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For k = 12,16,18,20,22, 26 there is a unique cuspidal eigenform of weight & which
we will denote by Fy. In particular

Fia=q]](-¢m*,

n>1

the discriminant function, whose Fourier coefficients were made famous by Ra-
manujan.

We have the factorizations

By = Ej By = FE4Es Ery = B By = FgFy
g =FEFa Fig= FEgFy  Fayy = ByFyy = EyFyg (3)
Fay = EipFhg = EgFig = E Py
Fog = Br\gF1g = BgFig = EsFig = EgFay = EyFls.

Each of these is equivalent to an additive identity of the type (1) between multi-
plicative arithmetic functions. As in the case of (1), each is an immediate conse-
guence of the dimension formulae for the spaces of modular forms M, and cusp
forms S;, of weight k, valid for even k& > 2:

dim My, = [k/12] + 6,  dim Sy = dim M;, — 1

where ¢, = 0 or 1 according to whether k = 2 (mod 12) or not (see p. 88 of [Se]).
One may ask whether other such factorizations are possible. My aim in this
note is show that this list is complete.

Theorem. Every factorization of an eigenform into a product of two eigenforms
occurs in the list (3).

In fact the proof of this Theorem shows that in the unique decomposition of
a product of two eigenforms into a linear combination of elgenforms none of the
coefficient may vanish. Hence, in general, a product of two eigenforms is as far
from being an eigenform as the dimension allows. The main idea used is simply
that an Euler product, in this case a Rankin-Selberg convolution of eigenforms,
cannot vanish at a point in the region of absolute convergence,

Proof

-

First observe that any factorization may involve at most one cusp form so we need
only examine the possibility that

F=fE,, £>4

where f is an eigenform of weight k and F an eigenform of weight & 4 £. Also, the
cases where f = Fj may be found by identifying the first Fourier coefficients of
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both sides of Ex By = Eg.q from (2), namely solving the equation

Vet = Ve + V- (4)
Using the standard fact (see p. 93 of [Se]) that
(2mi)k

T T RS

a straightforward analysis shows that the equation (4) admits only the solutions
corresponding to the factorizations on line 1 of (3). Thus we are reduced to con-
sidering the case that f is a cuspidal eigenform of weight k.

Suppose for the moment that f and ¢ are any modular forms for I" = SL(2,7Z)
of weights k, k + £ respectively with Fourier expansions

F@) = asn)g®,  glz) = as(n)g™.
n=0 n>0
Define the Rankin-Selberg convolution A{f @ g, s} = (47)~*T(s)L(f ® g, s) where
Lf®g,8)=> ap(n)a,(n)n "

n>1

Lemma. Suppose at least one of f or g is a cusp Jorm. Then

{fEpg)=A(f®gk+4-1)

where (-, -} is the Petersson inner product.

Proof. This follows from the integral representation

dxd
AT ®g s +E+82-1) = /F S EIEE Y

Here
Ee(z,s) =y°/2 > {(cz+d)/|ez +d)) Flez + d| 2
{e,d)=1
is a nor-holomorphic Eisenstein series which transforms like

Ey{vz,8) = ((cz + d)/|cz + d)* Es(z, )

for v € I' where vz = (az + b) /(cz + d) and which has an analytic continuation to
the entire s-plane (see [Si]). Since h(z) = f(2)5(z)y*+%/? transforms like

h(vz) = ((ez + d)/|ez + &) "*h{z2)

the integral
dxdy

/ e T




?
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is well defined and convergent for any s. By the “unfolding trick” it is

sdzdy [ 1 . o1 dy
fr X ) /0 /0 it ighdoye Y

2
YET A\ ¥

where ', € T'is the stabilizer of the cusp at infinity. Since

i
f ho + iy)da = y**2 3 ap(n)ay (n)e
G

nzl
and
= kb /2451 = —dmny dy
y 3 g (m)ag(npe 4 %
0 et Yy

= (dm) "CTRHEND s L k62 - DL(F® g s+ k+ £/2— 1),
we get (5). The Lemma follows from the fact that
By(2,6/2) = " Ey(z). O

We may now prove the Theorem. Suppose that f is a cuspidal eigenform and
F=fEyfor £ >4 Provided k+¢ > 24 and k + ¢ # 26 there will be a cuspidal
eigenform g of weight & 4 ¢ which is different from F, hence orthogonal to £
(fE¢, g) = 0. On the other hand in this case

L{f®g,s) =[] D ar(™)a (o™ )p

p m>0

an Buler product which converges absolutely for Re(s) > k + £/2. Thus
AMfogk+£-1)£0

since £ > 2. By the Lemma this cannot happen and so this cotnpletes the proof of
the Theorem. 1

Remark. Taking f = E) and ¢ to be any cuspidal eigenform of weight 2k, the
Rankin-Selberg L-function factors giving rise to the formula

L{g,2k—1)

¢(k)

where L(g, s) = 2on>1 Gg(n)n"° is the L-function associated to g. The fact that

E} # Eqy, for k> 4 then actually implies that the central critical value L(g, k) # 0
for some g. This'was observed in [Z] (see also [CF)).

B Lig, k
—E:-L(f®g,2k—1): (9, %)
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