
HARMONIC MAASS FORMS OF WEIGHT ONE
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Abstract. The object of this paper is to initiate a study of the Fourier coefficients of
a weight one harmonic Maass form and relate them to the complex Galois representation
associated to a weight one newform, which is the form’s image under a certain differential
operator. In this paper, our focus will be on weight one dihedral newforms of prime level
p ≡ 3 (mod 4). In this case we give properties of the Fourier coefficients that are similar
to (and sometimes reduce to) cases of Stark’s conjectures on derivatives of L-functions. We
also give a new modular interpretation of certain products of differences of singular moduli
studied by Gross and Zagier. Finally, we provide some numerical evidence that the Fourier
coefficients of a mock-modular form whose shadow is exotic are similarly related to the
associated complex Galois representation.

1. Introduction

A harmonic Maass form of weight k ∈ 1
2
Z is a Maass form for Γ0(M) that is annihilated

by the weight k Laplacian and that is allowed to have polar-type singularities in the cusps
(see [9]). Associated to such a form f is the weight 2− k weakly holomorphic form

(1.1) ξkf(z) = 2iyk∂z̄f(z).

The operator ξk is related to the weight k Laplacian ∆k through the identity

(1.2) ∆k = ξ2−kξk.

A special class of harmonic forms has ξkf holomorphic in the cusps and hence has a Fourier
expansion at ∞ of the shape

(1.3) f(z) =
∑
n≥n0

c+(n)qn −
∑
n≥0

c(n)βk(n, y)q−n.

This expansion is unique and absolutely uniformly convergent on compact subsets of H, the
upper half-plane. Here q = e2πiz with z = x+ iy ∈ H and βk(n, y) is given for n > 0 by

βk(n, y) =

∫ ∞
y

e−4πntt−kdt,

while for k 6= 1 we have βk(0, y) = y1−k/(k−1) and β1(0, y) = − log y. For such f the Fourier
expansion of ξkf is simply

ξkf(z) =
∑
n≥0

c(n)qn.

Following Zagier, the function
∑

n c
+(n)qn is said to be a mock-modular form with shadow∑

n≥0 c(n)qn. It is important to observe that a mock-modular form is only determined by its
shadow up to the addition of a weakly holomorphic form.
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Some (non-modular) mock-modular forms have Fourier coefficients that are well-known
arithmetic functions. Let σ1(n) =

∑
m|nm and H(n) be the Hurwitz class number. Then

−8π
∑
n≥0

σ1(n)qn
(
σ(0) = − 1

24

)
is mock-modular of weight k = 2 for the full modular group with shadow 1 and

−16π
∑
n≥0

H(n)qn
(
H(0) = − 1

12

)
is mock-modular of weight 3/2 for Γ0(4) with shadow the Jacobi theta series θ(z) =

∑
n∈Z q

n2
.

(See [50]). These two examples will also be useful in our work on the weight one case.
In general, the Fourier coefficients of mock-modular forms are not well understood. For

example, in the case of weight 1/2, which includes the mock-theta functions of Ramanujan,
there has been considerable progress made by Zwegers in his thesis [52], by Bringmann-Ono
[6], and others (see [51] for a good exposition). The Fourier coefficients of mock-modular
forms of weight 1/2 whose shadows Shimura-lift to cusp forms attached to elliptic curves
have also been shown to be quite interesting by Bruinier and Ono [10] and Bruinier [14]. We
remark that mock-modular forms whose shadows are only weakly holomorphic are also of
interest (see [19],[20]) but in this paper we only consider those with holomorphic shadows.

The self-dual case k = 1 presents special features and difficulties. The Riemann-Roch
theorem is without content when k = 2 − k, and the existence of cusp forms is a subtle
issue. Furthermore, the infinite series representing the Fourier series of weight one harmonic
Poincaré series are difficult to handle.

The fact that interesting non-modular mock-modular forms of weight 1 exist follows from
work of Kudla, Rapoport and Yang [33]. Suppose that M = p > 3 is a prime with p ≡ 3
(mod 4) and that χp(·) = ( ·

p
) is the Legendre symbol. Let

(1.4) E1(z) = 1
2
H(p) +

∑
n≥1

Rp(n)qn

be Hecke’s Eisenstein series of weight one for Γ0(p) with character χp, where for n > 0

(1.5) Rp(n) =
∑
m|n

χp(m).

It follows from [33] that Ẽ1(z) :=
∑

n≥0R
+
p (n)qn is mock-modular of weight k = 1 with

shadow E1(z), where for n > 0 we have

(1.6) R+
p (n) = −(log p)ordp(n)Rp(n)−

∑
χp(q)=−1

log q(ordq(n) + 1)Rp(n/q),

and where R+
p (0) is a constant.1 The associated harmonic form is constructed using the

s-derivative of the non-holomorphic Hecke-Eisenstein series of weight 1. An arithmetic inter-
pretation of its coefficients is given in [33]: it is shown that (−2R+(n) + 2 log pRp(n)) is the
degree of a certain 0-cycle on an arithmetic curve parametrizing elliptic curves with CM by
the ring of integers in F = Q(

√
−p).

In this paper we will study the Fourier coefficients of mock-modular forms whose shadows
are newforms. From now on, we will assume that M = p > 3 is a prime. The same methods

1Explicitly, R+
p (0) = −H(p)(

L′(0,χp)
L(0,χp)

+ ζ′(0)
ζ(0) − c), where c = 1

2γ + log(4π3/2) and γ is Euler’s constant.
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can be used to produce similar results when M is composite (see [34] for details). To each
A ∈ Cl(F ), the class group of F , one can associate a theta series ϑA(z) defined by

(1.7) ϑA(z) := 1
2

+
∑
a⊂OF
[a]∈A

qN(a) =
∑
n≥0

rA(n)qn.

Hecke showed that ϑA(z) ∈ M1(p, χp), the space of weight one holomorphic modular forms
for Γ0(p) with character χp. Let ψ be a character of Cl(F ) and consider gψ(z) ∈ M1(p, χp)
defined by

(1.8) gψ(z) :=
∑
A∈Cl(F )

ψ(A)ϑA(z) =
∑
n≥0

rψ(n)qn.

When ψ = ψ0 is the trivial character, the form gψ0(z) is just E1(z) from (1.4), as a consequence
of Dirichlet’s fundamental formula

(1.9) Rp(n) =
∑
A∈Cl(F )

rA(n).

Otherwise, gψ(z) is a newform in S1(p, χp), the subspace of M1(p, χp) consisting of cusp forms.
Let H be the Hilbert class field of F with ring of integers OH . The following result shows
that the Fourier coefficients of certain mock-modular forms of weight one with shadow gψ(z)
can be expressed in terms of logarithms of algebraic numbers in H.

Theorem 1.1. Let p ≡ 3 (mod 4) be a prime with p > 3. Let ψ be a non-trivial character
of Cl(F ), where F = Q(

√
−p). Then there exists a weight one mock-modular form

g̃ψ(z) =
∑
n≥n0

r+
ψ (n)qn

with shadow gψ(z) such that the following hold.

(i) When χp(n) = 1 or n < −p+1
24

, the coefficient r+
ψ (n) equals to zero.

(ii) The coefficients r+
ψ (n) are of the form

(1.10) r+
ψ (n) = − 2

κp

∑
A∈Cl(F )

ψ2(A) log |u(n,A)|,

where κp ∈ Z, u(n,A) are units in OH when n ≤ 0 and algebraic numbers in H when
n > 0. In addition, κp depends only on p and u(n,A) depends only on n and A.

(iii) Let σC ∈ Gal(H/F ) be the element associated to the class C ∈ Cl(F ) via Artin’s isomor-
phism. Then it acts on u(n,A) by

σC(u(n,A)) = u(n,AC−1).

(iv) NH/Q(u(n,A)) is an integer and satisfies

− 1
κp

log(|NH/Q(u(n,A))|) = R+
p (n)

for all non-zero integers n.

Observe that parts (ii) and (iii) are very similar in form to Stark’s Conjectures for special
values of derivatives of L-functions (see [16, 44]). In fact, they are consequences of known
cases of his conjectures when n ≤ 0. Part (iv) can be viewed as a mock-modular version of
Dirichlet’s identity (1.9). It is important to observe that g̃ψ(z) is not necessarily unique.

The proof of this result relies heavily on the Rankin-Selberg method for computing heights
of Heegner divisors as developed in [25], but entails the use of weight one harmonic forms
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with polar singularities in cusps in place of weight one Eisenstein series and hence requires
regularized inner products. In order to get to the individual mock-modular coefficients, it
is necessary to consider modular curves of large prime level N and their Heegner divisors of
height zero. The relation of this part of the proof to [25] has some independent interest.

Zagier observed that his identity with Gross for the norms of differences of singular values
of the modular j-function can be neatly expressed in terms of the coefficients R+

p (n) given in
(1.6) (see Eq. (0.21) in [33]). For simplicity, let −d < 0 be a fundamental discriminant not
equal to −p. and set F ′ = Q(

√
−d). As is well-known, the modular j-function is well-defined

on ideal classes of F and F ′ and takes values in the rings of integers of their respective Hilbert
class fields. Also, values of the j-function at different ideal classes are Galois conjugates of
each other. For any A ∈ Cl(F ) define the quantity

(1.11) ad,A :=
∏

A′∈Cl(F ′)

(j(A)− j(A′)).

The norm of ad,A to F is thus
∏
A∈Cl(F ) ad,A and is an ordinary integer. The result of Gross

and Zagier [24, Theorem 1.3] is that this integer can be expressed in terms of R+
p (n) as

follows:

(1.12) log
∏

A∈Cl(F )

|ad,A|2/wd = −1
4

∑
k∈Z

δ(k)R+
p (pd−k

2

4
),

where wd is the number of roots of unity in F ′ and δ(k) = 2 if p|k and 1 otherwise.
There are two proofs of this factorization in [24]: one analytic and one algebraic. In fact,

the algebraic approach, which is based on Deuring’s theory of supersingular elliptic curves
over finite fields, gives the factorization of the ideal (ad,A) in OH for each class A ∈ Cl(F ).
To state it, suppose ` is a rational prime such that χp(`) 6= 1. Then the ideal (`) factors in
OH as

(1.13) ` =
∏

A∈Cl(F )

l
δ(`)
A .

The lA’s are primes in H above ` uniquely labeled so that σC(lA) = lAC−1 for all C ∈ Cl(F )
and complex conjugation sends lA to lA−1 . Let A0 be the principal class. It is shown in [24]
that the order of ad,A0 at the place associated to the prime lA is given by

(1.14) ordlA(ad,A0) = 1
2

∑
k∈Z

δ(k)
∑
m≥1

rA2

(
pd−k2
4`m

)
.

The Galois action then yields the prime factorization of the ideal (ad,A) for any A.
Our second main result gives a mock-modular interpretation of the individual values |ad,A|.

It is convenient to give it as a twisted version of (1.12).

Theorem 1.2. For any g̃ψ(z) =
∑

n≥n0
r+
ψ (n)qn given by Theorem 1.1 and −d < 0 any

fundamental discriminant different from −p we have

(1.15)
∑
A∈Cl(F )

ψ2(A) log |ad,A|2/wd = −1
4

∑
k∈Z

δ(k) r+
ψ (pd−k

2

4
)

where ad,A is defined in (1.11).

As with Theorem 1.1, this is proved using the methods of [25] and not the analytic technique
of [24], which uses the restriction to the diagonal of an Eisenstein series for a Hilbert modular
group. In particular, we will define a real-analytic function Φ(z), which transforms with
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weight 3/2 and level 4, and use holomorphic projection to obtain an equation between a
finite linear combination of r+

ψ (n)’s and an infinite sum, similar to the one in [25]. We also
make use of machinery from [32]. One interesting new feature is an elementary counting
argument needed to construct a Green’s function evaluated at CM points. Actually, Eq.
(1.15) is a particular example of a more general identity involving values of certain Borcherds
lifts. Although we will not carry this out here, it will become clear that similar methods can
be used to prove a level N version in this form.

Let us illustrate our Theorems in the first non-trivial case, which occurs when p = 23.
The class group Cl(F ) has size 3 and two non-trivial characters ψ and ψ. The Hilbert class
field H is generated by X3 − X − 1 over F . Let α = 1.32472 . . . be the unique real root
of X3 − X − 1, which is also the absolute value of the square of a unit in H. The space
S1(23, χ23) is one dimensional and spanned by the cusp form

gψ(z) = η(z)η(23z),

where η(z) = q1/24
∏

n≥1(1− qn) is the eta function. According to Theorem 1.1, there exists
a mock-modular form g̃ψ(z) having a simple pole and the following Fourier expansion

g̃ψ(z) =
∑
n≥−1

χ23(n) 6=1

r+
ψ (n)qn.

The condition on the principal part determines g̃ψ(z) uniquely in this case, though this is
not true in general. Using Stokes’ Theorem and Stark’s calculation at the end of [44, II], one
can show that

r+
ψ (−1) = 〈gψ, gψ〉 = 3 log(α) and r+

ψ (0) = − log(α).

From the numerical calculations of r+
ψ (n), we can predict the values of κp and u(n,A) in

Theorem 1.1. Let κ̃p and ũ(n,A) denote the predicted values for κp and u(n,A) respectively.
The following table lists r+

ψ (n), which are calculated numerically, and the predicted values
ũ(n,A0) when κ̃p = 1 for the principal class A0 ∈ Cl(F ) for 1 ≤ n ≤ 23 and a few other
values of n, all with χ23(n) 6= 1. It also contains the norms of ũ(n,A0), which agree with
condition (iv) in Theorem 1.1.

n r+
ψ (n) ũ(n,A0) NH/Q (ũ(n,A0))1/κ̃p

5 1.1001149692823391 π5 52

7 1.7161505040673007 π7 72

10 3.9614773685309742 5α−6π−1
5 54

11 0.052996471463740862 π11 112

14 1.6582443878082415 7α−4π−1
7 74

15 -1.9437136922512246 5απ−1
5 54

17 -4.2163115309750479 π17 172

19 -2.7119255841404505 π19 192

20 5.9051910607821988 5α−7 56

21 6.7198367256215547 7α−10π−1
7 74

22 -4.2709900863081686 11α5π−1
11 114

23 -3.8460181706191355 π23 23
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28 4.2179936148444277 7α−5 76

34 -2.532478252776036 17α8π−1
17 174

38 -9.942055260392833 19α15π−1
19 194

40 -14.92826076712649 5α19π5 58

Table 1. Coefficients of g̃ψ(z) for gψ(z) = η(z)η(23z) ∈ S1(23, χ23)

Here, π` is a generator of the prime ideal lA0 in OH and is given below in terms of α.

` π`
5 2α2 − α− 1
7 α2 + α− 2
11 2α2 − α
17 2α2 + 3α + 3
19 3α2 + α
23 1√

−23
(10α2 + 8α + 1)

Table 2. Generators of lA0 .

To illustrate how Theorem 1.2 supports these predictions, consider the classical example
−d = −7, which also appeared in [48]. First, we can combine Eq. (1.15) and Theorem 1.1 to
write

4 log |ad,A|2/wd = 2
κp

∑
k∈Z

δ(k) log
∣∣∣u(pd−k24

,A
)∣∣∣ .

For p = 23 and A = A0, we can use the predicted values in Table 1 to rewrite the equation
above as

4 log |a7,A0| = 4

(
log |u(40,A0)|+ log |u(38,A0)|+ log |u(34,A0)|+
log |u(28,A0)|+ log |u(20,A0)|+ log |u(10,A0)|

)
= 4 log |53 · 7 · 17 · π−1

17 · 19 · π−1
19 · α24|.

This agrees with the exact of value of a7,A0 , which is 53 · 7 · 17 · π−1
17 · 19 · π−1

19 · α24. Applying
the Galois action to these predicted u(n,A0) shows that they also agree with Theorem 1.2.

This and several other numerical examples, together with Eq. (1.14), motivate us to make
a conjecture about the factorization of the fractional ideal generated by u(n,A) in Theorem
1.1. It is not hard to see that the following conjecture implies (1.14).

Conjecture. In (ii) of Theorem 1.1 we have the following.

(i) The number κp is an integer dividing 24H(p)hH , where hH is the class number of H.
(ii) For B ∈ Cl(F ), let lB be a prime ideal above the rational prime ` as in (1.13). Then

the order of u(n,A) at the place of H corresponding to lB is

ordlB(u(n,A)) = κp
∑
m≥1

r(A−1B)2

( n
`m

)
.

At all other places of H, u(n,A) is a unit. In particular, u(n,A) ∈ OH for all n,A.

In general (for prime level p ≡ 3 (mod 4)) , the Deligne-Serre Theorem [17] (see also [40])
identifies the L-function of a newform f ∈ S1(p, χp) with the Artin L-function of an irre-
ducible, odd, two-dimensional, complex representation ρf of the Galois group of a normal
extensionK/Q. Such a ρf gives rise to a projective representation ρ̃f : Gal(K/Q)→ PGL2(C)
whose image is isomorphic to D2n, S4, or A5, in which case we say that f is dihedral, octa-
hedral, or icosahedral, respectively. The forms gψ(z) are precisely the dihedral forms and for
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them K = H. Since gψ1(z) = gψ2(z) if and only if ψ1 = ψ2 or ψ1 = ψ2, there are exactly
(H(p) − 1)/2 such forms. Theorem 1.1 relates the Fourier coefficients of a mock-modular
form with dihedral shadow gψ(z) to linear combinations of logarithms of algebraic numbers
in the number field K = H determined by the Galois representation. Furthermore, the co-
efficients in these linear combinations are algebraic numbers in the field generated by the
Fourier coefficients of the shadow.

Non-dihedral newforms are often referred to as being “exotic” since their occurrence is
rare and unpredictable. We have carried out some numerical calculations for mock-modular
forms whose shadows are certain exotic newforms and have observed that they also seem to
be related to linear combinations of logarithms of algebraic numbers in the number field K
determined by the associated Galois representation. For instance, when p = 283 the space
S1(283, χ283) contains a pair of octahedral newforms associated to a Galois representation of
Gal(K/Q), where K is the degree 2 extension of the normal closure of Q[X]/(X4 −X − 1)
with Gal(K/Q) ∼= GL2(F3). Similar to the dihedral case, the Petersson norms of these
newforms come from the residue of a certain degree four L-function. As a consequence of
proven cases of Stark’s conjecture, this residue is the logarithm of a unit inside a subfield F6

of K. This determines the principal part of a mock modular form whose shadow is one of
these octahedral newforms. Using this hint and some numerical calculations, we noticed that
the other coefficients also seem to be linear combinations of logarithms of algebraic numbers
in the same subfield F6. Furthermore, these algebraic numbers generate ideals with nice
factorizations. Thus, it is natural to expect a statement analogous to Theorem 1.1 and the
Conjecture should hold for exotic newforms. In the final section of the paper we will give
computational details when p = 283.

We end the introduction with a brief outline of the paper. Section 2 gives general properties
of a weight one mock-modular form, such as its existence (§2.1) and the relationship between
its Fourier coefficients and the regularized inner product via Stokes’ theorem (§2.2). We also
decompose the space of weight one harmonic Maass forms into a plus space and minus space
in §2.3 and include some facts about basis of modular functions of prime level N .

In §3 we study the principal part at infinity of a mock-modular form with shadow gψ(z).
The proof of Theorem 1.2 is in §4, which can be read independently of the other sections and
gives a model of the procedure to produce relationships between Fourier coefficients of weight
one mock-modular forms and CM-values of modular functions. Sections 5 and 6 contain the
integral weight versions of Theorem 1.2 for level 1 and prime level N respectively. One
of their consequences, Proposition 7.1, is the algebraic property satisfied by various linear
combinations of Fourier coefficients of weight one mock-modular forms. This is used in §7,
along with a modularity lemma, to finish the proof of Theorem 1.1. Finally, an analysis of
the specific case p = 283 is given in §8.

The main results of this paper were announced by the first author in February 2012 in the
Symposium: Modular Forms, Mock Theta Functions, and Applications in Köln. We have
since learned that there is substantial overlap with [21] and [46]. In particular, Theorems 1.1
and 1.2 are also obtained in [21] for square-free level but by different methods. Also, many
cases of the conjecture above could be resolved by carefully studying the height pairings
between Heegner points (see [47]). The relationship between our approach and the theta-
lifting technique is similar to the one between [12] and [13]. It would be interesting to
generalize these approaches to the exotic cases.
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2. Preliminary Facts of Harmonic Maass Forms

2.1. Existence of Harmonic Maass Forms of Weight One. We begin with some basic
definitions (see [9]). Let k ∈ Z. For any function f : H → C and γ ∈ GL+

2 (R), define the
weight k slash operator |kγ by

(f |kγ)(z) := (det(γ))k/2

(cz+d)k
f(γz),

where γz is the linear fractional transformation of z under γ. We will write f |γ for f |kγ
when the weight of f is understood. For M ∈ Z+ let Γ0(M) denote the usual congruence
subgroup of SL2(Z) of level M , namely

Γ0(M) = {( a bc d ) ∈ SL2(Z) ( a bc d ) ≡ ( ∗ ∗0 ∗ ) mod M}.

Let ν : Z/MZ→ C× be a Dirichlet character such that ν(−1) = (−1)k and ν(γ) := ν(d) for
γ = ( a bc d ) ∈ Γ0(M). Let Fk(M, ν) be the space of smooth functions f : H → C such that for
all γ ∈ Γ0(M)

(f |k γ)(z) = ν(γ)f(z).

Recall from (1.1) and (1.2) the differential operator ξk and the weight k hyperbolic Laplacian
∆k. Let z = x+ iy. Then ∆k can be written as

−∆k = −y2
(
∂2

∂x2
+ ∂2

∂y2

)
+ iky

(
∂
∂x

+ i ∂
∂y

)
.

Then f(z) ∈ Fk(M, ν) is a weight k harmonic weak Maass form of level M and character ν
(or more briefly, a weakly harmonic form) if it satisfies the following properties.

(i) f(z) is real-analytic.
(ii) ∆k(f) = 0.

(iii) The function f(z) has at most linear exponential growth at all cusps of Γ0(M).

Let Hk(M, ν) be the space of weakly harmonic forms of weight k, level M and character ν,
whose image under ξk is a holomorphic modular form. Denote by M !

k(M, ν), Mk(M, ν) and
Sk(M, ν) the usual subspaces of weakly holomorphic modular forms, holomorphic modular
forms and cusp forms, respectively. A mock-modular form is a formal Laurent series in q,

g̃(z) =
∑

n�−∞

c+(n)qn,

such that for some k ∈ Z, there exists g(z) =
∑

n≥0 c(n)qn ∈M2−k(M, ν) satisfying∑
n�−∞

c+(n)qn −
∑
n≥0

c(n)βk(n, y)q−n ∈ Hk(M, ν).

The form g(z) is called the shadow of g̃(z). The expression
∑

n<0 c
+(n)qn is called the

principal part of g̃(z). Let Mk(M, ν) be the subspace of mock-modular forms whose shadows
are in M2−k(M, ν). Since every weakly harmonic form can be written uniquely as the sum
of a holomorphic part and a non-holomorphic part, the spaces Hk(M, ν) and Mk(M, ν) are
canonically isomorphic to each other.
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Property (ii) and Eq. (1.2) gives the following map

ξk : Hk(M, ν) −→M2−k(M, ν),

whose kernel is exactly M !
k(M, ν). When k 6= 1, the map above is surjective as shown in [6]

and [9]. When k = 1, one can still prove surjectivity by analytically continuing the weight one
Poincaré series, the same family as in [6] for k = 1, via spectral expansion or slightly modifying
the abstract arguments employing Serre duality in [9]. Since the arguments are standard and
not necessary for our main results, we omit the proof of the following proposition. Interested
readers can check [34] for more details.

Proposition 2.1. In the notations above, the following map is a surjection

ξ1 : H1(M, ν)→ S1(M, ν),

i.e. for any cusp form h(z) ∈ S1(M, ν), there exists h̃(z) ∈M1(M, ν) with shadow h(z).

2.2. Regularized Petersson Inner Products. From now on, we fix M = p to be a prime
number congruent to 3 modulo 4 and ν = χp = χp. The spacesH1(p, χp), M

!
1(p, χp),M1(p, χp),

S1(p, χp),M1(p, χp) are the same as before, and we will drop χp and sometimes p in these
notations when they are fixed. In this section, we will relate the regularized inner products
between g(z) ∈ S1(p) and f(z) ∈ M !

1(p) to linear combinations of coefficients of a mock-
modular form g̃(z), whose shadow is g(z), via Stokes’ theorem. The regularization technique
is standard and has been used in many places before (see for example [4, 7, 9, 11, 20, 27]).

Given f(z) ∈ M !
1(p) and g(z) ∈ S1(p), the usual Petersson inner product 〈f, g〉 can be

regularized as follows. Since p is prime, Γ0(p) has two inequivalent cusps, 0 and∞. They are

related by the scaling matrix σ0 =
(

−1/
√
p√

p

)
. Take a fundamental domain of Γ0(p)\H, cut

off the portion with Im(z) > Y for a sufficiently large Y and intersect it with its translate
under σ0. We will call this the truncated fundamental domain F(Y ). Now, define the
regularized inner product by

(2.1) 〈f, g〉reg := lim
Y→∞

∫
F(Y )

f(z)g(z)y
dxdy

y2
.

If f(z) ∈ M1(p), then this is the usual Petersson inner product. Now let ĝ(z) ∈ H1(p) be a
preimage of g(z) under ξ1 with the following Fourier expansions

ĝ(z) =
∑
n∈Z

c+
∞(n)qn −

∑
n≥1

c(g, n)β1(n, y)q−n,

(ĝ|1Wp)(z) =
∑
n∈Z

c+
0 (n)qn −

∑
n≥1

c(g|1Wp, n)β1(n, y)q−n,

where Wp =
( −1
p

)
is the Fricke involution that acts on f(z) ∈ H !

1(p) by

(f |1Wp)(z) = 1√
pz
f
(
− 1
pz

)
.

The expression for (ĝ|1Wp)(z) follows from the commutativity between ξ1 and the slash
operator. Note that

∑
n∈Z c

+
∞(n)qn and

∑
n∈Z c

+
0 (n)qn are mock-modular forms with shadows

g(z) and (g|1Wp)(z) respectively.
Suppose f(z) ∈M !

1(p) has Fourier expansions
∑

n∈Z c∞(f, n)qn and
∑

n∈Z c0(f, n)qn at the
cusp infinity and 0 respectively. Then as a special case of Proposition 3.5 in [9], we can
express 〈f, g〉reg in terms of these Fourier coefficients.
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Lemma 2.2 (See Proposition 3.5 in [9]). Let f(z) ∈M !
1(p) and g(z) ∈ S1(p). In the notations

above, we have

(2.2) 〈f, g〉reg =
∑
n∈Z

c+
∞(n)c∞(f,−n) + c+

0 (n)c0(f,−n).

Remark. Notice that the right hand side of Eq. (2.2) depends on the choice of ĝ(z), whereas
the left hand side only depends on g(z). So if we replace ĝ(z) with h(z) ∈ M !

1(p), then
Lemma 2.2 still holds and we obtain

0 =
∑
n∈Z

c∞(h, n)c∞(f,−n) + c0(h, n)c0(f,−n),

where h(z) has Fourier expansions
∑

n∈Z c∞(h, n)qn and
∑

n∈Z c0(h, n)qn at the cusp infinity
and 0 respectively.

2.3. Weight One Plus Space. In this section, we will canonically decompose the space
H1(p) into the direct sum of two subspaces, which behave nicely with respect to ξ1 and the
regularized inner product. This type of decomposition has appeared in [30, §3.1] for weight
two holomorphic modular forms of prime level p ≡ 1 (mod 4), and also in [8] for weakly
holomorphic modular forms of any weight and any prime level. This section is a slight
generalization of §3 in [8] to the harmonic setting.

For ε = ±1, we define the following space

(2.3) Hε
1(p) :=

{
f(z) =

∑
n∈Z

a(n, y)qn ∈ H1(p) : a(n, y) = 0 whenever χp(n) = −ε

}
.

By imposing the same condition on the Fourier expansions, we can defineM !,ε
1 (p),M ε

1(p), Sε1(p)

and Mε
1(p). Notice that M !,ε

1 (p) is the same as the space Aεk(p, χp) defined on page 51 of [8]
for k = 1. By the definition of Rp(n) in (1.5), it is clear that E1(z) ∈ M+

1 (p). Also, the

weight one mock-Eisenstein series Ẽ1(z) belongs to M−1 (p). This can be checked from the
factorization (1.6) and the fact that E1(z) ∈M+

1 (p).
Recall the standard operator Up on H1(p) defined by

(2.4) f(z)|1Up =
1
√
p

p−1∑
j=0

f |1
(

1 j
p

)
.

Its action on the Fourier expansion of f(z) =
∑

m a(m, y)qm ∈ H1(p) is

(2.5) (f |1Up)(z) =
∑
m

a
(
pm, y

p

)
qm.

The Up operator preserves the space H1(p). This is also true for the Fricke involution Wp,
since χp is a real character. Applying Wp twice produces a negative sign for odd weight, i.e.
(f |1W 2

p )(z) = −f(z).
For ε = ±1, define the operator prε : H1(p) −→ H1(p) by

(2.6) prε(f) :=
1

2

(
εi(f |1UpWp) + f

)
.

By considering the actions of Up and Wp on the associated weakly harmonic form, one can
define prε on M1(p) as well. These operators then decompose H1(p), resp. M1(p), into the
direct sum ofH+

1 (p) andH−1 (p), resp. M+
1 (p) and M−1 (p). The lemma below is a generalization

of Lemma 3 in [8, §3] to the harmonic setting.
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Lemma 2.3. Let f ∈ H1(p). Then for ε = ±1,

(2.7) (f |1Wp)(z) = −iε(f |1Up)(z),

if and only if f(z) ∈ Hε
1(p). As a result, the operator prε is the identity when restricted to

the subspace Hε
1(p), annihilates the subspace H−ε1 (p) and

(2.8) H1(p) = pr+(H1(p))⊕ pr−(H1(p)) = H+
1 (p)⊕H−1 (p).

Remark. The same decomposition above holds for M1(p) and subspaces S1(p) ⊂ M1(p) ⊂
M !

1(p) ⊂ H1(p) as well.

Proof. Let f(z) =
∑

n∈Z a(n, y)qn ∈ H1(p). It suffices to show that for ε = ±1, pr−ε(f) ∈
Hε

1(p) and

pr−ε(f) = 0⇐⇒ f ∈ Hε
1(p).

These then imply the first half of the lemma after applying the definition of prε and f |1
W 2
p = −f . They also imply the second half since

f = pr+(f) + pr−(f) ∈ H+
1 (p) +H−1 (p)

and for any h ∈ H+
1 (p) ∩H−1 (p)

h = pr+(h) + pr−(h) = 0 + 0 = 0.

With the matrix calculations in Lemma 3 of [8], one has

(pr−εf)(z) =
1

2

(
−εi(f |1Wp)(pz) +

∑
n∈Z

(1− χp(n)ε) a(n, y)qn

)
∈ Hε

1(p).

So if pr−ε(f) = 0, then a(n, y) = 0 whenever χp(n) = −ε and f ∈ Hε
1(p) by definition.

Conversely if f ∈ Hε
1(p), then the Fourier coefficients ξ1(pr−ε(f)) ∈ M !

1(p) are supported on
multiples of p. A lemma due to Hecke ([37, Lemma, p. 32] ) implies that

M !,+
1 (p) ∩M !,−

1 (p) = {0}.

So ξ1(pr−ε(f)) = 0 and pr−ε(f) is holomorphic. But it is contained in M !,+
1 (p) ∩M !,−

1 (p),
hence vanishes. �

The decomposition above behaves well under the action of ξ1. Combining with Proposition
2.1, it proves a statement about surjectivity of ξ1 : Hε

1(p)→M−ε
1 (p). Furthermore, there is a

nice characterization of the space Sε1(p) as a consequence of facts about weight one modular
forms.

Lemma 2.4. For ε = ±1, the following map is a surjection

ξ1 : Hε
1(p)→ S−ε1 (p).

In other words, for any g ∈ S−ε1 (p), there exists a mock-modular form g̃ ∈ Mε
1(p) whose

shadow is g.
In addition, S+

1 (p) contains all dihedral cusp forms. If there are 2d− non-dihedral forms in
S1(p), then the spaces S+

1 (p) and S−1 (p) have dimensions 1
2
(H(p)−1)+d− and d− respectively,

where H(p) is the class number of Q(
√
−p) as in the introduction.

Proof. By Proposition 2.1, the following map is surjective

ξ1 : H1(p)→ S−ε1 (p).
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Since ξ1 commutes with the action of Up and Wp and conjugates their coefficients, it commutes
with the operator prε as follows

(2.9) ξ1(prε(f)) = pr−ε(ξ1(f)).

The operator pr−ε is the identity when restricted to S−ε1 (p). So the preimage of S−ε1 (p) under
ξ1 lies in Hε

1(p) and the map ξ1 : Hε
1(p)→ S−ε1 (p) is surjective for ε = ±1.

Now if f ∈ S1(p) is a dihedral newform, then it is a linear combination of theta series, whose
nth coefficient is zero if χp(n) = −1. So f ∈ S+

1 (p) by definition. If f(z) =
∑

n≥1 c(f, n)qn

is an octahedral or icosahedral newform, then f(z) and f(z) := f(z) =
∑

n≥1 c(f, n)qn are
linearly independent newforms. When ` 6= p is a prime number, we have the relationship

(2.10) c(f, `) = χp(`)c(f, `).

This is a consequence of the formula of the adjoint of the `th Hecke operator with respect to
the Petersson inner product [38, p.21]. Together with the recursive relation

c(f, `)c(f, n) = c(f, n`) + χp(`)c(f, n/`),

a simple induction shows that whenever p - n,

c(f, n) = χp(n)c(f, n).

So f + f ∈ S+
1 (p) and f − f ∈ S−1 (p). Since the number of octahedral and icosahedral

newforms is always even and set to be 2d−, we obtain the formulae for the dimensions. �

Remark : The spaces Sε1(p) should be compared to the spaces M+ and M− in (9.1.2) in
[40]. If all octahedral and icosahedral newforms f(z) ∈ S1(p) satisfy

(2.11) (f |1Wp)(z) = −if(z),

then M+ is the span of the weight one Eisenstein series and S+
1 (p) and M− = S−1 (p).

Besides compatibility with ξ1, the decomposition also behaves nicely with respect to the
regularized inner product. As a consequence of Lemma 2.2, we have the following proposition.

Proposition 2.5. Let f(z) ∈ M !,ε
1 (p), g(z) ∈ Sε′1 (p) and g̃(z) ∈ M−ε′1 (p) with shadow g(z)

and Fourier expansion
∑

n∈Z c
+(n)qn. If ε = ε′, then

(2.12) 〈f, g〉reg =
∑
n∈Z

δ(n)c(f,−n)c+(n).

Here δ(n) is 2 if p|n and 1 otherwise. If ε 6= ε′, then 〈f, g〉reg = 0.

Proof. Let ĝ(z) ∈ H−ε
′

1 (p) be the harmonic Maass form associated to g̃(z). Then both
assertions are immediate consequences of Lemma 2.2 and

(f |1Wp)(z) = −iε(f |1Up)(z), (ĝ|1Wp)(z) = −iε′(ĝ|1Up)(z).

Since the adjoint of Wp (resp. Up) is W−1
p = −Wp (resp. WpUpW

−1
p ) with respect to the

regularized inner product, it is easy to check that prε is self-adjoint, which also proves the
second claim. �

When g(z) above is zero, i.e. g̃(z) is modular, Eq. (2.12) reduces to an orthogonal rela-
tionship between Fourier coefficients of weakly holomorphic modular forms. In particular, we
can take g̃(z) to be a cusp form and obtain relations satisfied by {c(f,−n) : n ≥ 1}. These

relations turn out to characterize the space M !,ε
1 (p), which gives a nice characterization of

the space Mε
1(p). The following proposition is a slight generalization of Theorem 6 in [8, §3].
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Proposition 2.6. Let g(z) ∈ Sε1(p). Then there exists a mock-modular form g̃(z) ∈ M−ε1 (p)
with shadow g(z) and prescribed principal part

∑
n<0 c

+(n)qn if and only if

(2.13)
∑
n<0

δ(n)c(h,−n)c+(n) = 〈h, g〉reg

for every cusp form h(z) ∈ Sε1(p).

Proof. When g̃ is modular, this follows from Theorem 6 in [8, §3]. When g̃(z) is mock-
modular, the necessity part follows from Proposition 2.5. Since h(z) is a cusp form, the
summation in (2.12) only extends over n < 0. Let

∑
n<0 c

+(g̃1, n)qn be the principal part
of g̃1(z) ∈ M−ε1 (p), whose shadow is g(z). This exists by Lemma 2.4. Then the difference∑

n<0(c+(n)−c+(g̃1, n))qn satisfies Eq. (2.13) with the right hand side being 0. So there exists

a weakly holomorphic form d(z) ∈M !,−ε
1 (p) with the prescribed principal part

∑
n<0(c+(n)−

c+(g̃1, n))qn. Thus, the sum g̃1(z) + d(z) ∈M−ε1 (p) is the desired form with shadow g(z) and
principal part

∑
n<0 c

+(n)qn. �

2.4. Echelon bases of modular forms. In this section, we will gather some facts about
bases of the spaces of the weight 0 and weight 2 modular forms with level. These will be
useful during the proof of Theorem 6.1.

Let N be 1 or an odd prime and M !
2(N), resp. M !

0(N), be the space of weakly holomorphic
weight 2 modular forms, resp. modular functions, of level N , and trivial nebentypus. Denote
its subspaces of cusp forms and holomorphic modular forms by S2(N),M2(N) respectively.

Let M !,new
0 (N) be the subspace of M !

0(N) containing weakly holomorphic modular functions
f(z) satisfying

(2.14) (f |WN)(z) = −N(f |UN)(z),

where WN is the Fricke involution and UN acts on f via

(f | UN)(z) = 1
N

N−1∑
µ=0

f
(
z+µ
N

)
.

Note that M !,new
0 (1) = {0}. Define the trace down operator TrN1 by

(2.15) TrN1 (f)(z) :=
1

[SL2(Z) : Γ0(N)]

∑
γ∈Γ0(N)\SL2(Z)

(f | γ)(z).

Using the trace down operator, one can decompose M !
0(N) into the direct sum of M !,new

0 (N)
and modular functions of level 1.

Lemma 2.7. Let f(z) be a modular function of level N , where N is either an odd prime or
1. Then it can be written uniquely as

f(z) = f1(Nz) + f2(z),

where f1 = TrN1 (f | WN) ∈M !
0(1) and f2(z) ∈M !,new

0 (N).

Proof. When N = 1, the space is M !,new
0 (N) = {0} and f1(z) = f(z). When N is an odd

prime, some matrix calculations give us

Nf | UNWN = −f + (N + 1)TrN1 (f | WN)(Nz).

Using this, one can verify that f2(z) ∈M !,new
0 (N). �
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For the rest of the section, N is an odd prime. The space M !,new
0 (N) has a nice q-echelon

basis, whose principal parts are closely related to the space S2(N).

Definition 2.8. A set of numbers {λm ∈ C : m ≥ 1} is called a relation for S2(N) if

(i) λm is zero for all but finitely many m.
(ii) For any cusp form h(z) =

∑
m≥1 c(h,m)qm ∈ S2(N), the numbers {λm} satisfy

(2.16)
∑
m≥1

δN(m)λmc(h,m) = 0.

where δN(m) = N + 1 if N |m and 1 otherwise.

A relation {λm}m≥1 is called integral if λm ∈ Z for all m ≥ 1. Denote ΛN the set of all
relations for S2(N).

For any f(z) ∈ M !,new
0 (N), one knows that the principal part coefficients, {c(f,−m) :

m ≥ 1}, is a relation for S2(N) from works by Petersson. By considering the Fourier expan-
sion of vector-valued Poincaré series, (see [7, 29, 35]), one can also show that the converse is
true. So given λ = {λm} ∈ ΛN , the expression∑

m≥1

λmq
−m

is necessarily the principal part of the Fourier expansion at infinity of a unique function
fλ(z) ∈ M !,new

0 (N). Alternatively, this statement follows essentially from an application of
Serre duality [5, §3].

Suppose λ ∈ ΛN is integral. Then the nth Fourier coefficient of fλ(z) is integral when n 6= 0
since fλ is a rational function of j(z) and j(Nz). Applying Eq. (2.16), with the sum over all
m ≥ 0, to fλ and the Eisenstein series

(2.17) N · Ê2(Nz)− Ê2(z) = (N − 1)− 24
∑
m≥1

(
Nσ1

(m
N

)
− σ1(m)

)
qm ∈M2(N)

then shows that (N2−1) times the constant term in the Fourier expansion of fλ is an integer.

Here, Ê2(z) is the non-holomorphic Eisenstein series of weight 2, level 1 defined by

(2.18) Ê2(z) = Ẽ2(z)− 3

πy
= 1− 24

∑
n≥1

σ1(n)qn − 3

πy
.

Let gN be the genus of Γ0(N). From [1], we know that for all h(z) ∈ S2(N), ord∞(h(z)) ≤
dim(S2(N)) = gN ≤ (N + 1)/12. So the space S2(N) has a q-echelon basis {hj, 1 ≤ j ≤ gN}
with

hj(z) = qj +O(qgN+1).

Using matrix computations similar to that in the proof of Lemma 2.7, one can show that

(2.19) h|2UN = −h|2WN

for all h(z) ∈ M2(N), implying that UN ◦ UN is the identity operator on M2(N). Note
that since N is prime, dim(M2(N)) = gN + 1 with the extra contribution coming from the
Eisenstein series in Eq. (2.17). Combining these facts together gives us the following lemma

about M !,new
0 (N).
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Lemma 2.9. The space M !,new
0 (N) is spanned by two disjoint sets SN,1,SN,2 of modular

functions defined by

SN,1 := {fm(z) = q−m +
∞∑

n=−gN

cm(n)qn : m ≥ 1 + gN , N
2 - m},

SN,2 := {hm(z) = q−N
2m − N+1

δN (m)
q−m +O(q) : m ≥ 1}.

(2.20)

For these m ≥ gN + 1, cm(n) ∈ Z when n 6= 0 and (N2 − 1)cm(0) ∈ Z.

There is a similar duality statement dictating the existence of forms in M !
2(N).

Lemma 2.10. For every n ≥ 0, there exists Pn,N(z) =
∑

m∈Z c(Pn,N ,m)qm ∈ M !
2(N) such

that

(i) At the cusp infinity, Pn,N(z) = q−n +O(q).
(ii) (Pn,N |2WN)(z) = −(Pn,N |2UN)(z).

Furthermore, if f(z) =
∑

m∈Z c(f,m)qn ∈M !,new
0 (N), then∑

m∈Z

δN(m)c(f,m)c(Pn,N ,−m) = 0.

Remark. Notice that (N − 1)P0,N(z) ∈M2(N) is the Eisenstein series defined by Eq. (2.17).

3. Coefficients of the Principal Part of g̃ψ(z)

Let gψ(z) ∈ S+
1 (p) be a dihedral newform associated to a class group character ψ. Lemma

2.4 tells us that there exists a mock-modular form g̃ψ(z) ∈ M−1 (p) with gψ(z) as shadow.

However, g̃ψ(z) is only well-defined up to the addition of a form in M !,−
1 (p). In this section,

we will show that there exists a g̃ψ(z) ∈M−1 (p) such that its principal part coefficients satisfy
nice properties. These principal part coefficients can be related to L-functions via Kronecker’s
limit formula. In a sense, this section gives a model of how to study the other coefficients, in
which case there will no longer be L-functions to work with.

Let F,H be the same number fields as in §1. For a class A ∈ Cl(F ), a CM point τA =
xA+iyA ∈ H∩F is associated toA if theOF -fractional ideal Z+Zτ̄A is in the classA ∈ Cl(F ).
Let A0 ∈ Cl(F ) denote the principal class. For any A,B ∈ Cl(F ), define uA,B, uA ∈ H by

(3.1) uA,B :=
y6
A∆(τA)

y6
B∆(τB)

, uA :=
∏

I∈Cl(F )

uA,I ,

where ∆(τ) = η24(τ) is the unique normalized cusp form of weight twelve, level one. Although
τA is not unique, its equivalence class under the action of PSL2(Z) is well-defined. Since
y6η24(τ) is invariant under the action of PSL2(Z), the quantity uA,B is independent of the
choices of τA and τB. Let σC ∈ Gal(H/F ) be the Galois automorphism associated to the
class C ∈ Cl(F ) via Artin’s isomorphism. Then by the theory of complex multiplication [42,
Chap. II §2], uA,B and uA are units in H and satisfy

(3.2) σC(uA,B) = uAC−1,BC−1 , σC(uA) = uAC−1 .

For an integer M , let EM(z, s) be the non-holomorphic Eisenstein series of weight zero,
level M defined by

(3.3) EM(z, s) =
∑

γ∈Γ̃∞\Γ0(M)

(Im(γz))s,
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where Γ̃∞ = {( ∗ ∗0 ∗ ) ∈ SL2(Z)}. It has a simple pole at s = 1 and the well-known expansion

EM(z, s) = ys + ϕM(s)y1−s +O(e−y)

as y →∞, where z = x+ iy and

ϕ1(s) =
Γ
(

1
2

)
Γ
(
s− 1

2

)
Γ(s)

ζ(2s− 1)

ζ(2s)
,

ϕM(s) = M−2s(M−1)
1−M2s ϕ1(s) when M is prime.

For convenience, we write E(z, s) for E1(z, s). Kronecker’s first limit formula states that

(3.4) 2ζ(2s)E(z, s) =
π

s− 1
+ 2π

(
γ − log(2)− log(

√
y|η(z)|2)

)
+O(s− 1),

where γ is the Euler constant. The factor of 2 comes from ±I ∈ Γ̃∞. Using (3.4) and
Rankin-Selberg unfolding trick, we can relate the inner product between dihedral newforms
to logarithm of uA,A0 as follows.

Proposition 3.1. Let ψ, ψ′ be characters of Cl(F ), with ψ non-trivial. If ψ′ = ψ or ψ, then

(3.5) 〈gψ, gψ′〉 = −H(p)

12

∑
A∈Cl(F )

ψ2(A) log |uA,A0| =
1

12

∑
A∈Cl(F )

ψ2(A) log |uA| = H(p)Iψ2 ,

where A0 ∈ Cl(F ) is the principal class and

(3.6) Iψ2 := −
∑
A∈Cl(F )

ψ2(A) log |√yAη(τA)2|.

Otherwise, 〈gψ, gψ′〉 = 0.

Proof. Since p is prime, the Eisenstein series Ep(z, s) has a simple pole at s = 1 with residue
3

π(p+1)
, which is independent of z. So we have the relationship

3

π(p+ 1)
· 〈gψ, gψ′〉 = Ress=1

∫
Γ0(p)\H

gψ(z)gψ′(z)Ep(z, s)y
dxdy

y2
.

Now, we can use the Rankin-Selberg method to unfold the right hand side and obtain∫
Γ0(p)\H

gψ(z)gψ′(z)Ep(z, s)y
dxdy

y2
=

Γ(s)

(4π)s

∑
n≥1

rψ(n)rψ′(n)

ns

Let ρψ : Gal(Q/Q) → GL2(C) be the representation induced from ψ. Then it is also the
one attached to gψ(z) via Deligne-Serre’s theorem. Up to Euler factors at p, the right hand
side is L(s, ρψ ⊗ ρψ′), the L-function of the tensor product of the representations ρψ and ρψ′ .
From the character table of the dihedral group D2H(p), we see that

ρψ ⊗ ρψ′ = ρψψ′ ⊕ ρψψ′ .

So when ψ′ 6= ψ or ψ, the L-function L(s, ρψ⊗ρψ′) is holomorphic at s = 1 and 〈gψ, gψ′〉 = 0.
Otherwise, we have ∑

n≥1

rψ(n)rψ(n)

ns
=
ζ(s)L(s, χp)L(s, ρψ2)

ζ(2s)(1 + p−s)
,

Putting these together, we obtain

(3.7) 〈gψ, gψ〉 =
p

2π2
L(1, χp)L(1, ρψ2).
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From the theory of quadratic forms (see Eq. (5) and (6) in [42, Chap. 1 §1]) , we have
√
pL(s, ρψ2) = ζ(2s)

∑
A∈Cl(F )

ψ2(A)E(τA, s).

Since ψ is non-trivial and H(p) is odd, ψ2 is non-trivial and (3.4) implies that

L(1, ρψ2) = − 2π
√
p

∑
A∈Cl(F )

ψ2(A) log(
√
yA |η(τA)|2).

Along with the class number formula for p > 3

L(1, χp) =
2πH(p)

wp
√
p

=
πH(p)
√
p

,

we arrive at

(3.8) 〈gψ, gψ〉 = −H(p)

12

∑
A∈Cl(F )

ψ2(A) log |y6
A∆(τA)|.

Since ψ2 is non-trivial, this implies Eq. (3.5). �

Remarks.

i) The calculations above also follow from [44, II §6].
ii) By the same procedure, one can analyze the inner product between any pairs of weight

one newforms. In particular, if g(z), h(z) ∈ S1(p) arise from different types of Galois
representations, then 〈g, h〉 = 0.

iii) This proposition is really a proven case of Stark’s conjecture in the abelian, rank one
case for the abelian extension H/F (see Conjecture 1.1 in [16]).

Next we prove the existence of a preimage whose principal part coefficients are special.

Proposition 3.2. Let ψ be a non-trivial character of Cl(F ). Then there exists g̃ψ(z) =∑
n≥n0

r+
ψ (n)qn ∈M−1 (p) with shadow gψ(z) such that

(i) When χp(n) = 1 or n < −p+1
24

, the coefficient r+
ψ (n) equals to zero.

(ii) For n ≤ 0, the coefficients r+
ψ (n) are of the form

r+
ψ (n) =

1

12H(p)κ−p

∑
A∈Cl(F )

ψ2(A) log |u(n,A)|,

where κ−p ∈ Z is defined by Eq. (3.9) and depends only on p. The units u(n,A) ∈ O×H
depends only on n and A. When n < 0, u(n,A) is an H(p)th power in O×H .

(iii) Let σC ∈ Gal(H/F ) be the element associated to the class C ∈ Cl(F ) via Artin’s isomor-
phism. When n ≤ 0, it acts on the units u(n,A) by

σC(u(n,A)) = u(n,AC−1).

Remark. In practice, one could choose u(n,A) and 1/κ−p ∈ Z such that 1/κ−p | 12H(p) (see
the example p = 23 in §1).

Proof. From Lemma 2.4, we know that the dimension of S+
1 (p), denoted by d+, is 1

2
(H(p)−

1)+d−. Let {g1, g2, . . . , gd+} be a basis of S+
1 (p). Suppose we have chosen n1, n2, . . . , nd+ > 0

such that χp(nk) 6= −1 and the matrix

P := [c(gj, nk)]1≤j,k≤d+
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is invertible. Then for any ψ, there exists g̃ψ(z) ∈ M−1 (p) with shadow gψ(z) and principal
part coefficients r+

ψ (−n) = 0 for all positive integers n not in the set {n1, n2, . . . , nd+} by

Proposition 2.6. Furthermore, these r+
ψ (−n) can be uniquely determined from solving a

d+ × d+ system of equations. We will show that such g̃ψ(z) can be made to satisfy the
proposition.

First, we will show that it is possible to choose such {nk : 1 ≤ k ≤ d+} satisfying nk ≤
(p + 1)/24. Let {h1, h2, . . . , hd+} to be a q-echelon basis of S+

1 (p). Then these nk’s can be
chosen to be bounded by the supremum of the set

{ord∞h(z) : h(z) ∈ S+
1 (p)}.

Now, the square of a cusp form in S1(p) is in S2(p), the space of weight 2 cusp form of trivial
nebentypus on Γ0(p). This gives rise to a holomorphic differential form on the modular curve
X0(p). Atkin showed (see [1, 31, 36]) that ∞ is not a Weierstrass point of the modular
curve X0(p), i.e. ord∞h(z) is no more than the genus of X0(p). Using the Riemann-Hurwitz
formula (see [41]), we know that the genus of X0(p) is bounded by (p + 1)/12. So the nk’s
can be chosen to be bounded by (p + 1)/24. Note that with these nk’s, the matrix P above
will be non-singular with any basis {gj} of S+

1 (p).
In particular, let {gj(z) : 1 ≤ j ≤ (H(p)− 1)/2} be the dihedral newforms, and label the

class group characters as {ψj : 1 ≤ j ≤ H(p)− 1} such that gψj(z) = gj(z) and ψj = ψH(p)−j
for 1 ≤ j ≤ (H(p) − 1)/2. When (H(p) + 1)/2 ≤ j ≤ d+, let gj(z) be linear combina-
tions of non-dihedral newforms such that gj(z) has integral coefficients and the set {gj(z) :
(H(p) + 1)/2 ≤ j ≤ d+} is linearly independent. Then for each non-trivial ψ, Proposition 2.5
implies that the values {r+

ψ (−nk) : 1 ≤ k ≤ d+} satisfy the matrix equation

P · [δ(nk)r+
ψ (−nk)]1≤k≤d+ = R,

where R is the d+ × 1 matrix (〈gj, gψ〉)1≤j≤d+ . By Proposition 3.1, the matrix R equals to

R =



0
...
0

−H(p)
12

∑
A ψ

2(A) log |uA,A0 |
0
...
0


Label the non-principal classes as Ai for 1 ≤ i ≤ H(p)−1 such that A−1

i = AH(p)−i. Let M ′

be the matrix
(
M1 0
0 Idd−

)
, where M1 is a non-singular matrix of size 1

2
(H(p)−1)× 1

2
(H(p)−1)

defined by
[(ψj(Ai) + ψj(AH(p)−i)− 2)/H(p)]1≤i,j≤(H(p)−1)/2

and Idd− is the d− × d− identity matrix. The product M ′P is the matrix

M ′P =



(rA1(n1)− rA0(n1)) · · · (rA1(nd+)− rA0(nd+))
...

. . .
...

(rA(H(p)−1)/2
(n1)− rA0(n1)) · · · (rA(H(p)−1)/2

(nd+)− rA0(nd+))
c(g(H(p)+1)/2, n1) · · · c(g(H(p)+1)/2, nd+)

...
. . .

...
c(gd+ , n1) · · · c(gd+ , nd+)


,
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which has integer coefficients and is also non-singular. The product M ′R is the d+×1 matrix

M ′R =



1
12

∑
A ψ

2(A) log |uA(A1)|
...

1
12

∑
A ψ

2(A) log |uA(A(H(p)−1)/2)|
0
...
0


,

where
uA(B) := uA

√
B,AuA

√
B−1

,A ∈ O
×
H .

Also by (3.2), we have
σC(uA(B)) = uAC−1(B)

for any class A,B, C ∈ Cl(F ).
Since M ′P is a non-singular matrix with integer entries, one can write its inverse as

1
κ−p

(αk,j)1≤k,j≤d+ with αk,j ∈ Z and

(3.9) κ−p := − det(M ′P ) ∈ Z.
Since nk is bounded by (p+ 1)/24 as chosen earlier, p - nk and δ(nk) = 1 for all 1 ≤ k ≤ d+.
Thus, r+

ψ (−nk) can be written as

r+
ψ (−nk) =

1

12H(p)κ−p

∑
A

ψ2(A) log

∣∣∣∣∣∣
(H(p)−1)/2∏

j=1

uA(Aj)αk,j

∣∣∣∣∣∣
H(p)

.

From this, we can choose

u(−nk,A) :=

(H(p)−1)/2∏
j=1

uA(Aj)αk,j

H(p)

.

Then r+
ψ (−nk) satisfies conditions (ii) and (iii) in the proposition.

Finally, applying Propositions 2.5 and 3.1 to the Eisenstein series E1(z) ∈ M+
1 (p) in Eq.

(1.4) and the cusp form gψ(z) gives us

H(p)r+
ψ (0) +

d+∑
k=1

Rp(nk)r
+
ψ (−nk) = 〈E1, gψ〉 = 0.

So we can write r+
ψ (0) = 1

12H(p)κ−p
log |u(0,A)| with

u(0,A) :=

d+∏
k=1

u(nk,A)−Rp(nk) ∈ O×H ,

which satisfies condition (iii) as well. �

As a consequence of the analysis in Proposition 3.2, we have the following corollary.

Corollary 3.3. Let g(z) ∈ S+
1 (p) be a cusp form with integral Fourier coefficients at infinity.

Then for any character ψ : Cl(F ) −→ C×, one can write

〈g, gψ〉 =
1

12κ−p

∑
A∈Cl(F )

log |ug(A)|,
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where the unit ug(A) ∈ O×H is independent of ψ and satisfies σC(ug(A)) = ug(AC−1) for all
C ∈ Cl(F ).

Proof. If ψ is trivial, then gψ is the Eisenstein series and its inner product with g(z) is
0. Otherwise, write g(z) =

∑
n≥1 c(n)qn with c(n) ∈ Z. In the notation of the proof of

Proposition 3.2, we can write

〈g, gψ〉 =
(
c(n1) c(n2) . . . c(nd+)

)
· (M ′P )−1(M ′R).

From the shape of M ′R in Proposition 3.2 and det(M ′P ) = −κ−p , we can deduce the corollary.
�

4. Values of Borcherds lift and Proof of Theorem 1.2

In this section we will prove Theorem 1.2. It will be deduced as a corollary of a more general
identity for special values of certain Borcherds lifts of weight 1/2 weakly holomorphic forms
from an application of Rankin’s method to forms with poles. We remark that the method
also yields another proof of Eq. (1.12), whose analytic proof in [24] uses Hecke-Eisenstein
series of weight one. The method can also be generalized to higher levels in order to obtain
some refinements of certain results of [26] on height pairings of Heegner divisors.

4.1. Binary Quadratic Forms, Borcherds Lift and Theorem 4.1. Let −d < 0 be a
discriminant, not necessarily fundamental, and Q−d the set of positive definite integral binary
quadratic forms

q(x, y) = ax2 + bxy + cy2

with −d = b2 − 4ac, where a, b, c ∈ Z. For any q ∈ Q−d, the associated CM point is defined
to be

τq =
−b+

√
−d

2a
∈ H,

where H is the upper half plane. Clearly q(τq, 1) = 0. The modular group Γ = PSL2(Z) acts
on q ∈ Q−d by a linear change of variables, which induces linear fractional transformation on
τq. Let wq be the number of stabilizers of q and H(d) the number of equivalence classes of
quadratic forms, which is the Hurwitz class number. Those classes represented by primitive
forms (those with gcd(a, b, c) = 1) comprise a finite abelian group under composition, which
is called the class group. When −d is fundamental, this class group is canonically isomorphic
to the ideal class group of Q(

√
−d) by sending [q] to the class A ∈ Cl(Q(

√
−d)) containing

the fractional ideal Z + Zτq.
Let M !

1/2 be the space of weakly holomorphic modular forms of weight 1/2 and level 4

satisfying Kohnen’s plus space condition. It has a canonical basis {fd}d≥0 with d ≡ 0, 3
(mod 4) and Fourier expansions

fd(z) = q−d +
∑
n≥1

c(fd, n)qn.

Let f(z) ∈ M !
1/2 be a weakly holomorphic form with integral Fourier coefficients c(f, n). In

[3], Borcherds constructed an infinite product Ψf (z) using c(f, n) as exponents, and showed
that it is a modular form of weight c(f, 0) and some character. The divisors of Ψf (z) are
supported on cusps and imaginary quadratic irrationals. In particular, if τ is a quadratic
irrational of discriminant −D < 0, then its multiplicity in Ψf (z) is

ordτ (Ψf ) =
∑
k>0

c(f,−Dk2).
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For example, when f(z) = fd(z) with d > 0, the Borcherds product Ψfd(z) equals to

(4.1)
∏

q∈Q−d/Γ

(j(z)− j(τq))1/wq ,

Note that when −d is fundamental, wd, the number of roots of unity in Q(
√
−d), is equal to

2wq for all q ∈ Q−d.
Given f(z) ∈M !

1/2, define a modular form f lift,θ(z) ∈M !
1(p) by

(4.2) f lift,θ(z) := U4(f(pz)θ(z)),

where U4 is the standard U -operator. It is easy to verify that f lift,θ(z) ∈ M !,+
1 (p) from its

Fourier expansion.
Let ψ be a non-trivial character of Cl(F ) and gψ(z) ∈ S1(p) the associated weight one

newform. The main theorem of this section relates the regularized inner product 〈f lift,θ, gψ〉reg

to the value of the Borcherds lift Ψf (z).

Theorem 4.1. Let f(z) ∈M !
1/2 be a weakly holomorphic modular form with integral Fourier

coefficients c(f, n), and Ψf (z) its Borcherds lift. Suppose ψ is a non-trivial character of
Cl(F ). Then we have

(4.3) 〈f lift,θ, gψ〉reg = −2 lim
ε→0

∑
A∈Cl(F )

ψ2(A)
(
log |Ψf (τA + ε)|2 + Cf log |yA|

)
,

where Cf =
∑

k∈Z c(f,−pk2) is the constant term of f lift,θ(z), and τA is a CM point associated
to the class A.

Remark. It will clear from the proof that the limit in Eq. (4.3) exists and is independent of
the choice of τA.

Let

g̃ψ(z) =
∑
n∈Z

r+
ψ (n)qn ∈M−1 (p)

be a mock-modular form with shadow gψ(z). By Proposition 2.5, the regularized inner
product 〈f lift,θ, gψ〉reg can be expressed in terms of r+

ψ (n) as

(4.4) 〈f lift,θ, gψ〉reg =
∑
m∈Z

∑
k∈Z

r+
ψ

(
−pm− k2

4

)
c(f,m)δ(k).

By setting f = fd for −d a fundamental discriminant and choosing g̃ψ(z) as in Proposition
3.2, one can see that Theorem 1.2 is a direct consequence of Theorem 4.1 and Eq. (4.4).

The plan of the proof goes as follows. First, we will recall from [24] the construction of
the automorphic Green’s function as the limit of an infinite sum and express the Borcherds
lift in terms of such sum. Then we will prove an identity between 〈f lift,θ, gψ〉reg and the limit
of another similar infinite sum through Eq. (4.4). Finally, an elementary counting argument
will connect these two infinite sums and finish the proof of Theorem 4.1, from which Theorem
1.2 is deduced. In some sense, the proof is in the same spirit as Zagier’s proof of Borcherds’
theorem in [49].
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4.2. Automorphic Green’s Function. Here, we will follow the construction in [24, §5].
For two distinct points zj = xj + iyj ∈ H, the invariant hyperbolic distance d(z1, z2) between
them is defined by

(4.5) cosh d(z1, z2) =
(x1 − x2)2 + y2

1 + y2
2

2y1y2

.

Note d(z1, z2) = d(γz1, γz2) for all γ ∈ PSL2(R). The Legendre function of the second kind
Qs−1(t) is defined by

Qs−1(t) =

∫ ∞
0

(t+
√
t2 − 1 coshu)−sdu, Re(s) > 1, t > 1,

Q0(t) = 1
2

log
(
1 + 2

t−1

)
.

(4.6)

For two distinct points z1, z2 ∈ PSL2(Z)\H, the following convergent series defines the auto-
morphic Green’s function

(4.7) Gs(z1, z2) :=
∑

γ∈PSL2(Z)

gs(z1, γz2), Re(s) > 1,

where

(4.8) gs(z1, z2) := −2Qs−1(cosh d(z1, z2)).

Recall that E(τ, s) is defined in (3.3) and ϕ1(s) is the coefficient of y1−s in the Fourier
expansion of E(τ, s). Proposition 5.1 in [24] tells us that for distinct z1, z2 ∈ PSL2(Z)\H,
the values of the j-function are related to the values of the automorphic Green’s function by

(4.9) log |j(z1)− j(z2)|2 = lim
s→1

(Gs(z1, z2) + 4πE(z1, s) + 4πE(z2, s)− 4πϕ1(s))− 24.

Along with Eq. (4.7), this gives us the following proposition.

Proposition 4.2. Let d,D > 0 be congruent to 0 or 3 modulo 4 and Q ∈ Q−D. If τQ 6= τq
for any q ∈ Q−d, then
(4.10)

log |Ψfd(τQ)|2 = lim
s→1

 ∑
k>
√
dD

ρQ(k, d)(−2)Qs−1

(
k√
dD

)
+H(d)4πE(τQ, s) +R(d, s)

 ,

where R(d, s) =
∑

q∈Q−d/Γ(4πE(τq, s) − 4πϕ1(s) − 24) and ρQ(k, d) is the counting function

defined by

(4.11) ρQ(k, d) := #{q ∈ Q−d| cosh d(τq, τQ) = k√
dD
}

and is independent of the choice of the representative Q.

Remark. A similar equation holds when τQ = τq for some q ∈ Q−d (see Eq. (4.25)).

Proof. For τQ, τq as above, it is easy to verify that
√
dD cosh d(τQ, τq) ∈ Z.

Furthermore, cosh d(τQ, τq) = 1 precisely when τQ = τq. Otherwise, cosh d(τQ, τq) > 1.
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Now let z1 = τQ, z2 = τq in Eq. (4.9) and sum over q ∈ Q−d/Γ. With the following
observation ∑

q∈Q−d/Γ

1

wq
Gs(τQ, τq) =

∑
q∈Q−d/Γ

∑
γ∈Γ

1

wq
(−2)Qs−1(cosh d(τQ, γτq))

=
∑
q∈Q−d

(−2)Qs−1(cosh d(τQ, τq))

=
∑

k>
√
dD

ρQ(k, d)(−2)Qs−1

(
k√
dD

)
,

we have Eq. (4.10). �

4.3. Infinite Sum Expression of the Regularized Inner Product. For convenience, we
denote

(4.12) a(d, ψ) := 〈f lift,θ
d , gψ〉reg.

The following lemma relates a(d, ψ) with the limit of an infinite sum involving the rψ(n)’s.

Lemma 4.3. Let d ≥ 1 be an integer congruent to 0 or 3 modulo 4. Then we have

(4.13) a(d, ψ)− a(0, ψ)H(d)

H(0)
= 2 lim

s→1

 ∑
k>
√
pd

δ(k)rψ

(
−pd+ k2

4

)
2Qs−1

(
k√
pd

) .

The idea of the proof is to define a non-holomorphic function Φ∗(z) of weight 3/2 and
level 4, which satisfies Kohnen’s plus space condition and a mildly decaying condition at the
cusps. Then its holomorphic projection vanishes since there is no holomorphic cusp form
of weight 3/2, level 4 satisfying the plus space condition. This, along with Eq. (4.4), gives
us the desired identity. The function Φ∗(z) is analogous to GD(z) in [32], where the inner
product between GD(z) and a weight k + 1/2, level 4 eigenform g(z) gives the special value
of the L-function associated to the Shimura lift of g(z).

Proof. Let g̃ψ(z) ∈M−1 (p) be a mock-modular form with shadow gψ(z) and

ord∞g̃ψ(z) ≥ −p
4
.

Forms satisfying these conditions exist by Proposition 3.2. The restriction on the order of
g̃ψ(z) at infinity simplifies the proof and is not important. But the requirement that g̃ψ(z)
be in the minus space is crucial for the validity of the statement.

Denote ĝψ(z) ∈ H−1 (p) the associated harmonic Maass form and define the function Φ(z)
by

Φ(z) := Tr4p
4 ((ĝψ|Up)(4z)θ(pz))

=
1

p+ 1
((ĝψ | Up)(4z)θ(pz) + (ĝψ(4z)θ(z)) | Up) .

Here Tr4p
4 is the trace down operator from level 4p to level 4 of weight 3/2, similarly defined

as in Eq. (2.15). The function Φ(z) transforms like a weight 3/2 modular form of level 4 and
should be compared to GD(z) in [32], which was defined by applying the trace down operator
Tr4D

4 to the product of the holomorphic weight k Eisenstein series and θ(|D|z). If one replaces
the weight k holomorphic Eisenstein series by the weight one real-analytic Eisenstein series
with an s variable, and consider the derivative with respect to s, then it is something quite
similar to this Φ(z).
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Now, we can calculate the Fourier expansion of Φ(z) as

Φ(z) =
1

p+ 1

∑
n∈Z

(b(n, y) + a(n))qn,

b(n, y) = −
∑
k∈Z

δ(k)rψ(m)β1

(
k2−pn

4
, 4y
p

)
,

a(n) =
∑
k∈Z

δ(k)r+
ψ

(
pn− k2

4

)
.

Note that we have used the fact

rψ(m) = rψ(m)

for all m ≥ 1 when expressing b(n, y). Since p ≡ 3 (mod 4), Φ(z) satisfies Kohnen’s plus
space condition and n ≡ 0 or 3 (mod 4). Also, the right hand side of Eq. (4.4) equals to a(d)
for f(z) = fd(z) as ord∞g̃ψ(z) ≥ −p/4, So we have

(4.14) a(d) = a(d, ψ).

Let F(z) be the weight 3/2 Eisenstein series studied in [30], which has the following Fourier
expansion

F(z) =
∞∑
n=0

H(n)qn + y−1/2

∞∑
m=−∞

1

16π
β3/2(m2, y)q−m

2

,

and satisfies Kohnen’s plus space condition. Recall that βk is defined in §1. For all n ∈ Z,
notice that b(n, y)qn is exponentially decaying as y → ∞. Also, a(n) vanishes for all n < 0.
Thus, the function

Φ∗(z) := Φ(z)− a(0)F(z)

H(0)

is O(y−1/2) as y →∞. The same decaying property holds at the other two cusps of Γ0(4) as
well, since Φ∗(z) satisfies Kohnen’s plus space condition. So we can consider the holomorphic
projection of Φ∗(z) to the Kohnen plus space S+

3/2(Γ0(4)). Define the weight 3/2 Poincaré

series by

Pd(z, s) :=
∑

γ∈Γ∞\Γ0(4)

j(γ, z)−3e2dπiγzIm(γz)s/2,

where for γ ∈ Γ0(4)

j(γ, z) :=
θ(γz)

θ(z)
.

This series converges absolutely for Re(s) > 1 and can be analytically continued to Re(s) ≥ 0.

As s→ 0, the inner product
√
d〈Φ∗(z),Pd(z, s)〉 is the dth Fourier coefficient of a cusp form

in S+
3/2(Γ0(4)), since Φ∗(z) is already in the plus space. Given S+

3/2(Γ0(4)) = {0}, we know

the limit is zero and obtain the following equation after applying Rankin-Selberg unfolding,

(4.15) lim
s→0

(
Γ(1+s

2
)

(4πd)1/2+s/2

(
a(d)− a(0)H(d)

H(0)

)
+

∫ ∞
0

b(d, y)e−4πdyy1/2+s/2dy

y

)
= 0.

After some manipulations, we have∫ ∞
0

β1(d, µy)e−4πdyy1/2+s/2dy

y
=

Γ(1+s
2

)

(4πd)1/2+s/2
%s (µ) ,
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where the function %s(µ) is defined by

(4.16) %s(µ) :=

∫ ∞
1

du

(µu+ 1)
1+s
2 u

, µ > 0.

After substituting µ = k2

pd
− 1, we arrive at the following expression

(4.17) −
∫ ∞

0

b(d, y)e−4πdyy1/2+s/2dy

y
=

Γ(1+s
2

)

(4πd)
1+s
2

2
∑
k>
√
pd

δ(k)rψ

(
−pd+ k2

4

)
%s

(
−1 +

k2

pd

)
.

Here, we used the fact

β1(d, αy) = β1(dα, y)

for all α, y, d ∈ R>0. Since rψ(m) = 0 whenever m ≤ 0, the sum changed from k ∈ Z to
k >
√
pd and produced a factor of 2. Now substituting (4.14) and (4.17) into (4.15) gives us

a(d, ψ)− a(0, ψ)H(d)

H(0)
= 2 lim

s→0

 ∑
k>
√
pd

δ(k)rψ

(
−pd+ k2

4

)
%s

(
−1 +

k2

pd

) .

With the following comparisons (see [24, §7] for similar arguments).

%0(µ) = 2Q0(
√
µ+ 1),

Qs−1(
√
µ+ 1)− sΓ(s)2

22−sΓ(2s)
%s−1(µ) = O(µ−1/2−s/2),

we could substitute %s(−1 + k2

pd
) with 2Qs−1( k√

pd
) in the limit and obtain Eq. (4.13). �

4.4. Counting CM Points with Distinct Discriminants. In preparation for the proof
of Theorem 4.1, we will count the number of CM points on a hyperbolic circle in terms of the
representation numbers of positive definite binary quadratic forms. Such a counting argument
is needed to construct a Green’s function at special points. This construction follows the ideas
of [24], but in the counting argument given there one also sums over all classes of a given
discriminant. Even when one discriminant is prime, which we are assuming, their proof
involves quite an intricate application of algebraic number theory. Surprisingly, the refined
version we need for a fixed class has a completely elementary proof using the classical theory
of composition of binary quadratic forms. It has the further advantage that it applies without
extra effort when the other discriminant is not fundamental. Although we will not give details
here, the argument adapts to give a corresponding refinement of the level N case in [25].

First, we will recall some facts about positive definite binary quadratic forms. Good
references for this theory include the books by Buell [2] and Cox [15]. Let −D < 0 be a
discriminant, Q ∈ Q−D a primitive binary quadratic form and Q2 denote a representative of
the square class of Q. Associated to Q is the counting function

rQ(k) = 1
2
#{(x, y) ∈ Z2| Q(x, y) = k},

which is finite and can be non-zero only for non-negative integers k. Clearly rQ(k) is a class
invariant. When −D < −4 is fundamental and A ∈ Cl(Q(

√
−D)) is the class associated to

[Q], the counting function rQ(k) is the same as rA(k), the number of integral ideals in the
class A having norm equals to k. The goal now is to relate rQ2 to the counting function ρQ
defined in (4.11).
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Proposition 4.4. Let Q be a positive definite binary quadratic form of discriminant −D
where D = p ≡ 3 (mod 4) is a prime. Suppose that −d < 0 is a discriminant and that k ≥ 0.
Then

(4.18) ρQ(k, d) = δ(k) rQ2(k
2−pd

4
).

Our proof of this result is an entirely elementary exercise in the classical theory of binary
quadratic forms. It relies on a remarkable algebraic identity given in (4.23) below for a
particular quadratic form in the square class, whose existence can be coaxed out of the work
of Dirichlet [18].

Lemma 4.5. Every class of primitive positive definite binary quadratic forms of discriminant
−D contains a representative of the form

(4.19) Q(x, y) = Ax2 +Bxy + ACy2

with −D = B2− 4A2C, A > 0 and gcd(A,B) = 1. Furthermore, the class of the square of Q
is represented by the form

(4.20) Q2(x, y) = A2x2 +Bxy + Cy2.

Proof. It is a well–known result of Gauss ([22, §228], see also [2, Prop 4.2 p.50]) that a
primitive form of discriminant −D properly represents a positive integer A prime to −D and
is thus, upon an appropriate change of variables, equivalent to a form of the shape (A, b, c)
with b2 − 4Ac = −D. In particular we have that gcd(A, b) = 1.

Next, by means of a simple translation transformation x 7→ x+ ty, y 7→ y we will arrange
that (A, b, c) ∼ (A,B,AC) as desired. This transformation leaves A alone and changes b to
B = b+ 2At. We now choose t to force

B2 = (b+ 2At)2 ≡ −D (mod 4A2).

Since c = b2+D
4A

this is equivalent to solving for t the congruence

tb ≡ c (mod A),

which is possible since gcd(b, A) = 1.
The fact that (A2, B, C) represents the square class of (A,B,AC) is a consequence of a

classical result of Dirichlet on the convolution of “united” forms (see [2, p.57]). �

Turning now to the proof of Proposition 4.4, it is easily checked using (4.5) that for

q(x, y) = ax2 + bxy + cy2 ∈ Q−d
and Q ∈ Q−D as in (4.19) above we have

(4.21)
√
dD cosh d(τq, τQ) = 2Ac+ 2ACa−Bb.

It follows that the statement of Theorem 4.4 is equivalent to the equality

(4.22) #{(a, b, c) ∈ Z3| b2 − 4ac = −d and 2Ac+ 2ACa−Bb = k} = δ(k) rQ2(k
2−dD

4
),

when D = p. Note that a > 0 for any (a, b, c) in the set since k ≥ 0.
In order to prove this we will establish a direct bijection between the solutions to the

relevant equations. A calculation verifies the truth of the following key identity:

(4.23) 4Q2(x, y) = (2Ac+ 2ACa−Bb)2 − (B2 − 4A2C)(b2 − 4ac)

where Q2 is as in (4.20) above and

x =c− Ca, y = Ba− Ab.
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Thus every solution (a, b, c) from (4.22) gives rise to a solution (x, y) of

(4.24) Q2(x, y) =
k2 − dD

4
.

In fact, there is no need to assume that D = p for this part of the argument.
This assumption simplifies our treatment of the converse, to which we now turn. Suppose

we are given a solution (x, y) of (4.24). The result is trivial when d = pm2 and k = pm for
some integer m, so assume otherwise. Then (−x,−y) is another distinct solution. Observe
that since p = 4A2C −B2 we have

4A2Q2(x, y) ≡ A2(4A2x2 + 4Bxy + 4Cy2) ≡ (2A2x+By)2 (mod p).

Thus (
Ak − (2A2x+By)

)(
Ak + (2A2x+By)

)
≡A2k2 − (2A2x+By)2

≡A2k2 − 4A2Q2(x, y) ≡ 0 (mod p).

Since Q is assumed to be primitive we know that p - A.
If p - k we can find an integer a such that

An = ±(2A2x+By) + pa

in precisely one of the two cases of ±. Suppose as we may that Ak = 2A2x+By + pa. Thus
we have

a =
Ak − 2A2x−By

p
.

Then since p = 4A2C −B2 we have

k = 2A(x+ Ca) + 2ACa−BBa− y
A

.

Since gcd(A,B) = 1 we must have that A | (Ba− y) and we may define

b =(Ba− y)/A, c = x+ Ca.

Then we have 2Ac+ 2ACa−Bb = k. A computation also shows that b2 − 4ac = −d. If p | k
then we get two distinct triples (a, b, c) for ±(x, y) which both satisfy these. Obviously the
definition of (a, b, c) inverts the map we started with to get (x, y), at least for those pairs
that correspond to an (a, b, c). This finishes the proof of Proposition 4.4.

Remark. To give a level N version of Proposition 4.4, we can start with the more general
identity

4N Q∗(x, y) = (2ANc+ 2ACNa−Bb)2 − (B2 − 4A2NC)(b2 − 4Nac)

where Q∗(x, y) = A2Nx2 +Bxy + Cy2 and

x =c− Ca, y = Ba− Ab.

4.5. Proof of Theorem 4.1. First, notice that both sides of Eq. (4.3) are additive with
respect to f(z). So it suffices to prove the theorem when f(z) = fd(z) for all d ≥ 0 and d ≡ 0
or 3 modulo 4.

When d = 0, fd(z) = θ(z) is the Jacobi theta function, f lift,θ(z) = 2ϑA0(z) is twice the
weight one theta series associated to the principal class A0 ∈ Cl(F ). The Borcherds lift of
θ(z) is η2(z) and Eq. (4.3) becomes

〈2ϑA0 , gψ〉 = −4
∑
A∈Cl(F )

ψ2(A) log
∣∣√yAη2(τA)

∣∣ = 4Iψ2 ,
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which is justified by Eq. (3.6), (3.8) and the fact that

〈ϑA0 , gψ〉 =
1

H(p)

∑
ψ′:Cl(F )→C×

〈gψ′ , gψ〉.

When −d < 0 is a discriminant not of the form −pm2 for any integer m, we know that
τQ 6= τq for all Q ∈ Q−p, q ∈ Q−d. In this case, Cfd = 0 and the limit in ε on the right hand
side of Eq. (4.3) is not necessary. Now we can substitute D = p, τQ = τA for A ∈ Cl(F ) in
Eq. (4.10), apply Eq. (4.18) and sum over all A with a non-trivial character ψ2. This yields

∑
A∈Cl(F )

ψ2(A) log |Ψfd(τA)|2 = lim
s→1

 ∑
k>
√
pd

δ(k)rψ

(
k2 − pd

4

)
(−2)Qs−1

(
k√
pd

)
+


+H(d)4π lim

s→1

∑
A∈Cl(F )

ψ2(A)(E(τA, s) +R(d, s)).

Adding twice the equation above to Eq. (4.13) cancels the infinite sum on the right hand side
and gives us∑

A∈Cl(F )

ψ2(A) log |Ψfd(τA)|2 + a(d, ψ)− a(0, ψ)H(d)

H(0)
=

2H(d)4π lim
s→1

∑
A∈Cl(F )

ψ2(A)(E(τA, s) +R(d, s)).

The function R(d, s) is independent of A and will disappear from the right hand side. Then

the rest of the right hand side exactly cancels the term −a(0,ψ)H(d)
H(0)

on the left hand side by

Kronecker’s limit formula (Eq. (3.4)) and we obtain Eq. (4.3).
When d = pm2 for some positive integer m, neither side of Eq. (4.10) makes sense, since for

any Q ∈ Q−p, Ψfd(z) has a simple zero at z = τQ and ρQ(pm, d) = 1 = 1
2
Cfd by Proposition

4.4. To accommodate this, we can slightly modify Eq. (4.10) to obtain

lim
ε→0

(log|Ψfd(τQ + ε)|2 − ρQ(pm, d)g1(τQ + ε, τQ)) =

lim
s→1

( ∑
k≥pm+1

ρQ(k, d)(−2)Qs−1

(
k√
pd

)
+H(d)4πE(τQ) +R(d, s))

)
,

(4.25)

for any Q ∈ Q−p. Since g1(z + ε, z) = − log
(

1 + 4y2

ε2

)
and ψ2 is non-trivial, we have

(4.26)
∑
A∈Cl(F )

ψ2(A) lim
ε→0

g1(τA + ε, τA) = −2
∑
A∈Cl(F )

ψ2(A) log(yA).

Applying the same procedure to Eq. (4.25) as before gives us Eq. (4.3) in this case.

5. Rankin’s method and values of Green’s function I

In this section, we will prove Theorem 5.1, which is the integral weight analogue of Theorem
4.1. In this case, the weakly holomorphic form in Eq. (4.3) will be replaced with lifts of level
one modular functions, and the regularized inner product is related to the values of the
Borcherds lifts of these modular functions.

This result is more or less a twisted version of the Gross-Zagier formula at level one, where
there is no weight two cusp form or L-function. It prepares the way for §6, where we treat
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the level N case. Furthermore, the information provided by this theorem will be a stepping
stone to the proof of Theorem 1.1 in §7.

For m ≥ 0, let jm(z) = q−m + O(q) be the unique modular function of level one with a
pole of order m at infinity, e.g. j0(z) = 1 and j1(z) = j(z)−744. For each B ∈ Cl(F ), choose

an associated CM point τB = xB + iyB ∈ H and define jlift,B
m (z) ∈M !,+

1 (p) by

(5.1) jlift,B
m (z) := jm(pz)ϑB(z).

Let M2(Z) be the space of 2 × 2 matrices with integer coefficients. For m ≥ 1, (z1, z2) ∈
(PSL2(Z)\H)2, define the function Ψm(z1, z2) by

(5.2) Ψm(z1, z2) :=
∏

γ∈SL2(Z)\M2(Z)
det(γ)=m

(j(z1)− j(γz2)) .

It is the value of the modular polynomial ϕm(X, Y ) at X = j(z1), Y = j(z2), and also the
Borcherds lift of jm(z) to a function on the degenerated Hilbert modular surface. The main
result of this section is as follows.

Theorem 5.1. Let ψ be a non-trivial character of Cl(F ) and m ≥ 1. Then

(5.3) 〈jlift,B
m , gψ〉reg = −2 lim

ε→0

∑
A′∈Cl(F )

ψ2(A′)

(
log |Ψm(τA′B′−1 + ε, τA′B′)|+
c(jlift,B

m , 0) log |yA′B′−1 |

)
,

where B′ ∈ Cl(F ) is the unique class such that B′2 = B and c(jlift,B
m , 0) = rB(pm) is the

constant term of jlift,B
m (z).

Remark. When B = A0 is the principal class in Cl(F ), we can write

2jlift,A0
m (z) = jm(pz)U4(θ(pz)θ(z))

= (jm(4z)θ(z))lift,θ

=
∑
t∈Z

t2≤4m

f lift,θ
4m−t2(z).

Suppose rA0(m) = 0, then m is not a perfect square and the right hand side of Eq. (5.3)
becomes

−2
∑
A∈Cl(F )

ψ2(A) log |Ψm(τA, τA)| .

By Kronecker’s identity, this is the same as

−2
∑
A∈Cl(F )

ψ2(A)

∑
t∈Z

t2≤4m

log |Ψf4m−t2
(τA)|

 .

Thus, this case of Theorem 5.1 is a consequence of Theorem 4.1.

The procedure of the proof will be the same as that of Theorem 4.1 with all half-integral
weight objects replaced by their integral counterparts. The analogue of the counting argu-
ment, Proposition 4.4, is also given in [25, §II.3].
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Proof of Theorem 5.1. Let g̃ψ(z) ∈ M−1 (p) be a mock-modular form as in Proposition 3.2
with Fourier expansion

g̃ψ(z) =
∑
n∈Z

r+
ψ (n)qn

and ĝψ(z) the associated harmonic Maass form. For a class B ∈ Cl(F ), define

ΦB(ĝψ, z) := (p+ 1)Trp1(−i(ĝψ|Wp)(z)ϑB(z))

= (ĝψ|Up)(z)ϑB(z) + (ĝψ(z)ϑB(z))|Up.

This should be compared to Φ̃s(z) in Proposition (1.2) of [25, §IV]. In that case, the derivative
of Φ̃s(z) at s = 1 when N = 1 is more or less our ΦB(ĝψ, z) for ψ trivial.

Here, ΦB(ĝψ, z) transforms like a level one, weight two modular form and has the following
Fourier expansion at infinity

ΦB(ĝψ, z) =
∑
n∈Z

(bB(ĝψ, n, y) + aB(ĝψ, n))qn,

bB(ĝψ, n, y) = −
∑
k∈Z

δ(k)rψ(k)β1

(
k, y

p

)
rB(pn+ k),

aB(ĝψ, n) =
∑
k∈Z

δ(k)r+
ψ (k) rB(pn− k).

By the choice of g̃ψ(z), we have ord∞(g̃ψ(z)) ≥ −p+1
24

> −p. So the sum aB(ĝψ, n) is zero for

all n < 0. It is easy to see from the definition above that jlift,B
m ∈ M !,+

1 (p). So we can apply
Proposition 2.5 to obtain

(5.4) 〈jlift,B
m , gψ〉reg = aB(ĝψ,m).

In particular when m = 0, we have jlift,B
0 = 1lift,B = ϑB(z) and

〈ϑB, gψ〉 = aB(ĝ, 0).

Now, let Ê2(z) be the non-holomorphic Eisenstein series of level one, weight two defined in
Eq. (2.18). Then we can use Poincaré series to apply holomorphic projection to the function

Φ∗B(ĝψ, z) := ΦB(ĝψ, z)− aB(ĝψ, 0)Ê2(z),

since it satisfies the growth condition Φ∗B(ĝψ, z) = O(1/y) at the cusp infinity. For m > 0, let
Pm,1(z, s) be the Poincaré series of level one, weight two defined by

Pm,1(z, s) :=
∑

γ∈Γ∞\PSL2(Z)

(yse2πimz)|2γ.

As s goes to zero, the quantity m〈Φ∗B(ĝψ, z),Pm,1(z, s)〉 is the mth Fourier coefficient of a
cusp form of weight two, level one. Since the space of such forms is trivial, we have

(5.5) lim
s→0
〈Φ∗B(ĝψ, z),Pm,1(z, s)〉 = 0.

Using the Fourier expansion of ΦB(ĝψ, z) and Rankin-Selberg unfolding, we can rewrite Eq.
(5.5) as

(5.6) aB(ĝψ,m) + 24σ1(m)aB(ĝψ, 0) = lim
s→0

∑
k≥1

δ(k)rB(pm+ k)rψ(k)%2s+1

(
k
pm

)
,
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where %s(µ) was defined by Eq. (4.16). Comparing Qs−1(t) and %2s−1(µ) near s = 1, we see

%1(µ) = 2Q0(1 + 2µ),

2Γ(2s)
sΓ(s)2

Qs−1(1 + 2µ)− %2s−1(µ) = O(µ−1−s).

That means we can substitute 2Qs−1

(
1 + 2k

pm

)
for %2s−1

(
k
pm

)
in the limit as s approaches 1.

Together with (1.8) and (5.4), Eq. (5.6) becomes,

〈jlift,B
m , gψ〉reg+24σ1(m)〈ϑB, gψ〉 =

− lim
s→1

∑
A

ψ(A)
∑
k≥1

δ(k)rB(pm+ k)rA(k)
(
−2Qs−1

(
1 + 2k

pm

))
,(5.7)

which is the integral weight analogue of Eq. (4.13).
Now the counting argument in Proposition (3.11) in [24] tells us that

δ(k)rB(pm+ k)rA(k) = ρm(A,B, k),

where ρm(A,B, k) counts the number of γ ∈ M2(Z)/{±1} such that det(γ) = m and

cosh d(τ√AB−1 , γτ√AB) = 1 + 2k
pm
.

In particular when k = 0, the number of γ ∈ M2(Z)/{±1} such that det(γ) = m and
γτ√AB = τ√AB−1 is exactly rB(pm) = rB(m). Since k ≥ 1 in the summation, Eq. (5.7)
becomes

〈jlift,B
m ,gψ〉reg + 24σ1(m)〈ϑB, gψ〉 = − lim

s→1

∑
A

ψ(A)
∑

γ∈M2(Z)/{±1}
det(γ)=m,

γτ√AB 6=τ√AB−1

gs
(
τ√AB−1 , γτ√AB

)

= − lim
ε→0

lim
s→1

∑
A

ψ(A)
(
Gm
s (τ√AB−1 + ε, τ√AB)− rB(m)gs(τ√AB−1 + ε, τ√AB−1)

)(5.8)

where gs is defined in (4.8) and

Gm
s (z1, z2) =

∑
γ∈SL2(Z)\M2(Z)

det(γ)=m

gs(z1, γz2).

From this expression, it is clear that the choice of these CM points do not matter.
Applying the mth Hecke operator to z2 on both sides of Eq. (4.9) gives us [24, Eq. (5.2)]

(5.9) log |Ψm(z1, z2)|2 = lim
s→1

(
Gm
s (z1, z2) + 4πσ1(m)E(z1, s)+

4πmsσ1−2s(m)E(z2, s)− 4πσ1(m)ϕ1(s)

)
− 24σ1(m),

where σν(m) =
∑

d|m d
ν . This implies

lim
s→1

∑
A

ψ(A)Gm
s (τ√AB−1 + ε,τ√AB) =

∑
A

ψ(A) log |Ψm(τ√AB−1 + ε, τ√AB)|2−

4πσ1(m) lim
s→1

∑
A

ψ(A)
(
E(τ√AB−1 + ε, s) + E(τ√AB, s)

)
.

From Eq. (3.5) and H(p)ϑB(z) =
∑

ψ′ ψ
′(B)gψ′(z), it is easy to see that

〈ϑB, gψ〉 = (ψ(B) + ψ(B))Iψ2 .
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By Eq. (3.4), we have

lim
s→1

4π
∑
A

ψ(A)(E(τ√AB−1 , s) + E(τ√AB, s)) = 24(ψ(B) + ψ(B))Iψ2 = 24〈ϑB, gψ〉.

After substituting these into Eq. (5.8), canceling 24σ1(m)〈ϑB, gψ〉 and changing A,B to
(A′)2, (B′)2 respectively, we obtain Eq. (5.3). �

6. Rankin’s method and values of Green’s Function II

In this section, we will give an analogue of Theorem 5.1 for modular functions of prime
level N . This is necessary when we prove Theorem 1.1 in §7. The main result here, Theorem
6.1, is also interesting on its own as the analogue of the Gross-Zagier formula with trivial
Heegner divisor on J0(N), the Jacobian of the modular curve X0(N).

Let N be an odd prime number such that χp(N) = 1. For a modular function f(z) of level
N and B ∈ Cl(F ), one can define f lift,N,B(z) ∈M !

1(p) by

f lift,N,B(z) := [Γ0(p) : Γ0(Np)] · TrNpp ((f |WN)(pz)ϑB(Nz))(6.1)

= (f | WN)(pz)ϑB(Nz) + (f(pz)ϑB(z)) | UN ,

where WN = ( −1
N ) is the Fricke involution. Notice that the form f lift,N,B(z) is the same

as f lift,B(z) from §5 when N = 1. If f =
∑

m∈Z c(f,m)qm ∈ M !,new
0 (N) as in §2.4, then

f | WN = −Nf | UN . Define modular functions f0, fN ∈M !
0(N) by

(6.2) fN(z) :=
∑
m′≥0

c(f,−Nm′)jm′(Nz), f0(z) := f(z)− fN(z).

Then the (−Nm′)th Fourier coefficient of f0(z) at infinity is zero for all m′ ≥ 0.
Since N satisfies χp(N) = 1, one can write N = nn in OF and N := [n] ∈ Cl(F ). Let
B′,N ′ ∈ Cl(F ) be the unique square roots of B andN respectively. Denote the Heegner points
(OF , n,A′B′N ′) and (OF , n,A′(B′)−1N ′) by τj = τj(A′,B′,N ′) for j = 1, 2 respectively.

The main result of this section is the following generalization of Theorem 5.1.

Theorem 6.1. Let f(z) be a modular function in the C-span of SN,1 given by Eq. (2.20) and
Ψf,N (z1, z2) be the modular function defined in (6.6). Then

(6.3) 〈f lift,N,B
0 , gψ〉reg = −

∑
A′∈Cl(F )

ψ2(A′) log |Ψf,N (τ1, τ2)|+ Cf,N ,B,ψ,

where Cf,N ,B,ψ is the constant

Cf,N ,B,ψ :=− c(f, 0)
(
Nψ(BN ) +Nψ(B−1N−1)− ψ(BN−1)− ψ(B−1N )

)
Iψ2

+
(

(2N − 2)c(f, 0) + 4c(f lift,N,B
0 , 0)

)
ψ(BN−1)Iψ2

(6.4)

and Iψ2 is as in Eq. (3.6).

Remark. If B and N are both the identity class in Cl(F ), the constant Cf,N,B,ψ becomes

4c(f lift,N,B
0 , 0)Iψ2 .

The structure of the proof is the same as that of Theorem 5.1. First, we will recall
some facts about Heegner points and height pairings on J0(N). The modular function Ψf,N
will come from the height pairing between Heegner divisors. Then, we will introduce the
automorphic Green’s function for level N , which will be slightly different from that for level
one in §5. The counting argument again follows from Proposition (3.11) in [25, Chap. II].
After that, we will prove Lemma 6.3, which is the analogue of Lemma 4.3 and Eq. (5.7). The
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calculations will be more involved here. Finally, we will combine Lemma 6.2 and Lemma 6.3
to deduce Theorem 6.1.

6.1. Heegner Points and Height Pairings on Jacobian. Now, we will recall some facts
about Heegner points on the modular curve from [23] and their height pairings on the Ja-
cobian. Let X0(N) be the natural compactification of Y0(N), the open modular curve over
Q classifying pairs of elliptic curves (E,E ′) with an order N cyclic isogeny φ : E → E ′.
The complex points of X0(N) have a structure of a compact Riemann surface and can be
identified with H∪P1(Q) modulo the action of Γ0(N). Heegner points on X0(N) correspond
to pair of elliptic curves (E,E ′) having complex multiplication by the same ring O in some
imaginary quadratic field F . This occurs only when there exists an O-ideal n dividing N such
that O/n is cyclic of order N . In this case, E(C) is isomorphic to C/a with a an invertible
O-submodule in F . Since this a can be chosen independent of homothety by elements in F×,
we only need to consider [a], the class of a in Pic(O). So a Heegner point on X0(N) can be
expressed as the triplet (O, n, [a]). The index c := [OF : O] is called the conductor of this
Heegner point. To find the image of such a Heegner point in H, choose an oriented basis
〈ω1, ω2〉 of a such that an−1 has basis 〈ω1, ω2/N〉. Then τ[a],n := ω1/ω2 ∈ Γ0(N)\H is the
image of this Heegner point.

Heegner points of conductor c are rational over the field Hc := F (j(O)) ⊂ C. The theory
of complex multiplication spells out the Galois action as follows. Let b ∈ Pic(O) and σb ∈
Gal(Hc/F ) the corresponding automorphism under the Artin isomorphism. Then

(O, n, [a])σb = (O, n, [ab−1]).

For prime ` - N , the Hecke correspondences on X0(N) stabilize divisors supported on
Heegner points of F with conductors prime to N . The action is given by

T`(O, n, [a]) =
∑

a/b=Z/`

(Ob, nb, [b]),

where the sum is over the (` + 1) sublattices b ⊂ a of index `, Ob = End(b) and nb =
(nOb) ∩ Ob. When d | N , the Atkin-Lehner involution of X0(N), Wd also acts on Heegner
points. In particular, the action of WN is

WN(O, n, [a]) = (O, n, [a]N ),

where N ∈ Pic(O) denotes the class of n.
For our purpose, F = Q(

√
−p) and O = OF . Then we require χp(N) = 1 for Heegner

points to exist. In that case, N splits into nn in F with

n = ZN + Z bn+
√
−p

2
.

Let A ∈ Pic(OF ) = Cl(F ). A point τ ∈ H corresponding to the Heegner point (OF , n,A)
must satisfy an equation

Aτ 2 +Bτ + C = 0,

with B2 − 4AC = −p, N |A, B ≡ bn (mod 2N) and gcd(A/N,B,NC) = 1. We will denote
this image by τ(A, n). Notice τ(A, n) is well-defined up to the action of Γ0(N).

Let J0(N) be the Jacobian of X0(N). Its complex points is a compact Riemann surface
and can be viewed as the set of divisors of degree zero modulo the set of principal divisors on
X0(N). Let 〈, 〉C be the height symbol on X0(N)(C). It is the unique bi-additive, symmetric,
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continuous real-valued function defined on the set of divisors of degree zero and satisfies〈∑
i

ni(xi), b

〉
C

=
∑
i

ni log |Ψ(xi)|2

if b = (Ψ) is a principal divisor.
Let f =

∑
n∈Z c(f, n)qn be a modular function of prime level N spanned by functions in

SN,1 as defined in (2.20). Then c(f,−N2n′) = 0 for all positive integers n′. Define Tf to be

(6.5) Tf :=

∑
m≥1
N -m

c(f,−m)Tm − (N + 1)
∑
m′≥1
N -m′

c(f,−Nm′)Tm′WN

 .

Given any newform h(z) ∈ S2(N), we know that (h|WN)(z) = −(h|UN)(z). It is then easy to
check that Tf (h(z)) = 0. Since N is prime, S2(N) is spanned by newforms. So Tf annihilates
any h(z) ∈ S2(N).

For j = 1, 2, let zj ∈ H and xj ∈ X0(N)(C) the corresponding points on the modular
curve. Then Tf ((x2) − (0)) is a principal divisor on J0(N), since the actions of the Hecke
operators and Fricke involution on the Jacobian are the same as those on S2(N). Thus, there
exists a modular function Ψf,N (z1, z2) on (Γ0(N)\H)2 such that the divisor of Ψf,N (·, z2) :
Γ0(N)\H −→ C is Tf ((x2)− (0)) and

(6.6) log |Ψf,N (z1, z2)| = 〈(x1)− (∞), Tf ((x2)− (0))〉C.

When z1, z2 are Heegner points of discriminant −p on X0(N)(C), the divisor Tf ((x2)− (0))
and the value Ψf,N (z1, z2) are both defined over H, the Hilbert class field of F . As in §5,
we will relate these special values of Ψf,N to an infinite sum via the automorphic Green’s
function.

6.2. Level N Green’s function and Counting CM Points of Equal Discriminant. In
Theorem 4.1 and 5.1, one needs to take a limit in ε when the CM points coincide. Nevertheless,
the limit is still the value of a modular function. To obtain this modular function directly
without the limit in ε, one could deform the definition of the Green’s function as done in
[25, §II.5]. We will follow this approach here and define the automorphic Green’s function of
level N to be

GN,s(z1, z2) :=
∑

γ∈Γ0(N)/{±1}
z1 6=γz2

gs(z1, γz2) +
∑

γ∈Γ0(N)/{±1}
z1=γz2

gs(z1),

where gs(z1, z2) is defined in Eq. (4.8) and

gs(z) := lim
w→z

(gs(z, w)− log |2πiη(z)4(z − w)|2

= − log |2π(z − z)η(z)4|2 + 2Γ′

Γ
(s)− 2Γ′

Γ
(1).

When gcd(N,m) = 1, the mth Hecke operator Tm acts on z2 in GN,s(z1, z2) and defines
Gm
N,s(z1, z2) as follows. Let RN be the subset of M2(Z) containing all matrices whose lower

left entry is divisible by N . For z1, z2 ∈ H and k ≥ 0, let ρmN(z1, z2, k) be the counting
function defined as

(6.7) ρmN(z1, z2, k) := #{γ ∈ RN/{±1} : det(γ) = m, cosh d(z1, γz2) = 1 + 2Nk
pm
}.
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Then Gm
N,s(z1, z2) can be written as

Gm
N,s(z1, z2) :=

∑
γ∈RN/{±1}

det γ=m
z1 6=γz2

gs(z1, γz2) +
∑

γ∈RN/{±1}
det γ=m
z1=γz2

gs(z1)

= −2
∑
k>0

ρmN(z1, z2, k)Qs−1

(
1 + 2Nk

pm

)
+ ρmN(z1, z2, 0)gs(z1).

Notice for arbitrary z1, z2 ∈ H, there could be non-integer k such that ρmN(z1, z2, k) is
non-zero. When z1, z2 ∈ H are Heegner points of discriminant −p though, ρmN(z1, z2, k) is
necessarily supported on integral k’s.

Let xj ∈ X0(N)(C) be the points corresponding to zj ∈ H. By Proposition (2.23) in [25,
p.242], one can relate the Green’s function to the height pairing between (x1)−(∞), (x2)−(0)
and WN((x2)− (0)) on the Jacobian as follows

〈(x1)− (∞), Tm((x2)− (0))〉C = lim
s→1

(
Gm
N,s(z1, z2) + 4πσ1(m)EN(WNz1, s)

+4πmsσ1−2s(m)EN(z2, s) +R(N,m, s)

)
,(6.8)

〈(x1)− (∞), Tm′WN((x2)− (0))〉C = lim
s→1

Gm′

N,s(z1,WNz2) + 4πσ1(m′)EN(z1, s)

+4π(m′)
s
σ1−2s(m

′)EN(WNz2, s)

+R(N,m′, s)

 .(6.9)

Here EN(z, s) is the Eisenstein series defined in (3.3) and R(N,m, s) is an explicit function
depending on N,m and s only.

For j = 1, 2, let Aj ∈ Cl(F ) and τj ∈ Γ0(N)\H be the image of the Heegner points
xj = (OF , n,Aj). Let aj be integral ideals in the class Aj such that n|aj, N(aj) = Aj. Then
by Proposition (3.11) in [25], the counting function ρmN(τ1, τ2, k) satisfies

ρmN(τ1, τ2, k) = #{(α, β) ∈ ((a1)−1a−1
2 × a−1

1 a−1
2 n)/{±1} | NF/Q(α) = Nk+pm

A1A2
,

NF/Q(β) = Nk
A1A2

, A1A2(α− β) ≡ 0 (mod d)},
= rA1A−1

2
(Nk + pm)rA1A2N−1(k)δ(k)

for k ≥ 0, where d =
√
−pOF is the different of F . The first equality is established by the

bijection

γ = ( a bc d ) ∈ RN/{±1} 7→ α = cτ 1τ2 + dτ 1 − aτ2 − b,
β = cτ1τ2 + dτ1 − aτ2 − b.

The Fricke involution WN sends xj to the Heegner point x′j := (OF , n,AjN−1). Set A′2 =

A2N−1 and a′2 an ideal in the class A′2 such that n | a′2. then the same bijection establishes

ρm
′

N (τ1, τ
′
2, k
′) = #{(α, β) ∈ ((a1)−1(a′2)−1n× a−1

1 a−1
2 )/{±1} | NF/Q(α) = Nk′

A1A2
,

NF/Q(β) = Nk′−pm′
A1A2

, A1A2(α− β) ≡ 0 (mod d)},
= rA1(A′2)−1N−1(k′)rA1A′2(Nk

′ − pm′)δ(k′)
= rA1A−1

2
(k′)rA1A2N−1(Nk′ − pm′)δ(k′)
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for k′ ≥ pm′/N . After applying these counting arguments to Gm
N,s(τ1, τ2) and Gm′

N,s(τ1,WNτ2),
we obtain

Gm
N,s(τ1, τ2) =− 2

∑
k≥1

rA1A−1
2

(Nk + pm)rA1A2N−1(k)δ(k)Qs−1

(
1 + 2Nk

pm

)
+

rA1A−1
2

(pm)gs(τ2),

(6.10)

Gm′

N,s(τ1,WNτ2) =− 2
∑

k′>pm′/N

rA1A−1
2

(k′)rA1A2N−1(Nk′ − pm′)δ(k′)Qs−1

(
−1 + 2Nk′

pm′

)
+

rA1A−1
2

(pm
′

N
)gs(τ1).

(6.11)

Since N - m′ in the definition of Gm′
N,s(z1, z2), the term rA1A−1

2
(pm

′

N
)gs(τ1) above vanishes.

Putting these together gives us the following lemma, which is the level N analogue of Eq.
(5.9).

Lemma 6.2. Let f =
∑

m∈Z c(f,m)qm ∈ M !,new(N) be a modular function in the C span of
SN,1 defined in (2.20) and Ψf,N (z1, z2) as in Eq. (6.6). Let B,N ∈ Cl(F ) be as above and
denote their unique square roots in Cl(F ) by B′ and N ′ respectively. Then

(6.12)
∑

A′∈Cl(F )

ψ2(A′) log |Ψf,N (τ1, τ2)| = Σf,N,B,ψ + Uf,N,B,ψ,

where

Σf,N,B,ψ :=− lim
s→1

∑
m≥1
N -m

c(f,−m)
∑
k≥1

δ(k)rB(pm+Nk)rψ(k)2Qs−1

(
1 + 2kN

pm

)
+

(N + 1) lim
s→1

∑
m′≥1

c(f,−Nm′)
∑
k′≥1

δ(k′)rB(k′)rψ(Nk′ − pm′)2Qs−1

(
−1 + 2k′N

pm′

)
,

Uf,N,B,ψ :=− c(f, 0)(Nψ(BN ) +Nψ(B−1N−1)− ψ(B−1N )− ψ(BN−1))Iψ2

− 24

∑
m′≥1
N -m′

c(f,−Nm′)σ1(m′)

 (ψ(B) + ψ(B−1))(ψ(N ) + ψ(N−1))Iψ2

+

∑
m≥1
N -m

c(f,−m)rB(m)

ψ(BN−1)4Iψ2 .

Proof. Using the definition of SN,1,Ψf,N , Eq. (6.8) and (6.9), one can rewrite the left hand
side of Eq. (6.12) as

LHS of (6.12) = lim
s→1

∑
m≥1
N -m

c(f,−m)
∑
A′

ψ2(A′)
(
Gm
N,s(τ1, τ2) + 4πσ1(m)EN(WNτ1, s)

+4πmsσ1−2s(m)EN(τ2, s)

)

−(N + 1) lim
s→1

∑
m′≥1
N -m′

c(f,−Nm′)
∑
A′

ψ2(A′)

(
Gm′

N,s(τ1,WNτ2) + 4πσ1(m′)EN(τ1, s)

+4π(m′)
s
σ1−2s(m

′)EN(WNτ2, s)

)

=Σf,N,B,ψ + U ′f,N,B,ψ
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where the second equality follows from Eq. (6.10), (6.11) and

U ′f,N,B,ψ :=4π
∑
m≥1
N -m

c(f,−m)σ1(m) lim
s→1

∑
A′

ψ2(A′)(EN(WNτ1, s) + EN(τ2, s))

− 4π(N + 1)
∑
m′≥1
N -m′

c(f,−Nm′)σ1(m′) lim
s→1

∑
A′

ψ2(A′)(EN(τ1, s) + EN(WNτ2, s))

+
∑
m≥1
N -m

c(f,−m)rB(pm) lim
s→1

∑
A′

ψ2(A′)gs(τ2).

Note that WNτj corresponds to the Heegner point (OF , n,AjN−1). Using the elementary
identity (see Eq. (2.16) in [25, Chap. II])

EN(z, s) =
1

N2s − 1
(N sE(WNz, s)− E(z, s)),

and Kronecker’s limit formula (Eq. (3.4)), we have

U ′f,N,B,ψ :=

∑
m≥1
N -m

c(f,−m)σ1(m)

 24

N2 − 1

(
Nψ(BN ) +Nψ(B−1N−1)

−ψ(B−1N )− ψ(BN−1)

)
Iψ2

−

∑
m′≥1
N -m′

c(f,−Nm′)σ1(m′)

 24

N − 1

(
Nψ(B−1N ) +Nψ(BN−1)

−ψ(B−1N−1)− ψ(BN )

)
Iψ2

+

∑
m≥1
N -m

c(f,−m)rB(pm)

ψ(BN−1)4Iψ2 ,

where Iψ2 is defined by Eq. (3.6). Using the relationship

24

∑
m≥1
N -m

c(f,−m)σ1(m) +
∑
m′≥1
N -m′

c(f,−Nm′)(σ1(Nm′)−Nσ1(m′))(N + 1)

 = (1−N2)c(f, 0),

we can rewrite U ′f,N,B,ψ as Uf,N,B,ψ. �

6.3. Infinite Sum Expression of Regularized Inner Product II. For m ≥ 0, some
calculations tell us that

(jm(Nz))lift,N,B = jm(pz)TN(ϑB)(z)

= jm(pz)(ϑBN (z) + (ϑBN−1)(z))

= jlift,BN
m (z) + jlift,BN−1

m (z).

(6.13)

where TN is the N th Hecke operator. So denote the inner product

(6.14) ρN,B,ψ(m) := 〈jm(pz)TN(ϑB), gψ〉reg.
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In particular for j0(z) = 1, the inner product ρN,B,ψ(0) becomes

ρN,B,ψ(0) = 〈ϑBN , gψ〉+ 〈ϑB(N )−1 , gψ〉
= (ψ(B) + ψ(B−1))(ψ(N ) + ψ(N−1))Iψ2 .

Let f ∈M !,new
0 (N). The following lemma relates 〈f lift,N,B, gψ〉reg to ρN,B,ψ(m) and the infinite

sum defined in Lemma 6.2. This is the level N version of Eq. (5.7).

Lemma 6.3. Suppose f(z) =
∑

m∈Z c(f,m)qm ∈M !,new
0 (N). In the notations above, we have

(6.15) 〈f lift,N,B, gψ〉reg = −Σf,N,B,ψ +
∑
m′≥1

c(f,−Nm′) (ρN,B,ψ(m′) + 24σ1(m′)ρN,B,ψ(0))

where Σf,N,B,ψ is defined in Lemma 6.2.

Proof. Let g̃ψ(z) ∈ M−1 (p) be a mock-modular form as in Proposition 3.2 with Fourier ex-
pansion g̃ψ(z) =

∑
n∈Z r

+
ψ (n)qn and ĝψ(z) the associated harmonic Maass form. By Eq. (5.4)

and (5.7), we have the following identities

ρN,B,ψ(n) =
∑
k∈Z

r+
ψ (k)

(
rB
(
pn−k
N

)
+ rB (pNn−Nk)

)
δ(k),

ρN,B,ψ(n) =− 24σ1(n)ρN,B,ψ(0) + lim
s→1

∑
k≥1

δ(k)c(TN(ϑB), pn+ k)rψ(k)2Qs−1

(
1 + 2k

pn

)
.

The first equality holds for n ≥ 0 while the second one holds for n ≥ 1. Similar to the proof
of Theorem 5.1, define

ΦN,B(ĝ, z) :=(p+ 1)TrNpN (−i(ĝ|Wp)(Nz)ϑB(z))

=(ĝ|Up)(Nz)ϑB(z) + (ĝ(z)ϑB(Nz))|Up.
(6.16)

When N = 1, this is the same as ΦB(ĝψ, z) defined in the proof of Theorem 5.1. It transforms
like a modular form of level N , weight two and has the following Fourier expansion at infinity

ΦN,B(ĝψ, z) =
∑
m∈Z

(bN,B(ĝψ,m, y) + aN,B(ĝψ,m))qm,

bN,B(ĝψ,m, y) =−
∑
k∈Z

δ(k)rψ(k)β1

(
k, Ny

p

)
rB(pm+Nk),

aN,B(ĝψ,m) =
∑
k∈Z

r+
ψ (k) rB(pm−Nk)δ(k).

Since f ∈ M !,new
0 (N), one could use Eq. (2.14) and (6.1) to calculate the −kth Fourier

coefficient of f lift,N,B as

(6.17) c(f lift,N,B,−k) =
∑
m∈Z

c(f,−m)
(
rB(pm−Nk)−NrB

(
pm−Nk
N2

))
.
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From this and the condition χp(N) = 1, it is easy to see that f lift,N,B(z) ∈ M !,+
1 (p). So we

can apply Proposition 2.5 to obtain

〈f lift,N,B, gψ〉reg =
∑
m∈Z

c(f,−m)

(∑
k∈Z

r+
ψ (k)rB(pm−Nk)δ(k)−N

∑
k∈Z

r+
ψ (k)rB

(
pm−Nk
N2

)
δ(k)

)
=−N

∑
m′∈Z

c(f,−Nm′)
∑
k∈Z

r+
ψ (k)

(
rB

(
pm′−k
N

)
+ rB(pNm′ −Nk)

)
δ(k)

+
∑
m∈Z

δN(m)c(f,−m)aN,B(ĝψ,m)

=Σ′f,N,B,ψ −N
∑
m′≥0

c(f,−Nm′)ρN,B,ψ(m′),(6.18)

where Σ′f,N,B,ψ is defined by

(6.19) Σ′f,N,B,ψ :=
∑
m∈Z

δN(m)c(f,−m)aN,B(ĝψ,m).

The sum over m′ ∈ Z changes to be over only m′ ≥ 0 in Eq. (6.18) since r+
ψ (k) = 0 for all

k ≤ −p by the choice of g̃ψ(z).
For n ≥ 0, let Pn,N(z) = q−n + O(q) ∈ M !

2(N) be the weakly holomorphic modular form
as in Lemma 2.10. Consider Φ∗N,B(ĝψ, z), defined by

Φ∗N,B(ĝψ, z) := ΦN,B(ĝψ, z)−
∑
n≥0

aN,B(ĝψ,−n)Pn,N(z)− NρN,B,ψ(0)

N2 − 1
(Ê2(z)− Ê2(Nz)).

(6.20)

Now it is easy to check that Φ∗N,B(ĝψ, z) is O(1/y) at the cusp infinity. At the cusp 0, some
calculations show that

ΦN,B(ĝψ, z)|WN = (ĝ(z)ϑB(Nz)) | Up + (ĝ | Up)(z)ϑB(Nz),

ΦN,B(ĝψ, z)|UN = (ĝ(z)(ϑB | UN)(z)) | Up + (ĝ | Up)(z)(ϑB | UN)(z).

Thus using the relationship ϑB(Nz) + (ϑB | UN)(z) = ϑBN (z) + ϑBN−1(z), we have

ΦN,B(ĝψ, z)|WN + ΦN,B(ĝψ, z)|UN = Φ1,BN (ĝψ, z) + Φ1,BN−1(ĝψ, z).

From the proof of Theorem 5.1, we know that Φ1,BN (ĝψ, z) + Φ1,BN−1(ĝψ, z) has no pole and
a constant term ρN,B,ψ(0). So Φ∗N,B(ĝψ, z) is also O(1/y) at the cusp 0.

For m ≥ 1, let Pm,N(z, s) be the Poincaré series of level N , weight two defined by

Pm,N(z, s) :=
∑

γ∈Γ∞\Γ0(N)

(yse2πimz)|2γ.

It is characterized by the property that

lim
s→0
〈h(z),Pm,N(z, s)〉 =

c(h,m)

4πm

for any h(z) =
∑

m≥1 c(h,m)qm ∈ S2(N). Since {c(f,−m) : m ≥ 1} ∈ ΛN is a relation for
S2(N) (see Def. 2.8), we know that

(6.21) lim
s→0

〈
h(z),

∑
m≥1

mδN(m)c(f,−m)Pm,N(z, s)

〉
= 0,
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for any h(z) ∈ S2(N). So lims→0

∑
m≥1mδN(m)c(f,−m)Pm,N(z, s) ∈ S2(N) is 0.

Now we can consider the inner product between Φ∗N,B(ĝψ, z) and this linear combination
of Poincaré series and obtain

(6.22) 4π lim
s→0

∑
m≥1

mδN(m)c(f,−m)〈Φ∗N,B(ĝψ, z),Pm,N(z, s)〉 = 0.

Since Φ∗N,B(ĝψ, z) is O(1/y) at both cusps, we can apply Rankin-Selberg unfolding as in the
proof of Theorem 5.1. The limit on the left hand side of Eq. (6.22) then breaks up into two
parts. The first part is

(6.23)
∑
m≥1

δN(m)c(f,−m)


aN,B(ĝψ,m)−

∑
n≥0

aN,B(ĝψ,−n)c(Pn,N ,m)

− 24NρN,B,ψ(0)

N2 − 1

(
σ1

(
m
N

)
− σ1(m)

)


Since (f |WN)(z) = −N(f |UN)(z) and Pn,N(z) = q−n + O(q), Lemma 2.10 tells us that for
n ≥ 0 ∑

m≥1

δN(m)c(f,−m)c(Pn,N ,m) = −δN(n)c(f, n).

So expression (6.23) becomes

(6.24) Σ′f,N,B,ψ −
24NρN,B,ψ(0)

N2 − 1

∑
m≥1

δN(m)c(f,−m)
(
σ1

(
m
N

)
− σ1(m)

)
.

The second part of the left hand side of Eq. (6.22) involves the limit of an infinite sum, which
can be evaluated as

− lim
s→0

∑
m≥1

δN(m)c(f,−m)
∑
k≥1

δ(k)rB(pm+Nk)rψ(k)%2s+1

(
kN

pm

)
=− lim

s→1

∑
m≥1

δN(m)c(f,−m)
∑
k≥1

δ(k)rB(pm+Nk)rψ(k)2Qs−1

(
1 +

2kN

pm

)

=− (N + 1) lim
s→1

∑
m′≥1

c(f,−Nm′)
∑
k′≥1

δ(k)

 rB(N(pm′ + k))

+rB

(
pm′ + k

N

) rψ(k)2Qs−1

(
1 + 2kN

pm′

)
+ Σf,N ,B,ψ

=Σf,N,B,ψ − (N + 1)
∑
m′≥1

c(f,−Nm′)(ρN,B,ψ(m′) + 24σ1(m′)ρN,B,ψ(0)).

(6.25)
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Adding expressions (6.24) and (6.25) together yields 0 and can be used to solve for Σ′f,N,B,ψ

Σ′f,N,B,ψ =
24NρN,B,ψ(0)

N2 − 1

∑
m≥1

δN(m)c(f,−m)
(
σ1

(
m
N

)
− σ1(m)

)
− Σf,N,B,ψ + (N + 1)

∑
m′≥1

c(f,−Nm′)(ρN,B,ψ(m′) + 24σ1(m′)ρN,B,ψ(0))

=− Σf,N,B,ψ +
∑
m′≥1

c(f,−Nm′) (ρN,B,ψ(m′) + 24σ1(m′)ρN,B,ψ(0))

+N
∑
m′≥0

c(f,−Nm′)ρN,B,ψ(m′),

where we have used the following equation obtained from applying Lemma 2.10 to P0,N(z) ∈
M !

2(N) and f(z) ∈M !,new
0 (N)

(6.26) c(f, 0) = 24
N2−1

∑
m≥1

(
Nσ1

(
m
N

)
− σ1(m)

)
δN(m)c(f,−m).

Substituting this expression of Σ′f,N,B,ψ into (6.18) gives us Eq. (6.15). �

6.4. Proof of Theorem 6.1. In terms of ρN,B,ψ(0), the quantity Uf,N,B,ψ in Eq. (6.12) can
be written as

Uf,N,B,ψ =− c(f, 0)(Nψ(BN ) +Nψ(B−1N−1)− ψ(B−1N )− ψ(BN−1))Iψ2

− 24

∑
m′≥1
N -m′

c(f,−Nm′)σ1(m′)

 ρN,B,ψ(0) +

∑
m≥1
N -m

c(f,−m)rB(m)

ψ(BN−1)4Iψ2 .

Since f is in the span of SN,1, c(f,−Nm′) = 0 for all m′ ≥ 1 divisible by N . Adding Eq.
(6.12) and (6.15) will cancel the term 24

(∑
m′≥1 c(f,−Nm′)σ1(m′)

)
ρN,B,ψ(0) and give us

〈f lift,N,B, gψ〉reg =−
∑

A′∈Cl(F )

ψ2(A′) log |Ψf,N (τ1, τ2)|+
∑
m′≥1

c(f,−Nm′)ρN,B,ψ(m′)

+ C ′f,N ,B,ψ,

(6.27)

where

C ′f,N ,B,ψ = − c(f, 0)(Nψ(BN ) +Nψ(B−1N−1)− ψ(B−1N )− ψ(BN−1))Iψ2

+

∑
m≥1
N -m

c(f,−m)rB(m)

ψ(BN−1)4Iψ2 .

From the definition of f0 in Eq. (6.2) and the fact that c(f,−N2m′′) = 0 for all m′′ > 0, it
is easy to see that

〈f lift,N,B
0 , gψ〉reg = 〈f lift,N,B, gψ〉reg −

∑
m′≥1

c(f,−Nm′)ρN,B,ψ(m′),

c(f lift,N,B
0 , 0) =

1−N
2

c(f, 0) +
∑

m≥1,N -m

c(f,−m)rB(m).

Substituting these into Eq. (6.27) gives us C ′f,N ,B,ψ = Cf,N ,B,ψ and Eq. (6.3).
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7. Algebraicity, Modularity, and Proof of Theorem 1.1

We are now in position to prove Theorem 1.1. First, we will use the theory of complex
multiplication and Theorems 5.1 and 6.1 to show that regularized inner products, such as
the ones on the left hand sides of Eq. (5.3) and (6.3), can be put into the form of the right
hand of Eq. (1.10) when the modular function has rational Fourier coefficients. Then, we
will prove Lemma 7.2, which tells us when a generating series is a modular form of weight
one. Finally, we will combine these two results to deduce Theorem 1.1.

7.1. Algebraicity of Regularized Inner Product. The main result of this section is as
follows.

Proposition 7.1. Let B ∈ Cl(F ), N be 1 or an odd prime satisfying
(
N
p

)
= 1 and f ∈

M !
0(N). Write f(z) = f1(Nz)+f2(z) as in Lemma 2.7. If fj has integral Fourier coefficients

in the principal part for j = 1, 2, then for each A′ ∈ Cl(F ), there exists uf,B(A′) ∈ H
independent of the character ψ such that

(7.1) 〈f lift,N,B, gψ〉reg =
1

12H(p)κ−p εN

∑
A′∈Cl(F )

ψ2(A′) log |uf,B(A′)|,

where κ−p ∈ Z is defined in Eq. (3.9) and

εN =

{
N2 − 1, when N 6= 1,

1, when N = 1.

Furthermore for any C ∈ Cl(F ), the algebraic integer uf,B(A′) satisfies

(7.2) σC(uf,B(A′)) = uf,B(A′C−1)

where σC ∈ Gal(H/F ) is associated to C via Artin’s isomorphism.

Proof. Since we could write f(z) as the integral linear combination of jm(Nz) and some
functions in SN,1,SN,2 with integral principal part Fourier coefficients, there are really three
cases to consider.

Case 1: f(z) = jm(Nz).
When N = 1, we have f lift,N,B(z) = jlift,B

m (z) as defined in Eq. (5.1). If m = 0, then
f lift,N,B(z) = ϑB(z) and

〈f lift,N,B, gψ〉 =(ψ(B) + ψ(B−1))Iψ2

=
1

12H(p)

∑
A′∈Cl(F )

ψ2(A′) log |u0,B(A′)|,

where u0,B(A) := (uA′B′uA′(B′)−1)−1 with uA1 ∈ H× defined by Eq. (3.1) and B′ ∈ Cl(F ) the
unique square root of B. By the theory of complex multiplication, uf,B(A′) satisfies Eq. (7.2).

If m ≥ 1, then for any r ≥ 0 and τ, τ ′ ∈ H, define the level one modular function
Ψ∗m(z; τ, τ ′, r) by

Ψ∗m(z; τ, τ ′, r) :=
Ψm(τ, z)

(j(τ ′)− j(z))r
,
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where Ψm is defined in Eq. (5.2). In terms of Ψ∗m(z; τ, τ ′, r), we can use Eq. (5.3) to re-write
〈jlift,B
m , gψ〉 as

−2
∑

A′∈Cl(F )

ψ2(A′) (log |Ψ∗m(τA′B′ ; τA′B′−1 , τA′B′ , rB(m))|+ rB(m) log |yA′B′j′(τA′B′)|)

The quantity Ψ∗m(τA′B′ ; τ
−1
A′B′ , τA′B′ , rB(m)) is well-defined and non-zero, since the order of

Ψm(τA′B′−1 , z) at z = τA′B′ is exactly rB(m) from the proof of Theorem 5.1. By Eq. (3.2) and
the fact that

(j′(z))6 = j(z)4(j(z)− 1728)3∆(z),

we have

σC

 ∏
C′∈Cl(F )

y6
A′B′j

′(τA′B′)
6

y6
C′∆(τC′)

 =

 ∏
C′∈Cl(F )

y6
C−1A′B′j

′(τC−1A′B′)
6

y6
C′∆(τC′)

 ∈ H.
Similarly, the modular function Ψ∗m(z; τA′B′−1 , τA′B′ , rB(m)), which is defined over H, is sent
to Ψ∗m(z; τC−1A′B′−1 , τC−1A′B′ , rB(m)) under σC. So if we let

um,B(A′) := Ψ∗m(τA′B′ ; τA′B′−1 , τA′B′ , rB(m))−24H(p) ·

 ∏
C′∈Cl(F )

y6
A′B′j

′(τA′B′)
6

y6
C′∆(τC′)

−4rB(m)

,

then we can write

〈jlift,B
m , gψ〉reg =

1

12H(p)

∑
A′∈Cl(F )

ψ2(A′) log |um,B(A′)|

with um,B(A′) ∈ H satisfying Eq. (7.2).
When N > 1, Eq. (6.13) tells us that

f lift,N,B(z) = (jm(Nz))lift,N,B = jlift,BN
m (z) + jlift,BN−1

m (z).

In terms of the results for N = 1, we could write

〈f lift,N,B, gψ〉reg =
1

12H(p)

∑
A′∈Cl(F )

ψ2(A′) log |uf,B(A′)|,

where uf,B(A′) = um,BN (A′)um,BN−1(A′) also satisfies Eq. (7.2).

Case 2: f(z) = f2(z) ∈ SN,2.
By Lemma 2.9, there exist integers r ≥ 0,m′ ≥ 1 such that gcd(N,m′) = 1 and

f(z) = q−N
r+2m′ − N+1

δN (Nrm′)
q−N

rm′ +O(q)

at the cusp infinity. From Eq. (6.17), it follows that the −nth Fourier coefficient of f lift,N,B(z)
can be written as

c(f lift,N,B,−n) =−N

(
rB

(
pNr+1m′−n

N

)
− N+1

δN (Nrm′)
rB

(
pNrm′

N
−n

N

))
+
(
rB(−Nn+ pN r+2m′)− N+1

δN (Nrm′)
rB(−Nn+ pN rm′)

)
.
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When r = 0 and n ≥ 0, we can rewrite the equation above as

c(f lift,N,B,−n) = − (N + 1)
(
rB
(
pm′ − n

N

)
+ rB(pm′ −Nn)

)
+
(
rB

(
pNm′−n

N

)
+ rB(N(pNm′ − n))

)
= − (N + 1)c

(
TN(jlift,B

m′ ),−n
)

+ c (jNm′(pz)TN(ϑB)(z),−n) .

Since the principal part and the constant term uniquely determine a form in M !,+
1 (p) up to

a form in S+
1 (p), we have

f lift,N,B(z) = −(N + 1)TN

(
jlift,B
m′ (z)

)
+ jlift,BN

Nm′ (z) + jlift,BN−1

Nm′ (z) + gf (z)

for some gf (z) ∈ S+
1 (p) with integral linear combinations of c(f, n)’s as Fourier coefficients.

When r ≥ 1, the situation is similar. In this case, we have

f lift,N,B(z) = −(N + 1)TN

(
jlift,B
Nrm′(z)

)
+ (NjNr−1m′(pz) + jNr+1m′(pz))TN(ϑB) + gf (z)

for some gf (z) ∈ S+
1 (p) with integral linear combinations of c(f, n)’s as Fourier coefficients.

The modular function f(z) is a rational function in j(z) and j(Nz). Since c(f, n) =
c(f2, n) ∈ Z for all n ≤ 0, we know that c(f, n) ∈ Z for all n ∈ Z. Applying Corollary 3.3 to
gf , we see that the Proposition holds in this case. The presence of gf is responsible for the
κ−p in the denominator on the right hand side of Eq. (7.1).

Case 3: f(z) = f2(z) ∈ SN,1.
This case follows from Theorem 6.1 and the same analysis in case 1. In the first summand of

the right hand side of Eq. (6.27), the value Ψf,N (τ1, τ2) is defined over H. So it can be written
in the same form as the right hand side of Eq. (7.1). The Galois action is also satisfied as τj
corresponds to (OF , n,A′B′N ′) and (OF , n,A′(B′)−1N ′) for j = 1, 2 respectively. Applying
the analysis in case 1, we see that the second summand

∑
m′≥1 c(f,−Nm′)ρN,B,ψ(m′) and the

third summand Cf,N,B,ψ can also be written in the same form as the right hand side of Eq.
(7.1) with appropriate Galois action. Thus the proposition holds in this case. The presence
of c(f, 0) is responsible for the factor N2− 1 in the denominator of the right hand side of Eq.
(7.1), since (N2 − 1)c(f, 0) ∈ Z by Lemma 2.9. �

7.2. Modularity Lemma. Let g̃ψ(z) =
∑

n∈Z r
+
ψ (n)qn be a mock-modular form with fixed

principal part as in Proposition 3.2. Expression (6.18) gives rise to the following equation
involving a linear combination of r+

ψ (n)’s and regularized inner products∑
m∈Z

δN(m)c(f,−m)
∑
n∈Z

δ(n)rB(pm−Nn)r+
ψ (n) =〈f lift,N,B, gψ〉reg

+N
∑
m′≥0

c(f,−Nm′)ρN,B,ψ(m′).
(7.3)

In this section, we will show that as solutions to the above equations for various B, N and
f , the set {r+

ψ (n) : n ≥ 1} is unique up to adjustments by Fourier coefficients of elements in

S−1 (p). Then one can choose an appropriate g̃ψ(z) satisfying Theorem 1.1.
For a class B ∈ Cl(F ), an odd prime N satisfying χp(N) = 1 and a formal power series

D(z) =
∑
n≥1

d(n)qn ∈ CJqK,
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define the formal power series ΦN,B(D, z) ∈ CJqK by

ΦN,B(D, z) := (D|Up)(Nz)ϑB(z) + (D(z)ϑB(Nz))|Up,
where Up acts formally on q-expansions by

(D | Up)(z) =
∑
n≥1

d(pn)qn.

If D(z) ∈ S−1 (p), then ΦN,B(D, z) agrees with the definition in Eq. (6.16), hence is in S2(N).
In this case, the set {d(n) : n ≥ 1} is a solution to Eq. (7.3) with the right hand side replaced
by 0.

Conversely, if d(n) = 0 whenever χp(n) = 1 and ΦN,B(D, z) is in S2(N) for sufficiently
many N , then it turns out D(z) ∈ S−1 (p). This will be proved in the following modularity
lemma, which is the key to the proof of Theorem 1.1.

Lemma 7.2. For a set of complex numbers

{d(n) : n ≥ 1, d(n) = 0 whenever χp(n) = 1},
let D(z) =

∑
n≥1 d(n)qn be the associated formal power series. Suppose that for some class

B ∈ Cl(F ),
ΦN,B(D, z) ∈ S2(N)

for all primes N ≡ 1 (mod p) and N = 1. Then D(z) is a weight one cusp form in S−1 (p).

Proof. Let N0 := 1 and pick an arbitrary set of odd primes {Nj : 1 ≤ j ≤ (p − 1)/2, Nj ≡
1 (mod p)}. For 0 ≤ j ≤ (p − 1)/2, denote ΦNj ,B(D, z) by Φj,B(z). From its definition and
the fact that Nj ≡ 1 (mod p), we have

Φj,B(z) = 1
p

p−1∑
k=0

(
ϑB

(
z+k
p

)
+ ϑB(z)

)
D
(
Njz+k

p

)
.(7.4)

Set

M :=

(p−1)/2∏
j′=1

Nj′ , Mj := M
Nj
.

Then Φj,B (pMjz) is a modular form of weight two, level pM for all 0 ≤ j ≤ (p−1)/2. Define
the following matrices with entries in CJqK by

L :=
(
ϑB

(
Mjz + k

p

)
+ ϑB(pMjz)

)
0≤j≤(p−1)/2

0≤k≤p−1.

X :=
(
D
(
Mz + k

p

))
0≤k≤p−1

R := (pΦj,B(pMjz))0≤j≤(p−1)/2 .

The dimensions of L,X and R are (p+ 1)/2× p, p× 1 and (p+ 1)/2× 1 respectively. Then
we can rewrite Eq. (7.4) in the following matrix expression

(7.5) L ·X = R.

Let S =
(

1
p
e−2πikk′/p

)
0≤k,k′≤p−1

be a p× p matrix and Dk(z) the formal power series

Dk(z) :=
∑
n≥1,

n≡k (mod p)

d(n)qn
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for 0 ≤ k ≤ p− 1. Then S−1 =
(
e2πik′k/p

)
0≤k′,k≤p−1

and

L · S =

δ(k′) ∑
n≡k′ (mod p)

rB(n)qMjn


0≤j≤(p−1)/2
0≤k′≤p−1.

,

S−1 ·X = (pDk′(Mz))0≤k′≤p−1 .

After permuting columns, the matrix L · S is composed of a (p + 1)/2 × (p − 1)/2 zero
submatrix and a (p+ 1)/2× (p+ 1)/2 submatrix L′ of the form

L′ :=

δ(nν) ∑
n≡nν (mod p)

rB(n)qMjn


0≤j,ν≤(p−1)/2

.

Here n0 = 0 and 0 < n1 < n2 < · · · < n(p−1)/2 < p are all the quadratic residues modulo
p. Since the series Dk(z) is identically zero when χp(k) = 1, the p × 1 matrix S−1 · X has
(p− 1)/2× 1 zero submatrix and a (p+ 1)/2× 1 submatrix of the form

(pDnν (Mz))0≤ν≤(p−1)/2 .

For each 0 ≤ ν ≤ (p− 1)/2, let nB,ν be the smallest positive integer such that

nB,ν ≡ nν (mod p), rB(nB,ν) 6= 0

and nB := maxν(nB,ν). By changing the index ν if necessary, we could suppose nB,ν < nB,ν′
whenever ν < ν ′. Now, choose the primes Nj, 1 ≤ j ≤ (p− 1)/2 such that

(7.6)

(p−1)/2∑
j=t+1

1

Nj

<
1

nBNt

.

for all 0 ≤ t ≤ (p− 3)/2.
Let ι be any permutation of {0, 1, 2, . . . , (p− 1)/2}, which is not the identity permutation.

Then there exists a unique positive integer tι ≤ (p − 3)/2 such that ι(tι) > tι and ι(t) = t
for all t < tι. The monotonicity of {nB,ν} then implies that nB,tι < nB,ι(tι). From inequality
(7.6), we can deduce

(7.7)

(p−1)/2∑
j=0

MjnB,j <

(
tι∑
j=0

MjnB,j

)
+Mtι ≤

tι∑
j=0

MjnB,ι(j) <

(p−1)/2∑
j=0

MjnB,ι(j).

That means det(L′) = O(q
∑(p−1)/2
j=0 MjnB,j) is a non-zero power series, and L′ is invertible in the

ring of Laurent series over C. Also, the entries in L′ and R can be considered as holomorphic
functions on H. Thus, the formal power series pDnν (Mz), which are the entries in (L′)−1 ·R,
are meromorphic functions in z on H, with possible poles at the zeros of the power series
det(L′).

This argument could then be used to show that the formal power series Dnν are all holo-
morphic on H, which implies that D is holomorphic on H since

D =

(p−1)/2∑
ν=0

Dnν .
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For a particular z0 = x0 + iy0 ∈ H, it suffices to show that we could pick the Nj’s such that
det(L′) does not vanish at q = e2πiz0 . First, choose Nj large enough such that

L′ =
(
δ(nν)rB(nB,ν)e

(MjnB,ν)2πiz0 +O(e−(Mj(nB,ν+p))2πy0)
)

0≤j,ν≤(p−1)/2
,

with the constant in the O-term independent of z0 and Nj. If we further require the Nj’s to
satisfy inequality (7.6), then inequality (7.7) implies that

(p−1)/2∑
j=0

MjnB,ι(j) −
(p−1)/2∑
j=0

MjnB,j > M(p−1)/2

for any non-trivial permutation ι. Thus, after making M(p−1)/2 large enough by increasing
the Nj’s, we could make sure that the power series det(L′) has the main term(p−1)/2∏

ν=0

δ(nν)rB(nB,ν)

 e

(∑(p−1)/2
ν=0 MνnB,ν

)
2πiz0

at q = e2πiz0 and does not vanish there.
So for a fixed set of Nj’s satisfying inequality (7.6), the submatrix L′ has full rank in

M(p+1)/2,(p+1)/2(CJqK). The null space of L is spanned by the column vectors(
1
p
e2πiknν/p

)
0≤k≤p−1

with 1 ≤ ν ≤ (p− 1)/2. This also shows that L has rank (p+ 1)/2 in M(p−1)/2,(p−1)(C) after
substituting q = e2πiz for all z in a dense subset U ∈ H.

Let γ =
(

a b
pMc d

)
∈ Γ0(pM), then applying |2γ to both sides of Eq. (7.4) gives us a new

equation with the same right hand side. Let c denote the multiplicative inverse of c modulo
p and we have the following standard transformation of ϑB(z)

ϑB

(
Mjz + k

p

)
|1
(

a b
pMc d

)
=

{
χp(a+ ck)ϑB

(
Mjz + (a+ck)dk

p

)
, if a+ ck 6≡ 0 mod p

i
√
pχp(−c)ϑB(pMjz), if a+ ck ≡ 0 mod p

ϑB(pMjz) |1
(

a b
pMc d

)
=

χp(−c)i√p
p

ϑB

(
Mjz + cd

p

)
.

Using these properties, Eq. (7.5) transforms into

L · T ·X ′ = R,

where

T := (Tkk′)0≤k,k′≤p−1,

Tkk′ := χp(−c)i√
p

(δ′cd(k)− gp(k)

p
) +

{
χp(a+ ck′)(δ′

(a+ck′)dk′
(k′)− gp(k)

p
), if k 6≡ −ac mod p

iχp(−c)
2
√
p
gp(k), if k ≡ −ac mod p

δ′α(β) :=

{
1, if α = β
0, otherwise

gp(k) := 1
2

p−1∑
n=0

(1 + χp(n))e2πink/p =

{ p
2
, if p | k
i
√
pχp(k)

2
, if p - k

X ′ :=
(
D
(
Mz + k′

p

)
|1 γ
)

0≤k′≤p−1
.
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So when q = e2πiz for any z ∈ U ⊂ H, the column vector X − T · X ′ with entries in C
is in the null space of L, which is spanned by the column vectors

(
1
p
e2πiknν/p

)
0≤k≤p−1

with

1 ≤ ν ≤ (p− 1)/2.
Now define a 1× p row vector V by

V :=
(

1
p
(gp(k) + 1

2
)
)

0≤k≤p−1
.

It is orthogonal to the null space of L when z ∈ U . So for all z ∈ U ,

V ·X = V · T ·X ′.

Simple calculation shows that

V · T = χp(d)V,

V ·X = χp(d)D(Mz),

V ·X ′ = χp(d)(D(Mz)|1γ).

So we know that (D(Mz)|1γ) = χp(d)D(Mz) for all z ∈ U . Since U ⊂ H is dense and both
sides are holomorphic, we have (D(Mz)|1γ) = χp(d)D(Mz) for all z ∈ H. This is true for
any γ ∈ Γ0(pM), or equivalently

(D|1
(
a Mb
pc d

)
)(z) = χp(d)D(z)

for all
(
a Mb
pc d

)
∈ Γ0(p), b ∈ Z.

Let Γ0(p,M) := {( a bc d ) ∈ Γ0(p) : M |b}. It is not too hard to see that Γ0(p) is generated by
Γ0(p,M) and T = ( 1 1

1 ) ∈ Γ0(p). Since D(z) is also invariant under the action of T , it has
level p. By the shape of the Fourier expansion of D(z), it is in S−1 (p). �

Corollary 7.3. Let B ∈ Cl(F ) be any class. Then the rational vector space M !,+
1 (p) is

spanned by the set

{f lift,N,B(z) : B ∈ Cl(F ), f(z) ∈ SN,1 ∪ SN,2, N ≡ 1 (mod p) prime} ∪ {jlift,B
m : m ≥ 0}

Proof. Suppose the subspace of M !,+
1 (p) spanned by the set above, denoted by M !,+,lift

1 (p), is
strictly smaller. Then Proposition 2.6 implies that there exists D(z) =

∑
n≥1 d(n)qn ∈ QJqK

satisfying

(i) d(n) = 0 for all n with χp(n) = 1,

(ii)
∑

n≥1 c(G,−n)d(n)δ(n) = 0 for all G(z) =
∑

n∈Z c(G, n)qn ∈M !,+,lift
1 (p),

(iii) D(z) 6∈ S−1 (p).

For N being 1 or any odd prime satisfying χp(N) = 1, the statement ΦN,B(D, z) ∈ S2(N)
is equivalent to

0 =
∑
m∈Z

δN(m)c(f,−m)
∑
n≥1

δ(n)d(n)rB(pm−Nn) =
∑
n≥1

c(f lift,N,B,−n)d(n)δ(n).

for all f(z) ∈ SN,1 ∪ SN,2 by Lemma 2.9. Specialize G to f lift,N,B for all such f , condition (ii)
then implies that ΦN,B(D, z) ∈ S2(N) for all primes N ≡ 1 (mod p) and N = 1. Together
with condition (i) and Lemma 7.2, we know that D(z) ∈ S−1 (p), which contradicts (iii). Thus,

M !,+
1 (p) = M !,+,lift

1 (p). �

Remark. A version of this corollary with finitely many N ’s could provide a bound on κp in
Theorem 1.1.
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7.3. Proof of Theorem 1.1. Denote the dimension of S−1 (p) by d− and the q-echelon basis
by

{ht(z) ∈ S−1 (p) : ht(z) = qnt +O(qnd−+1), 1 ≤ t ≤ d−}.

Choose a mock-modular form g̃ψ(z) =
∑

n≥n0
r+
ψ (n)qn ∈ M−1 (p) such that it has a fixed

principal part as in Proposition 3.2 and r+
ψ (nt) satisfies conditions (ii) and (iii) in Theorem

1.1 for 1 ≤ t ≤ d−. We claim that this g̃ψ(z) is a desired choice. Note that if S−1 (p) = ∅,
then there is only one g̃ψ(z) ∈M−1 (p) with a fixed principal part.

Let n > 0 be any integer such that χp(n) 6= 1 and n 6= nt for any 1 ≤ t ≤ d−. Then by

Proposition 2.6, there exists a weakly holomorphic form G(z) ∈ M !,+
1 (p) with the Fourier

expansion

G(z) = q−n +
∑

k≥−n+1

c(G, k)qk

at infinity and c(G, k) ∈ Q. By Corollary 7.3, we could find B ∈ Cl(F ), αj ∈ Q, fj ∈
M !,new

0 (Nj) and f0 ∈M !
0(1), all with rational Fourier coefficients, such that

G(z) =
J∑
j=0

αjf
lift,Nj ,B
j (z).

By Proposition 2.5 and , we have

δ(n)r+
ψ (n)+

∑
k≤n−1

δ(k)c(G,−k)r+
ψ (k) = 〈G, gψ〉reg =

(p−1)/2∑
j=0

αj〈f lift,Nj ,Bj , gψ〉reg.

After applying Proposition 7.1 and a simple inductive argument on n, we can write r+
ψ (n) in

the form

r+
ψ (n) = − 1

κp,n

∑
A∈Cl(F )

ψ2(A) log |u(n,A)|2

for all n ∈ Z with κp,n ∈ Z, u(n,A) ∈ H× independent of ψ and σC(u(n,A)) = u(n,AC−1)
for all C ∈ Cl(F ).

In a similar fashion, we will show that one can choose κp,n independently of n. Fix a finite
set of primes

Mp := {Nv : 1 ≤ v ≤ p− 1, χp(v) = 1, Nv ≡ v (mod p)}.

and define

κp := lcm{κp,k : k ≤ (p+ 1)/12} · lcm{N2 − 1 : N ∈Mp}.

Then for n ≤ (p+1)/12, we could replace κp,n with κp and u(n,A) with u(n,A)κp/κp,n . Notice
that for n ≤ 0, the algebraic number u(n,A) is a perfect (N2 − 1)th power in H× for any
N ∈Mp.

When n > (p + 1)/12 and p - n, pick N ∈ Mp and a positive integer m such that
pm − Nn = 1. Notice N - m and m ≥ gN + 1 where gN is the genus of the modular curve
X0(N). With such a choice of N and m, let fm ∈ SN,1 be a modular function as in (2.20).
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Then δ(n)δN(m)rA0(pm−Nn) = 1 and Eq. (7.3) becomes

r+
ψ (n) =−

∑
0<k<n

δ(k)

(
gN∑

m′′=1

δN(m′′)c(fm,−m′′)rA0(pm
′′ −Nk)

)
r+
ψ (k)

−
∑
k≤0

δ(k)

( ∑
m′′≤gN

δN(m′′)c(fm,−m′′)rA0(pm
′′ −Nk)

)
r+
ψ (k)

+ 〈f lift,N,A0
m , gψ〉reg +Nc(fm, 0)ρN,A0,ψ(0).

In the summation on the right hand side, the coefficient of r+
ψ (k) is an integer when k > 0 by

Lemma 2.9 and is rational with denominator dividing (N2 − 1) when k ≤ 0. When n = pn′

with n′ ≥ 1 an integer, we could substitute f = jn′(z) into Eq. (5.4) and have

r+
ψ (n) = 〈jlift,B

n′ , gψ〉reg −
∑
k<n

δ(k)rB(pn′ − k)r+
ψ (k).

By Propositions 3.2, 7.1 and a simple induction on n, we could choose κp,n = κp for n >
(p+ 1)/12 while keeping u(n,A) ∈ H×.

With property (ii) and (iii) known, one could slightly change the choices of κp and u(n,A)
such that property (iv) is also satisfied. By changing κp to 2H(p)κp, we could suppose
that (2H(p)) | κp and u(n,A) is a (H(p))th power in H×. For each n 6= 0, we know that
exp(R+

p (n)) ∈ Q by Eq. (1.6). Then there exists cn ∈ Q depending only on n and p such that

−
log NH/Q(cnu(n,A))

κp
= R+

p (n).

Since ψ2 is non-trivial, we could replace u(n,A) with cnu(n,A) if necessary to make it satisfy
property (iv), as well as properties (ii) and (iii).

For all n ∈ Z, define r+
A(n) by

r+
A(n) :=

1

H(p)

(
R+
p (n) +

∑
ψ non-trivial

ψ(A)r+
ψ (n)

)

=
1

H(p)

(
R+
p (n) +

1

κp
log |NH/Q(u(n,A))|

)
− 1

κp
log |u(n,

√
A)|2,

where the second equality is due to the transitive action of Gal(H/F ) on {u(n,A) : A ∈
Cl(F )}. The generating series

∑
n∈Z r

+
A(n)qn is a mock-modular form with shadow ϑA(z).

When n > 0, property (iv) implies that

r+
A(n) = − 1

κp
log |u(n,

√
A)|2

for all A ∈ Cl(F ), which yields

R+
p (n) = − 1

κp

∑
A∈Cl(F )

log |u(n,
√
A)|2 =

∑
A∈Cl(F )

r+
A(n).

This is the analogue of Eq. (1.9) for mock-modular forms as mentioned in the introduction.
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8. Case p = 283: Some numerical calculations

Finally, we will present another numerical example to demonstrate that statements similar
to the Conjecture in §1 should be true for octahedral newforms. These calculations were
conducted in SAGE [45]. When p = 283, Cl(F ) has order 3 and the space S1(p) is 3-
dimensional spanned by a dihedral newform h(z) and octahedral newforms f±(z) = f1(z)±√
−2f2(z), where

h(z) = q + q4 − q7 + q9 +O(q10),

f1(z) = q − q4 + 2q6 − q7 − q9 +O(q10),

f2(z) = q2 − q3 − q5 +O(q10).

By Lemma 2.4, h(z), f1(z) ∈ S+
1 (p) and f2(z) ∈ S−1 (p). By the Deligne-Serre Theorem, f±(z)

arises from ρ : Gal(K/Q)→ GL2(C), where K is the degree 2 extension of the normal closure
of Q[X]/(X4 −X − 1) such that Gal(K/Q) ∼= GL2(F3).

Let F6 be the subfield of K fixed by a subgroup of Gal(K/Q) isomorphic to Z/8Z, and H3

the cubic subfield of F6. Explicitly, we can write

H3 = Q[Y ]/(Y 3 + 4Y + 1),

F6 = Q[X]/(X6 − 3X5 + 6X4 − 7X3 + 10X2 − 7X + 6),

with the embedding

H3 ↪→ F6

Y 7→ X2 −X + 1.

Fix a complex embedding of F6 ↪→ C such that X = t, Y = θ with t, θ ∈ C having positive
imaginary part. Since F6 is totally complex, the unit group of F6 has rank 2 and is generated
by

u1 = t2 − t+ 1, u2 = t3 + t− 1.

As in the case of dihedral newforms, one can express the Petersson norms of f+(z) and f−(z)
as

〈f+, f+〉 = 〈f−, f−〉 =
p+ 1

12
Ress=1

ζ(s)L(s, F6)

L(s,H3)ζ(2s)(1 + p−s)
.

Notice the ratio L(s, F6)/L(s,H3) is the L-function of the quadratic Hecke character of H3

associated to the Hilbert quadratic norm residue symbol of F6/H3. So it is holomorphic at
s = 1 and the right hand side can be evaluated to be 8 log |u1u

2
2|.

By Proposition 2.6, there exist mock modular forms f̃1(z) ∈ M−1 (p) and f̃2(z) ∈ M+
1 (p)

with shadows f1, f2 respectively such that

f̃1(z) = c+
1 (−4)q−4 + c+

1 (−1)q−1 + c+
1 (0) +

∑
n>0,χp(n) 6=1

c+
1 (n)qn,

f̃2(z) = c+
2 (−2)q−2 + c+

2 (0) +
∑

n>0,χp(n)6=−1

c+
2 (n)qn.

Using Proposition 2.5, we find that

−c+
1 (−4) = c+

1 (−1) = c+
2 (−2) = 2 log |u1u

2
2|.

Since M+
1 (p) ⊂ M+

1 (p) and M−
1 (p) ⊂ M−1 (p) are both non-empty, the principal part of f̃j(z)

does not determine it uniquely. However, once c+
1 (2) is chosen, then f̃1 is fixed. Similarly,

once c+
2 (0), c+

2 (1) and c+
2 (4) are chosen, f̃2 is fixed. Since we expect c+

j (n) to be logarithms
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of absolute values of algebraic numbers in F6, it is natural to choose c+
1 (2), c+

2 (0), c+
2 (1) and

c+
2 (4) this way and study the other coefficients. So for j = 1, 2, we will write

c+
j (n) =

1

κj
log |uj(n)|,

where κj ∈ Z and uj(n) ∈ C× is some complex number. Then we fix f̃j(z) by letting
κ1 = 2, κ2 = u2(0) = u2(1) = 1 and

u2(4) = u1(2) = − 7

16
t5 +

5

4
t4 − 7

8
t3 +

47

16
t2 − 13

16
t+

19

8
.

From the numerical calculations, we can make predictions of the algebraicity of uj(n). In
the table below, we list c+

j (`) for j = 1, 2 and various primes `. Also, we list the predicted
fractional ideals generated by ũj(n) in F6.

When χp(`) 6= 1, the ideal (`) splits into L0L1 in H3, and L1 splits into l`,1l`,2 in F6.
When χp(`) = 1 and c(f1, `) = ±1, the ideal (`) splits into l1l2 in F6. When χp(`) = 1 and
c(f1, `) = 0, the ideal (`) splits into L`,0L`,1 in H3 and L`,1 splits into l`,1l`,2 in F6, where
l`,j has order 4 in Cl(F6), the class group of F6. Since F6 and H3 have class numbers 8 and
2 respectively, the fractional ideals in Table 3 and Table 4 are all principal. For example,
the value we chose for u1(2) generates the fractional ideal (l2,1/l2,2)4, where l2,1 and l2,2 have
order 8 in Cl(F6). So it is necessary to take κ1 = 2. The numerical pattern also justifies this

choice of f̃j(z).

Table 3. Coefficients of f̃1(z)
` c(f2, `) c+

1 (`) (ũ1(`))
2 1 1.2075349695016218 (l2,1/l2,2)4

3 -1 -0.44226603950742649 (l3,1/l3,2)4

5 -1 -3.9855512247433431 (l5,1/l5,2)4

17 0 -3.2181607607379323 (l17,1/l17,2)4

19 1 5.3481233955176073 (l19,1/l19,2)4

31 1 -1.7192005338244623 (l31,1/l31,2)4

37 0 0.32541651822318252 (l37,1/l37,2)4

43 1 -4.6200896216743352 (l43,1/l43,2)4

47 -1 -1.0203031328088645 (l47,1/l47,2)4

53 0 5.8419201851710110 (l53,1/l53,2)4

67 0 -3.9318486618330462 (l67,1/l67,2)4

79 0 7.5720154112893967 (l79,1/l79,2)4

107 0 -0.81774052769784944 (l107,1/l107,2)4

109 -1 4.8808523053451562 (l109,1/l109,2)4

283 0 6.86483405137284 (l283,1/l283,2)4

Table 4. Coefficients of f̃2(z)
` c(f1, `) c+

2 (`) (ũ2(`))
7 -1 -3.27983974462451 l7,1/l7,2
11 1 -2.56257986300244 l11,1/l11,2
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13 1 -5.57196302179201 l13,1/l13,2

23 -1 1.01652189648251 l23,1/l23,2

29 -1 1.54494007675715 l29,1/l29,2

41 1 0.771808245755645 l41,1/l41,2

71 0 -4.99942007705695 (l71,1/l71,2)2

73 0 -1.64986308549260 (l73,1/l73,2)2

83 -2 8.97062724307569 1
89 -1 -0.399183274865547 l89,1/l89,2

101 0 5.99108448704487 (l101,1/l101,2)2

283 1 4.48531362153791 1
643 2 2.32782185606303e-10 1
773 2 5.08403073372794e-9 1
859 -2 -8.97062719191082 1
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