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We propose an extension of the computational fluid mechanics approach to the Monge-
Kantorovich mass transfer problem, which was developed by Benamou-Brenier in [4]. Our 
extension allows optimal transfer of unnormalized and unequal masses. We obtain a one-
parameter family of simple modifications of the formulation in [4]. This leads us to a new 
Monge-Ampére type equation and a new Kantorovich duality formula. These can be solved 
efficiently by, for example, the Chambolle-Pock primal-dual algorithm [6]. This solution to 
the extended mass transfer problem gives us a simple metric for computing the distance 
between two unnormalized densities. The L1 version of this metric was shown in [25]
(which is a precursor of our work here) to have desirable properties.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Optimal transport (OT) plays important roles in inverse problems [11,29] and machine learning [1,14,21]. It provides a 
particular distance function, called the Wasserstein metric or Earth Mover’s distance, among histograms or density functions 
[4,28]. In these traditional settings, it assumes that histograms or densities have the same total mass. In real applications, 
we face a situation where the total mass of each histogram is not equal. For example, when comparing two images, their 
intensities are not the same. This fact prevents us from applying the classical optimal transport for these problems.

In this paper, we formulate simple and natural extensions of optimal transport in unnormalized density space. In a word, 
we add a spatial independent source function into the continuity equation and cost functional. There are two benefits of the 
current approach. On the one hand, the changes of the variational problem are simple. They define a robust L p Wasserstein 
metric in unnormalized density space and do not significantly change the computational complexity of the problem. The 
proposed model allows us to apply classical algorithms, such as the Chambolle-Pock primal-dual method [6], to solve it. 
On the other hand, the proposed problem is natural in that it uses the key Hamilton-Jacobi equation as in the original 
optimal transport problem. These properties allow us to identify new problems corresponding to the Monge problem and 
Monge-Ampére equation in unnormalized density space.

There have been various extensions of optimal transport for unnormalized or unbalanced densities [2,3,8,5,12,13,20,23,
24,26,27]. In particular, [8,9,20,17] propose the Wasserstein-Fisher-Rao or Hellinger–Kantorovich metric.1 In their studies, a 
spatially dependent source function is introduced, which contains a ratio function involving the density in the spatial do-
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main. Its gradient flow relates to the associated reaction diffusion equations [17]. This leads to rather complicated numerical 
algorithms and intricate analysis. In addition, [7] and [22] study other spatially dependent source functions. Instead, we pro-
pose a density and spatial independent source function, which allow us to keep the original Hamilton-Jacobi equation as in 
the normalized case. This property allows us to design a simple algorithm and to derive a reasonably simple unnormalized 
Monge-Ampére equation. The numerical algorithms in [10] involve the entropic regularization of Wasserstein-Fisher-Rao 
metric. It is based on a related linear programming formulation. This formulation comes from a new Hopf-Lax formula for 
the solution of a Hamilton-Jacobi equation. The entropic regularization is then added into the relaxed linear programming 
problem. In contrast to this approach, we apply a simple primal-dual algorithm based on a dynamical formulation of the 
proposed problem.

The plan of this paper is as follows. In section 2, we propose and study the properties of the unnormalized dynamical 
optimal transport problem. The unnormalized Monge problem, Monge-Ampére equation and Kantorovich formulations are 
all derived. In section 3, we present the algorithms and numerical examples for this proposed metric, including the simple 
unnormalized L1 case.

2. Unnormalized optimal transport

In this section, we introduce unnormalized OT problems and show that the proposed unnormalized metric is well de-
fined. We then derive minimization procedures for unnormalized optimal transport.

Denote � ⊂Rd as a bounded domain with Lebesgue measure |�|. Denote the space of normalized densities by

P(�) = {μ ∈ L1(�) : μ(x) ≥ 0,

∫
�

μ(x)dx = 1}.

Let the space of unnormalized densities be

M(�) = {μ ∈ L1(�) : μ(x) ≥ 0}.
We note that P(�) ⊂ M(�). We next define the optimal transport cost between μ0, μ1 ∈M(�).

Definition 1 (Unnormalized OT). Define the Lp unnormalized Wasserstein distance U W p : M(�) ×M(�) →R by

UWp(μ0,μ1)
p = inf

v,μ, f

1∫
0

∫
�

‖v(t, x)‖pμ(t, x)dxdt + 1

α

1∫
0

| f (t)|pdt · |�| (1a)

such that the dynamical constraint, i.e. the unnormalized continuity equation, holds

∂tμ(t, x) + ∇ · (μ(t, x)v(t, x)) = f (t), μ(0, x) = μ0(x), μ(1, x) = μ1(x). (1b)

Here ‖ · ‖ is the Euclidean norm, μ0, μ1 ∈ M(�), and the infimum is taken over all continuous unnormalized density 
functions μ : [0, 1] × � → R, and Borel vector fields v : [0, 1] × � → Rd with zero flux condition v(t, x) · n(t, x) = 0 on 
(0, 1) × ∂� with n(t, x) being the normal vector on the boundary of �, and Borel spatially independent source functions 
f : [0, 1] →R.

The new proposed Lp Wasserstein metric has an attractive physical interpretation. The above optimization problem can 
be viewed as a variational fluid dynamics problem in Eulerian coordinates. Definition 1 considers the motion, creation 
and removal of particles. During this process, the total mass is changing dynamically in a uniform manner, controlled by 
the positive parameter α and a spatially independent function f (t). We remark that the spatial independence of the source 
function introduces a very important natural property, which we will repeat. It uses the same Hamilton-Jacobi equation as in 
the classical optimal transport, which allows us to obtain a new Monge problem, Monge-Ampére equation and Kantorovich 
duality problem. In addition, this physical analogy follows approaches in [18]. More interestingly, we notice that problem (1)
has essentially the same computational complexity as the classical dynamical optimal transport problem. We will present 
its computational details in section 3.

2.1. L1 unnormalized Wasserstein metric

We first study the L1 unnormalized Wasserstein metric. When p = 1, the problem (1a) becomes:

UW1(μ0,μ1) = inf
v(t,x), f (t)

{ 1∫
0

∫
�

‖v(t, x)‖μ(t, x)dxdt + 1

α

1∫
0

| f (t)|dt · |�| :

∂tμ(t, x) + ∇ · (μ(t, x)v(t, x)) = f (t), μ(0, x) = μ0(x), μ(1, x) = μ1(x)
}
.
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Denote

m(x) =
1∫

0

v(t, x)μ(t, x)dt,

then by Jensen’s inequality, the above minimization can be obtained into a time independent fashion. Notice the fact that

1∫
0

∫
�

‖v(t, x)‖μ(t, x)dxdt ≥
∫
�

‖
1∫

0

v(t, x)μ(t, x)dt‖dx =
∫
�

‖m(x)‖dx.

By integrating the time variable in the constraint, we observe

{ 1∫
0

∫
�

‖v(t, x)‖μ(t, x)dxdt + 1

α

1∫
0

| f (t)|dt · |�| :

∂tμ(t, x) + ∇ · (μ(t, x)v(t, x)) = f (t), μ(0, x) = μ0(x), μ(1, x) = μ1(x)
}

≥
{∫

�

‖m(x)‖dx + 1

α

1∫
0

| f (t)|dt · |�| : μ1(x) − μ0(x) + ∇ · m(x) =
1∫

0

f (t)dt
}

≥
{∫

�

‖m(x)‖dx + 1

α

∣∣∣
1∫

0

f (t)dt
∣∣∣ · |�| : μ1(x) − μ0(x) + ∇ · m(x) =

1∫
0

f (t)dt
}
.

Denote c = ∫ 1
0 f (t)dt , by integrating on both time and spatial domain for continuity equation (1b), it is clear that

c = 1

|�|
(∫

�

μ1(z)dz −
∫
�

μ0(z)dz
)
.

We can show that the minimizer path can be attained in the last inequality, by choosing μ(t, x) = (1 − t)μ0(x) + tμ1(x). 
We summarize the above into the following proposition.

Proposition 2. The L1 unnormalized Wasserstein metric is given by

UW1(μ0,μ1) = inf
m

{∫
�

‖m(x)‖dx + 1

α

∣∣∣ ∫
�

(μ0(x) − μ1(x))dx
∣∣∣ :

μ1(x) − μ0(x) + ∇ · m(x) = 1

|�|
∫
�

(μ1(z) − μ0(z))dz
}
.

In addition, in one space dimension on the interval � = [0, 1], the L1 unnormalized Wasserstein metric has the following 
explicit solution:

UW1(μ0,μ1) =
∫
�

∣∣∣
x∫

0

(μ1(y) − μ0(y))dy − x

∫
�

(μ1(z) − μ0(z))dz
∣∣∣dx

+ 1

α

∣∣∣ ∫
�

(μ1(z) − μ0(z))dz
∣∣∣.

The formulation in Proposition 2 has been proposed in [25] for inverse problems. It is one of the prime motivations for 
this paper. We also note the minimizer satisfies the following form [19]:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

m(x)

‖m(x)‖ = ∇�(x), if ‖m(x)‖ 	= 0

∇ · m(x) =
(
μ0(x) − 1

|�|
∫
�

μ0(z)dz
)

−
(
μ1(x) − 1

|�|
∫
�

μ1(z)dz
)
.
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Proposition 3. The L1 unnormalized Wasserstein metric is given in terms of the original Wasserstein-1 metric by:

UW1(μ0,μ1) = W1(μ̃0, μ̃1) + |�|
α

|c|,

where W1 is the classical Wasserstein-1 metric between two unnormalized densities and

c = 1

|�|
∫
�

(
μ1(z) − μ0(z)

)
dz

μ̃0 = (μ1 − μ0 − c)−
μ̃1 = (μ1 − μ0 − c)+.

Notice μ̃1 − μ̃0 = μ1 − μ0 − c. Then from Proposition 2, we prove the result. See details in [25].

2.2. L2 unnormalized Wasserstein metric

We next present the result when p = 2. Similar derivations can also be established for p ∈ (1, ∞). For the simplicity of 
presentation, we now assume |�| = 1.

Proposition 4. The L2 unnormalized Wasserstein metric (1) is a well-defined metric function in M(�). In addition, the minimizer 
(v(t, x), μ(t, x), f (t)) for problem (1) satisfies

v(t, x) = ∇�(t, x), f (t) = α

∫
�

�(t, x)dx,

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tμ(t, x) + ∇ · (μ(t, x)∇�(t, x)) = α

∫
�

�(t, x)dx

∂t�(t, x) + 1

2
‖∇�(t, x)‖2 ≤ 0

μ(0, x) = μ0(x), μ(1, x) = μ1(x).

(2)

In particular, if μ(t, x) > 0, then

∂t�(t, x) + 1

2
‖∇�(t, x)‖2 = 0. (3)

Remark 5. We note that equation (2) implies

α

1∫
0

∫
�

�(t, x)dxdt =
∫
�

μ1(y)dy −
∫
�

μ0(y)dy.

This means that unlike the classical OT, we are not only solving for the unique ∇�, but also for the unique �.

Remark 6. Our U W2(μ0, μ1) involving f (t) as a source term does have the property that the distance between measures 
depends linearly on the area of the domain. We will address this issue in a future work.

Proof. Denote m(t, x) = μ(t, x)v(t, x) and

F (m,μ) =

⎧⎪⎨
⎪⎩

‖m‖2

μ if μ > 0;
0 if μ = 0, m = 0;
+∞ otherwise,

then variational problem (1) can be reformulated as
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UW2(μ0,μ1)
2 = inf

m,μ, f

{ 1∫
0

∫
�

F (m(t, x),μ(t, x))dxdt + 1

α

1∫
0

| f (t)|2dt :

∂tμ(t, x) + ∇ · (m(t, x)) = f (t),

μ(0, x) = μ0(x), μ(1, x) = μ1(x)
}
.

(4)

It is clear that (4) is the reformulation of (1). We first prove that the variational problem (4) is well defined. In other words, 
there exists a feasible path for the dynamical constraint. We construct a feasible path μt connecting any μ0, μ1 ∈ M(�). 
The proof is divided into three steps:

Step 1. Construct a density path t ∈ [0, 13 ], there exists a feasible path connecting μ0 and a uniform measure with total 
mass 

∫
�

μ0dx. In this case, the density path is a normalized (classical) OT between two densities. We set f (t) = 0 when 
t = [0, 1/3], there always exists such a path.

Step 2. Construct a density path t ∈ [ 1
3 , 23 ], there exists a feasible path connecting a uniform measure with total mass ∫

�
μ0dx and a uniform measure with total mass 

∫
�

μ1dx. In this case, we let the transport flux m(t, x) = 0, and choose 
f (t) = 3(

∫
�

μ1(x)dx − ∫
�

μ0(x)dx).

Step 3. Construct a density path t ∈ [ 2
3 , 1], there exists a feasible path connecting a uniform measure with total mass ∫

�
μ1dx and μ1. In this case, we set f (t) = 0. Following the classical OT, we find a feasible path.

Combining steps 1,2,3, the proposed path is feasible with finite cost functional. We next show that the problem has a 
minimizer. Since the constraint set is not empty, then it is classical to show that the cost functional F (m, μ) + 1

α f (t)2 is 
convex and is lower semicontinuous, while the constraint is linear. So the variational problem (2) has a minimizer.

We next apply a Lagrange multiplier to find the minimizer. Denote �(t, x) as the multiplier with

L(m,μ,�) =
1∫

0

∫
�

‖m(t, x)‖2

2μ(t, x)
+ �(t, x)

(
∂tμ(t, x) + ∇ · m(t, x) − f (t)

)
dxdt + 1

2α

1∫
0

f (t)2dt.

Assuming δmL = 0, δμL ≥ 0, δ f L = 0, we derive the property of minimizer as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

m(t, x)

μ(t, x)
= ∇�(t, x)

− m(t, x)2

2μ(t, x)2
− ∂t�(t, x) ≥ 0

f (t) = α

∫
�

�(t, x)dx.

Here if μ > 0, we obtain δμL = 0, which gives equality in the second formula of the above system. Using the fact m(t,x)
μ(t,x) =

∇�(t, x), we prove the result. In this case, the non-negativity, symmetry, triangle inequality of the metric follow directly 
from the definition. �

We next derive our new Monge problem for unnormalized OT. This approach uses the Lagrange coordinates arising in 
problem (1).

Proposition 7 (Unnormalized Monge problem).

UW2(μ0,μ1)
2 = inf

M, f (t)

∫
�

‖M(x) − x‖2μ0(x)dx + 1

α

1∫
0

f (t)2dt

+
1∫

0

t∫
0

f (s)

∫
�

‖M(x) − x‖2Det
(

s∇M(x) + (1 − s)I
)

dsdxdt,

(5a)

where the infimum is among all one to one, invertible mapping functions M : � → � and a source function f : [0, 1] →R, such that 
the unnormalized push forward relation holds

μ(1, M(x))Det(∇M(x)) = μ(0, x) +
1∫

f (t)Det
(

t∇M(x) + (1 − t)I
)

dt. (5b)
0
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Proof. We now derive the Lagrange formulation of the unnormalized OT (1). Consider any mapping function Xt(x) with 
vector field v(t, Xt(x)), i.e.

d

dt
Xt(x) = v(t, Xt(x)), X0(x) = x.

Then

1∫
0

∫
�

‖v(t, x)‖2μ(t, x)dxdt =
1∫

0

∫
�

‖v(t, Xt(x))‖2μ(t, Xt(x))dXt(x)dt

=
1∫

0

∫
�

‖ d

dt
Xt(x)‖2μ(t, Xt(x))Det

(
∇ Xt(x)

)
dxdt.

(6)

We next derive the differential equation for J (t, x) := μ(t, Xt(x))Det
(
∇ Xt(x)

)
. Later on, we use the notation J (t) = J (t, x)

and d
dt J (t) = ∂

∂t J (t, x). Since

d

dt
J (t, x) = d

dt

{
μ(t, Xt(x))Det

(
∇ Xt(x)

)}

= ∂tμ(t, Xt(x))Det
(
∇ Xt(x)

)
+ ∇Xμ(t, Xt(x))

d

dt
Xt(x)Det

(
∇ Xt(x)

)
+ μ(t, Xt(x))∂t Det

(
∇ Xt(x)

)
=

{
∂tμ + ∇μ · v + ∇ · vμ

}
(t, Xt(x))Det(∇ Xt(x))

=
{
∂tμ + ∇ · (μv)

}
(t, Xt(x))Det(∇ Xt(x))

= f (t)Det(∇ Xt(x)),

where the third equality is derived by the Jacobi identity, i.e.

∂tDet
(
∇ Xt(x)

)
= ∇ · v(t, Xt(x))Det

(
∇ Xt(x)

)
,

and the last equality holds following our proposed continuity equation with spatial independent source function (1b).
Notice

J (t) = J (0) +
t∫

0

d

ds
J (s)ds.

Since X0(x) = x and ∇ X0(x) = I, then J (0) = μ(0, x) and

μ(t, Xt(x))Det
(
∇ Xt(x)

)
= μ(0, x) +

t∫
0

f (s)Det
(
∇ Xs(x)

)
ds.

Since the minimizer in Eulerian coordinates satisfies the Hamilton-Jacobi equation in (3):

∂t�(t, x) + 1

2
‖∇�(t, x)‖2 = 0,

and d
dt Xt(x) = ∇�(t, Xt(x)), then we naturally have d2

dt2 Xt(x) = 0. This implies

d

dt
Xt(x) = v(t, Xt(x)) = M(x) − x,

thus Xt(x) = (1 − t)x + tM(x) and Det
(
∇ Xt(x)

)
= Det

(
(1 − t)I + t∇M(x)

)
.
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Substituting all the above relations into (6):

(6) =
1∫

0

∫
�

‖ d

dt
Xt(x)‖2 J (t)dxdt

=
1∫

0

∫
�

‖M(x) − x‖2
(

J (0) +
t∫

0

d

ds
J (s)ds

)
dxdt

=
1∫

0

∫
�

‖M(x) − x‖2 J (0)dxdt +
1∫

0

∫
�

‖M(x) − x‖2

t∫
0

d

ds
J (s)dsdxdt

=
1∫

0

∫
�

‖M(x) − x‖2μ(0, x)dxdt +
1∫

0

∫
�

‖M(x) − x‖2

t∫
0

f (s)Det(∇ Xs(x))dsdxdt

=
∫
�

‖M(x) − x‖2μ(0, x)dx +
1∫

0

t∫
0

∫
�

‖M(x) − x‖2 f (s)Det
(
(1 − s)I + s∇M(x)

)
dsdxdt.

Thus we prove the results. �
We next find the relation between the spatial independent source function f (t) and the mapping function M(x). For the 

simplicity of presentation, we assume periodic boundary conditions on �.

Proposition 8 (Unnormalized Monge-Ampére equation). The optimal mapping function M(x) = ∇�(x) satisfies the following unnor-
malized Monge-Ampére equation

μ(1,∇�(x))Det(∇2�(x)) − μ(0, x)

= α

1∫
0

Det
(

t∇2�(x) + (1 − t)I
)∫

�

(
�(y) − ‖y‖2

2
+ t‖∇�(y) − y‖2

2

)
Det

(
t∇2�(y) + (1 − t)I

)
dydt.

Proof. Let us rewrite the minimizer (2) into a time independent formulation. From the Hopf-Lax formula for the Hamilton-
Jacobi equation,

�(1, M(x)) = �(0, x) + ‖M(x) − x‖2

2
.

Thus ∇�(0, x) + x − M(x) = 0. We further denote �(x) = �(0, x) + ‖x‖2

2 , then M(x) = ∇�(x). From Xt(x) = (1 − t)x + tM(x), 
then

�(t, Xt(x)) = �(0, x) + ‖Xt(x) − x‖2

2t

= �(0, x) + t‖M(x) − x‖2

2

= �(x) − ‖x‖2

2
+ t‖∇�(x) − x‖2

2
and

∇ Xt(x) = (1 − t)I + t∇2�(x).

From (2) and the above two formulas, then

f (t) = α

∫
�

�(t, x)dx = α

∫
�

�(t, Xt(x))dXt(x)

= α

∫
�(t, Xt(x))Det

(
∇ Xt(x)

)
dx
�
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= α

∫
�

{
�(x) − ‖x‖2

2
+ t‖∇�(x) − x‖2

2

}
Det

(
(1 − t)I + t∇2�(x)

)
dx.

Substituting f (t)′s formula and M(x) = ∇�(x) into (5b), we derive the result. �
We now present the Kantorovich duality formulation of the problem (1).

Proposition 9 (Unnormalized Kantorovich formulation).

1

2
UW2(μ0,μ1)

2 = sup
�

{∫
�

�(1, x)μ(1, x)dx −
∫
�

�(0, x)μ(0, x)dx − α

2

1∫
0

(∫
�

�(t, x)dx
)2

dt
}

where the supremum is taken among all � : [0, 1] → � satisfying

∂t�(t, x) + 1

2
‖∇�(t, x)‖2 ≤ 0.

Proof. As in [15,16], we derive the duality formula by integration by parts as follows. Notice the fact that

1

2
UW2(μ0,μ1)

2

= inf
m,μ, f

{ 1∫
0

∫
�

m(t, x)2

2μ(t, x)
dxdt + 1

2α

1∫
0

f (t)2dt : ∂tμ + ∇ · m = 0, μ(0, x) = μ0(x), μ(1, x) = μ1(x)
}

= inf
m,μ, f

sup
�

{ 1∫
0

∫
�

m(t, x)2

2μ(t, x)
+ 1

2α
f (t)2 + �(t, x)

(
∂tμ(t, x) + ∇ · m(t, x) − f (t)

)
dxdt

}

≥ sup
�

inf
m,μ, f

{ 1∫
0

∫
�

m(t, x)2

2μ(t, x)
+ 1

2α
f (t)2 + �(t, x)

(
∂tμ(t, x) + ∇ · m(t, x) − f (t)

)
dxdt

}

= sup
�

inf
m,μ, f

{ 1∫
0

∫
�

m(t, x)2

2μ(t, x)
− ∇�(t, x) · m(t, x) + 1

2α
f (t)2 + �(t, x) ·

(
∂tμ(t, x) − f (t)

)
dxdt

}

= sup
�

inf
m,μ, f

{ 1∫
0

∫
�

1

2

(m(t, x)

μ(t, x)
− ∇�(t, x)

)2
μ(t, x) − 1

2
‖∇�(t, x)‖2μ(t, x)dxdt

+
∫
�

(
�(1, x)μ(1, x) − �(0, x)μ(0, x)

)
dx

+
1∫

0

∫
�

(
− μ(t, x)∂t�(t, x) + 1

2α
f (t)2 − �(t, x) f (t)

)
dxdt

}

= sup
�

{∫
�

(
�(1, x)μ(1, x) − �(0, x)μ(0, x)

)
dx

+ inf
μ

1∫
0

∫
�

−μ(t, x)
(
∂t�(t, x) + 1

2
‖∇�(t, x)‖2

)
dxdt

+ inf
f

1∫
0

(∫
�

1

2α
f (t)2 − �(t, x) f (t)

)
dxdt

}

= sup
�

{∫ (
�(1, x)μ(1, x) − �(0, x)μ(0, x)

)
dx − 1

2α

1∫ (
α

∫
�(t, x)dx

)2
dt
� 0 �
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+ inf
μ

{
−

1∫
0

∫
�

μ(t, x)
(
∂t�(t, x) + 1

2
‖∇�(t, x)‖2

)
dxdt

}

+ 1

2α
inf

f

1∫
0

(
f (t) − α

∫
�

�(t, x)dx
)2

dt
}

= sup
�

{∫
�

(
�(1, x)μ(1, x) − �(0, x)μ(0, x)

)
dx − α

2

1∫
0

(∫
�

�(t, x)dx
)2

dt :

∂t�(t, x) + 1

2
‖∇�(t, x)‖2 ≤ 0

}
.

We have shown that the minimizer over m is obtained at m
μ = ∇�, and f (t) = α

∫
�

�(t, x)dx. The last equality holds because 
μ(t, x) ≥ 0, thus ∂t�(t, x) + 1

2 ‖∇�(t, x)‖2 ≤ 0.
We next show that the primal-dual gap is zero. From Proposition 4, the minimizer (μ, �) satisfies (2). Thus

1∫
0

∫
�

m(t, x)2

2μ(t, x)
dxdt + 1

2α

1∫
0

f (t)2dt

=
1∫

0

∫
�

1

2
‖∇�(t, x)‖2μ(t, x)dxdt + α

2

1∫
0

(∫
�

�(t, x)dx
)2

dt

=
1∫

0

∫
�

(
− 1

2
‖∇�(t, x)‖2μ(t, x) + ‖∇�(t, x)‖2μ(t, x)

)
dxdt + α

2

1∫
0

(∫
�

�(t, x)dx
)2

dt

=
1∫

0

∫
�

∂t�(t, x)μ(t, x) + �(t, x)
(

− ∇ · (μ(t, x)∇�(t, x))
)

dxdt + α

2

1∫
0

(∫
�

�(t, x)dx
)2

dt

=
∫
�

�(1, x)μ(1, x)dx −
∫
�

�(0, x)μ(0, x)dx

−
1∫

0

∫
�

�(t, x)
(
∂tμ(t, x) + ∇ · (μ(t, x)∇�(t, x))

)
dxdt + α

2

1∫
0

(∫
�

�(t, x)dx
)2

dt

=
∫
�

�(1, x)μ(1, x)dx −
∫
�

�(0, x)μ(0, x)dx

−
1∫

0

∫
�

�(t, x) f (t)dxdt + α

2

1∫
0

(∫
�

�(t, x)dx
)2

dt

=
∫
�

�(1, x)μ(1, x)dx −
∫
�

�(0, x)μ(0, x)dx + (−α + α

2
)

1∫
0

(∫
�

�(t, x)dx
)2

dt

=
∫
�

�(1, x)μ(1, x)dx −
∫
�

�(0, x)μ(0, x)dx − α

2

1∫
0

(∫
�

�(t, x)dx
)2

dt.

This concludes the proof. �
3. The numerical method

In this section, we propose to apply a primal-dual algorithm to solve unnormalized OT numerically. We then provide 
several numerical examples to demonstrate the effectiveness of this procedure.
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3.1. Algorithm

We present a primal-dual algorithm for problem (1). In particular, our method is based on its reformulation (4), named 
the minimal flux problem. Define the Lagrangian of (4):

L(m,μ, f ,�) =
1∫

0

∫
�

‖m(t, x)‖2

2μ(t, x)
dtdx + 1

2α

1∫
0

f (t)2dt

+
1∫

0

∫
�

�(t, x)
(
∂tμ(t, x) + ∇ · m(t, x) − f (t)

)
dxdt,

where �(t, x) is the Lagrange multiplier of the unnormalized continuity equation (1b).
Convex analysis shows that (m∗(t, x), μ∗(t, x), f ∗(t)) is a solution to (4) if and only if there is a �∗ such that (m∗, �∗)

is a saddle point of L(m, μ, f , �). In other words, we can compute minimization (4) by solving the following minimax 
problem

inf
m,μ, f

sup
�

L(m,μ, f ,�).

It is clear that L is convex in m, μ, f and concave in �, and the interaction term is a linear operator. This property allows 
us to apply the Chambolle-Pock first order primal-dual algorithm [6]. We choose to use the blockwise update as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mk+1(t, x) =arg inf
m

L(m,μk, f k,�k) + 1

2τ1

1∫
0

∫
�

‖m(t, x) − mk(t, x)‖2dxdt

μk+1(t, x) =arg inf
μ≥0

L(mk,μ, f k,�k) + 1

2τ1

1∫
0

∫
�

‖μ(t, x) − μk(t, x)‖2dxdt

f k+1(t) =arg inf
f

L(mk,μk, f ,�k) + 1

2τ1

1∫
0

‖ f (t) − f k(t)‖2dt

�̃k+1(t, x) =arg sup
�

L(m̃, μ̃, f̃ ,�) − 1

2τ2

1∫
0

∫
�

‖�(t, x) − �k(t, x)‖2dxdt

(m̃, μ̃, f̃ ) =2(mk+1,μk+1, f k+1) − (mk,μk, f k)

(8)

where τ1, τ2 are given step sizes for primal, dual variables. These steps can be interpreted as a gradient descent in the 
primal variable (m, μ, f ) and a gradient ascent in the dual variable �.

It turns out that the optimizations in above update (8) have explicit formulas. The first line becomes

mk+1(t, x) =arg inf
m

{‖m(t, x)‖2

2μk(t, x)
− m(t, x) · ∇�k(t, x) + 1

2τ1
‖m(t, x) − mk(t, x)‖2

}

= μk(t, x)

μk(t, x) + τ1

(
τ1∇�k(t, x) + mk(t, x)

)
.

The second line of (8) simplifies to

μk+1(t, x) =arg inf
μ≥0

‖mk(t, x)‖2

2μ(t, x)
− ∂t�

k(t, x) · μ(t, x) + 1

2τ1
|μ(t, x) − μk(t, x)|2.

The above problem has an analytical solution by solving a cubic equation. The third line of (8) gives

f k+1(t) =arg inf
f

{ 1

2α
f (t)2 − f (t)

∫
�

�k(t, x)dx + 1

2τ1
‖ f (t) − f k(t)‖2

}

= α

α + τ1

(
τ1

∫
�k(t, x)dx + f k(t)

)
.

�
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The fourth line of (8) gives

�k+1(t, x) = arg sup
�

{
�(t, x) · (∂tμ̃(t, x) + ∇ · m̃(t, x) − f̃ (t)) − 1

2τ2
‖�(t, x) − �k(t, x)‖2

}
= �k(t, x) + τ2

(
∂tμ̃

k+1(t, x) + ∇ · m̃(t, x) − f̃ (t)
)
.

Combining all above formulas, we are now ready to state the algorithm.

Algorithm: Primal-Dual method for Unnormalized OT
Input: Unnormalized densities μ0, μ1;

Initial guess of m0, μ0, �0, f 0, step size τ1, τ2.
Output: Minimizer μ(t, x); Dual variable �(t, x); Value UW2(μ0,μ1).

1. For k = 1,2, · · · Iterate until convergence

2. mk+1(t, x) = μk(t,x)
μk(t,x)+τ1

(
τ1∇�k(t, x) + mk(t, x)

)
;

3. Solve μk+1(t, x) = arg infμ≥0
‖mk(t,x)‖2

2μ(t,x) − ∂t�
k(t, x) · μ(t, x) + 1

2τ1
|μ(t, x) − μk(t, x)|2;

4. f k+1(t) = α
α+τ1

(
τ1

∫
�

�k(t, x)dx + f k(t)
)

;

5. �k+1(t, x) = �k(t, x) + τ2

(
∂tμ̃

k+1(t, x) + ∇ · m̃(t, x) − f̃ (t)
)

;

6. (m̃, μ̃, f̃ ) = 2(mk+1,μk+1, f k+1) − (mk,μk, f k);
7. end

Remark 10. We note that the above approach is not the classical primal-dual method. The classical method requires us to 
minimize (m, μ) simultaneously, in which a cubic equation in term of m

μ needs to be solved. Here we mainly implement 
a block relaxation version and perform a sequential minimization by updating the values of (m, μ). In each iteration, we 
make sure that (m, μ) lies in the domain of minimization problem (4).

3.2. Numerical grid

To apply the algorithm, we first define our numerical grid. For simplicity we consider the case where the space of 
interest is � = [0, 1]d and time T = [0, 1]. Further, for the following explanations we consider the problem when d = 2, 
however, our grid construction can be constructed on any dimension by extending it in the obvious way. We will use the 
same symbol to represent both the continuous μ, m, �, f and their respective discretized counterparts, as the difference 
between the two should be clear from context alone.

Let nt, nx , and ny be given then notate 	t = 1
nt−1 , 	x = 1

nx−1 , and 	y = 1
ny−1 . Using this notation we define the following 

sets:

�(i, j) = [i	x, (i + 1)	x] × [ j	y, ( j + 1)	y]
T(k) = [k	t, (k + 1)	t]

�(i−1/2, j) = [(i − 1/2)	x, (i + 1/2)	x] × [ j	y, ( j + 1)	y] for i = 0, . . . ,nx

�(i, j−1/2) = [i	x, (i + 1)	x] × [( j − 1/2)	y, ( j + 1/2)	y] for j = 0, . . . ,ny

where i = 0, . . . , nx − 1, j = 0, . . . , ny − 1, and k = 0 . . . , nt − 1 unless otherwise specified.
For the discretized problem we consider a f(k) that is constant along each T(k) , and consider μ(k,i, j) and �(k,i, j) that are 

constant along each T(k) × �(i, j) . The vector m(k,i, j) has two components mx,(k,i−1/2, j) and my,(k,i, j−1/2) , that are constant 
along T(k) ×�(i−1/2, j) and T(k) ×�(i, j−1/2) respectively. Numerically m quantifies the movement of density between each of 
the �(i, j) and its spacial neighbors (i.e. �(i−1, j), �(i, j−1), �(i+1, j) , and �(i, j+1)) and so it is natural to define the components 
of m not on �(i, j) but rather on �(i−1/2, j) , �(i+1/2, j) , �(i, j−1/2) and �(i, j+1/2) .

Using the above notation, we write the steps of the algorithm as:

mx,(k,i−1/2, j) =
{ μ(k,i−1, j)+μ(k,i−1, j)

μ(k,i, j)+μ(k,i−1, j)+2τ1

(
τ1 + ∇x�(k,i−1/2, j) + mx,(k,i−1/2, j)

)
if i = 1, . . . ,nx − 1

0 if i = 0,nx

my,(k,i, j−1/2) =
{ μ(k,i, j)+μ(k,i, j−1)

μ(k,i, j)+μ(k,i, j−1)+2τ1

(
τ1 + ∇y�(k,i, j−1/2) + my,(k,i, j−1/2)

)
if j = 1, . . . ,ny − 1

0 if j = 0,n
y



12 W. Gangbo et al. / Journal of Computational Physics 399 (2019) 108940
Table 1
Numerical parameters for our experiments. Note that for our one dimen-
sional experiments, ny has no value.

Parameter Value Parameter Value

Discretization Optimization

nt 15 Iterations 200,000
nx 35 τ1 10−3

ny 35 τ2 10−1

α 100

μ(k,i, j) = root+(1,−(τ1 ∗ ∂t�(k,i, j) + μ(k,i, j)),0,

− τ1

8

(
(m(k,i+1/2, j) + m(k,i−1/2, j))

2 + (m(k,i, j+1/2) + m(k,i, j−1/2))
2
)
)

f(k) = α

α + τ1

⎛
⎝τ1 +

∑
i

∑
j

�(k,i, j)	x	y + f(k)

⎞
⎠

�(k,i, j) = τ2 ∗
(
∂tμ̃(k,i, j) + ∇ · m̃(k,i, j) − f̃(k)

)
+ �(k,i, j)

where

∇x�(k,i−1/2, j) = �(k,i, j) − �(k,i−1, j)

	x

∇y�(k,i, j−1/2) = �(k,i, j) − �(k,i, j−1)

	y

∂t�(k,i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
	t

(
�(1,i, j)

2 + �(0,i, j)

)
if k = 0

1
	t

(
�(2,i, j)

2 − �0,i, j

)
if k = 1

1
2	t

(
�(k+1,i, j) − �(k−1,i, j)

)
if 1 < k < nt − 2

1
	t

(
�(nt−1,i, j) − �(nt −3,i, j)

2

)
if k = nt − 2

1
	t

(
−�(nt−1,i, j) − �(nt −2,i, j)

2

)
if k = nt − 1

root+(a,b, c,d) = the largest real solution to ax3 + bx2 + cx + d = 0

∂tμ(k,i, j) =

⎧⎪⎪⎨
⎪⎪⎩

1
	t

(
μ(1,i, j) − μ(0,i, j)

)
if k = 0

1
2	t

(
μ(k+1,i, j) − μ(k−1,i, j)

)
if 0 < k < nt − 1

1
	t

(
μ(nt−1,i, j) − μ(nt−2,i, j)

)
if k = nt − 1

∇ · m(k,i, j) = mx,(k,i+1/2, j) − mx,(k,i−1/2, j)

	x
+ my,(k,i, j+1/2) − my,(k,i, j−1/2)

	y
.

Note that the unusual boundary conditions of ∂t� arise from the need to satisfy∑
k

�(k,i, j)∂tμ(k,i, j)	t = −
∑

k

∂t�(k,i, j)μ(k,i, j)	t ∀i, j.

3.3. Numerical experiments

Now we present our numerical results. The first two experiments are in one dimension, and the rest are in two dimen-
sion. The numerical parameters for our experiments are given in Table 1.

3.4. Experiment 1

Here we consider the problem where μ0 and μ1 are both one dimensional Gaussians of equal integral, � = [0, 1] and

μ0 = N

(
x; 1

3
,0.1

)

μ1 = N

(
x; 2

,0.1

)

3
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Fig. 1. A plot of (A) W2(μ0,μ1), (B) U W2(μ0,μ1) and (C) f (t) in the unbalanced case.

N(x;μx,σ
2) = Ce

(x−μx)2

2σ2 where C is such that
∫
�

N(x;μx,σ
2)dx = 1

We plot the results in Fig. 1. In this case the input densities are balanced and so W2(μ0, μ1) and U W2(μ0, μ1) appear 
similar. Indeed U W2(μ0, μ1) = 0.055 and W2(μ0, μ1) = 0.056.

Note that even in this simple case the behavior of f (t) is nuanced. In this case, μ0 and μ1 are smooth, of equal integral 
and W2(μ0, μ1) is given by a simple analytical formula, and f (t) is not identically zero. Integrating Equation 1b in space 
and time yields |�| ∫[0,1] f (t)dt = ∫

�
μ1dx − ∫

�
μ0dx, and so for balanced inputs 

∫
[0,1] f (t)dt = 0, but experiment 1 shows 

that f 	≡ 0.

3.5. Experiment 2

Again consider � = [0, 1], however in this experiment we analyze the asymptotic behavior of U W2(μ0, μ1) as a function 
of α and α → 0 and α → ∞. Here

μ0 = N (x;0,0.1) + N

(
x; 1

3
,0.1

)

μ′
0 = 1

2

(
N (x;0,0.1) + N

(
x; 1

3
,0.1

))

μ1 = N

(
x; 2

3
,0.1

)
.

The balanced case refers to U W2(μ
′
0, μ1), and the unbalanced refers to U W2(μ0, μ1). In both cases we compute the 

unnormalized Wasserstein distance. The results are given in Fig. 2.
Figs. 2a - 2c show that (at least numerically) U W2(μ0, μ1; α), f (t, α) and �(t, x; α) converge as α → 0+ , α → ∞ when ∫

�
μ0dx = ∫

�
μ1dx. Further it seems plausible that for balanced inputs U W2(μ0, μ1; α) → W2(μ0, μ1) as α → 0+ . For any 

α the μ, m and � from W2(μ0, μ1) along with f (t) ≡ 0 satisfy the constraint of Equation 1b. Formally sending α → 0+
causes f (t) to approach 0.

Figs. 2d - 2f illustrate the asymptotic behavior of U W2(μ0, μ1; α) w.r.t. α when the inputs are unbalanced. In that case 
we (numerically) see that as α → 0, f (t; α) converges to a non-zero value, and both U W2(μ0, μ1; α) and �(t, x; α) diverge. 
This too is consistent with the formal argument that U W2(μ0, μ1; α) → W2(μ0, μ1) as α → 0+ .

In a predecessor of this work [4] the authors solve for W2(μ0, μ1) using Lagrange multipliers in a similar formula-
tion to equations (1a), (1b). In their work the Lagrange multiplier �(t, x) is given up to an additive constant. If indeed 
U W2(μ0, μ1; α) → W2(μ0, μ1) as α → 0+ and �(t, x; α) does converge then �(t, x; 0+) is given uniquely (as a limit) and 
there is no issue of undetermined constants.

3.6. Experiment 3

Now consider the two dimensional problem where � = [0, 1]2. In this case

μ0(x, y) = N (x, y;0.3,0.3,0.1,0.1) + N (x, y;0.7,0.3,0.1,0.1)

μ1(x, y) = N (x, y;0.7,0.7,0.1,0.1)

N(x, y;μx,μy,σ
2
1 ,σ 2

2 ) = Ce
(x−μx)2

2σ2
1

+ (y−μy )2

2σ2
2 ,

where C is a normalization constant such that 
∫
�

N(x, y; μx, μy, σ 2
1 , σ 2

2 )dxdy = 1. The results from our experiments are 
shown in Fig. 3. Note that although the mass of μ0 is twice that of μ1, the optimal f (t) is not non-positive. Indeed from 
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Fig. 2. A plot of the asymptotic behavior of U W2 in α with balanced and unbalanced inputs. Balanced: (A) U W2(μ′
0, μ1; α), (B) f ′(t; α), (C) �′(t, x; α), 

and unbalanced: (D) U W2(μ0, μ1; α), (E) f (t; α), (F) �(t, x; α).

Fig. 3. Plots of the μ(t, x, y) and f (t) for U W2(μ0,μ1). (A) μ(0.00, x, y), (B) μ(0.21, x, y), (C) μ(0.50, x, y), (D) μ(0.79, x, y), (E) μ(1.00, x, y), (F) f (t).

t = 0 to t ≈ 1
4 , f (t) is positive, before staying non-positive for the rest of the interval. This again illustrates that even in the 

case of Gaussian movement the behavior of f (t) is nuanced, and violates naive basic intuition.

3.7. Experiment 4

Consider again the two dimensional problem, however this time we choose μ0 and μ1 to be the cats in [19]. Our results 
are summarized in Fig. 4. This illustrates that our new method can be used as a general purpose OT solver for unbalanced 
inputs, and so can be used to interpolate between two functions.
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Fig. 4. Plots of the μ(t, x, y) and f (t) for U W2(μ0,μ1). (A) μ(0.00, x, y), (B) μ(0.21, x, y), (C) μ(0.50, x, y), (D) μ(0.79, x, y), (E) μ(1.00, x, y), (F) f (t).

Fig. 5. Plots of the μ0, μ1 and m(x) for U W1(μ0,μ1) for the two gaussian movement (A) μ0, (B) μ1, (C) m(x) and two (D) μ0, (E) μ1, (F) m(x).

3.8. L1 unnormalized Wasserstein metric

In this subsection, we also present several numerical results for U W1 in Fig. 5. For the completeness of this paper, we 
present the details here. Let � be a bounded domain. First μ0, μ1 are given probability densities in P(�) with equal total 
mass, i.e. 

∫
μ0dx = ∫

μ1dx = 1. The classical Wasserstein-1 distance has the minimal flux formulation as follows

W1(μ0,μ1) = inf
m

{∫
�

‖m(x)‖dx : ∇ · m(x) = μ0 − μ1
}
,

where m is a flux function satisfying the zero flux condition on the boundary of �.
As shown in Proposition 2, if μ0, μ1 do not have the equal total mass, i.e. 

∫
�

μ0dx 	= ∫
�

μ1dx, we modify the problem 
to
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UW1(μ0,μ1) = inf
m

{∫
�

‖m(x)‖dx + |c|
α

: ∇ · m(x) = μ0 − μ1 + c
}
, (9)

where c = 1
|�|

(∫
�

μ1(z)dz − ∫
�

μ0(z)dz
)

. The only difference between above two minimizations is that we add a constant 
c into the constraint of the variational problem. The constant c just slightly modifies the algorithm.

Here we apply a primal-dual algorithm for computing the unnormalized Wasserstein-1 distance [19]. Define the La-
grangian

L(m,�) =
∫

‖m(x)‖dx +
∫

�(x)(∇ · m(x) + μ1(x) − μ0(x) − c)dx ,

where � : � →R is the Lagrange multiplier corresponding to the equality constraint. We apply the first-order primal-dual 
method of Chambolle and Pock [6]. As in [19], the update for m, � are as follows.

Primal-Dual for Unnormalized Wasserstein-1 metric
Input: Discrete probabilities μ0, μ1

Initial guess of m0, step size τ1, τ2
Output: Optimal flux m and unnormalized Wasserstein-1 metric

1 Denote c = 1
|�| (

∫
μ1(x)dx − ∫

μ0(x)dx)
2. For k = 1,2, · · · (Iterate until convergence)
3. mk+1(x) = shrink(mk(x) + τ1(∇�k)(x), τ1) for x ∈ �

4. �k+1(x) = �k(x) + τ2((∇ · (2mk+1 − mk))(x) + μ1(x) − μ0(x) − c) for x ∈ �

5. end

Here the shrink operator in line 3 yields

shrink(v, τ ) =
{

(1 − τ/‖v‖)v for ‖v‖ ≥ τ
0 for ‖v‖ < τ .

4. Discussion

In this paper, we propose and solve an unnormalized optimal transport problem. We show that the proposed distance is 
well defined, and we obtain the minimizer using the same key Hamilton-Jacobi equation (3). More importantly, computing 
the Lp unnormalized Wasserstein metric has essentially the same computational complexity as the normalized one. In the 
future, we intend to study these related geometric properties and applications in inverse problems, machine learning and 
mean field games.
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