HOMEWORK ASSIGNMENTS 245C, SPRING 2024

WILFRID GANGBO

4. Homework \#4: Due Friday 31 May

Exercise 4.1. Let $O \subset \mathbb{R}^{d}$ and let $u \in C^{2}(O)$ be a harmonic function in the sense that $\triangle u=0$ on O. Show that if $r>0, x \in O$ and $B_{r}(x) \subset O$ then if ν is the surface measure ((d 1)-Hausdorff dimensional measure) then

$$
u(x)=\frac{1}{\nu\left(\partial B_{r}(x)\right)} \int_{\partial B_{r}(x)} u d \nu=\frac{1}{\mathcal{L}^{d}\left(B_{r}(x)\right)} \int_{B_{r}(x)} u d y
$$

Hint. Set

$$
\phi(r)=\frac{1}{\nu\left(\partial B_{r}(x)\right)} \int_{\partial B_{r}(x)} u d \nu
$$

Show that

$$
\phi^{\prime}(r)=\frac{1}{\nu\left(\partial B_{1}(0)\right)} \int_{\partial B_{1}(0)} \nabla u(x+r w) \cdot w \nu(d w)=0
$$

Use the change of variables formula

$$
\int_{B_{r}(x)} u d y=\int_{0}^{r}\left(\int_{\partial B_{s}(x)} u d \nu\right) d s
$$

Exercise $4.2(*)$. Let $O \subset \mathbb{R}^{d}$ and let $u \in C^{2}(O)$ be a harmonic function. Show that $u \in C^{\infty}(O)$.

Hint. Let $\left(\varrho_{\epsilon}\right)_{\epsilon}$ be the standard mollifiers. Use Exercise 4.1 to show that $\varrho_{\epsilon} * u=u$.
Exercise 4.3. Assume that $D \subset \mathbb{C}$ is an open set and $f: D \rightarrow \mathbb{C}$ is differentiable on.D Show that $u:(x, y) \rightarrow \operatorname{Re}(f(x+i y))$ and $v:(x, y) \rightarrow \operatorname{Im}(f(x+i y))$ are differentiable on D and satisfy the Cauchy-Riemann equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

Conclude that if u and v are of class C^{2} then they are harmonic functions.
Exercise 4.4. If $f \in C^{\infty}$ show that $f \in \mathcal{S}$ if and only if $x^{\beta} \partial^{\alpha} f$ is bounded for all multiindices α, β if and only if $\partial^{\alpha}\left(x^{\beta} f\right)$ is bounded for all multi-indices α, β.
Exercise $4.5(*)$. Suppose that Σ is a σ-algebra and (X, Σ, μ) is a measure space. Suppose that $-\infty<a<b<+\infty$ and $f: X \times[a, b] \rightarrow \mathbb{R}$ is such that $f(\cdot, t) \in L^{1}(\mu)$ for each $t \in[a, b]$. Let

$$
F(t):=\int_{X} f(x, t) \mu(d x)
$$

(i) Suppose there exists $g \in L^{1}(\mu)$ such that $|f(x, t)| \leq g(x)$ for all $x \in X$ and $t \in[a, b]$. Show that if $\lim _{t \rightarrow t_{0}} f(x, t)=f\left(x, t_{0}\right)$ for every $x \in X$ then

$$
\lim _{t \rightarrow t_{0}} F(t)=F\left(t_{0}\right)
$$

(ii) Suppose that $\partial f / \partial t$ exists and there exists $h \in L^{1}(X)$ such that $|(\partial f / \partial)(t, x)| \leq h(x)$ for all $x \in X$ and $t \in[a, b]$. Show that F is differentiable and

$$
F^{\prime}(t)=\int_{X} \frac{\partial f}{\partial t}(x, t) \mu(d x) .
$$

Exercise 4.6 (*). Suppose that $f \in L^{1}, g \in C^{k}$ and $\partial^{\alpha} g$ is bounded for $|\alpha| \leq k$. Show that $f * g \in C^{k}$ and $\partial^{\alpha}(f * g)=f *\left(\partial^{\alpha} g\right)$ for $|\alpha| \leq k$.
Exercise 4.7 (*). Suppose that $0<p<q<r \leq \infty$.
(i) Show that $L^{q} \subset L^{p}+L^{r}$.
(ii) Let $\lambda \in(0,1)$ be defined by $q^{-1}=\lambda p^{-1}+(1-\lambda) r^{-1}$. Show that $L^{p} \cap L^{r} \subset L^{q}$ and $\|f\|_{q} \leq\|f\|_{p}^{\lambda}\|f\|_{r}^{1-\lambda}$
Proof. (i) Let $f \in L^{q}$ and set

$$
E:=\{|f|>1\}, \quad g:=f \chi_{E}, \quad h:=f \chi_{E^{c}} .
$$

We have $f=g+h,|g|^{p}=|f|^{p} \chi_{E} \leq|f|^{q} \chi_{E}$ and $|h|^{r}=|f|^{r} \chi_{E^{c}} \leq|f|^{q} \chi_{E^{c}}$.
(ii) We only consider the case $r<+\infty$ since the other case is rather straightforward to treat. We have

$$
\|f\|_{q}^{q}=\int_{\Omega}|f|^{\lambda q}|f|^{(1-\lambda) q} d \mu \leq\left\||f|^{\lambda q}\right\|_{\frac{p}{\lambda q}}\left\||f|^{(1-\lambda) q}\right\|_{\frac{r}{(1-\lambda) q}}=\|f\|_{p}^{\lambda q}\|f\|_{r}^{(1-\lambda) q}
$$

Exercise 4.8. Let $f(x)=1 / 2-x$ on $[0,1)$ and extend f periodically to \mathbb{R}.
(i) Show that

$$
\hat{f}(0)=0, \quad \text { and } \quad \hat{f}(k)=\frac{1}{2 \pi i k}, \quad \text { if } \quad k \neq 0
$$

(ii) Show that (use Parseval inequality)

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

Exercise $4.9((*)$ Wirtinger's inequality $)$. Show that if $f \in C^{1}([a, b])$ is such that $f(a)=$ $f(b)=0$ then

$$
\int_{a}^{b} f^{2}(x) d x \leq \frac{(b-a)^{2}}{\pi^{2}} \int_{a}^{b}\left(f^{\prime}(x)\right)^{2} d x
$$

Hint: It suffices to prove the result when $a=0$ and $b=1 / 2$. Extend f to $[-0.5,0.5]$ by setting $f(-x)=-f(x)$ and then extend f periodically on \mathbb{R}. Check that $f \in C^{1}(\mathbb{T})$ and apply Parseval inequality.

