D2ϕ above is the second derivative of ϕ with respect to the variables (x,y). We now use
Theorem 8.3 of [26] applied to the functions

u1(t, x) := un(t, x)− αh(x), u2(t, y) := −un(t, y)− αh(y).

We notice that, since un is a viscosity solution of (3.3), condition (8.5) of [26] is satisfied.
Therefore, it follows from Theorem 8.3 of [26], applied with ε = 1/(‖D1‖ + ‖D2‖), that there
exist b1, b2 ∈ R and S1, S2 ∈ S(nd) such that(

b1, Dxϕ(t̄, x̄, ȳ) + αDh(x̄), S1 + αD2h(x̄)
)
∈ P2,+

un(t̄, x̄),(
b2,−Dyϕ(t̄, x̄, ȳ)− αDh(ȳ), S2 − αD2h(ȳ)

)
∈ P2,−

un(t̄, ȳ),

b1 − b2 = ϕδ(s̄) +
µ

(T − t̄)2
,

where

(3.9)
(
S1 0
0 −S2

)
≤ D +

1

‖D1‖+ ‖D2‖
D2 ≤ 2D1,

where we used that
D2 ≤ (‖D1‖+ ‖D2‖)(D1 +D2).

Inequality (3.9) in particular implies that S1 ≤ S2. Using the definition of viscosity solution and
setting

Z(x̄, ȳ) :=
1

n

n∑
i=1

H

x̄i, 1

n− 1

∑
j 6=i

δx̄j , ϕ
′
δ(s̄)

(x̄i − ȳi)(γ + |x̄i − ȳi|2)
r
2
−1

s̄
r
r′

(1 + t̄) + nαDh(x̄)


and

Z̃(x̄, ȳ) :=
1

n

n∑
i=1

H

ȳi, 1

n− 1

∑
j 6=i

δȳj , ϕ
′
δ(s̄)

(x̄i − ȳi)(γ + |x̄i − ȳi|2)
r
2
−1

s̄
r
r′

(1 + t̄)− nαDh(ȳ)


we now have

(3.10) b1 − κTr(An(x̄)(S1 + αD2h(x̄))) + Z(x̄, ȳ) + F(µx̄) ≤ 0
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and

(3.11) b2 − κTr(An(ȳ)(S2 − αD2h(ȳ))) + Z̃(x̄, ȳ) + F(µȳ) ≥ 0

We notice that (3.1) and (3.9) imply
Tr(An(x̄)S1)− Tr(An(ȳ)S2)

≤ 2
n∑
i=1

Tr

(
(a(xi)− a(yi))(a(xi)− a(yi))

∗ϕ′δ(s̄)
(γ + |x̄i − ȳi|2)

r
2
−1

ns̄
r
r′

(1 + t̄)Id

)

≤ 1

n

n∑
i=1

ϕ′δ(s̄)
2dL2|x̄i − ȳi|2(γ + |x̄i − ȳi|2)

r
2
−1

s̄
r
r′

(1 + t̄).

Note that if An is a constant matrix then obviously Tr(AnS1) − Tr(AnS2) ≤ 0. Let us use the
notation

µix :=
1

n− 1

∑
j 6=i

δxj , µiy :=
1

n− 1

∑
j 6=i

δyj .

A simple calculation shows that dr(µix̄, µiȳ) ≤ 2s̄. Subtracting (3.11) from (3.10) and using
Hypothesis 2.1, the concavity of σ and (2.10), we obtain

ϕδ(s̄) +
µ

(T − t̄)2
≤ κ

n

n∑
i=1

ϕ′δ(s̄)
2dL2|x̄i − ȳi|2(γ + |x̄i − ȳi|2)

r
2
−1

s̄
r
r′

(1 + t̄)

+
1

n

n∑
i=1

σ

(
(|x̄i − ȳi|+ dr(µ

i
x̄, µ

i
ȳ))
(

1 + ϕ′δ(s̄)
|x̄i − ȳi|(γ + |x̄i − ȳi|2)

r
2
−1

s̄
r
r′

(1 + t̄)
))

+m1(s̄) + σ2(α),

where limα→0 σ2(α) = 0. Thus,

ϕδ(s̄) +
µ

(T − t̄)2
≤ κ

n

n∑
i=1

ϕ′δ(s̄)
2dL2|x̄i − ȳi|2(γ + |x̄i − ȳi|2)

r
2
−1

s̄
r
r′

(1 + t̄)

+ σ

(
1

n

n∑
i=1

(|x̄i − ȳi|+ 2s̄)

(
1 + ϕ′δ(s̄)

|x̄i − ȳi|(γ + |x̄i − ȳi|2)
r
2
−1

s̄
r
r′

(1 + t̄)

))
+m1(s̄) + σ2(α),

By Jensen’s inequality
|x̄− ȳ|1 ≤ |x̄− ȳ|r ≤ s̄

and also,

1

n

n∑
i=1

ϕ′δ(s̄)
|x̄i − ȳi|2(γ + |x̄i − ȳi|2)

r
2
−1

s̄
r
r′

≤ ϕ′δ(s̄)s̄;

Using Schwarz’s inequality, one verifies that

1

n

n∑
i=1

2s̄ϕ′δ(s̄)
|x̄i − ȳi|(γ + |x̄i − ȳi|2)

r
2
−1

s̄
r
r′

≤ 1

n

n∑
i=1

2ϕ′δ(s̄)s̄
1−r/r′(γ + |x̄i − ȳi|2)

r−1
2

≤ 2ϕ′δ(s̄)s
1− r

r′

(
1

n

n∑
i=1

(γ + |x̄i − ȳi|2)
r
2

) r−1
r

= 2ϕ′δ(s̄)s
1−r/r′ s̄r−1 = 2ϕ′δ(s̄)s̄.
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Collecting these bounds into the inequality obtained for ϕδ(s̄) + µ
(T−t̄)2 above, and using the

sub-additivity of σ and the definition of σ1, we get

ϕδ(s̄) +
µ

T 2
≤ 2κdL2(1 + T )ϕ′δ(s̄)s̄+ (1 + T )σ(3ϕ′δ(s̄)s̄+ 3s̄) +m1(s̄) + σ2(α)

≤ σ1(ϕ′δ(s̄)s̄+ s̄) + σ2(α).

This gives a contradiction when we let α → 0, due to (3.2). Consequently, for all positive γ
and µ, (3.7) is false. Letting γ, µ → 0, we obtain (3.6). Thus we have proved that for all
t ∈ [0, T ], (x,y) ∈ (Rd)n,
(3.12) |un(t,x)− un(t,y)| ≤ inf

δ>0
ϕδ(|x− y|r)(1 + T ).

We will now obtain the continuity estimate with respect to t. We know by (2.9) that

|un(0,x)− un(0,y)| ≤ m1 (|x− y|2)

Setting vn(x) = un(0,
√
nx) we thus have

|vn(x)− vn(y)| ≤ m1 (|x− y|) .
Approximating the functions vn(x) by supinf-convolutions and then mollifying them, there exist
constants Lm,m = 1, 2, · · · (independent of n) and C2 functions ϕ̃nm such that 0 ≤ ϕ̃nm(x) −
vn(x) ≤ 1

m on (Rd)n and
|Dϕ̃nm| ≤ Lm, ‖D2ϕ̃nm‖ ≤ Lm.

Then if ϕnm(x) = ϕ̃nm( 1√
n
x), we have

(3.13) 0 ≤ ϕnm(x)− un(0,x) ≤ 1

m
on (Rd)n.

and
|Dϕnm| ≤

Lm√
n
, ‖D2ϕnm‖ ≤

Lm
n
.

Recall that K is such that ‖F‖∞ ≤ K. We set Cm = κL̃Lm + C + CL2
m + K, where L̃ is such

that Tr(An(x)) ≤ L̃n and C is from Hypothesis 2.1. We define the functions

ψnm(t,x) := ϕnm(x) + Cmt.

Then

∂tψ
n
m(t,x)− κTr(An(x)D2ψnm(t,x)) +

1

n

n∑
i=1

H(xi, µ
i
x, nDxiψ

n
m(t,x)) + F(µx)

≥ Cm −
κ

n
Tr(An(x)D2ϕ̃nm(

1√
n

x)) +
1

n

n∑
i=1

H(xi, µ
i
x,
√
nDxiϕ̃

n
m(

1√
n

x))−K

≥ Cm −
κ

n
Tr(An(x))‖D2ϕ̃nm(

1√
n

x)‖ − 1

n

n∑
i=1

C(1 + n|Dxiϕ̃
n
m(

1√
n

x)|2)−K

≥ Cm − κL̃Lm − C − C
n∑
i=1

|Dxiϕ̃
n
m(

1√
n

x)|2 −K

≥ Cm − κL̃Lm − C − CL2
m −K = 0.

Therefore the functions ψnm are viscosity supersolutions of equations (3.3). Similarly, the func-
tions

ψ̃nm(t,x) := ϕnm(x)− 1

m
− Cmt
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are viscosity subsolutions of equations (3.3). Therefore, by comparison, we have for every n,m ≥
1,

ϕnm(x)− 1

m
− Cmt ≤ un(t,x) ≤ ϕnm(x) + Cmt.

Using (3.13), this implies that

− 1

m
− Cmt ≤ ϕnm(x)− 1

m
− Cmt− un(0,x) ≤ un(t,x)− un(0,x)

≤ ϕnm(x) + Cmt− un(0,x)

≤ Cmt+
1

m
.

Therefore we obtain

|un(t,x)− un(0,x)| ≤ ρ̃(t) := inf{ 1

m
+ Cmt : m = 1, 2, · · · }

for all (t,x) ∈ [0, T ] × (Rd)n, n = 1, 2, · · · . The function ρ̃ is independent of n. We then define
for every h ∈ (0, T ) the functions

vhn(t,x) = un(t+ h,x), (t,x) ∈ [0, T − h]× (Rd)n.
The functions vhn are viscosity solutions of (3.3) on (0, T − h)× (Rd)n and

|vhn(0,x)− un(0,x)| ≤ ρ̃(h).

By comparison we thus obtain

(3.14) |un(t+ h,x)− un(t,x)| = |vhn(t,x)− un(t,x)| ≤ ρ̃(h)

for (t,x) ∈ (0, T − h)× (Rd)n. We now let

ρ(s) = ρ̃(s) + inf
δ>0

ϕδ(s)(1 + T ).

Combining (3.14) with (3.12), we obtain (3.4) for this modulus ρ, uniformly with respect to
n ∈ N.

4. Proof of Theorem 1.2

Proof of Theorem 1.2. Step 1. We define the functions

Vn(t, µx) := un(t,x), where µx =
1

n

n∑
i=1

δxi .

This function is well defined since the functions un are invariant with respect to permutations of
the variables in x. This follows from uniqueness of viscosity solutions of (1.2) as these equations
are invariant with respect to permutations of the variables in x. The function Vn(t, ·) is now
defined on the subset of P2(Rd) that consists of averages of n Dirac point masses. It follows from
(3.4) that

|Vn(t, µx)− Vn(s, µy)| ≤ ρ(|t− s|+ dr(µx, µy)) for all t, s ∈ [0, T ],x,y ∈ (Rd)n.
For each fixed n, we can extend the function Vn to a function on [0, T ] × Pr(Rd), still denoted
by Vn, satisfying
(4.1) |Vn(t, µ)− Vn(s, ν)| ≤ ρ(|t− s|+ dr(µ, ν)) for all t, s ∈ [0, T ], µ, ν ∈ Pr(Rd).
Since sets

M2
R = {µ ∈ Pr(Rd) :

∫
Rd
|x|2µ(dx) ≤ R}
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are relatively compact in Pr(Rd), up to a subsequence (still denoted by Vn), Vn converges uni-
formly on every set [0, T ] ×M2

R to a function V : [0, T ] × P2(Rd) → R which satisfies the same
estimate (4.1). Define now

V : [0, T ]× E −→ R
(t,X) 7−→ V (t,X) := V(t, law(X)).

We will show that V is a viscosity solution of (1.3). Since equation (1.3) has a unique bounded
viscosity solution U , we can then conclude that V = U . This will prove the theorem since the
argument can be done for any subsequence of Vn. The proof that (1.3) has a unique bounded
viscosity solution is included in the Appendix, Theorem 7.4.

Step 2. Let then ϕ ∈ C1,2((0, T ) × E) and suppose that V − ϕ has a local maximum at
(t0, X0) ∈ (0, T ) × E. By considering ϕ(t,X) + (t − t0)2 + |X −X0|2 and modifying it outside
of a neighborhood of (t0, X0) we can assume with no loss of generality that the maximum at
(t0, X0) is strict and global. Being a strict maximum implies that if V (ti, Xi) − ϕ(ti, Xi) →
V (t0, X0) − ϕ(t0, X0) then (ti, Xi) → (t0, X0). Denote P0 = Dϕ(t0, X0). For each ε > 0 let
Xε, Pε ∈ E be such that Xε, Pε are continuous on [0, 1] and |X0 −Xε|+ |P0 − Pε| < ε.

For every n we denote Ani = ( i−1
n , in), i = 1, · · · , n. We then consider the function ϕn :

(0, T )× (Rd)n → R defined by

ϕn(t,x) := ϕ(t,
n∑
i=1

xi1Ani ),

where 1Ani is the characteristic function of the set Ani .
Since the original maximum at (t0, X0) was strict it is easy to see that the functions un−ϕn

must have local maxima at points (tn,x
n) = (tn, x

n
1 , · · · , xnn) such that

tn → t0 and Xn =
n∑
i=1

xni 1Ani → X0.

In particular for sufficiently big n,

|tn − t0|+ |X0 −Xn| ≤ ε.
Now, by the chain rule,

Dxiϕn(tn,x
n) = 〈Dϕ(tn,

n∑
i=1

xni 1Ani ),1Ani e〉d =

∫
Ani

Dϕ(tn,

n∑
i=1

xni 1Ani ),

where e = (1, · · · , 1) ∈ Rd. If x = (x1, · · · , xn), we will denote xi = (xi1, · · · , xid). Then

Tr(AnD
2ϕn) =

n∑
i,j=1

Tr(D2
xixjϕn) =

n∑
i,j=1

d∑
k=1

∂2ϕn
∂xik∂xjk

.

Now
∂2ϕn

∂xik∂xjk
(tn,x

n) =

∫
Ani

(
D2ϕ(tn,

n∑
i=1

xni 1Ani )1Anj ek

)
· ek

so

Tr(AnD
2ϕn) =

n∑
i,j=1

d∑
k=1

∫
Ani

(
D2ϕ(tn,

n∑
i=1

xni 1Ani )1Anj ek

)
· ek

=
d∑

k=1

〈D2ϕ(tn,
n∑
i=1

xni 1Ani )ek, ek〉.
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We note that if

x,y ∈ (Rd)n, X =
n∑
i=1

xi1Ani and Y =
n∑
i=1

yi1Ani

then

|X − Y |2 = n−1
n∑
i=1

|xi − yi|2, |X − Y |rr = n−1
n∑
i=1

|xi − yi|r.

Furthermore, choosing ξ, η ∈ E, we have∣∣∣ n∑
i=1

H
(
xi, µ

i
x, n

∫
Ani

ξ
)
−

n∑
i=1

H
(
yi, µ

i
y, n

∫
Ani

η
)∣∣∣ ≤ n∑

i=1

∣∣∣H(xi, µix, n∫
Ani

ξ
)
−H

(
yi, µ

i
y, n

∫
Ani

η
)∣∣∣

≤ C
n∑
i=1

(
1 +

∣∣∣∣∣n
∫
Ani

ξ

∣∣∣∣∣+

∣∣∣∣∣n
∫
Ani

η

∣∣∣∣∣
)∫

Ani

n|ξ − η|

+

n∑
i=1

σ

(
(|xi − yi|+ dr(µ

i
x, µ

i
y))

(
1 +

∣∣∣∣∣n
∫
Ani

ξ

∣∣∣∣∣
))

Thus,

n−1

∣∣∣∣∣
n∑
i=1

H
(
xi, µ

i
x, n

∫
Ani

ξ
)
−

n∑
i=1

H
(
yi, µ

i
y, n

∫
Ani

η
)∣∣∣∣∣

≤C
∫

Ω
|ξ − η|+ C


 n∑
i=1

n

∣∣∣∣∣
∫
Ani

ξ

∣∣∣∣∣
2
 1

2

+

 n∑
i=1

n

∣∣∣∣∣
∫
Ani

η

∣∣∣∣∣
2
 1

2


 n∑
i=1

n

∣∣∣∣∣
∫
Ani

|ξ − η|

∣∣∣∣∣
2
 1

2

+ σ

(
1

n

n∑
i=1

(
|xi − yi|+

(
n

n− 1

) 1
r

|X − Y |r

)(
1 +

∣∣∣∣∣n
∫
Ani

ξ

∣∣∣∣∣
))

.

We conclude

n−1

∣∣∣∣∣
n∑
i=1

H
(
xi, µ

i
x, n

∫
Ani

ξ
)
−

n∑
i=1

H
(
yi, µ

i
y, n

∫
Ani

η
)∣∣∣∣∣

≤ C
(∫

Ω
|ξ − η|2

) 1
2

+ C

( n∑
i=1

∫
Ani

|ξ|2
) 1

2

+

(
n∑
i=1

∫
Ani

|η|2
) 1

2

( n∑
i=1

∫
Ani

|ξ − η|2
) 1

2

+ σ


( 1

n

n∑
i=1

|xi − yi|2
) 1

2

+ 2|X − Y |r


1 +

 n∑
i=1

n

∣∣∣∣∣
∫
Ani

η

∣∣∣∣∣
2
 1

2


Finally, we have
(4.2)

n−1

∣∣∣∣∣
n∑
i=1

H
(
xi, µ

i
x, n

∫
Ani

ξ
) n∑
i=1

H
(
yi, µ

i
y, n

∫
Ani

η
)∣∣∣∣∣ ≤ C(1+|ξ|+|η|

)
|ξ−η|+σ

(
3|X−Y | (1 + |ξ|)

)
.

Set

Xn
ε =

n∑
i=1

Xε(
i

n
)1Ani , xnε = (Xε(1/n), Xε(2/n), . . . , Xε(1)).
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Using the definition of viscosity subsolution and (4.2) we now have, for every ε > 0,

0 ≥ ∂tϕ(tn, X
n)−κ

d∑
k=1

〈
D2ϕ(tn,

n∑
i=1

xni 1Ani )ek, ek

〉
+

1

n

n∑
i=1

H
(
xni , µ

i
xn , n

∫
Ani

Dϕ(tn, X
n)
)

+F(µxn).

Hence, for large n,

0 ≥ ∂tϕ(t0, X0)− κ
d∑

k=1

〈D2ϕ(t0, X0)ek, ek〉+
1

n

n∑
i=1

H

(
Xε(

i

n
), µixnε , n

∫
Ani

Pε

)
+ F (Xn)

− ρ0(n)− C(1 + |Dϕ(tn, X
n)|+ |Pε|)|Dϕ(tn, X

n)− Pε| − σ (3|Xn
ε −Xn| (1 + |Pε|))

≥ ∂tϕ(t0, X0)− κ
d∑

k=1

〈D2ϕ(t0, X0)ek, ek〉+
1

n

n∑
i=1

H

(
Xε(

i

n
), µixnε , n

∫
Ani

Pε

)
+ F (X0)

−m1(ε)− ρ0(n)− C(1 + 2|P0|+ 2ε)2ε− σ ((3|Xn
ε −Xε|+ 3ε) | (1 + |P0|+ ε)) ,

where limn→∞ ρ0(n) = 0. Since Xε, Pε are continuous on Ω, it follows that

lim
n→∞

1

n

n∑
i=1

H

(
Xε(

i

n
), µixnε , n

∫
Ani

Pε

)
= H̃(Xε, law(Xε), Pε).

Thus, letting n→∞ above we obtain

∂tϕ(t0, X0)− κ
d∑

k=1

〈D2ϕ(t0, X0)ek, ek〉+ H̃(Xε, law(Xε), Pε)

≤ m1(ε) + C(1 + 2|P0|+ 2ε)2ε+ 2σ (3ε (1 + |P0|+ ε)) .

Finally, letting ε→ 0 we conclude that

∂tϕ(t0, X0)− κ
d∑

k=1

〈D2ϕ(t0, X0)ek, ek〉+ H̃(X0, law(X0), Dϕ(t0, X0)) + F (X0) ≤ 0.

Thus V is a viscosity subsolution of (1.3). Reasoning in the same way, we can prove that V is a
supersolution of (1.3).

Example 4.1. The following is an example of a typical particle system that leads to simple
equations of type (1.2). Let G : Rd → Rd be a bounded even function such that

|G(x)−G(y)| ≤ L|x− y| ∀x, y ∈ Rd

and let W be a standard Wiener process in Rd. Let T > 0. We consider a system of n particles
whose states are given by the SDE with common noise{

dXi(s) = 1
n−1

∑
j 6=iG(Xi(s)−Xj(s))ds+

√
2κdW (s) t ≤ s ≤ T,

Xi(t) = xi.

If we define

un(t,x) = E

[
−
∫ T

t
F

(
1

n

n∑
i=1

δXi(s)

)
ds+ U0

(
1

n

n∑
i=1

δXi(T )

)]
(where E above is the expectation with respect to a probability measure on some reference proba-
bility space) then the function un is the viscosity solution of the terminal value problem

−∂tun − κTr(AnD
2un)− 1

n−1

∑n
i=1

∑
j 6=iG(xi − xj) ·Dxiun

+F( 1
n

∑n
i=1 δxi) = 0 in (0, T )× (Rd)n,

un(T, x1, · · · , xn) = U0( 1
n

∑n
i=1 δxi) on (Rd)n,
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where An is as in (1.2). In this example the Hamiltonian H is defined by

H(x, ν, p) = −p ·
∫
Rd
G(x− y)ν(dy).

It is obvious that H satisfies (2.1) and (2.3). We point out that the boundedness of G is needed
here to guarantee (2.3). Regarding (2.2), let x, y, p ∈ Rd, µ, ν ∈ Pr(Rd), and let γ be a Borel
probability measure on Rd × Rd with marginals µ, ν. Then

|H(x, µ, p)−H(y, ν, p)| ≤ L|x− y||p|+
∣∣∣∣∫

Rd
G(x− z)µ(dy) · p−

∫
Rd
G(x− w)ν(dw) · p

∣∣∣∣
≤ L|x− y||p|+

∣∣∣∣∫
Rd

(G(x− z)−G(x− w))γ(dz, dw)

∣∣∣∣ |p|
≤ L|x− y||p|+ L|p|

∫
Rd
|z − w|γ(dz, dw)

≤ L|p|

(
|x− y|+

(∫
Rd
|z − w|rγ(dz, dw)

) 1
r

)
.

Since this holds for every γ we thus obtain

|H(x, µ, p)−H(y, ν, p)| ≤ L|p| (|x− y|+ dr(µ, ν)) .

5. L-viscosity solutions versus viscosity solutions on the Wasserstein space

In this section, we consider either

U : [0, T )× P2(Rd)→ R or U : P2(Rd)→ R
and

U : [0, T )× E → R or U : E → R
such that U(t,X) = U(t,X]L1) or U(X) = U(X]L1). Recall

E := L2((0, 1),Rd).
When U is differentiable at µ ∈ P2(Rd), ∇µU(µ), the Wasserstein gradient of U at µ satisfies

(5.3) ∇µU(µ) ∈ TµP2(Rd).
Assume next that ∇µU is differentiable at (q, µ) in the sense of [37] and ∇µµU(µ)(q, ·), the
Wasserstein gradient of ∇µU(µ) at µ belongs to L∞µ⊗µ(R2d,Rd×d). We have

(5.4)
(
∇µµU(µ)

)T
(q, x) =

(
∇µµU(µ)

)
(x, q) ∀q, x ∈ Rd.

If we assume that U is twice differentiable in the sense of [37], then the map (q, µ) 7→
∇µU(µ)(q) has a first order Taylor expansion on an appropriate set [24]. Furthermore, ∇µU(µ)

is Lipschitz on the support of µ and there exists a symmetric matrix A1(µ) ∈ L∞µ (Rd,Rd×d)
which coincides almost everywhere with ∇q

(
∇µU(µ)

)
. In this manuscript, we adopt the notation

and terminology of [37] by defining ∇2
wU(µ), the Wasserstein second differential of U at µ as

∇2
wU(µ)(ξ, ξ∗) =

∫
Rd
A1(µ)(q)ξ(q) · ξ∗(q)µ(dq) +

∫
R2d

∇µµU(µ)(q∗, q)ξ(q) · ξ∗(q∗)µ(dq)µ(dq∗),

if ξ, ξ∗ ∈ L2
µ(Rd,Rd). Note that the ordering (q∗, q) in the last integral is not a typo. By abuse

of notation, we identify the bilinear forms ∇2
wU(µ) with the operators

ξ 7−→ A1(µ)ξ +

∫
Rd
∇µµU(µ)(·, q)ξ(q)µ(dq)
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which, by (5.4) and the fact that A1 is symmetric µ-almost everywhere, turns out to be self-
adjoint on L2

µ(Rd,Rd).
The relation U(X) = U(X]L1) expresses the fact that U is invariant under the set of

maps which preserve Lebesgue measure. This is what imposes a special structure on the second
differential of U at X when it exists. When U is twice differentiable at X then for any ζ ∈ E,
D2U(X)(ζ)(·) belongs to E and

D2U(X)(ζ)(·) = A1(X) ζ +

∫
(0,1)
∇µµU(µ)

(
X,X(ω)

)
ζ(ω)dω.

Given an arbitrary orthonormal basis {e1, · · · , ed} of Rd, we identify each ek with the con-
stant function which assumes the value ek everywhere. Abusing notation we write ek : Rd → Rd.
Note that if X ∈ E then ek ◦X ≡ ek and so, we may also consider ek to be the constant function
ek : (0, 1) → Rd. If E0 is the finite dimensional space spanned by {e1, · · · , ed}, we have the
orthogonal decomposition

E = E0 ⊕ E⊥0 .
The partial trace of the operator ζ → D2U(X)(ζ) on E0 is

4RdU(X) =
d∑

k=1

〈D2U(X)ek, ek〉.

We have the relation
4RdU(X) = ∆wU(µ) ◦X

where, ∆w is the partial Wasserstein Laplacian [24]. This relation will allow to compare viscosity
solutions on the Wasserstein space and the Hilbert space.

5.1. Domain of definition of Wasserstein Hessian. In this section, we denote by π1, π2 :
R2d → Rd the coordinate projection maps of R2d onto Rd. Given a positive integer D, we denote
by C3

b (RD) the set of f ∈ C3(RD) that have bounded second and third order derivatives.
We start by recalling a few facts about the Wasserstein tangent spaces TµP2(Rd). Let ξ0 ∈

L2
µ(Rd,Rd). Note that ξ0 ∈ TµP2(Rd) if and only if

lim
r→0+

inf
φ

sup
(ν,γ)

{∣∣ ∫
R2d

(
ξ0(q1)−∇φ(q1)

)
· (q2 − q1)γ(dq1, q2)

∣∣
‖π2 − π1‖L2(γ)

: 0 < ‖π2 − π1‖L2(γ) ≤ r, γ ∈ Γ(µ, ν)

}
= 0.

Here, the infimum is performed over the set C∞c (Rd) or equivalently over the set C3
b (Rd). The

space TµP2(Rd), being a Hilbert space, can be identified with the co–tangent space. The Wasser-
stein gradient of a function U : P2(Rd)→ R at µ is the element of minimal norm in the subdif-
ferential of U at µ and so, it belongs to TµP2(Rd).

We would like to propose an analogous characterization for all Wasserstein derivatives of
order less than or equal to 2. We say that f : R2d → R is symmetric if f(q1, q2) = f(q2, q1) for
all q1, q2 ∈ Rd.

Given ψ ∈ C3
b (R2d) which is symmetric and φ ∈ C3

b (Rd), we define

Vµ(φ,ψ)(ν) :=

∫
Rd
φ(q)(ν − µ)(dq) +

1

2

∫
R2d

ψ(q1, q2)(ν − µ)(dq1)(ν − µ)(dq2)

for µ, ν ∈ P2(Rd). The function Vµ(φ,ψ) is twice differentiable in the sense of [37],

∇µVµ(φ,ψ)(ν)(q1) = ∇φ(q1) +

∫
Rd
∇q1ψ(q1, b)(ν − µ)(db)
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and so,

∇q1
(
∇µVµ(φ,ψ)(ν)(q1)

)
= ∇2φ(q1) +

∫
Rd
∇q1q1ψ(q1, b)(ν − µ)(db).

We conclude
∇µµVµ(φ,ψ)(ν)(q) = ∇q2q1ψ(q1, q2).

Note that if X,Y ∈ E are such that X]L1
(0,1) = µ and Y]L1

(0,1) = ν, then

(5.5) Vµ(φ,ψ)(ν) = V X
(φ,ψ)(Y ),

where we have set

V X
(φ,ψ)(Y ) =

∫
(0,1)

(
φ(Y (ω))− φ(X(ω))

)
dω

+
1

2

∫
(0,1)2

(
ψ
(
Y (ω), Y (o)

)
+ ψ

(
X(ω), X(o)

)
− 2ψ

(
Y (ω), X(o)

))
dωdo.

Remark 5.1. Let X ∈ E, let φ ∈ C3
b (Rd) let ψ ∈ C3

b (R2d) be symmetric and set V := V X
(φ,ψ).

(i) Note that if X∗, Y, Y ∗ ∈ E are such that X and X∗ have the same law and Y and Y ∗

have the same law then (5.5) implies V X
(φ,ψ)(Y ) = V X∗

(φ,ψ)(Y
∗).

(ii) The function V is Fréchet differentiable everywhere on E and for any Y ∈ E we have

DV (Y )(ω) = ∇φ
(
Y (ω)

)
+

∫
(0,1)

(
∇q1ψ

(
Y (ω), Y (o)

)
−∇q1ψ

(
Y (ω), X(o)

))
do

(iii) The subset of E where the function DV is Fréchet differentiable may not be E (cf. [37]),
unless φ and ψ are polynomials of degree 2. However, DV is Gateaux differentiable ev-
erywhere on E and for any Y ∈ E we have

D2V (Y )(ζ, ζ) =

∫
(0,1)
∇2φ(X)ζ · ζdω +

∫
(0,1)2

∇q2q1ψ
(
Y (ω), Y (o)

)
ζ(ω) · ζ(o)dωdo

+

∫
(0,1)2

(
∇q1q1ψ

(
Y (ω), Y (o)

)
−∇q1q1ψ

(
Y (ω), X(o)

))
ζ(ω) · ζ(ω)dωdo

for any ζ ∈ E. In particular, DV (X) = ∇φ ◦X and the operator D2V (X) is given by

D2V (X) ζ = ∇2φ(X) ζ +

∫
(0,1)
∇q2q1ψ

(
X,X(ω)

)
ζ(ω)dω

for ζ ∈ E.

Lemma 5.2. Let X,X∗ ∈ E, let φ ∈ C3
b (Rd) and let ψ ∈ C3

b (R2d) be symmetric. If X]L1
(0,1) =

X∗] L1
(0,1) then V X := V X

(φ,ψ) is twice Fréchet differentiable at X if and only if V X∗ := V X∗

(φ,ψ) is
twice Fréchet differentiable at X∗.

Proof. We only need to prove one direction of the Lemma since the converse direction could be
obtained by symmetry. Assume V X is twice Fréchet differentiable at X. By assumption, there
exists a function ε : R → R, monotone nondecreasing, continuous at 0 and such that ε(0) = 0
and there exists a function ε0 : E → R such that |ε0(h)| ≤ ε(|h|) and

V X(X + h) =

∫
(0,1)
∇φ(X) · hdω +

1

2

∫
(0,1)
∇2φ(X)h · hdω

+
1

2

∫
(0,1)2

∇q2q1ψ
(
X(o), X(ω)

)
h(ω) · h(o)dωdo+ |h|2ε0(h)(5.6)
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Since X and X∗ have the same laws, it is well-known that we can choose a sequence of Borel
functions Sn : [0, 1] → [0, 1] which are one-to-one, onto, such that Sn ]L1

(0,1) = L1
(0,1) and such

that
lim
n
|X∗ −X ◦ Sn| = 0.

In light of Remark 5.1(i), (5.6) implies

V X◦Sn(X ◦ Sn + h) = V X(X + h ◦ S−1
n )

=

∫
(0,1)
∇φ(X) · h ◦ S−1

n dω +
1

2

∫
(0,1)
∇2φ(X)h ◦ S−1

n · h ◦ S−1
n dω

+
1

2

∫
(0,1)2

∇q2q1ψ
(
X(o), X(ω)

)
h ◦ S−1

n (ω) · h ◦ S−1
n (o)dωdo+ |h ◦ S−1

n |2ε0(h ◦ S−1
n )

=

∫
(0,1)
∇φ(X ◦ Sn) · hdω +

1

2

∫
(0,1)
∇2φ(X ◦ Sn)h · hdω

+
1

2

∫
(0,1)2

∇q2q1ψ
(
X ◦ Sn(o), X ◦ Sn(ω)

)
h(ω) · h(o)dωdo+ |h|2ε0(h ◦ S−1

n ).

We use again Remark 5.1(i) to conclude that

V X∗(X ◦ Sn + h) =

∫
(0,1)
∇φ(X ◦ Sn) · hdω +

1

2

∫
(0,1)
∇2φ(X ◦ Sn)h · hdω

+
1

2

∫
(0,1)2

∇q2q1ψ
(
X ◦ Sn(o), X ◦ Sn(ω)

)
h(ω) · h(o)dωdo+ |h|2ε0(h ◦ S−1

n ).

We let n tend to ∞ to obtain

V X∗(X∗ + h) =

∫
(0,1)
∇φ(X∗) · hdω +

1

2

∫
(0,1)
∇2φ(X∗)h · hdω

+
1

2

∫
(0,1)2

∇q2q1ψ
(
X∗(o), X∗(ω)

)
h(ω) · h(o)dωdo+ |h|2 lim

n→∞
ε0(h ◦ S−1

n ).

We use the fact that limn→∞ |ε0(h ◦ S−1
n )| ≤ ε(|h|) to conclude that V X∗ is twice Fréchet differ-

entiable at X∗.

Definition 5.3. Let µ ∈ P2(Rd), ξ0 ∈ TµP2(Rd), let A1 ∈ L∞µ (Rd,Rd×d) be symmetric µ–almost
everywhere and let A2 ∈ L∞µ⊗µ(R2d,Rd×d) be such that A2(q1, q2) = AT2 (q2, q1), µ ⊗ µ-almost
everywhere. We say that (ξ0, A1, A2) belongs to T ∗,2µ P2(Rd) if

lim
r→0+

inf
(φ,ψ)

sup
(ν,γ)

{∣∣e0

(
µ, γ, ξ0 −∇φ,A1 −∇2φ,A2 −∇q2q1ψ

)∣∣
‖π2 − π1‖2

L2(γ)

: 0 < ‖π2−π1‖L2(γ) ≤ r, γ ∈ Γ(µ, ν)

}
= 0,

where the infimum is performed over the set of pairs (φ, ψ) such that φ ∈ C3
b (Rd), ψ ∈ C3

b (R2d)

is symmetric and V X
(φ,ψ) is twice Fréchet differentiable at X with law(X) = µ.

Here we have set

e0(µ, γ, ξ0, A1, A2) :=

∫
R2d

(
ξ0(q1) +

1

2
A1(q1)(q2 − q1)

)
· (q2 − q1)γ(dq1, q2)

+
1

2

∫
R2d×R2d

A2(q1, z)(w − z) · (q2 − q1)γ(dq1, q2)γ(dz, dw).
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We shall later use the expression

E(r, µ, ξ0, A1, A2) := sup
ν

sup
γ

{ |e0

(
µ, γ, ξ0, A1, A2

)
|

‖π2 − π1‖2
L2(γ)

}
,

where the supremum is performed over the set of pairs (ν, γ) such that 0 < W 2
2 (ν, µ) ≤ r and

γ ∈ Γ(µ, ν).

5.2. Specific expression for superjets/subjets. For µ, ν, γ, ξ0, A1, A2 as in Definition 5.3
and t, s ∈ (0, T ), a ∈ R, we set

e(U , s, t, a, µ, ν, γ, ξ0, A1, A2) := U(s, ν)− U(t, µ)− a(s− t)−
∫
R2d

ξ0(q1) · (q2 − q1)γ(dq1, dq2)

− 1

2

∫
R2d

A1(q1)(q2 − q1) · (q2 − q1)γ(dx, dy)

− 1

2

∫
R2d×R2d

A2(q1, z)(w − z) · (q2 − q1)γ(dz, dw)γ(dq1, dq2).

Similarly, for

t, s ∈ (0, T ), a ∈ R, X, Y, ζ0 ∈ E, A1 ∈ L∞
(
(0, 1),Rd×d

)
, A2 ∈ L∞((0, 1)2,Rd×d

)
,

we set

e(U, s, t, a,X, Y, ζ0, A1, A2) := U(s, Y )− U(t,X)− a(s− t)−
∫

(0,1)
ζ0 · (Y −X)dω

− 1

2

∫
(0,1)

A1(Y −X) · (Y −X)dω

− 1

2

∫
(0,1)2

A2(ω, o)(Y (o)−X(o)) · (Y (ω)−X(ω))dodω.

If the functions U and U are independent of t, the right hand sides of the above expressions do
not have the a(s− t) term and we will write e(U , µ, ν, γ, ξ0, A1, A2) and e(U,X, Y, ζ0, A1, A2).

Definition 5.4. let t ∈ (0, T ) and µ ∈ P2(Rd) and let U : [0, T )× P2(Rd)→ R.
(i) We define the parabolic second order subjet of U at (t, µ) to be the set P2,−U(t, µ), which

consists of (a, ξ0, A1, A2) ∈ R× T ∗,2µ P2(Rd) such that

lim inf
(s,ν)→(t,µ)

inf
γ∈Γ(µ,ν)

e(U , s, t, µ, ν, γ, ξ0, A1, A2)

|s− t|+W 2
2 (ν, µ)

≥ 0.

(ii) We define the parabolic second order superjet of U at (t, µ) to be the set P2,+U(t, µ), of
(a, ξ0, A1, A2) ∈ R× T ∗,2µ P2(Rd) such that

lim sup
(s,ν)→(t,µ)

inf
γ∈Γ(µ,ν)

e(U , s, t, µ, ν, γ, ξ0, A1, A2)

|s− t|+W 2
2 (ν, µ)

≤ 0.

We set

S(A1,A2)(X)(h) = A1(X) h+

∫
(0,1)

A2

(
X,X(ω)

)
h(ω)dω, for h ∈ E.

Owing to the properties of A1 and A2 in Definition 5.3, S(A1,A2)(X) is a self-adjoint operator on
E.

Lemma 5.5. Let µ ∈ P2(Rd) and let X ∈ E be such that X]L1
(0,1) = µ.
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(i) If (a, ξ0, A1, A2) ∈ P2,−U(t, µ) then(
a, ξ0(X), S(A1,A2)(X)

)
∈ P2,−U(t,X).

(ii) If (a, ξ0, A1, A2) ∈ P2,+U(t, µ) then(
a, ξ0(X), S(A1,A2)(X)

)
∈ P2,+U(t,X).

Proof. It suffices to prove (i). Let us assume that (a, ξ0, A1, A2) ∈ P2,−U(t, µ). Let Y ∈ E and
set Y]L1

(0,1) = ν. Choose first γ ∈ Γ0(µ, ν) and then choose X∗, Y ∗ ∈ E such that

γ := (X∗ × Y ∗)]L1
(0,1).

Note
p := (X × Y )]L1

(0,1) ∈ Γ(µ, ν)

and

e(U, s, t, a,X, Y, ξ0 ◦X,A1 ◦X,A2 ◦ (X ×X)) = U(s, Y )− U(t,X)− a(s− t)
− e0(µ, p, ξ0, A1, A2).

Hence,

e(U, s, t, a,X, Y, ξ0 ◦X,A1 ◦X,A2 ◦ (X ×X)) = U(s, ν)− U(t, µ)− a(s− t)
− e0(µ, p, ξ0, A1, A2),(5.7)

where A2 ◦ (X ×X) denotes the function A2 ◦ (X ×X)(ω, o) = A2(X(ω), X(o)).
Fix for a moment a symmetric function ψ ∈ C3

b (R2d) and φ ∈ C3
b (Rd) such that V X

(φ,ψ) is
twice Fréchet differentiable at X. Recall that by (5.6)

(5.8) V X
(φ,ψ)(Y )− e0

(
µ, p,∇φ,∇2φ,∇q2q1ψ

)
= o
(
‖Y −X‖2

)
.

Since the first marginal of γ is µ, X and X∗ have the same laws and so, by Lemma 5.2, V X∗

(φ,ψ) is
twice Fréchet differentiable at X∗ and so,

(5.9) V X∗

(φ,ψ)(Y
∗)− e0

(
µ, γ,∇φ,∇2φ,∇q2q1ψ

)
= o
(
‖Y ∗ −X∗‖2

)
.

Using (5.7), we have the decomposition

e
(
U, s, t, a,X, Y, ξ0 ◦X,A1 ◦X,A2 ◦ (X ×X)

)
= U(s, ν)− U(t, µ)− a(s− t)− e0

(
µ, p, ξ0 −∇φ,A1 −∇2φ,A2 −∇q2q1ψ

)
− e0

(
µ, p,∇φ,∇2φ,∇q2q1ψ

)
Thus,

e
(
U, s, t, a,X, Y, ξ0 ◦X,A1 ◦X,A2 ◦ (X ×X)

)
= U(s, ν)− U(t, µ)− a(s− t)− e0

(
µ, p, ξ0 −∇φ,A1 −∇2φ,A2 −∇q2q1ψ

)
− e0

(
µ, p,∇φ,∇2φ,∇q2q1ψ

)
− e0

(
µ, γ, ξ0, A1, A2

)
+ e0

(
µ, γ, ξ0 −∇φ,A1 −∇2φ,A2 −∇q2q1ψ

)
+ e0

(
µ, γ,∇φ,∇2φ,∇q2q1ψ

)
.
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Rearranging, we obtain

e
(
U, s, t, a,X, Y, ξ0 ◦X,A1 ◦X,A2 ◦ (X ×X)

)
= U(s, ν)− U(t, µ)− a(s− t)− e0

(
µ, γ, ξ0, A1, A2

)
− e0

(
µ, p, ξ0 −∇φ,A1 −∇2φ,A2 −∇q2q1ψ

)
− e0

(
µ, p,∇φ,∇2φ,∇q2q1ψ

)
+ e0

(
µ, γ,∇φ,∇2φ,∇q2q1ψ

)
+ e0

(
µ, γ, ξ0 −∇φ,A1 −∇2φ,A2 −∇q2q1ψ

)
.

Using Remark 5.1(i) we conclude that

e
(
U, s, t, a,X, Y, ξ0 ◦X,A1 ◦X,A2 ◦ (X ×X)

)
= U(s, ν)− U(t, µ)− a(s− t)− e0

(
µ, γ, ξ0, A1, A2

)
− e0

(
µ, p, ξ0 −∇φ,A1 −∇2φ,A2 −∇q2q1ψ

)
V X∗

(φ,ψ)(Y
∗)− e0

(
µ, p,∇φ,∇2φ,∇q2q1ψ

)
+ e0

(
µ, γ,∇φ,∇2φ,∇q2q1ψ

)
− V X

(φ,ψ)(Y )

+ e0

(
µ, γ, ξ0 −∇φ,A1 −∇2φ,A2 −∇q2q1ψ

)
.

We first use the fact that (a, ξ0, A1, A2) ∈ P−U(t, µ), second use (5.8) and (5.9) and third use
the fact that (ξ0, A1, A2) ∈ T ∗,2µ P2(Rd) to conclude that

e
(
U, s, t, a,X, Y, ξ0 ◦X,A1 ◦X,A2 ◦ (X ×X)

)
≥ o
(
W 2

2 (ν, µ)
)

+ o(|s− t|)− o
(
‖Y −X‖2

)
− o
(
‖Y ∗ −X∗‖2

)
− E

(
‖π1 − π2‖L2(γ), ξ0 −∇φ,A1 −∇2φ,A2 −∇q2q1ψ

)
‖π1 − π2‖2L2(γ)

− E
(
‖π1 − π2‖L2(p), ξ0 −∇φ,A1 −∇2φ,A2 −∇q2q1ψ

)
‖π1 − π2‖2L2(p).

Since
‖Y −X‖ = ‖π1 − π2‖2L2(p) ≥ ‖Y

∗ −X∗‖ = ‖π1 − π2‖2L2(γ)

we conclude that for any r > 0

lim inf
(s,Y )→(t,X)

e(U, s, t, a,X, Y, ξ0 ◦X,A1 ◦X,A2 ◦ (X ×X))

|s− t|+ ‖Y −X‖2
≥ −E

(
r, ξ0 −∇φ,A1 −∇2φ,A2 −∇q2q1ψ

)
− E

(
r, ξ0 −∇φ,A1 −∇2φ,A2 −∇q2q1ψ

)
.(5.10)

Maximizing −E, which means minimizing E over (r, φ, ψ) and using the fact that (ξ0, A1, A2) ∈
T ∗,2µ P2(Rd) we conclude

lim inf
(s,Y )→(t,X)

e(U, s, t, a,X, Y, ξ0 ◦X,A1 ◦X,A2 ◦ (X ×X))

|s− t|+ ‖Y −X‖2
≥ 0,

which proves (i).

Definition 5.6. Suppose κ > 0. An upper semicontinuous function U : [0, T ) × P2(Rd) → R is
an intrinsic viscosity subsolution of (1.1) on the Wasserstein space if U(0, ·) ≤ U0 on P2(Rd) and

a− κ
(∫

Rd
Tr(A1(q))µ(dq) +

∫
R2d

Tr(A2(q1, q2))µ(dq1)µ(dq2)

)
+H(µ, µ, ξ0) + F(µ) ≤ 0
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for all (t, µ) ∈ (0, T )× P2(Rd) and (a, ξ0, A1, A2) ∈ P2,+U(t, µ).
A lower semicontinuous function U : [0, T )× P2(Rd)→ R is an intrinsic viscosity superso-

lution of (1.1) on the Wasserstein space if U(0, ·) ≥ U0 on P2(Rd) and

(5.11) a− κ
(∫

Rd
Tr(A1(q))µ(dq) +

∫
R2d

Tr(A2(q1, q2))µ(dq1)µ(dq2)

)
+H(µ, µ, ξ0) +F(µ) ≥ 0

for all (t, µ) ∈ (0, T )× P2(Rd) and (a, ξ0, A1, A2) ∈ P2,−U(t, µ).
If U is both an intrinsic viscosity subsolution and an intrinsic viscosity supersolution of (1.1)

on the Wasserstein space, we say it is an intrinsic viscosity solution of (1.1) on the Wasserstein
space.

Theorem 5.7. Let U : [0, T )× P2(Rd)→ R.
(i) If U is an L-viscosity subsolution of (1.1) on the Wasserstein space then it is an intrinsic

viscosity subsolution of (1.1).
(ii) If U is an L-viscosity supersolution of (1.1) on the Wasserstein space then it is an intrinsic

viscosity supersolution of (1.1).
(iii) If U is an L-viscosity solution of (1.1) on the Wasserstein space then it is an intrinsic

viscosity solution of (1.1).

Proof. It suffices to prove (ii). Assume U is an L-viscosity supersolution of (1.1) on the Wasser-
stein space.

Let µ ∈ P2(Rd) and t ∈ [0, T ). Choose X ∈ E such that X]L1 = µ. We have U(0, µ) =
U(0, X) ≥ U0(X) = U0(µ).

In order to show that U is upper semicontinuous at (t, µ), we choose an arbitrary sequence
(µn)n ⊂ P2(Rd) converging to µ and an arbitrary sequence (tn)n ⊂ [0, T ) converging to t. Let
(Xn)n ⊂ E such that Xn,]L1 = µn and (Xn)n converges to X. We have

lim
n→∞

U(tn, µn) = lim
n→∞

U(tn, Xn) ≥ U(t,X) = U(t, µ).

Thus, U is lower semicontinuous at (t, µ).
Let now t > 0 and (a, ξ0, A1, A2) ∈ P2,−U(t, µ). We would like to show that (5.11) holds.

Let X ∈ E be such that X]L1
(0,1) = µ. By Lemma 5.5,(

a, ξ0(X), S(A1,A2)

)
∈ P−U(t,X).

Since U is an L-viscosity supersolution of (1.1) on the Wasserstein space, we use Proposition 2.3
to infer

a−κ
( d∑
k=1

∫
(0,1)

A1(X(ω))ek·ekdω+

∫
(0,1)2

A2(X(ω), X(o))ek·ekdωdo
)

+H̃
(
X,X]L1, ξ0(X)

)
+F (X) ≥ 0.

This gives (5.11).

Remark 5.8. Let U : [0, T ) × E → R and let U : [0, T ) × P2(Rd) → R be such that U(t, µ) =
U(t,X) whenever X ∈ E is the law of µ. In [43], it was proved that if U is a viscosity solution
of the first order equation

(5.12)

{
∂tU + H̃(X,X]L1, DU) + F (X) = 0 in (0, T )× E
U(0, X) = U0(X) on E,

then U is a intrinsic-viscosity solution of the first order equation

(5.13)
{
∂tU +H(µ, µ,∇µU) + F(µ) = 0 in (0, T )× P2(Rd)
U(0, µ) = U0(µ) on P2(Rd),
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according to the definition proposed in [43]. Therefore, Theorem 5.7 is an extension of the results
of [43] from the case κ = 0 to the case κ > 0.

6. First Order Convex HJB Equations and Value Functions

In this section we show that if κ = 0 and H does not depend on µ and is convex in
the gradient variable then the solutions un of (1.2), which are value functions of optimal control
problems for n-particle systems, converge to the value function of a variational problem in P2(Rd).
Thus we obtain a representation formula for the solution of (1.1).

Hypothesis 6.1. The function H = H(x, p), in addition to satisfying Hypotheses 2.1 in the x
and p variables, is convex in the p variable and

(6.1) H(x, p) ≥ C1 + C2|p|2 for all x, p ∈ Rd

for some constants C1, C2, where C2 > 0.

We define L(x, v) to be the Legendre transform of H(x, p), that is

L(x, v) := sup
p∈Rd

(p · v −H(x, p)), x, v ∈ Rd.

This implies, by (2.3) and (6.1),

(6.2) C3 + C4|v|2 ≤ L(x, v) ≤ C5 + C6|v|2 for some C3, C4, C5, C6 with C4, C6 > 0.

Given µ ∈ P2(Rd), ξ ∈ L2
µ(Rd;Rd), we define

L(µ, ξ) :=

∫
Rd
L(x, ξ(x))µ(dx)−F(µ).

For 0 ≤ t ≤ T, we define the action

Ā(σ, v) :=

∫ t

0
L(στ , vτ )dτ + U0(σ0),

Let un : [0, T ]× (Rd)n be, as before, the viscosity solution to (1.2), for n = 1, . . . .
For µ ∈ P2(Rd), let

(6.3) Ū(t, µ) := inf
(σ,v)

{
Ā(σ, v)

∣∣ σt = µ
}
,

with the infimum taken over all the pairs (σ, v), where1 σ = στ ∈ AC2(0, t;P2(Rd)), v = vτ
is a velocity vector field for στ and σt = µ. Here AC2(0, t;P2(Rd)) is the space of absolutely
continuous curves in P2(Rd) with square-integrable metric derivative, see [3, Definition 1.1.1].
Define

ūn(t,x) = Ū(t,
1

n

n∑
j=1

δxj ), x = (x1, . . . , xn) ∈ (Rd)n.

We want to investigate the asymptotic relationship between ūn and un.
Set

f(x) = F
( 1

n

n∑
j=1

δxj
)
, u0(x) = U0

( 1

n

n∑
j=1

δxj

)
.

and

ln(x,v) = −f(x) +
1

n

n∑
j=1

L(xj , vj),

1We use the subindex notation στ or σ(τ) interchangeably to mean the value of the path at time τ.
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Define
Cn(t,x) := {x(·) ∈ AC2(0, t; (Rd)n)

∣∣ x(t) = x}.
With the conditions on H listed in Hypothesis 2.1, the solution un to (1.2) has the value function
representation

(6.4) un(t,x) = inf
ξ

{∫ t

0
ln(ξ(τ), ξ̇(τ))dτ + u0(ξ(0))

∣∣ ξ(·) ∈ Cn(t,x)
}
.

Denote by A the functional that is minimized in (6.4), i.e.,

A(ξ(·)) :=

∫ t

0
ln(ξ(τ), ξ̇(τ))dτ + u0(ξ(0)).

Observe that when στ = 1
n

∑n
j=1 δxj(τ) for x(·) ∈ AC2(0, t; (Rd)n), then

vτ (x) =

n∑
j=1

1xj(τ)ẋj(τ) for a.e. τ ∈ (0, t) and Ā(σ, v) = A(x(·)).

We will make use of the following lemma.

Lemma 6.2. Let µ ∈ P2(Rd), and let σ ∈ AC2(0, t;P2(Rd)) be a path of velocity w such
that σt = µ. There exist sequences: {ym}∞m=1, y

m ∈ (Rd)m, {σm}∞m=1, σ
m ∈ Cm(t, ym) with

corresponding velocity vector fields wm, and {rm}∞1 , rm ↘ 0, such that

(6.5) sup
0≤τ≤t

d2(στ , σ
m
τ ) ≤ rm,

(6.6) Ā(σm, vm) ≤ Ā(σ, v) + rm.

Proof. We are first going to prove the existence of such sequences as in the statement, for which

(6.7)
∫ t

0

∫
Rd
L(x,wmτ (x))σmτ (dx)dτ ≤

∫ t

0

∫
Rd
L(x,wτ (x))στ (dx)dτ + rm.

Step 1. We start with a standard mollification procedure by setting

η(x) :=
1

(4π)d/2
exp(−|x|2/4), ηε(x) :=

1

εd
η(x/ε), σετ = στ ∗ ηε,

wετ =
wτστ ∗ ηε

σετ
, jε(x, y) :=

ηε(x− y)∫
Rd η

ε(x− y)στ (dy)
.

By Lemma 7.1.10 of [3],

(6.8) d2
2(σετ , στ ) ≤ ε

∫
Rd
|x|2η(x)dx ∀ 0 ≤ τ ≤ t.

Let us now prove that

(6.9) lim sup
ε→0

∫ t

0

∫
Rd
L(x,wεt )σ

ε
τ (dx)dτ ≤

∫ t

0

∫
Rd
L(x,wt(x))στ (dx)dt.

Note for any arbitrary fixed τ,

wετ (x) =

∫
Rd
wτ (y)jε(x, y)στ (dy).

Since for every x ∈ Rd,
∫
Rd j

ε(x, y)στ (dy) = 1 and L(x, ·) is convex, we use Jensen’s in-
equality to infer

(6.10) L(·, wετ ) = L(·,
∫
Rd
wτ (y)jε(·, y)στ (dy)) ≤

∫
Rd
L(·, wτ (y))jε(·, y)στ (dy) <∞.
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We have obtained the finiteness of the expression at the right handside of (6.10) since

|L(·, wτ (y))| ≤ C(1 + |wτ (y)|2), jε ∈ L∞(R2d), wτ ∈ L2(στ ).

Observe that the function x 7→
∫
Rd L(x,wτ (y))jε(x, y)στ (dy) belongs to L1(σετ ). Indeed,∫

Rd

∫
Rd
|L(x,wτ (y))|jε(x, y)στ (dy)σετ (dx) ≤

∫
Rd

∫
Rd
C(1 + |wτ (y)|2)jε(x, y)στ (dy)σετ (dx)

= C +

∫
Rd
|wτ (y)|2

(∫
Rd
ηε(x− y)dx

)
στ (dy)

≤ C(1 + ‖wτ‖2L2(στ )).

Similarly,∫
Rd

∫
Rd
L(x,wτ (y))jε(x, y)στ (dy)σετ (dx) =

∫
Rd

∫
Rd
L(x,wτ (y))jε(x, y)σετ (dx)στ (dy)

=

∫
Rd

∫
Rd
L(x,wτ (y))ηε(x− y)dxστ (dy).

Thus, integrating (6.10) on both sides with respect to σετ , we get

(6.11)
∫
Rd
L(x,wετ (x))σετ (dx) ≤

∫
Rd

∫
Rd
L(x,wτ (y))ηε(x− y)dxστ (dy).

Classic arguments show that

lim
ε→0

∫
Rd

∫
Rd
L(x,wτ (y))ηε(x− y)dxστ (dy) =

∫
Rd
L(y, wτ (y))στ (dy).

From this, together with (6.11), it follows that

lim sup
ε→0

∫
Rd
L(x,wετ )σετ (dx) ≤

∫
Rd
L(x,wτ (x))στ (dx).

An application of Fatou’s lemma now yields (6.9).
Step 2. Notice that the constructed σετ solve the continuity equation

∂τσ
ε
τ + div(wετσ

ε
τ ) = 0 in (0, t)× Rd,

because

div(wετσ
ε
τ ) = div((wτστ ) ∗ ηε) = (div(wτστ )) ∗ ηε and ∂τσ

ε
τ = (∂τστ ) ∗ ηε.

Since wετσετ is smooth, for arbitrary δ > 0 we can find σε,Nτ ∈ CN (t, yN ) for some N ∈ N and
yN ∈ (Rd)N , satisfying

sup
0≤τ≤t

d2(σετ , σ
ε,N
τ ) ≤ δ,∫ t

0

∫
Rd
L(x,wε,Nτ (x))σε,Nτ (dx)dτ ≤

∫ t

0

∫
Rd
L(x,wετ (x))σετ (dx)dτ + δ.

It is clear that combining the latter inequalities, together with (6.9) and (6.8), gives the desired
sequence rm, such that inequalities (6.7) and (6.5) hold.

To finish the proof, note that by (6.5) and the uniform continuity of F , U0, there exist a
sequence sm ↘ 0, such that

U0(σm0 ) ≤ U0(σ0) + sm −
∫ t

0
F(σmτ )dτ ≤ −

∫ t

0
F(στ )dτ + sm.

Denoting rm + 2sm still by rm, we obtain (6.6).
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Lemma 6.3. For any 0 ≤ t ≤ T, the value function Ū(t, ·) is lower semicontinuous on P2(Rd).

Proof. Let µn → µ be such that

lim
n→∞

Ū(t, µn) = lim inf
ν→µ

Ū(t, ν).

Let ε > 0 and let σn ∈ AC2(0, t;P2(Rd)) be paths of velocity vn such that σnt = µn and∫ t

0
L(στ , vτ )dτ + U0(µn) < Ū(t, µn) + ε.

It follows from (6.2) that

(6.12)
∫ t

0
‖vnτ ‖2L2(σnτ )dτ < C

for some C independent of n. Therefore, by Proposition 7.1 in the Appendix, we have the
existence of a subsequence (still denoted by σn) and σ ∈ AC2(0, t;P2(Rd)), with σt = µ, such
that for every s ∈ [0, t], σns converges narrowly to σs. Denote the product measures on Rd× [0, t]
by σns ds. These converge narrowly to σsds. Furthermore, denote by vns σns ds the vector measure
whose density with respect to σns ds is the time-dependent vector field vns = vn(s, x).

We then obtain from (6.12) that there exists a subsequence of (σn, vn), still indexed by n,
such that σns ds converge narrowly to σsds while vns σns ds converge narrowly to a vector measure
w on Rd × [0, t].

Let ϕ ∈ C1
c ((0, t)× Rd). Then

0 = lim
n→∞

(∫ t

0

∫
Rd
∂sϕ(s, x)σns (dx)ds+

∫ t

0

∫
Rd
Dϕ(s, x) · vns (x)σns (dx)ds

)
=

∫ t

0

∫
Rd
ϕ(s, x)σs(dx)ds+

∫
[0,t]×Rd

Dϕ(s, x) · w(dx, ds).(6.13)

By Proposition 7.2 in the Appendix, w � σsds, so there is an L1(σsds) vector field v(s, x) such
that w = vsσsds, and, by the same proposition,∫ t

0

∫
Rd
L(x, vτ )στ (dx)dτ ≤ lim inf

n→∞

∫ t

0

∫
Rd
L(x, vnτ )σnτ (dx)dτ.

However, by (6.2) and (6.12), we actually obtain∫ t

0
‖vτ‖2L2(στ )dτ < C

for some constant C which, together with (6.13), means that v is a velocity vector field for σ.
Therefore, since F is narrowly continuous, it follows that

Ū(t, µ) ≤ lim inf
ν→µ

Ū(t, ν).

Theorem 6.4. Given µ ∈ P2(Rd), 0 ≤ t ≤ T, there exists a sequence {x(n)}∞n=1, x(n) ∈ (Rd)n,
such that d2( 1

n

∑n
j=1 δxj(n), µ)→ 0 as n→ 0 and

Ū(t, µ) = lim
n→∞

inf
ξ(·)∈Cn(t,x(n))

{∫ t

0
ln(ξ(τ), ξ̇(τ))dτ + u0(ξ(0))

∣∣ ξ(t) = x(n)
}
,

i.e.,
lim
n→∞

un(t,x(n)) = Ū(t, µ).

27



In particular, Ū = U from Theorem 1.2 and Ū is continuous and satisfies the continuity estimate
(4.1).

Proof. Let {σk, vk}∞k=1 be a minimizing sequence of paths and velocities for U(t, µ) such that

(6.14) Ā(σk, vk) ≤ Ū(t, µ) + 1/k.

By Lemma 6.2, for each k ∈ N there exists a sequence {σmk , vmk }∞m=1, with the m-th term in
Cm(t, σmk (t)), such that

(6.15) um(t, σmk (t)) ≤ A(σmk ) ≤ Ā(σk, vk) + 1/m and σmk (t) −→
m→∞

σk(t) = µ in d2.

Then,
um(t, σmk (t)) ≤ Ū(t, µ) + 1/k + 1/m;

consequently,
lim sup
m→∞

um(t, σmm(t)) ≤ Ū(t, µ).

Hence, since d2(σmm(t), µ) −→
m→∞

0, this, together with the lower semicontinuity of Ū(t, ·) proved
in Lemma 6.3, gives

lim
m→∞

um(t, σmm(t)) = Ū(t, µ).

Putting x(n) := σnn(t), n = 1, . . ., proves the statement.

7. Appendix

Proposition 7.1. Let µ ∈ P2(Rd) and let (σn, vn)∞n=1 be a sequence such that for each n ∈ N,
σn ∈ AC2(0, t;P2(Rd)) and vn is a velocity vector field for σn. If

lim
n→∞

d2(σnt , µ) = 0 and
∫ t

0
‖vnτ ‖2L2(σnτ ) < C ∀n ∈ N,

then there exists a subsequence (σnk)∞k=1 and σ ∈ AC2(0, t;P2(Rd)), with σt = µ, such that for
a.e. τ ∈ [0, t], σnkτ → στ narrowly.

Proof. Note that if 0 ≤ s1 < s2 ≤ t, by Hölder’s inequality we get

(7.1) d2(σns1 , σ
n
s2) ≤

∫ s2

s1

‖vnτ ‖L2(σnτ )dτ ≤
√
C
√
s2 − s1.

In particular, (σn)n is bounded and equicontinuous in P2(Rd). We apply the refined version of
the Ascoli–Arzelà theorem in Proposition 3.3.1 of [3] to conclude the proof.

Proposition 7.2. Let L be as in Section 6. Consider a sequence {νn}∞1 ∪ {ν} of finite, positive
Borel measures on [0, T ] × Rd that converges narrowly to ν. Suppose we have a sequence gn :
[0, T ]× Rd → Rd of vector fields such that

(7.2)
∫

[0,T ]×Rd
|gn(t, x)|2νn(dt, dx) <∞

and (gnνn)n converges narrowly to a vector-valued Borel measure λ on [0, T ]× Rd. Then:
(i) There exists a Borel vector field v : [0, T ]× Rd → Rd such that λ = vν.
(ii) We have∫

[0,T ]×Rd
L
(
x, v(t, x)

)
ν(dt, dx) ≤ lim inf

n→∞

∫
[0,T ]×Rd

L(x, gn(t, x))νn(dt, dx).

28



Proof. We define on [0, T ]× R2d the measures fn by

(7.3)
∫

[0,T ]×R2d

Φ(t, x, w)fn(dx, dw) =

∫
[0,T ]×Rd

Φ(t, x, gn(t, x))νn(t, dx),

for Φ ∈ Cb([0, T ]× R2d).
(i) We use (7.2) and the fact that (νn)n is precompact for the narrow convergence topology to

conclude that (fn)n is precompact for the narrow convergence topology. Therefore, without loss
of generality, we may assume that (fn)n converges narrowly to some Borel measure on [0, T ]×R2d

which we denote by f∞.When Φ depends only on the (t, x) variables, passing to the limit in (7.3),
we conclude that the first marginal of f∞ is ν. Hence, there exists a Borel map (t, x)→ f

(t,x)
∞ of

probability measures (cf. [3] Subsection 5.3) such that we have the disintegration∫
[0,T ]×R2d

Φ(t, x, w)f∞(dt, dx, dw) =

∫
[0,T ]×Rd

(∫
Rd

Φ(t, x, w)f (t,x)
∞ (dw)

)
ν(dt, dx),

for all Φ ∈ Cb([0, T ]× R2d).
Let ϕ ∈ C([0, T ] × Rd,Rd) be a bounded function. Although (t, x, w) ∈ [0, T ] × R2d 7→

ϕ(t, x) · w is not bounded, (7.2) allows to assert that (setting z = (t, x))∫
[0,T ]×R2d

ϕ(z)·wf∞(dz, dw) = lim
n→∞

∫
[0,T ]×R2d

ϕ(z)·wfn(dz, dw) = lim
n→∞

∫
[0,T ]×Rd

ϕ(z)·gn(z)νn(dz).

We now use the fact that λ is a point of accumulation of (gnνn) to conclude that∫
[0,T ]×Rd

(∫
Rd
ϕ(t, x) · wf (t,x)

∞ (dw)
)
ν(dt, dx) =

∫
[0,T ]×Rd

ϕ(t, x) · λ(dt, dx).

We conclude the proof of (i) by setting v(t, x) :=
∫
Rd wf

(t,x)
∞ (dw).

(ii) Since L is bounded below by the hypotheses, we may suppose without loss of generality
that L ≥ 0. For each r > 0 let Φr ∈ C(R2d) be a function which is identically 1 on the ball of
radius r, is zero outside of the ball of radius r+ 1, but remains between 0 and 1 everywhere. We
have∫

[0,T ]×R2d

L(x,w)Φr(x,w)f∞(dt, dx, dw) = lim inf
n→∞

∫
[0,T ]×R2d

L(x,w)Φr(x,w)fn(dt, dx, dw)

≤ lim inf
n→∞

∫
[0,T ]×R2d

L(x,w)fn(dt, dx, dw)

and so, letting r →∞ we conclude∫
[0,T ]×R2d

L(x,w)f∞(dt, dx, dw) ≤ lim inf
n→∞

∫
[0,T ]×R2d

L(x,w)fn(dt, dx, dw).

Thus, ∫
[0,T ]×Rd

(∫
Rd
L(x,w)f (t,x)

∞ (dw)
)
ν(dt, dx) ≤ lim

n→∞

∫
[0,T ]×R2d

L(x,w)fn(dt, dx, dw).

Since L(x, ·) is convex, we apply Jensen’s inequality and use the fact that f (t,x)
∞ is a Borel

probability measure to conclude the proof.

We conclude the appendix with a proof of comparison for viscosity solutions of a class of
equations that includes (1.3). Let W be a real separable Hilbert space. We assume the following
hypothesis.

Hypothesis 7.3.
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(i) The function Ĥ : W ×W → R satisfies

(7.4) |Ĥ(X,P )− Ĥ(X,Q)| ≤ C(1 + |P |+ |Q|)|P −Q| for all P,Q,X ∈W
and

(7.5) |Ĥ(X,P )− Ĥ(Y, P )| ≤ σ
(
|X − Y |(1 + |P |)

)
for all P,X, Y ∈W

for some modulus of continuity σ.
(ii) The function U0 : W → R is such that

(7.6) |U0(X)− U0(Y )| ≤ m1 (|X − Y |) for all X,Y ∈W
for some modulus of continuity m1.

We note that if Ĥ(X,P ) = H̃(X, law(X), P ) + F (X) and Hypothesis 2.1 is satisfied then
Hypothesis 7.3 holds. Thus comparison for viscosity solutions of (1.3) follows from the more
general theorem below.

Theorem 7.4. Let Hypothesis 7.3 be satisfied and let κ ≥ 0. Let u be a viscosity subsolution of

(7.7)


∂tu− κ

d∑
k=1

〈D2uek, ek〉+ Ĥ(X,Du) = 0 in (0, T )×W

u(0, X) = U0(X) on W,

v be a bounded viscosity supersolution of (7.7) and suppose that there exists M ≥ 0 such that

sup
(t,X)∈[0,T )×W

u(t,X) ≤M, sup
(t,X)∈[0,T )×W

−v(t,X) ≤M.

Then u ≤ v on [0, T )×W .

Proof. The proof is similar to the proof of Theorem 3.3. The main difference is that we have to
use a Hilbert space version of the maximum principle for semicontinuous functions, Theorem 3.2
of [27], instead of Theorem 8.3 of [26]. For δ > 0, let ϕδ be the function from Lemma 3.2 applied
to the modulus σ1(s) = (1 + T )σ(s) +m1(s) + (2M + 1)s. In particular we have

(7.8) ϕδ(1) ≥ 2M + 1, ϕδ(s) ≥ m1(s).

If u 6≤ v then there is ν > 0 such that

(7.9) sup
(t,X)∈[0,T )×E

(u− v) ≥ ν.

We will show that this leads to a contradiction.
Let {η1, η2, · · · } be an orthonormal basis of W . For N = 1, 2, · · · , we denote by PN the

orthogonal projection in W onto span{η1, · · · , ηN}, and we set QN = I − PN . Denote h(X) :=

(1 + |X|2)1/2. If (7.9) is true then for sufficiently small µ, γ, α > 0

sup
X,Y ∈W,t∈[0,T ]

(
u(t,X)− un(t, Y )− µ

T − t
− ϕδ((γ + |X − Y |2)

1
2 )(1 + t)− α(h(X) + h(Y ))

)
> 0.

We also notice that the expression above goes to −∞ as |X| + |Y | → +∞. Therefore, by the
perturbed optimization result of Ekeland-Lebourg (see for instance [29], Theorem 3.25), for every
n ≥ 1 there exist an ∈ R, pn, qn ∈W such that |an|+ |pn|+ |qn| < 1

n and

u(t,X)− un(t, Y )− µ

T − t
− ϕδ((γ + |X − Y |2)

1
2 )(1 + t)− α(h(X) + h(Y ))

+ ant+ 〈pn, X〉+ 〈qn, Y 〉

attains a strict maximum at some point (t̄, X̄, Ȳ ). By the construction of ϕδ we have 0 < t̄ < T
and |X̄ − Ȳ | < 1. It now follows from Theorem 3.2 of [27], together with Remarks 2.3 and 3.1
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there, that for every N ≥ 1 there exist b1, b2 ∈ R, SN , RN ∈ S(W ) and C > 0 independent
of N , such that SN = PNSNPN , RN = PNRNPN , SN ≤ RN and such that, denoting s̄ =

(γ + |X̄ − Ȳ |2)
1
2 ,(

b1, ϕ
′
δ(s̄)

X̄ − Ȳ
s̄

(1 + t̄) + αDh(X̄)− pn, SN + CQN + αD2h(X̄)

)
∈ P2,+

u(t̄, X̄),(
b2, ϕ

′
δ(s̄)

X̄ − Ȳ
s̄

(1 + t̄)− αDh(X̄) + pn, RN − CQN − αD2h(X̄)

)
∈ P2,−

v(t̄, Ȳ ),

b1 − b2 = ϕδ(s̄) +
µ

(T − t̄)2
− an.

Using the definition of viscosity subsolution we now have

b1 − κ
d∑

k=1

〈(SN + CQN + αD2h(X̄))ek, ek〉

+ Ĥ

(
X̄, ϕ′δ(s̄)

X̄ − Ȳ
s̄

(1 + t̄) + αDh(X̄)− pn
)
≤ 0

which implies, by (7.4),

b1 − κ
d∑

k=1

〈SNek, ek〉+ Ĥ(X̄, ϕ′δ(s̄)
X̄ − Ȳ
s̄

(1 + t̄))

≤ σ2(
1

N
) + σ3(

1

n
) + σ4(α)

(7.10)

for some moduli σ2, σ3, σ4. Similarly we have

b2 − κ
d∑

k=1

〈RNek, ek〉+ Ĥ(Ȳ , ϕ′δ(s̄)
X̄ − Ȳ
s̄

(1 + t̄))

≥ σ2(
1

N
) + σ3(

1

n
) + σ4(α).

(7.11)

Subtracting (7.11) from (7.10) and using SN ≤ RN , (7.5), we obtain

σ2(
1

N
) + σ3(

1

n
) + σ4(α) ≥ ϕδ(s̄) +

µ

(T − t̄)2

+ Ĥ(X̄, ϕ′δ(s̄)
X̄ − Ȳ
s̄

(1 + t̄))− Ĥ(Ȳ , ϕ′δ(s̄)
X̄ − Ȳ
s̄

(1 + t̄))

≥ ϕδ(s̄) +
µ

(T − t̄)2
− σ

(
s̄(1 + ϕ′δ(s̄)(1 + T ))

)
≥ µ

(T − t̄)2
+ ϕδ(s̄)− σ1(ϕ′δ(s̄)s̄+ s̄) ≥ µ

T 2
,

(7.12)

where we have used the definition of σ1 and Lemma 3.2 to justify the last two inequalities.
Inequality (7.12) yields a contradiction after we send N → +∞, then n → +∞ and finally
α→ 0.
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