HOMEWORK ASSIGNMENTS 245C, SPRING 2024

WILFRID GANGBO

1. Homework #1; Due Wednesday 17 April

In this homework, $(\Omega, \mathcal{M}, \mu)$ is an outer measure space and $f : \Omega \to [-\infty, +\infty]$ is measurable function which assume finite values μ -almost everywhere.

Exercise 1.1 (*). Let $g \in C(\mathbb{R}^d)$ be such that for all $a \in \mathbb{R}^d$, there exists $p \in \mathbb{R}^d$ such that $q(x) \ge q(a) + (x - a, p) \quad \forall x \in \mathbb{R}^d$.

Show that g is convex.

Exercise 1.2 (*). Let $g \in C^2(\mathbb{R}^d)$. Show that g is convex if and only if $\nabla^2 g \ge 0$. In this case, show that for all $a \in \mathbb{R}^d$ we have

$$g(x) \ge g(a) + (x - a, \nabla g(a)) \qquad \forall x \in \mathbb{R}^d$$

Exercise 1.3. Let $p \in [1, +\infty)$.

- (i) Let $g: \Omega \to [-\infty, +\infty]$ be measurable functions which assume finite values μ -almost everywhere. Show that if $c \in \mathbb{R}$ then $[cf]_p = |c|[f]_p$, and $[f+g]_p \leq 2([f]_p^p + [g]_p^p)^{1/p}$.
- (ii) Deduce that weak $(L^p(\Omega))$ is a vector space.
- (iii) Show that the "balls" $\{g \in \text{weak}(L^p(\Omega)) : [g-f]_p < r\}_{\{f \in \text{weak}(L^p(\Omega)), r > 0\}}$ generate a topology on weak $(L^p(\Omega))$ that makes weak $(L^p(\Omega))$ into a topological vector space.

Exercise 1.4 (*). Let $p \in [1, +\infty)$.

- (i) Show that if $f \in \text{weak}(L^p(\Omega))$ and $\mu(\{x \in \Omega : f(x) \neq 0\}) < +\infty$ then $f \in L^q(\Omega)$ for any $q \in [1, p)$.
- (ii) Show that if $f \in \text{weak}(L^p(\Omega)) \cap L^{\infty}(\Omega)$ then $f \in L^q(\Omega)$ for any $q \in (p, +\infty)$.

Exercise 1.5 (*). For A > 0, let $E(A) = \{|f| > A\}$ and set

$$h_A = f \chi_{\Omega \setminus E(A)} + A \operatorname{sgn}(f) \chi_{E(A)}, \quad g = f - h_A.$$

Show that

$$\lambda_{g_A}(\alpha) = \lambda_f(\alpha + A), \qquad \lambda_{h_A}(\alpha) = \begin{cases} \lambda_f(\alpha) & \text{if } \alpha < A \\ 0 & \text{if } \alpha \ge A \end{cases}$$

Exercise 1.6 (*). Let $p \in [1, +\infty)$. Show that $f \in L^p(\Omega)$ if and only if $\sum_{k=-\infty}^{+\infty} 2^{pk} \lambda_f(2^k) < +\infty$.

Exercise 1.7 (*). Let $p \in (0, +\infty)$. Show that if $f \in L^p(\Omega)$ then $\lim_{\alpha \to 0} \alpha^p \lambda_f(\alpha) = 0$.

DEPARTMENT OF MATHEMATICS, UCLA, LOS ANGELES, CA 90095 Email address: wgangbo@math.ucla.edu