HOMEWORK ASSIGNMENTS 245C, SPRING 2024

WILFRID GANGBO

2. Homework #2; Due Friday 03 May

Notation. Given a closed ball $B_r(a)$ of center a and radius r > 0, we denote by $B_r(a)$ the ball of center a and radius 5r.

Exercise 2.1 (*). Let $f : \mathbb{R}^d \to [-\infty, +\infty]$ be a \mathcal{L}^d -measurable function. Show that if $f \in L^{\infty}(\mathbb{R}^d)$ then $\|f\|_{\infty} = \inf_{\alpha>0} \{\alpha : \lambda_f(\alpha) = 0\}.$

Exercise 2.2. Let $f \in L^1(\mathbb{R}^d)$ be such that $||f||_1 > 0$. Show that there exist C, R > 0 such that $M(f)(x) \ge C|x|^{-d}$ for |x| > R. Hence, $||Mf||_{L^1} = +\infty$ and $\lambda_{M(f)}(\alpha) \ge C'/\alpha$ when α is small, so the estimate in the maximal theorem is essentially sharp.

Exercise 2.3. For $f : \mathbb{R}^d \to [-\infty, \infty]$, we define

$$M_*(f)(x) = \sup_B \left\{ \frac{1}{\mathcal{L}^d(B)} \int_B |f(y)| dy : x \in B, \ B \subset \mathbb{R}^d \text{ is a non degenerate ball} \right\}.$$

Show that $M(f) \leq M_*(f) \leq 2^d M(f)$.

Exercise 2.4. Let N be sets of finite Lebesgue measure.

(i) Show that if $\mathcal{L}^d(N) = 0$ then for every $\delta, \epsilon > 0$, there exists a family $\{B_j\}_{i=1}^{\infty}$ of disjoint non degenerate closed balls such that diam $(B_i) < \delta$,

$$N \subset \bigcup_{i=1}^{\infty} B_i$$
 and $\sum_{i=1}^{\infty} \mathcal{L}^d(B_i) < \epsilon.$

(ii) Show that if A ⊂ ℝ^d is a set of finite Lebesgue measure then for every δ, ε > 0 there exists a family {C_j}_{j=1}[∞] of disjoint non-degenerate closed balls such that diam(C_j) < δ and there exists a family {B_j}_{i=1}[∞] of disjoint non degenerate closed balls such that diam(B_i) < δ and

$$A \subset \left(\bigcup_{j=1}^{\infty} C_j\right) \cup \left(\bigcup_{i=1}^{\infty} \hat{B}_i\right), \qquad \sum_{j=1}^{\infty} \mathcal{L}^d(C_j) + 5^d \sum_{i=1}^{\infty} \mathcal{L}^d(B_i) \le \mathcal{L}^d(A) + 2\epsilon.$$

(iii) Conclude that if $A \subset \mathbb{R}^d$ is a set of finite Lebesgue measure then

$$\mathcal{L}^{d}(A) = \inf_{\mathcal{F}} \Big\{ \sum_{B \in \mathcal{F}} \mathcal{L}^{d}(B) \Big\},$$

where the infimum is performed over the set of \mathcal{F} , made of countably many non degenerate pairwise disjoint closed balls of radius less than δ , whose union covers A.

Exercise 2.5 (*). Let $f : \mathbb{R}^d \to \mathbb{R}^d$ be an *l*-Lipschitz function. Show that if $A \subset \mathbb{R}^d$ then $\mathcal{L}^d(f(A)) \leq l^d \mathcal{L}^d(A)$.

Exercise 2.6 (*). Let $O \subset \mathbb{R}^d$ be an open set and let $f \in C^1(O, \mathbb{R}^d)$. Let $a \in O$ and denote by $B_r(a)$ the closed ball of radius r, centered at a and by $D_r(a)$ the interior of $B_r(a)$. Set

$$L(x) := f(a) + \nabla f(a)(x - a)$$

Show that if $det(\nabla f)(a) > 0$ then for r > 0 small enough

$$f(B_r(a)) \subset L(B_{r+o(r)}(a))$$
 and $L(B_r(a)) \subset f(B_{r+o(r)}(a)).$

Hint. By the inverse function theorem, there exists $r_0 > 0$ such that $B_{r_0}(a) \subset O$, $f(D_r(a))$ is open, $f: D_{r_0}(a) \to f(D_{r_0}(a))$ is a bijection with a continuous inverse.

Exercise 2.7 (*). Let $f : \mathbb{R}^d \to \mathbb{R}^d$ be a *l*-Lipschitz function. We learned that if $A \subset \mathbb{R}^d$ is \mathcal{L}^d -measurable then $y \to \mathcal{H}^0(f^{-1}(y) \cap A)$ is a \mathcal{L}^d -measurable function and so, we can define

$$\bar{\mu}(A) = \int_{\mathbb{R}^d} \mathcal{H}^0\big(f^{-1}(y) \cap A\big) dy.$$

Show that $\bar{\mu}$ can be extended to an outer measure μ which is a Radon measure on \mathbb{R}^d . Show that every \mathcal{L}^d -measurable set is μ -measurable.

Exercise 2.8 (*). Let $f : \mathbb{R}^d \to \mathbb{R}^d$ and μ be as in Exercise 2.7.

- (i) Show that $\mu \ll \mathcal{L}^d$ (μ is absolutely continuous with respect to \mathcal{L}^d).
- (ii) Show that if we further assume that $f \in C^1(\mathbb{R}^d, \mathbb{R}^d)$ and $a \in \mathbb{R}^d$ is such that $\det(\nabla f(a)) > 0$, then

$$\lim_{r \to 0} \frac{\mathcal{L}^d \big[f \big(B_r(a) \big) \big]}{r^d} = \lim_{r \to 0} \frac{\mathcal{L}^d \big[L \big(B_r(a) \big) \big]}{r^d}.$$