
HOMEWORK ASSIGNMENTS: MATH 245 B

WILFRID GANGBO

Only the Exercises marked (∗) will be collected and either two or three of them will be graded
from each set of homework assignment. However, we suggest that you work all exercises of
the assignment.

You are allowed to use Exercise N to solve Exercise N+1 even if you failed to answer correctly
Exercise N ; but not allowed to go the other way around. In Exercise N , you are allowed to
use question k to solve question k + 1 even if you failed to answer correctly question k.

1. Homework #1: Due on Friday 20 January

Below, X is a non empty set.

Definition 1. We call M ⊂ 2X a monotone class if for any (An)∞n=1, (Bn)∞n=1 ⊂ M such
that An ⊂ An+1 and Bn+1 ⊂ Bn for all n, we have ∪∞n=1An ∈M and ∩∞n=1Bn ∈M.

Exercise 1.1. Let S be a semialgebra on X and let A be the collection of subsets of X which
consist of finite unions of elements of S. Show that A is an algebra on X.

Exercise 1.2 (∗). Suppose S is a semialgebra on X and µ is a finitely additive function on
S. Suppose E1, · · · , En ∈ S are disjoint, F1, · · · , Fm ∈ S are disjoint and ∪ni=1Ei ∈ S.

(i) Show that if ∪ni=1Ei = ∪mj=1Fj then

n∑
i=1

µ(Ei) =

n∑
j=1

µ(Fj).

(ii) Show that µ extends uniquely to a finitely additive set function on the set A defined in
Exercise 1.1.

Exercise 1.3 (∗). Assume A is an algebra on X and µ0 : A → [0,+∞] is such that

(i) µ0(∅) = 0,

(ii) E,F ∈ A and E ∩ F = ∅ implies µ0(E ∪ F ) = µ0(E) + µ0(F ).

(iii) If {Ei}∞i=1 ⊂ A is such that ∪∞i=1Ei ∈ A then µ0(∪∞i=1Ei) ≤
∑∞

i=1 µ0(Ei).

Define

µ∗(A) := inf
{Ei}∞i=1

{ ∞∑
i=1

µ0(Ei) : {Ei}∞i=1 ⊂ A, A ⊂ ∪∞i=1Ei

}
.

Show that µ∗ is an outer measure on X, µ∗ coincides with µ0 on A and every element of A
is µ∗–measurable.
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Exercise 1.4 (∗). Let S be a semialgebra on X and assume that µ0 : S → [0,+∞] is such that
µ0(∅) = 0. Show that if µ0 is finitely additive and countably sub–additive then so is also its
extension (guaranteed by Exercise 1.2) to the algebra A generated by taking all finite unions
of sets from S.

Exercise 1.5 (∗). (Monotone Class Lemma) Let A,M⊂ 2X be such that M is a monotone
class and A is an algebra. Show that if A ⊂M then σ(A) ⊂M.

Hint: It suffices to show that m(A), the intersection of all monotone classes on X which
contain A, is nothing but σ(A). To achieve this goal, we could go through the following steps:

(i) Show that if M0 is a monotone class, so is M′0 := {Ec : E ∈ M0} and apply this to
show that m(A) is closed under complement.

(ii) For E ⊂ X, show that ME := {C ∈ m(A) : C ∩ E ∈ m(A)} is a monotone class.

(iii) Show that for any C ∈ A, we have m(A) ⊂ MC . Deduce that the same conclusions
hold for C ∈ m(A) and show that m(A) is an algebra.

Exercise 1.6. Let A ⊂ 2X be an algebra and let µ and ν be finite measures on σ(A). Show
that

µ = ν on A =⇒ µ = ν on σ(A).

Show that the result remains true if µ(X) = ∞ and there exists {Xn}∞n=1 ⊂ A such that
X = ∪∞n=1Xn and µ(Xn) <∞.

Hint: Assume F is a σ-algebra on which µ and ν are finite measures. Apply the monotone
class lemma to M := {A ∈ F : µ[A] = ν[A]}.

2. Homework #2: Due on Friday 03 February

If x ∈ Rd and r > 0, we denote by B(x, r) the closed ball in Rd, centered at x and of radius r.

Definition 2. Let Σ be a σ–algebra on a set X. We call µ : Σ→ [−∞,+∞] a signed measure
if µ(∅) = 0 and whenever (Ak)k ⊂ Σ is a sequence of pairwise disjoint sets, then

∑∞
k=1 µ(Ak)

is defined as an extended value and

∞∑
k=1

µ(Ak) = µ
(
∪∞k=1 Ak

)
.

Definition 3. Let µ and ν be two measures on Σ, which is a σ–algebra on a set X. We say
that f = dν/dµ if ν << µ and f is a non–negative µ–measurable function such that

ν(A) =

∫
A
fdµ,

for any µ–measurable set A ⊂ X.

Theorem A (Jordan decomposition). Let Σ be a σ–algebra on a set X and let µ : Σ →
[−∞,+∞] be a signed measure. Then there exists two measures µ1 and µ2, at least one of
which must be finite such that µ = µ2 − µ1, and µ1 ⊥ µ2. In fact

µ2(E) = sup
A

{
µ(A) : A ⊂ E,A ∈ Σ

}
, µ1(E) = sup

A

{
− µ(A) : A ⊂ E,A ∈ Σ

}
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Exercise 2.1 (∗). Let µ be a Borel (outer) measure on a separable metric space X. Let V be
the union of all open sets O ⊂ X such that µ(U) = 0 (sptµ := X \ V is called the support of
µ).

(i) Show that X is second countable (has a countable basis of open sets).

(ii) Show that µ(X \ sptµ) = 0.

(iii) Further assume that µ(X) <∞. Show that sptµ is the smallest closed subset K such
that µ(K) = µ(X).

Exercise 2.2. Let E ⊂ Rd be a Ld–measurable set of finite measure and let V be a family
of non–degenerate closed balls, which is a fine cover for E. Show that there exists a finite or
countably infinite disjoint subcollection {Uj}j∈I ⊂ V such that

Ld
(
E \ ∪j∈IUj

)
= 0.

Hint. Use the Vitali’s covering Lemma or its Corollaries.

Exercise 2.3. Let µ and ν be two Radon (outer) measures on Rd and fix α ∈ (0,∞). For
A ⊂ Rd (not necessarily measurable), show that the following hold:

(i) If A ⊂ {x ∈ Rd : Dµν(x) ≤ α} then ν(A) ≤ αµ(A).

(ii) If A ⊂ {x ∈ Rd : Dµν(x) ≥ α} then ν(A) ≥ αµ(A).

Exercise 2.4 (∗). Let L be the class of Lebesgue measurable sets in Rd and let µ be the
Lebesgue measure on Rd. Let (νj)j be a monotone sequence of Radon measures on Rd such

that ν(E) := limj→∞ νj(E) is a Radon measure on Rd. Show that

Dµν = lim
j→∞

Dµνj a.e.

Exercise 2.5. Let µ be the Lebesgue measure on Rd and let f ∈ Lp(Rd, µ) for some p ∈ [1,∞).
Show that

lim
B→x

1

µ(B)

∫
B
|f − f(x)|pµ(dy) = 0, for µ a.e. x ∈ Rd.

Here, B → x means that x ∈ B and the radius of B tends to 0.

Exercise 2.6 (∗). Let a < b be real numbers and let F : [a, b]→ R be a continuous function.

(i) Show that the set A of points of differentiability of F is a Borel set.

(ii) Suppose that F is monotone nondecreasing and µF is the associated Lebesgue–Stieltjes
measure. Let B∞ := {F ′ = +∞}. Show that for any Borel set E

µF (E) =

∫
E
F ′(t)dt+ µF (E ∩B∞).

Similar results can be obtained when F is of bounded variations and µF is a signed measure.

Exercise 2.7. Let (νj)j be a sequence of Borel measures on a metric space Ω and let µ be a
Borel measure on Ω. Show that if νj ⊥ µ for all j then

∑∞
j=1 νj ⊥ µ.

Exercise 2.8 (∗). Let X = [0, 1], Σ is the σ algebra of Borel subset of X, m := L1|X is the
Lebesgue measure on X and µ is the counting measure.

(i) Show that m << µ but there is no f such that f = dm/dµ.

(ii) Show that µ has not Lebesgue decomposition with respect to m.
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Exercise 2.9. Let µ be a Radon measure on Rd and let r > 0. Show that x → µ
(
B(x, r)

)
is

upper semicontinuous in the sense that lim supy→x µ
(
B(y, r)

)
≤ µ

(
B(x, r)

)
.

Exercise 2.10 (∗). Let µ and ν be σ–finite Borel measures on Rd, which are Borel–regular
and such that ν << µ. Show that if λ := µ + ν and f = dν/dλ, then 0 ≤ f < 1 µ a.e. and
dν/dµ = f/(1− f).

Exercise 2.11 (∗). Let (Rd,Σ, µ) be a finite Borel regular measure space. Let N be a sub-σ–
algebra of Σ and let ν := µ|N . Show that if f ∈ L1(µ), then there exists a unique g ∈ L1(N )
(which implies g is ν–measurable) such that

∫
E fdµ =

∫
E gdν for all E ∈ N . In probability

theory, g is called the conditional expectation of f on N and is denoted by E(f |N ).

The results remain true if (Rd,Σ, µ) is replaced by any σ–finite measure space (X,Σ, µ).

3. Homework #3: Due on Friday 17 February

If X is a metric space, we denote by Cb(X) the set of continuous and bounded functions
f : X → R. We denote by C0(X) the set of f ∈ C(X) which vanish at infinity. This means
that for every ε > 0, {|f | ≥ ε} is compact. We denote by P(X) the set of Borel probability
measure on X.

Definition 4. Let X be a separable metric space.
(i) Let µ± be measures on X such that µ+ ⊥ µ− and either µ+(X) < +∞ or µ−(X) < +∞.
We call µ := µ+ − µ− a signed measure and call |µ| := µ+ + µ− the total variation of µ.
We call µ+ the positive variation of µ and call µ− the negative variation of µ. The Jordan
decomposition theorem asserts that µ± are uniquely determined by µ.
(ii) If in addition µ± are Radon measures, we call µ a signed Radon measure. We denote
by M(X,R) the set of signed Radon measures on X such that µ±(X) < +∞. We write
‖µ‖ = |µ|(X).
(iii) We say that (µn)∞n=1 ⊂M(X,R) converges vaguely to µ∞ ∈M(X,R) if

lim
n→∞

∫
X
f(x)µn(dx) =

∫
X
f(x)µ(dx), ∀f ∈ C0(X)

Definition 5. Let X be a separable metric space, let µ ∈ P(X) and let (µn)n be a sequence
in P(X).
(i) We say that (µn)n converges narrowly to µ if

lim
n→∞

∫
X
f(x)µn(dx) =

∫
X
f(x)µ(dx), ∀f ∈ Cb(X)

(ii) We say that (sptµn)n converges to sptµ in the sense of Kuratowski if for all x ∈ sptµ
there exists xn ∈ sptµn such that limn→∞ xn = x.

Exercise 3.1. Suppose (µn)n is a sequence of Radon measures on Rd and µ is a Radon
measure on Rd. Show that the following are equivalent:
(i) (µn)n converges weakly to µ.
(ii) For every compact set K ⊂ Rd and every open set O ⊂ Rd, we have

lim inf
n

µn(O) ≥ µ(O), lim sup
n

µn(K) ≤ µ(K).

(iii) For every bounded Borel set B ⊂ Rd such that µ(∂B) = 0, we have limn µn(B) = µ(B).
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Exercise 3.2 (∗). Let X be a locally compact complete separable metric space. Let O ⊂ X be
an open set and let K ⊂ O be a non empty compact set.
(i) Show that for every x ∈ O, there exists a compact neighborhood Kx of x such that Kx ⊂ O.
(ii) Show that there exists an open set V such that V̄ is compact and K ⊂ V ⊂ V̄ ⊂ O.
(iii) (Locally compact version of Uryshon’s Lemma) Show that there exists a function g ∈
C(X, [0, 1]) such that g = 1 on K and g = 0 outside a compact subset of O.

Exercise 3.3 (∗). Let X be a locally compact complete separable metric space. Show that
C0(X) is the uniform closure of Cc(X).

Hint: Apply Exercise 3.2.

Exercise 3.4 (∗). Let L : C0(Rd) → R be a linear which is bounded for the uniform norm.
Show that there exist bounded linear functionals L± : C0(Rd) → R such that L = L+ − L−
and L±(f) ≥ 0 for all non negative f ∈ C0(Rd). Conclude that one can extend the Riesz
representation theorem to L.

Exercise 3.5 (∗). Show that there exists a countable set {φj}∞j=1 ⊂ Cc(Rd), which is dense

in Cc(Rd) for the uniform topology.

Exercise 3.6 (∗). Let X be a locally compact complete separable metric space. Show that if
µ is a Radon measure on X such that µ(X) =∞ then there exists f ∈ C0(X) such that f ≥ 0
and

∫
X fdµ =∞.

Exercise 3.7 (∗). Let X be a locally compact complete separable metric space. Show that,
every positive linear functional on C0(X) is bounded.

Exercise 3.8. Let C0, C ⊂ Cb(X) be non empty and such that for any f ∈ C, we have

sup
h

{∫
X
h(x)µ(dx) | h ∈ C0, h ≤ f

}
=

∫
X
f(x)µ(dx) = inf

h

{∫
X
h(x)µ(dx) | h ∈ C0, h ≥ f

}
.

(i) Show that if {µ} ∪ {µk}k ⊂ P(X) is such that

(3.1) lim
k→∞

∫
X
f(x)µk(dx) =

∫
X
f(x)µ(dx)

for every f ∈ C0 then (3.1) holds for every f ∈ C.
(ii) Show that if Span (C) is dense in Cb(X) for the uniform norm and (3.1) holds for every
f ∈ C then (µk)k narrowly converges to µ.

Exercise 3.9 (∗). Let X be a separable metric space. Show that if (µn)n narrowly converges
to µ in P(X) then

(
sptµn

)
n

converges to sptµ in the sense of Kuratowski.

4. Homework #4: Due on Friday 03 March

Exercise 4.1 (∗). Let G be a subspace of a Banach space E.
(i) Show that every linear and continuous g : G→ R admits a linear and continuous extension
f : E → R such that ‖g‖G′ = ‖f‖E′ .
(ii) Show that for every x0 ∈ E, there exists f0 ∈ E′ such that

‖f0‖E′ = ‖x0‖ and f0(x0) = ‖x0‖2.
(iii) Conclude that for every x ∈ E, we have

‖x‖ = max
f
{|f(x)| : f ∈ E′, ‖f‖E′ = 1}.
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Exercise 4.2 (∗). Let X = C[0, 1] be endowed with the norm ‖u‖ = max[0,1] |u|. Let E :=
{u ∈ X : u(0) = 0}. We consider the application f : E → R defined by

f(u) =

∫ 1

0
u(t)dt.

(i) Show that f ∈ E′ and compute ‖f‖E′ .
(ii) Can we find u ∈ E such that ‖u‖ = 1 and f(u) = ‖f‖E′?

Exercise 4.3 (∗). Let E be a normed vector space and let f : E → R be a non–null linear
functional. Show that if α ∈ R then f is continuous if and only if {f = α} is closed.

Exercise 4.4 (∗). Let C be an open convex subset of a normed space E such that 0 ∈ C.
Define the gauge of C (or the Minkowski functional of C) as

%C(x) := inf
α>0

{
α : α−1x ∈ C

}
.

(i) Show that there exists a constant M > 0 such that %C(x) ≤M‖x‖ for all x ∈ E.
(ii) Show that %C(x+y) ≤ %C(x)+%C(y) and %C(λx) = λ%C(x) for all x, y ∈ E and all λ > 0.

Exercise 4.5. Let C be a non empty open convex subset of a normed space E and let x0 ∈
E \ C. Show that there exists f ∈ E′ such that f(x) < f(x0) for all x ∈ C.

Hint. We can assume without loss of generality that 0 ∈ C. Use the gauge of C.

Exercise 4.6 (∗). Let A and B be two non empty convex disjoint subsets of a normed space
E. Show that if A is open then there exists f ∈ E′ and α ∈ E such that A ⊂ {f ≤ α} and
B ⊂ {f ≥ α}. We say that the closed hyperplane {f = α} separate A and B is the large sense.

Hint. We denote A − b the translation of A which is {a − b : a ∈ A}. Check that C :=
∪b∈B(A− b) is an open convex set which does not contain 0. Apply Exercise 4.5.

Exercise 4.7 (∗). Let (E, ‖ · ‖) be an infinite dimensional normed space.
(i) Show that there exists a set {ei : i ∈ I} of unit vectors such that every x ∈ E can be
written in a unique way as x =

∑
i∈J xiei for some J ⊂ I of finite cardinality and for a set

{xi : i ∈ J} ⊂ R.
(ii) Construct a linear function f : E → R which fails to be continuous.
(iii) Show that if we further assume that E is a Banach space then I cannot be countable.

Exercise 4.8 (∗). Let (E, ‖ · ‖) be a vectorial normed space. Show that every hyperplane in
E is either closed or dense in E.

Hint. Show that if f : E → R is linear and discontinuous then for every x ∈ E and r > 0,
we have f

(
D(x, r)

)
= R.

Exercise 4.9 (∗). Let (E, ‖ · ‖) be a Banach space and let (xn)n ⊂ E be a sequence which
converges weakly to x (converges for the σ(E,E′)–topology). Show that if we set

yn :=
x1 + · · ·+ xn

n

then (yn)n ⊂ E converges weakly to x.

Exercise 4.10 (Mazur Lemma: (∗)). Let (E, ‖ · ‖) be a Banach space and let (xn)n ⊂ E
be a sequence which converges weakly to x. Show that there exists a sequence (zn)n which
converges strongly to x and such that each zn belongs to the convex hull of {xk : k ≥ Nn} for
an increasing sequence (Nn)n ⊂ N
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5. Homework #5

Exercise 5.1. Let E and F be Banach spaces and let T : E → F be surjective, linear and
continuous.
(i) (Open graph theorem) Show that there exists c > 0 such that BF (0, c) ⊂ T (BE(0, 1)).
(ii) Conclude that if we further assume that T is one-to-one then T−1 is continuous.

Hint. Argue that E is the union of the closed set Xn := nT (BE(0, 1)) and use Baire’s
Lemma. This gives you only that BF (y0, 4c) ⊂ X1 for some y0 ∈ F and c > 0. Argue that

−y0 ∈ T (BE(0, 1)) to obtain the weaker conclusion that BF (0, c) ⊂ T (BE(0, 1)).

Exercise 5.2. Let G is a Banach space for the norms ‖ · ‖1 and ‖ · ‖2. Show that there exist
C1, C2 > 0 such that ‖ · ‖1 ≤ C1‖ · ‖2 and ‖ · ‖2 ≤ C2‖ · ‖1

Hint. Apply Exercise 5.1 (ii) to (E, ‖ · ‖E) = (G, ‖ · ‖1 + ‖ · ‖2) and (F, ‖ · ‖F ) = (G, ‖ · ‖2)
with T = id.

Exercise 5.3. Let (S, dS) be a metric space. Show that the following are equivalent:

(i) K is pre–compact

(ii) (Bolzano–Weierstrass) Every sequence (xn)n in S has a cluster point.

(iii) (Sequential compactness) Every sequence in S has a convergent subsequence.

(iv) Every infinite set in S has a limit point.

Hint. Show that (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (i). For the last implication, you
could first show that for every ε > 0, there exist x1, · · · , xn ∈ S such that S = B(x1, ε)∪ · · · ∪
B(xn, ε). Conclude that S is separable and so, we can use Lindelöf theorem to conclude that
every open cover of S has a countable sub–cover.
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