Table of contents of Volume I

1 relace	•
List of participants	vii
Table of contents of Volume I	хi
Table of contents of Volume II	xv
Quelques nouveaux résultats sur les nombres de Pisot et de Salem $\it M.J. Bertin$	1
Irreducibility of polynomials and arithmetic progressions with equal products of terms F. Beukers, T.N. Shorey and R. Tijdeman	11
Mahler's measure and special values of L-functions — some conjectures David W. Boyd	27
On the distribution of solutions of Thue's equation Béla Brindza, Ákos Pintér, Alfred J. van der Poorten and Michel Waldschmidt	35
Linear independence and divided derivatives of a Drinfeld module, I $W.\ Date\ Brownawell$	47
Cubic threefolds with six double points $\it D.F.~Coray,~D.J.~Lewis,~N.I.~Shepherd-Barron~and~Sir~Peter~Swinnerton-Dyer$	63
Arithmétique et espaces de modules de revêtements $Pierre\ D\`ebes$	75
On a polynomial with large number of irreducible factors ${\it A.\ Dubickas}$	103
Fractions continues paramétrées et critère de Rabinowitsch $E.\ Dubois\ et\ A.\ Farhane$	111
The Absolute Subspace Theorem and linear equations with unknowns from a multiplicative group Jan-Hendrik Evertse and Hans Peter Schlickewei	121
On the factorization of polynomials with small Euclidean norm $\it Michael\ Filaseta$	143
Small Salem numbers V. Flammang, M. Grandcolas and G. Rhin	165
Variables separated polynomials, the genus 0 problem and moduli spaces $\it Michael~D.~Fried$	169
Some polynomial identities related to the abc-conjecture George Greaves and Abderrahmane Nitaj	229
On the distribution of solutions of decomposable form equations K. $Gy\delta ry$	237
Finding small degree factors of lacunary polynomials H.W. Lenstra, Jr.	267
On the factorization of lacunary polynomials H.W. Lenstra, Jr.	277
Specializations of some hyperelliptic Jacobians D.W. Masser	293
Salem numbers and Pisot numbers from stars J.F. McKee, P. Rowlinson and C.J. Smyth	309
On lacunary formal series and their continued fraction expansion Michel Mendès France, Alfred J. van der Poorten and Jeffrey Shallit	321
The ultra-divergent series $\sum_{n\geq 0} 0^{-2^n}$ M. Mendès France and A. Sebbar	327
Une remarque sur l'équation de Catalan Maurice Mignotte	337
The work of Andrzej Schinzel in number theory Władysław Narkiewicz	341
Algebraic curves with many rational points over finite fields of characteristic 2 Harald Niederreiter and Chaoping Xing	359

When is the product of two Hecke eigenforms an eigenform?

W. Duke

Dedicated to A. Schinzel on the occasion of his sixtieth birthday

Introduction and statement of result

From an elementary point of view the classical identity between divisor functions

$$\sigma_7(n) = \sigma_3(n) + 120 \sum_{m=1}^{n-1} \sigma_3(m) \sigma_3(n-m), \tag{1}$$

where $\sigma_{k-1}(n) = \sum_{d|n} d^{k-1}$, is rather surprising. Although it and other related identities may be proved using elementary means (see [Ra]), it becomes transparent in the context of modular forms. It is equivalent to the identity $E_8 = E_4^2$ where, for even $k \geq 4$, E_k is the Eisenstein series

$$E_k(z) = 1 + \gamma_k \sum_{n \ge 1} \sigma_{k-1}(n) q^n \tag{2}$$

with certain rational γ_k , where $q = e(z) = e^{2\pi iz}$. This identity is forced by the fact that the space of modular forms of weight 8 is 1-dimensional.

Call a modular form f for the full modular group an eigenform if it is either E_k or a cusp form which is an eigenfunction of the Hecke operators, normalized to have Fourier expansion

$$f(z) = q + \sum_{n>2} a_f(n)q^n.$$

The Fourier coefficients of an eigenform f are a multiplicative arithmetic function:

$$a_f(n)a_f(m) = \sum_{d|(m,n)} d^{k-1}a_f(mn/d^2), \qquad m, n \in \mathbb{Z}^+.$$

Research supported in part by NSF grant DMS-9500797.

For k = 12, 16, 18, 20, 22, 26 there is a unique cuspidal eigenform of weight k which we will denote by F_k . In particular

$$F_{12} = q \prod_{n>1} (1 - q^n)^{24},$$

the discriminant function, whose Fourier coefficients were made famous by Ramanujan.

We have the factorizations

$$E_{8} = E_{4}^{2} E_{10} = E_{4}E_{6} E_{14} = E_{4}E_{10} = E_{6}E_{8}$$

$$F_{16} = E_{4}F_{12} F_{18} = E_{6}F_{12} F_{20} = E_{8}F_{12} = E_{4}F_{16} (3)$$

$$F_{22} = E_{10}F_{12} = E_{6}F_{16} = E_{4}F_{18}$$

$$F_{26} = E_{14}F_{12} = E_{10}F_{16} = E_{8}F_{18} = E_{6}F_{20} = E_{4}F_{22}.$$

Each of these is equivalent to an additive identity of the type (1) between multiplicative arithmetic functions. As in the case of (1), each is an immediate consequence of the dimension formulae for the spaces of modular forms M_k and cusp forms S_k of weight k, valid for even k > 2:

$$\dim M_k = [k/12] + \delta_k, \qquad \dim S_k = \dim M_k - 1$$

where $\delta_k = 0$ or 1 according to whether $k \equiv 2 \pmod{12}$ or not (see p. 88 of [Se]). One may ask whether other such factorizations are possible. My aim in this note is show that this list is complete.

Theorem. Every factorization of an eigenform into a product of two eigenforms occurs in the list (3).

In fact the proof of this Theorem shows that in the unique decomposition of a product of two eigenforms into a linear combination of eigenforms none of the coefficient may vanish. Hence, in general, a product of two eigenforms is as far from being an eigenform as the dimension allows. The main idea used is simply that an Euler product, in this case a Rankin-Selberg convolution of eigenforms, cannot vanish at a point in the region of absolute convergence.

Proof

First observe that any factorization may involve at most one cusp form so we need only examine the possibility that

$$F = fE_{\ell}, \qquad \ell > 4$$

where f is an eigenform of weight k and F an eigenform of weight $k + \ell$. Also, the cases where $f = E_k$ may be found by identifying the first Fourier coefficients of

both sides of $E_k E_\ell = E_{k+l}$ from (2), namely solving the equation

$$\gamma_{k+\ell} = \gamma_k + \gamma_\ell. \tag{4}$$

Using the standard fact (see p. 93 of [Se]) that

$$\gamma_k = \frac{(2\pi i)^k}{(k-1)!\zeta(k)},$$

a straightforward analysis shows that the equation (4) admits only the solutions corresponding to the factorizations on line 1 of (3). Thus we are reduced to considering the case that f is a cuspidal eigenform of weight k.

Suppose for the moment that f and g are any modular forms for $\Gamma = SL(2, \mathbb{Z})$ of weights $k, k + \ell$ respectively with Fourier expansions

$$f(z) = \sum_{n \ge 0} a_f(n)q^n, \qquad g(z) = \sum_{n \ge 0} a_g(n)q^n.$$

Define the Rankin-Selberg convolution $\Lambda(f\otimes g,s)=(4\pi)^{-s}\Gamma(s)L(f\otimes g,s)$ where

$$L(f \otimes g, s) = \sum_{n \ge 1} a_f(n) \bar{a}_g(n) n^{-s}.$$

Lemma. Suppose at least one of f or g is a cusp form. Then

$$\langle fE_{\ell}, g \rangle = \Lambda(f \otimes g, k + \ell - 1)$$

where $\langle \cdot, \cdot \rangle$ is the Petersson inner product.

Proof. This follows from the integral representation

$$\Lambda(f \otimes g, s + k + \ell/2 - 1) = \int_{\Gamma \setminus \mathcal{H}} f(z)\bar{g}(z) E_{\ell}(z, s) y^{k + \ell/2} \frac{dxdy}{y^2}.$$
 (5)

Here

$$E_{\ell}(z,s) = y^{s}/2 \sum_{(c,d)=1} ((cz+d)/|cz+d|)^{-\ell}|cz+d|^{-2s}$$

is a non-holomorphic Eisenstein series which transforms like

$$E_{\ell}(\gamma z, s) = ((cz+d)/|cz+d|)^{\ell} E_{\ell}(z, s)$$

for $\gamma \in \Gamma$ where $\gamma z = (az+b)/(cz+d)$ and which has an analytic continuation to the entire s-plane (see [Si]). Since $h(z) = f(z)\bar{g}(z)y^{k+\ell/2}$ transforms like

$$h(\gamma z) = ((cz+d)/|cz+d|)^{-\ell}h(z)$$

the integral

$$\int_{\Gamma \setminus \mathcal{U}} h(z) E_{\ell}(z,s) \frac{dxdy}{y^2}$$

is well defined and convergent for any s. By the "unfolding trick" it is

$$\int_{\Gamma \setminus \mathcal{H}} \sum_{\gamma \in \Gamma_{\infty} \setminus \Gamma} (\operatorname{Im}(\gamma z)^{s}) \frac{dx dy}{y^{2}} = \int_{0}^{\infty} \int_{0}^{1} h(x + iy) dx \, y^{s - 1} \frac{dy}{y}$$

where $\Gamma_{\infty} \subset \Gamma$ is the stabilizer of the cusp at infinity. Since

$$\int_0^1 h(x+iy)dx = y^{k+\ell/2} \sum_{n \ge 1} a_f(n) \bar{a}_g(n) e^{-4\pi ny}$$

and

$$\int_0^\infty y^{k+\ell/2+s-1} \sum_{n\geq 1} a_f(n) \bar{a}_g(n) e^{-4\pi n y} \frac{dy}{y}$$

$$= (4\pi)^{-(s+k+\ell/2-1)} \Gamma(s+k+\ell/2-1) L(f \otimes g, s+k+\ell/2-1),$$

we get (5). The Lemma follows from the fact that

$$E_{\ell}(z,\ell/2) = y^{\ell/2} E_{\ell}(z). \qquad \Box$$

We may now prove the Theorem. Suppose that f is a cuspidal eigenform and $F = fE_{\ell}$ for $\ell \geq 4$. Provided $k + \ell \geq 24$ and $k + \ell \neq 26$ there will be a cuspidal eigenform g of weight $k + \ell$ which is different from F, hence orthogonal to F: $\langle fE_{\ell}, g \rangle = 0$. On the other hand in this case

$$L(f \otimes g, s) = \prod_{p} \sum_{m>0} a_f(p^m) a_g(p^m) p^{-ms}$$

an Euler product which converges absolutely for $Re(s) > k + \ell/2$. Thus

$$\Lambda(f \otimes g, k + \ell - 1) \neq 0$$

since $\ell > 2$. By the Lemma this cannot happen and so this completes the proof of the Theorem.

Remark. Taking $f = E_k$ and g to be any cuspidal eigenform of weight 2k, the Rankin-Selberg L-function factors giving rise to the formula

$$-\frac{B_k}{2k}L(f\otimes g, 2k-1) = \frac{L(g,k)L(g, 2k-1)}{\zeta(k)}$$

where $L(g,s) = \sum_{n\geq 1} a_g(n) n^{-s}$ is the *L*-function associated to g. The fact that $E_k^2 \neq E_{2k}$ for k>4 then actually implies that the central critical value $L(g,k)\neq 0$ for some g. This was observed in [Z] (see also [CF]).

Acknowledgements. I thank J. Tunnell for posing the question answered here and P. Čížek for independently verifying that the list of factorizations involving only Eisenstein series is complete. I also thank the referee for pointing out an error in an earlier version of this note. In proof: I learned that M. Larsen has obtained the Theorem of this note independently by different methods.

References

- [CF] Conrey, B., Farmer, D., On the non-vanishing of $L_f(s)$ at the center of the critical strip. Preprint 1997.
- [Ra] Rankin, R.A., Elementary proofs of relations between Eisenstein series. Proc. Roy. Soc. Edinburgh Sect. A 76 (1976/77), 107–117.
- [Se] Serre, J.-P., A course in arithmetic. Springer, New York 1973.
- [Si] Siegel, C.L., Lectures on advanced analytic number theory. Tata Institute Lectures on Mathematics, Bombay 1965.
- [Z] Zagier, D., Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. In: Modular functions of one variable, VI (ed. by J.-P. Serre and D.B. Zagier; Lecture Notes in Math. 627), 105–169. Springer, Berlin 1977.