HOMEWORK ASSIGNMENTS 245C, SPRING 2024

WILFRID GANGBO

3. Homework \#3: Due Friday 17 May

Exercise 3.1. Let (X, \mathcal{T}) be a topological space and let $B \subset X$.
(i) Show that $\operatorname{int}(B)$ is the union of the open sets contained in B.
(ii) Show the \bar{B} is the intersection of the closed sets containing B.

Exercise 3.2. Let (X, \mathcal{T}) be a topological space and let $B \subset X$. Show that $f: X \rightarrow \mathbb{R}$ is continuous if and only if $f^{-1}(J) \in \mathcal{T}$ for every open set $J \subset \mathbb{R}$.
Exercise 3.3. Let (X, \mathcal{T}) be a topological space and let $K \subset X$.
(i) Show that if K is closed and X is compact, then K is compact.
(ii) Show that if X is a Hausdorff space and K is compact then K is closed.

Hint. (i) Use the fact that if $\left\{O_{i}\right\}_{i \in I}$ is an open cover of K, then $\left\{K^{c}\right\} \cup\left\{O_{i}\right\}_{i \in I}$ is an open cover of X. (ii) Show that for every $x \notin K$ there exist two disjoint open sets U, V such that $x \in U$ and $F \subset V$.

Exercise 3.4 (*). Let X be an LCH space and let μ be a Radon measure on X.
(i) Let N be the union of all open $U \subset X$ such that $\mu(U)=0$. Show that $\mu(N)=0$. The complement of N, denoted by $\operatorname{spt}(\mu)$ is called the support of μ.
(ii) Show that $x \in \operatorname{spt}(\mu)$ if and only if $\int_{X} f d \mu>0$ for every $f \in C_{c}(X,[0,1])$ such that $f(x)>0$.
Exercise 3.5 (*). Let X be an LCH space and let μ be a Radon measure on X. Show that μ is inner regular on every σ-finite set.

Exercise $3.6(*)$. Let $X=\mathbb{N}$ with the discrete topology. Show that $C_{0}(X)^{*}=\ell^{1}$ and $\left(\ell^{1}\right)^{*}=\ell^{\infty}$.

Exercise 3.7. Let $p \in[1,+\infty)$ and suppose that $f \in L^{p}(\mathbb{R})$. If there exists $h \in L^{p}(\mathbb{R})$ such that

$$
\lim _{y \rightarrow 0}\left\|\frac{\tau_{-y} f-f}{y}-h\right\|_{p}=0
$$

we call h the strong L^{p}-derivative of f. If $f \in L^{p}\left(\mathbb{R}^{d}\right)$, L^{p}-partial derivatives of f are defined similarly.

Suppose that p and q are conjugate exponents, $f \in L^{p}\left(\mathbb{R}^{d}\right), g \in L^{q}\left(\mathbb{R}^{d}\right)$, and $\partial_{j} f$, the strong L^{p}-partial derivatives of f exists. Show that the ordinary derivative $\frac{\partial}{\partial x_{j}}(f * g)$ exist and equal $\left(\partial_{j} f\right) * g$.
Exercise $3.8(*)$. Let $p \in[1,+\infty)$ and suppose that $f \in L^{p}(\mathbb{R})$. Show that the following are equivalent
(i) The strong L^{p}-derivative of f exists, call it h.
(ii) f is absolutely continuous on every bounded interval (perhaps after modification on a null set) and its pointwise derivative f^{\prime} is in L^{p}, in which case $h=f^{\prime}$.
For "only if" use exercise 3.7 with $g \in C_{c}(\mathbb{R})$ such that $\int_{\mathbb{R}} g=1, f * g_{t} \rightarrow f$ and $\left(f * g_{t}\right)^{\prime} \rightarrow h$ as $t \rightarrow 0$. For "if", write

$$
\frac{f(x+y)-f(x)}{y}-f^{\prime}(x)=\frac{1}{y} \int_{0}^{y}\left(f^{\prime}(x+t)-f^{\prime}(x)\right) d t .
$$

