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Abstract. In this note we give an explicit basis for the harmonic weak forms of weight two.
We also show that their holomorphic coefficients can be given in terms of regularized inner
products of weight zero weakly holomorphic forms.

1. Introduction

One of the most basic arithmetic functions is the sum of divisors function

σ(m) =
∑

d|m
d

defined for m a positive integer. Ramanujan [16] gave a surprising expansion for σ(m) as an
infinite sum:

(1.1) σ(m) =
π2m

6

(

1 +
(−1)m

22
+

2 cos 2
3
mπ

32
+

2 cos 1
4
mπ

42
+

2(cos 2
5
mπ + cos 4

5
mπ)

52
+ · · ·

)

.

The numerator over c2 is the Ramanujan sum
∑

(a,c)=1 cos(
2πma

c
). This identity clearly displays

the oscillations of σ(m) around its mean value π2m
6
. Also, (1.1) makes sense as a limit when

m = 0 and gives the extension σ(0) = − 1
24
.

There is a nice generalization of Ramanujan’s formula, that goes back to Petersson and
Rademacher, that connects it with the theory of modular forms (see Knopp’s beautiful exposi-
tion [12]). Consider the sum for m,n > 0

(1.2) cm(n) = 2π
√

m
n

∑

c>0

K(−m,n, c)
c

I1

(4π
√
mn

c

)

where K(m,n, c) =
∑

(a,c)=1 e(
ma+nā

c
) is the Kloosterman sum and I1(x) is the I-Bessel function.

By any non-trivial estimate for |K(m,n, c)|, (1.2) converges absolutely, using also that I1(x) ∼ x
2

as x→ 0. The sum (1.2) generalizes (1.1); it makes sense when n = 0 and reduces to

cm(0) = 24σ(m)

after applying (1.1). Also c0(n) = 0 for n > 0. Amazingly, the cm(n) are always integers and
their generating function in n given by

fm(z) = q−m +
∑

n≥0

cm(n)q
n

is a modular function for the full modular group Γ = PSL(2,Z) when we let, as usual, q = e2πiz.
This well-known fact follows from the general formulas given below.

W. Duke is supported by NSF grant DMS-0355564.
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Á. Tóth is supported by OTKA grant 81203.
1
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In particular, f0(z) = 0 and f1(z) = j(z) − 720, where j(z) = q−1 + 744 + 198664q + . . . is
the usual modular j-function. More generally,

(1.3) fm(z) = jm(z) + 24σ(m)

where jm ∈ C[j] is uniquely determined by having a Fourier expansion of the form

(1.4) jm(z) = q−m +
∑

n>0

bm(n)q
n.

The fm for m > 0 form a basis for the subspace of C[j] consisting of modular functions that
are orthogonal to the constant function with respect to the regularized Petersson inner product.
Let FY be the usual fundamental domain for Γ truncated at y = Y and set for f, g modular
functions

〈f, g〉reg = lim
Y→∞

∫

FY

f(z)g(z)dxdy
y2
,

provided this limit exists. We usually simply write 〈f, g〉 = 〈f, g〉reg. Then we have that for all
m ≥ 0

(1.5) 〈fm, 1〉 = 0,

which follows easily from results of [1]. In this paper we are interested in the quantities 〈fm, fn〉
when m 6= n, which are finite. An interesting question that we have not been able to answer
concerns their possible arithmetic or geometric meaning and in particular the case of m = n.

Using Hecke operators it is enough to consider the sequence 〈fm, f1〉 for m > 1. Here are
some of its values computed numerically:

〈f2, f1〉 = 366.765, 〈f3, f1〉 = 195.677, 〈f4, f1〉 = 501.665

As an application of our main result, we will give a formula of the type (1.2) for 〈fm, fn〉.
Theorem 1. For unequal positive integers m,n we have

(1.6) 〈fm, fn〉 = −8π2
√
mn

∑

c

K(m,n, c)

c
F
(4π

√
mn

c

)

,

where F (u) = πY1(u) +
2
u
J0(u), where Js is the Bessel function of the first kind, and Ys is the

Bessel function of the second kind.

Since the Bessel function of second kind Y1(u) satisfies

π

2
Y1(u) = −1

u
+ J1(u) log(u/2) +O(u)

as u→ 0 we have that F (u) = O(u logu) as u→ 0 and the above series converges.
The proof of (1.5) uses the fact that the generating function of σ(m) given by

(1.7) E∗
2(z) = 1− 24

∞
∑

n=1

σ(n)qn − 3

πy
,

is a harmonic Eisenstein series of weight 2. Here and throughout the paper x = Re z, y = Im z.
Our proof of Theorem 1 makes use of harmonic weak Maass forms of weight 2 constructed
using Poincaré series. To explain how we must introduce some notation. Let H denote the
upper half plane. Recall that for any k ∈ R, the Maass-type differential operator ξk is defined
through its action on a differentiable function f on H by

ξk(f) = 2iyk ∂f
∂z̄
.
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It is easily checked that

ξk
(

(γz + δ)−kf(gz)
)

= (γz + δ)k−2(ξkf)(gz)

for any g = ±
(

α β
γ δ

)

∈ PSL(2,R). Thus if f(z) has weight k for Γ then ξkf has weight 2−k and
ξkf = 0 if and only if f is holomorphic. The weight k Laplacian can be conveniently defined
by

(1.8) ∆k = −ξ2−k ◦ ξk
If f is a real analytic function on H of weight k for Γ that is harmonic on H in the sense that

∆kf = 0

then f will have a Fourier expansion at i∞ each of whose terms has at most linearly exponential
growth. Such an f is called a harmonic weak Maass form if it has only finitely many such
growing terms. The space of all such forms is denoted by H !

k. It is clear that the space of
weakly holomorphic modular formsM !

k, the forms that are holomorphic on H and meromorphic
at infinity, is a subset of H !

k. It follows easily from its general properties that ξk maps H !
k to

M !
2−k with kernel M !

k. We note that the space H !
k is same as Hk(SL(2,Z)) defined in [4]. Since

in almost all the subsequent papers following [4] the notation Hk is used to denote the subspace
H+

k of harmonic weak Maass forms which is defined as the preimage of cusp forms of weight
2 − k under ξk, we use the notation H !

k. It is easy to see that for 2 < k ∈ Z the space of
harmonic weak Maass forms whose Fourier expansions have no exponentially growing terms
is equal to Mk, whereas for k = 2 it is 1-dimensional and spanned by the non-holomorphic,
harmonic Eisenstein series E∗

2 .
Our next aim is to construct an explicit basis {hm(z)}m∈Z for H !

2. It is known that a basis
for the weakly holomorphic modular forms of weight 2 is given by {f ′

m(z)}m>0 where we set
f ′
m(z) = −1

2πi
d
dz
fm(z) and fm was defined in (1.3). The basis {hm} constructed in this paper

completes the basis {f ′
m} of M !

2 to a basis H !
2. Namely for m < 0, hm(z) = f ′

|m|(z) whereas

for m > 0 the functions hm satisfy ξ2(hm) = 1
4π
fm(z). The existence of such harmonic forms

was already proved in [4]. Our aim here is to construct this basis explicitly which allows us to
prove the Ramanujan-Rademacher type formula for the inner products < fm, fn >.

In the case of weight k = 1/2 such a basis was constructed in [6] and shown there that their
holomorphic coefficients can be given in terms of periods of weight zero weakly holomorphic
forms along closed geodesics. In [7], on the other hand these coefficients are shown to be equal
to regularized inner products of weakly holomorphic forms of dual weight 3/2. Here we show
that a similar result also holds for weight k = 2. Theorem 1 follows from the next result and
an explicit formula for the Fourier coefficients given later.

Theorem 2. For each m ∈ Z there is a unique hm ∈ H !
2 with Fourier expansion of the form

(1.9) hm(z) = Mm(y)e(mx) +
∑

n∈Z
am(n)Wn(y)e(nx)

where the special function Wn(y) and Mn(y) are given in (2.4) and (2.5) in terms of two
linearly independent solutions the classical Whittaker differential equation. The function Wn(y)
decays whereas Mn(y) grows exponentially.

The set {hm}m∈Z forms a basis for H !
2. We have that h0(z) = E∗

2(z) and for m < 0,
hm(z) = f ′

|m|(z), while for m > 0 we have

(1.10) ξ2(hm(z)) =
1
4π
fm(z).

The coefficients am(n) satisfy the symmetry relation

(1.11) am(n) = an(m)
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for all integers m,n. Moreover for m > 0 we have

(1.12) am(n) =

{

|n|cm(|n|), if n < 0;

− 1
4π
< fm, fn > if n > 0, m 6= n.

The Poincaré series formed by averaging the classical Whittaker functions provide a stan-
dard tool for constructing harmonic weak Maass forms. There are two subtle points in this
construction. First of all when the weight is small, as in the case of k = 2 of this paper, such
Poincaré series have to be analytically continued. Secondly, at the “harmonic point” s = k/2
the Whittaker functions Mk/2,s−1/2 and Wk/2,s−1/2 coalesce into the exponential function, and
the Poincaré series lead only to holomorphic or weakly holomorphic modular forms. A second
solution of the Whittaker differential equation can be constructed using the derivative in one of
the parameters of the Whittaker functions. We average such solutions and take their differences
to construct a Poincaré series that is harmonic and not weakly holomorphic.

The methods of this paper easily generalize to give a basis {hm,k} for H !
k of harmonic weak

Maass forms for weights k > 2. In the general case the functions hm,k satisfy ξk(hm) = fm,2−k

where fm,2−k ∈ M !
2−k are the basis functions of weakly holomorphic modular forms of weight

2 − k constructed in [8]. Their holomorphic coefficients can also be written in terms of the
regularized inner product < fm,2−k, fn,2−k >. In the higher weight case there is no issue of
analytic continuation, hence from this analytic point of view it is easier. On the other hand
for higher weights the space of cusp forms is not trivial and one has include the holomorphic
exponential Poincaré series into the basis. Similar constructions of harmonic weak forms using
derivatives appeared recently for weight 3/2 in [11]. Also in [2] Bruggeman gives an existence
theorem generalizing results of [4] to arbitrary complex weights.

The rest of the paper is organized as follows. For parts of the paper we do not restrict to
the case k = 2 and work with general weights. In Section 2 we collect information about the
Whittaker functions and harmonic forms. In section 3 we write down Poincare series and give
their analytic continuation. In Section 4 we construct harmonic forms that are not weakly
holomorphic and construct the basis {hm} of Theorem 2. Finally in the last section we prove
the inner product formula for the holomorphic coefficients of hm.

2. Harmonic forms and the Whittaker equation

In this section we review the basic definitions and properties of harmonic weak Maass forms
and Whittaker functions.

Definition 3 (Definition of harmonic weak Maass forms). Let k ∈ Z. A smooth function
f : H → C is called a harmonic weak Maass form of weight k if

(1) ∆kf = 0.
(2) f |k γ = f for all γ ∈ Γ.
(3) f(z) = O(eay) as y → ∞ for some a ∈ R

The space of all such forms is denoted by H !
k.

The Whittaker functionsMκ,ν(y), andWκ,ν(y) (see (2.6) and (2.7)) are the standard solutions
of Whittaker’s differential equation

(2.1) Dκ,νw = w′′ +

(

−1

4
+
κ

y
+

1− 4ν2

4y2

)

= 0.
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Suppose that h is a real analytic function on H of weight 2 that is harmonic in the sense
that

(2.2) ∆2h = y2(∂2x + ∂2y)h− i2y(∂x + i∂y))h = 0.

Then h has a (unique) Fourier expansion in the cusp at ∞ of the form

h(z) =
∑

n

b(n)Mn(y)e(nx) +
∑

n

a(n)Wn(y)e(nx).(2.3)

where

Wn(y) =











(4π|n|y)−1W−1,1/2(4π|n|y) if n < 0,

1 if n = 0,

e−2πny if n > 0,

(2.4)

Mn(y) =











|n|e−2πny if n < 0,

(4πy)−1 if n = 0,

(4πy)−1
M(4πny)− (1− γ)ne−2πny if n > 0.

(2.5)

Here W−1,1/2 is defined in (2.7), M is defined in Lemma 1 and γ is the Euler constant.
For h to be a harmonic weak Maass form we ask that in its Fourier expansion (2.3) only

finitely many b(n) 6= 0. The above normalization of the special function Mn(y) is chosen so
that the Poincaré series constructed in the next section have only one exponentially growing
term in their Fourier expansions and the formulas for their holomorphic coefficients can be
given uniformly in terms of a Rademacher type sum.

For fixed µ, ν with Re(ν ± µ + 1/2) > 0 the Whittaker functions may be defined for y > 0
by [14, pp. 311, 313]

Mµ,ν(y) =y
ν+ 1

2 e
y

2
Γ(1+2ν)

Γ(ν+µ+ 1

2
)Γ(ν−µ+ 1

2
)

∫ 1

0

tν+µ− 1

2 (1− t)ν−µ− 1

2 e−yt dt and(2.6)

Wµ,ν(y) =y
ν+ 1

2 e
y

2
1

Γ(ν−µ+ 1

2
)

∫ ∞

1

tν+µ− 1

2 (t− 1)ν−µ− 1

2 e−yt dt.(2.7)

Their asymptotic behavior as y → ∞ for fixed µ, ν is easily found from (2.6) and (2.7) by
changing variable t 7→ t/y: As y → ∞

Mµ,ν(y) ∼ Γ(1+2ν)

Γ(ν−µ+ 1

2
)
y−µey/2 and Wµ,ν(y) ∼ yµe−y/2.(2.8)

If h(x+ iy) = y−k/2e(nx)(aM(signn)k/2,s−1/2(4π|n|y) + bW(signn)k/2,s−1/2(4π|n|y)) then
(2.9) ∆kh = (s− k/2)(1− k/2− s)h.

We will need the following facts about Whittaker functions. When sign(n) = −1, at the
special value of the parameter s = k/2,

(2.10) M−k/2,k/2−1/2(y) = yk/2ey/2.

(2.11) W−k/2,k/2−1/2(y) = yk/2ey/2Γ(1− k, y)

where Γ(s, y) =
∫∞
y
e−tts−1dt is the incomplete Gamma function. Moreover for n < 0,

ξk(y
−k/2W−k/2,k/2−1/2(4π|n|y)e(nx)) = −(4π|n|)1−k/2q|n|
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On the other hand when sign(n) = 1, at s = k/2, the two Whittaker functions coalesce;

(2.12) Mk/2,(k−1)/2(y) = Wk/2,(k−1)/2(y) = yk/2e−y/2.

In this special case we use the classical method of taking derivatives in s (cf. [5]) ) to construct
a growing solution of Whittaker’s equation. We have

Proposition 1. [5] For m, k > 0 positive integers, let

(2.13) M(y) = ∂s |s=k/2

(

Mk/2,s−1/2 −Wk/2,s−1/2

)

(y),

and

(2.14) ψm,k(z) = (4πy)−k/2
M(4πmy)e(mx)

Then

(2.15) Dk/2,k/2−1/2M(y) = 0,

(2.16) ∆k(ψm,k(z)) = 0,

and

(2.17) ξk(ψm,k(z)) = m1−k/2(4π)1−k(k − 1)Γ(k/2)e(−mz).
Moreover, as y → ∞

(2.18) M(y) ∼ (k − 1)Γ(k/2)y−k/2ey/2.

Proof. If Dκ,ν is the Whittaker differential operator as above then

(2.19) Dκ,s−1/2∂sMκ,s−1/2(y) = (2s− 1)y−2Mκ,s−1/2(y).

Similarly

(2.20) Dκ,s−1/2∂sWκ,s−1/2(y) = (2s− 1)y−2Wκ,s−1/2(y).

When κ = k/2 and s = k/2, since Wk/2,s−1/2 =Mk/2,s−1/2, it follows by seperation of variables
that ∆k(ψm,k(z)) = 0. This in turn implies that ξkψm(,kz) is holomorphic, since ∆k = −ξ2−k◦ξk.
But a simple computation shows that ξk(ψm,k(z)) = f(y)e(−mx) for some function f , and the
only holomorphic function with this property is a multiple of e(−mz). Hence ξk(ψm,k(z)) =
ce(−mx) for some constant c. The exact value of the constant c follows from the asymptotic
behaviour of M(y).

To see the asymptotic behaviour of M(y) as y → ∞ we use the integral representations of
Whittaker functions valid when Re s > k/2. Writing Mk/2,s−1/2(y) = ey/2gs(y)hs(y) with

(2.21) gs(y) =
ysΓ(2s)

Γ(s+ k/2)Γ(1 + s− k/2)

and

(2.22) hs(y) = (s− k/2)

∫ 1

0

tk/2+s−1(1− t)s−k/2−1e−ytdt

gives

(2.23) ∂sMk/2,s−1/2(y) = ey/2gs(y)∂shs(y) + ey/2∂sgs(y)hs(y)

Integration by parts in hs(y) leads to

(2.24) hs(y) =

∫ 1

0

(1− t)s−k/2 ∂t(t
k/2+s−1e−yt)dt.
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As a byproduct this immediately gives hk/2(y) = e−y proving (2.12).
We also have

∂shs(y) =

∫ 1

0

(1− t)s−k/2 ln(1− t)∂t(t
s+k/2−1e−yt)dt+

∫ 1

0

(1− t)s−k/2 ∂t(∂s(t
s+k/2−1e−yt))dt.

At s = k/2 this leads to

∂s |s=k/2hs(y) =

∫ 1

0

ln(1− t)∂t(t
k−1e−yt)dt

By Watson’s lemma from asymptotic analysis (see [17] or [13], p. 467)

−
∫ 1

0

e−yt (yt− k + 1) tk−2 ln(1− t)dt ∼ (k − 1)y−kΓ(k).

The function Wk/2,s−1/2 is treated analogously leading to

∂s |s=k/2

∫ ∞

1

ts+
k
2
−1(t− 1)s−

k
2
−1e−yt dt =

∫ ∞

1

e−yt (yt− k + 1) tk−2 ln(t− 1)dt,

which is easily seen to be O(e−y).
To summarize we have

M(y) ∼ (k − 1)Γ(k/2)y−k/2ey/2.

The asymptotic expansion of ξk(ψm,k(z)) follows along similar lines proving (2.17).
�

3. Poincaré series

In this section we compute the Fourier expansion of a Poincaré series and establish some
needed analytic properties of the Fourier coefficients. Let φ(y) : R>0 → C be smooth and such
that for some α > 0, φ(y) = O(yα). For 0 6= m ∈ Z let

φm(z) = |m|k/2φ(|m|y)e(mx)
and define the Poincaré series

Pm(z, φ) = Pm(z, φ, k) =
∑

γ∈Γ∞\Γ
(φm|kγ)(z).

Then Pm(z, φ) converges for α > 1− k/2 and has weight k.
We will work with a special φ depending on a parameter s as well as its derivative in s. Let

φm(z, s) = (4πy)−k/2Msign(m)k/2,s−1/2(4π|m|y)e(mx)
and

Pm(z, s) = P (z, φm(z, s)).

Pm(z, s) converges for Re s > 1 and is harmonic at s = k/2, 1 − k/2. For k > 2 this gives
immediately harmonic forms. But these Poincaré series only lead to either holomorphic cusp
forms or weakly holomorphic modular forms since at the special parameters

M±k/2,(k−1)/2(y) = yk/2
e∓y/2

Γ(k)
.

For m > 0, Pm(z, k/2) reduces to the classical exponential Poincaré series which is a cusp form
and for m < 0 one can only get growing terms of the form e2πimz and hence it leads to a weakly
holomorphic modular form.
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3.1. Fourier coefficients. We are interested in the case of k = 2, when convergence of the
Poincaré series is not known at the parameter which makes it harmonic. We will continue it
analytically to the point we are interested in by its Fourier expansion. The Fourier coefficients
of Poincaré series can be expressed explicitly in terms of sums Kloosterman sums for any weight
k. The following Proposition is standard and can be found for example in [9], [3].

Proposition 2. With the notation as above

(3.1) Pm(z, s) = φm(z, s) + gm,0(s)Lm,0(s)(−4π)−k/2y−k/2+1−s

∑

n 6=0

gm,n(s, y)Lm,n(s)(−4πy)−k/2Wsign(n)k/2,s−1/2(4π|n|y)e(nx)

where

(3.2) gm,n(s) = Γ(2s)























2π
√

|m/n|
Γ(s+ sign(n)k/2)

if n 6= 0

4π1+s|m|s
(2s− 1)Γ(s+ k/2)Γ(s− k/2)

, if n = 0

and

(3.3) Lm,n(s) =























∑

c

K(m,n, c)

c
J2s−1(

4π
√

|mn|
c

), if sign(nm) > 0

∑

c

K(m, 0, c)

c2s
, if n = 0

∑

c

K(m,n, c)

c
I2s−1(

4π
√

|mn|
c

), if sign(nm) < 0

and where K(m,n, c) is the Kloosterman sum

K(m,n, c) =
∑

a(c)

e(mā+na
c

).

In view of Wk/2,k/2−1/2(y) = yk/2e−y/2 for s = k/2 (k ≥ 2) we have

(3.4)

gm,n(k/2)(−4πy)−k/2Wsign(n)k/2,k/2−1/2(4π|n|y)e(nx) =
{

(−1)k/2(2π)
√

|m/n|nk/2qn if n > 0

0 if n < 0

Hence ifm > 0, and k > 2, at s = k/2, (3.1) leads to the the Fourier expansion of the classical
cuspidal Poincaré series and if m < 0 this construction fails to produce a weak harmonic form
that is not weakly holomorphic since

(3.5) M−k/2,(k−1)/2(y) = yk/2
ey/2

Γ(k)
.
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3.2. Analytic continuation. We will show that Lm,n(s) can be analytically continued to
Re s > 3/4 with only possible pole for n = 0 at s = 1. We will also get estimates for Lm,n

which will ensure the convergence of the Fourier series for Re s > 3/4+ ǫ for any ǫ > 0 and this
gives the analytic continuation of Pm(z, s) to s = 1. The case sign(nm) > 0 is worked out in
[10], Section 16.5.

Lm,n(s) ≪ (2σ − 1)−2eπ|s|/2
(√

mn

|s|

)σ

The case sign(nm) < 0 goes along the same lines but will lead to an estimate which is
qualitatively different due to the growth of Is at ∞. In this case

Lm,n(s) =
∑

c≤
√

|mn|]

K(m,n, c)

c
I2s−1

(

4π
√

|mn|
c

)

+
∑

c>
√

|mn|

K(m,n, c)

c
I2s−1

(

4π
√

|mn|
c

)

Using

Iν(y) =
yν

2νΓ(ν + 1
2
)Γ(1

2
)

∫ π

0

ey cos θ sin2ν θdθ

valid when Re ν + 1
2
> 0, we have that for 1

4
< Re s < 2

I2s−1

(

4π
√

|mn|
c

)

≪























|mn/c2|Re s−1
2

|Γ(2s− 1
2
)| when c >

√

|mn|

e4π
√

|mn|/c |mn/c2|Re s−1
2

|Γ(2s− 1
2
)| when c ≤

√

|mn|

The first sum estimated trivially for σ = Re s > 3/4

∑

c≤
√

|mn|]

K(m,n, c)

c
I2s−1

(

4π
√

|mn|
c

)

≪ e4π
√

|mn| |mn|Re s

|Γ(2s− 1
2
)|

For the second sum we use eqn. (16.50) of [10]

∑

c

|K(m,n; c)|
c2σ

≪ (σ − 3/4)−2

to get
∣

∣

∣

∣

∣

∣

∣

∑

c>
√

|mn|

K(m,n, c)

c
I2s−1

(

4π
√

|mn|
c

)

∣

∣

∣

∣

∣

∣

∣

≪ |mn|Re s−1
2

|Γ(2s− 1
2
)|(σ − 3/4)−2

For n = 0 , we note that gm0(s)Lm0(s) = .
4π|πm|s−k/2Γ(2s)

(−2)k(2s− 1)Γ(s+ k/2)Γ(s− k/2)

σ2s−1(m)

m2s−1ζ(2s)
is

analytic for σ > 3/4. This gives the analytic continuation of the Fourier coefficients.
To get the continuation of P (z, s) to s = 1 we still need to prove the convergence of the

Fourier series. But this follows from the exponential decay of the Whittaker function Wµ,ν(y),
namely that as y → ∞ Wµ,ν(y) ∼ yµe−y/2.
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3.3. Weight 2. Let k = 2 and set Pm(z) = Pm(z, 1). Then we have

Proposition 3. If m > 0 then Pm(z) = 0. If m < 0 then

(3.6) Pm(z) = |m|qm −
∑

n>0

nc|m|(n)q
n = f ′

|m|

Proof. Form > 0, due to the Gamma factors in the denominators in (3.2), a(n, y) = 0 for n ≤ 0
and (3.2) gives the Fourier expansion of the holomorphic Poincaré series. Since for SL(2, Z)
there are no cusp forms of weight 2, we have in fact Pm(z, 1) ≡ 0 for m > 0. On the other hand
for m < 0, φm(z, 1) = |m|qm, a(n, y) = 0 for n < 0 and using (1.2) we see that (3.2) in this case
match exactly the formulas of Rademacher for f ′

|m|(z). Hence for m < 0, Pm(z, 1) = f ′
|m|(z). �

Remark. Alternatively we may prove the Petersson-Rademacher formulae using the fact that
Pm − f ′

|m| is a holomorphic cusp form of weight 2.

For m = 0 we set

(3.7) P0(z) = E∗
2(z) = 1− 24

∞
∑

n=1

σ1(n)q
n − 3

πy
.

4. Non-holomorphic harmonic weak Maass forms

4.1. Derivatives of Poincaré series. As we have seen in the last section the above con-
struction of Poincaré series Pm(z) only produces holomorphic cusp forms for m > 0 or weakly
holomorphic forms in case m < 0. To write down the basis for harmonic weak Maass forms we
need to find harmonic forms that are not weakly holomorphic. Such forms will be constructed
using derivatives in s of Poincaré series.

For m > 0 a growing solution of Whittaker’s equation can be constructed as in Section 2 by
taking the derivatives in s of the Whittaker functions.

Recall that if Dκ,ν =
d2

dy2
+ (−1

4
+ κ

y
+ 1−4ν2

4y2
) is the Whittaker differential operator then

(4.1) Dk/2,s−1/2∂sMk/2,s−1/2(y) = (2s− 1)y−2Mκ,s−1/2.

(4.2) Dk/2,s−1/2∂sWk/2,s−1/2(y) = (2s− 1)y−2Wk/2,s−1/2.

Therefore we have that for ψm(z, s) = (4πy)−k/2∂s
(

Mk/2,s−1/2 −Wk/2,s−1/2

)

(4πmy)e(mx) the
Poincaré series Pm(z, ψ(s, .)) is harmonic at s = k/2.

To prove that the Poincaré series is meaningful note that for k > 2 we may simply differentiate
the Poincaré series built from Mκ,s−1/2(y) or Wk/2,s−1/2(y) since s = k/2 is in Re s > 1, which
is a region of local uniform convergence of theses series. For k = 2 this no longer holds and we
modify the argument as follows.

4.2. Weight 2. Recall that for m > 0 the Poincaré series Pm(z, s) was built from

φm(z, s) = (4πy)−k/2Mk/2,s−1/2(4πmy)e(mx).

Since Pm(z, s) has an analytic continutaion to Re s > 3/4 by (2.9) we have

∆k(∂sPm(z, s)) = (2s− 1)(Pm(z, s))

Since Pm(z, 1) ≡ 0 in the case of k = 2 we have that

Qm(z) = ∂s |s=1Pm(z, s)

is already harmonic and the Fourier expansion reveals only one growing term, so it is a weak
harmonic Maass form.
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4.3. Fourier coefficients of Qm. To find the Fourier expansion of Qm(z) we differentiate the
coefficients given in Proposition 2 to get

Proposition 4. Let Qm(z) = ∂s |s=1Pm(z, s) then

(4.3) Qm(z) = Mm(y)e(mx)−
6

πy
σ1(m)−

∑

n<0

|n|cm(|n|)Wn(y)e(nx)−
∑

n>0

Lmnq
n

where

(4.4) Lmn = 2π
√
nm

∑

c

K(m,n, c)

c
F (

4π
√

|mn|
c

)

with F (u) = ∂s |s=1J2s−1(u) and γ the Euler’s constant.

Theorem 1 follows from the formula ∂s |s=1Js(x) =
π
2
Y1(x) +

1
x
J1(x).

Proof.

(4.5) Qm(z, s) = ∂sPm(z, s) = ∂sφm(z, s) + (−4π)−1∂s(gm,0(s)Lm,0(s)y
−s)

+
∑

n 6=0

(−4πy)−1∂s [gm,n(s)Lm,n(s)]Wsign(n),s−1/2(4π|n|y)e(nx)

+
∑

n 6=0

(−4πy)−1gm,n(s)Lm,n(s)∂s
[

Wsign(n),s−1/2(4π|n|y)
]

e(nx)

where gm,n and Lm,n are defined in (3.2) and (3.3). Since there are no cusp forms of weight
2 for SL(2,Z) it follows that gm,n(1)Lm,n(1) = 0 for all n 6= m, and that gm,m(1)Lm,m(1) = 1.

First note that a calculation using gm0(s)Lm0(s) =
4π|πm|sΓ(2s)

(2s− 1)Γ(s+ 1)Γ(s− 1)

σ2s−1(m)

m2s−1ζ(2s)
,

gives the constant coefficient as − 6

πy
σ1(m).

To compute the derivatives we will treat the cases n > 0 and n < 0 separately.
When n < 0, gm,n(1) = 0, and hence the contribution of the second sum in (4.5) to Qm(z) is

zero. Since for n < 0, and ∂s |s=1gm,n = 2π
√

|m/n|, the first sum in (4.5) contrubutes

−
∑

n<0

2πLmn(1)
√

|mn|(4π|n|y)−1W−1,1/2(4π|n|y)e(nx) = −
∑

n<0

|n|cm(|n|)Wn(y)e(nx)

On the other hand, if n > 0,W1,1/2(y) = ye−y/2U(0, 2, y) = ye−y/2 and gm,n(1)Lm,n(1) = δm,n.
Therefore, for m,n > 0, second sum’s contribution is −(4πy)−1∂s |s=1W1,s−1/2(4πmy) where as
the first sum contributes

−
∑

n>0

∂s |s=1 [gm,n(s)Lm,n(s)]nq
n = −

∑

[gmn(1)∂s |s=1Lm,n(s) + (∂s |s=1gmn(s))Lmn(1))]nq
n

Let F (u) = ∂s |s=1J2s−1(u), using gm,n(1) = 2π
√

|m/n| and ∂s |s=1gm,n = (1− γ)2π
√

|m/n| and
Lm,n(1) = δmn/2π we see that for n > 0 the first sum (4.5) at s = 1 gives

(4.6) −m(1− γ)qm −
∑

n>0

Lmnq
n

where

(4.7) Lmn = 2π
√
mn

∑

c

K(m,n, c)

c
F (

4π
√

|mn|
c

).
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Note that −(4πy)−1∂s |s=1W1,s−1/2)(4πmy)e(mx) together with the term −m(1 − γ)qm is
exactly what is needed to combine with ∂s |s=1φm(z, s) to give the harmonic growing term
Mm(y)e(mx) in (4.3).

�

We can now give a basis for H !
2

Proposition 5. Let

hm(z) =











f ′
|m|(z) if m < 0,

E∗
2(z) if m = 0,

Qm(z) if m > 0,

(4.8)

Then for each m ∈ Z, hm(z) has a Fourier expansion of the form

(4.9) hm(z) = Mm(y)e(mx) +
∑

n∈Z
am(n)Wn(y)e(nx).

The coefficients satisfy the symmetry relation am(n) = an(m) for all m,n ∈ Z.

Moreover {hm}(m∈Z) form a basis for H !
2 and if m > 0, ξ2(hm)(z) =

1

4π
fm(z).

Proof. It follows from the Fourier expansions (3.6), (4.3), (3.7) of Pm(z), Qm(z) and E∗
2(z)

that hm(z) has the expansion of the desired form (4.9).
The symmetry relation am(n) = an(m) follows from the symmetry relations |n|c|m|(|n|) =

|m|c|n|(|m|) and Lmn = Lnm.
If h(z) ∈ H

!
2 is a weak Harmonic form, then it has a Fourier expansion of the form (2.3) with

only finitely many coefficients b(n).Hence h(z) −
∑

n 6=0 b(n)hm(z) is a Harmonic weak Maass
form with no growing term in its Fourier expansion, hence is a constant multiple of E∗

2 .
Now the fact that for n < 0, ξ2(Wn(y)e(nx)) = −(4π|n|)−1q|n| together with (1.2), (2.17),

and (4.3) proves that ξ2(hm)(z) =
1

4π
[jm(z) + 24σ1(m)] =

1

4π
fm(z).

�

The above proposition shows that the non-holomorphic coefficients of the basis functions hm
for m > 0 are the coefficients |n|cm(n) of f ′

m. On the other hand the holomorphic coefficients of
hm are complicated expressions involving sums of Kloosterman sums multiplied by the deriva-
tives of the Bessel function in the index, F (u). F (u) can be expressed in various forms, one of
which is the formula F (u) = πY1(u) +

2
u
J0(u) given in Theorem 1. However we will give an

interpretation of these holomorphic Fourier coefficients in the next section.

5. Inner products

In this section we will show that holomorphic Fourier coefficients of the harmonic forms of
weight 2 constructed in the previous section can be written in terms of the regularized Petersson
inner products of fn and fm.

For this purpose we need the following lemma which follows from a standard application of
Stokes theorem see [1].

Lemma 1. Suppose k ∈ Z and that g is holomorphic on H of weight k for Γ. Suppose that h
is a smooth function of weight 2− k. Then, for Y ≥ 2 we have

∫

FY

g(z)ξ2−kh(z)y
k dxdy

y2
=

∫ 1/2+iY

−1/2+iY

g(z)h(z)dz.
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Theorem 4. Suppose that m,n are distinct positive integers. Then

〈fn, fm〉 = −4πLmn.

Proof. We have that for m > 0, hm satisfies ξ2hm =
1

4π
fm and its Fourier expansion has the

form

hm(z) = Qm(z) = Mm(y)e(mx)−
6

πy
σ1(m)−

∑

n<0

|n|cm(|n|)Wn(y)e(nx)−
∑

n>0

Lmnq
n

where Mm(y) ∼ e2πmy as y → ∞ is the lone exponentially growing term.
We have the following bounds for the Fourier coefficients of hm. First by classical estimates

[15] we have that cm(n) = O(eC
√
n) and by [4] (see Lemma 3.4), we also have Lmn = O(eC

√
n).

It follows using Lemma 1 that

∫

FY

fn(z)ξ2hm(z) dxdy =

1/2+iY
∫

−1/2+iY

fn(z)hm(z)dz

Now fn(z) = q−n +
∑

k≥0 cn(k)q
k and

hm(z) = Mm(y)e(mx)−
6

πy
σ1(m)−

∑

l<0

|l|cm(|l|)Wl(y)e(lx)−
∑

l>0

Lmlq
l

By the above estimates these sums can be multiplied and integrated term by term leading to

lim
Y→∞

∫

FY

fn(z)ξ2hm(z) dxdy = −Lmn − i lim
Y→∞

∑

k>0

kcn(k)cm(k)Wk(Y )e
−2πkY = −Lmn.

�

Since ξ2(hm)(z) = 1
4π
fm(z) this, together with (4.7), proves the formula in Theorem 1. It

also gives a complete description of the Fourier coefficients of weak harmonic Maass forms in
weight 2 and/or the values of the inner products 〈fn, fm〉, depending on one’s point of view.
Theorem 4 together with Proposition 5 also finishes the proof of Theorem 2.
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