HARMONIC MAASS FORMS OF WEIGHT ONE

W. DUKE AND Y. LI

ABSTRACT. The object of this paper is to initiate a study of the Fourier coefficients of
a weight one harmonic Maass form and relate them to the complex Galois representation
associated to a weight one newform, which is the form’s image under a certain differential
operator. In this paper, our focus will be on weight one dihedral newforms of prime level
p = 3 (mod 4). In this case we give properties of the Fourier coefficients that are similar
to (and sometimes reduce to) cases of Stark’s conjectures on derivatives of L-functions. We
also give a new modular interpretation of certain products of differences of singular moduli
studied by Gross and Zagier. Finally, we provide some numerical evidence that the Fourier
coeflicients of a mock-modular form whose shadow is exotic are similarly related to the
associated complex Galois representation.

1. INTRODUCTION

A harmonic Maass form of weight k € 37 is a Maass form for T'o(M) that is annihilated
by the weight k& Laplacian and that is allowed to have polar-type singularities in the cusps
(see [9]). Associated to such a form f is the weight 2 — k weakly holomorphic form

(1.1) &.f(2) = 2iy*0. f(2).
The operator &, is related to the weight k£ Laplacian A, through the identity
(1.2) Ap = Eoib-

A special class of harmonic forms has & f holomorphic in the cusps and hence has a Fourier
expansion at oo of the shape

(13) Jz) =3 ctn)g" =Y clm)Beln.y)g ™.

n>ng n>0
This expansion is unique and absolutely uniformly convergent on compact subsets of H, the
upper half-plane. Here ¢ = €*™* with z = x + iy € H and Si(n,y) is given for n > 0 by

Y

while for k # 1 we have 8(0,y) = y'7%/(k—1) and $;(0,y) = — logy. For such f the Fourier
expansion of & f is simply
&f(2) = Z c(n)q".
n>0
Following Zagier, the function ) c¢*(n)¢" is said to be a mock-modular form with shadow
> nso€(n)g". It is important to observe that a mock-modular form is only determined by its

shadow up to the addition of a weakly holomorphic form.
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Some (non-modular) mock-modular forms have Fourier coefficients that are well-known

arithmetic functions. Let o1(n) = 3_, m and H(n) be the Hurwitz class number. Then

—SWZCH(N)Q” (U(O) = _i)

n>0

is mock-modular of weight k£ = 2 for the full modular group with shadow 1 and

—167 > H(n)q" (H(0) = —%)

n>0

is mock-modular of weight 3/2 for T'y(4) with shadow the Jacobi theta series 0(z) = ", ¢"".
(See [50]). These two examples will also be useful in our work on the weight one case.

In general, the Fourier coefficients of mock-modular forms are not well understood. For
example, in the case of weight 1/2, which includes the mock-theta functions of Ramanujan,
there has been considerable progress made by Zwegers in his thesis [52], by Bringmann-Ono
[6], and others (see [51] for a good exposition). The Fourier coefficients of mock-modular
forms of weight 1/2 whose shadows Shimura-lift to cusp forms attached to elliptic curves
have also been shown to be quite interesting by Bruinier and Ono [10] and Bruinier [14]. We
remark that mock-modular forms whose shadows are only weakly holomorphic are also of
interest (see [19],[20]) but in this paper we only consider those with holomorphic shadows.

The self-dual case k = 1 presents special features and difficulties. The Riemann-Roch
theorem is without content when k& = 2 — k, and the existence of cusp forms is a subtle
issue. Furthermore, the infinite series representing the Fourier series of weight one harmonic
Poincaré series are difficult to handle.

The fact that interesting non-modular mock-modular forms of weight 1 exist follows from
work of Kudla, Rapoport and Yang [33]. Suppose that M = p > 3 is a prime with p = 3
(mod 4) and that x,(-) = (;) is the Legendre symbol. Let

(1.4) Ey(z) = 1H(p) + ) Ry(n)q"

n>1

be Hecke’s Eisenstein series of weight one for I'g(p) with character y,, where for n > 0

(1.5) Ry(n) = ZXp(m)-

mln

It follows from [33] that Ei(z) := > o By (n)g" is mock-modular of weight & = 1 with
shadow Fi(z), where for n > 0 we have

(1.6) R;(n) = —(logp)ord,(n)R,(n) — Z log q(ord,(n) + 1)R,(n/q),

xp(q)=-1

and where R¥(0) is a constant." The associated harmonic form is constructed using the
s-derivative of the non-holomorphic Hecke-FEisenstein series of weight 1. An arithmetic inter-
pretation of its coefficients is given in [33]: it is shown that (—2R*(n) 4+ 2log pR,(n)) is the
degree of a certain 0-cycle on an arithmetic curve parametrizing elliptic curves with CM by
the ring of integers in F' = Q(y/—p).

In this paper we will study the Fourier coefficients of mock-modular forms whose shadows
are newforms. From now on, we will assume that M = p > 3 is a prime. The same methods

' Explicitly, R} (0) = fH(p)(LL/((g:;:)) + % — ¢), where ¢ = v + log(473/2) and v is Euler’s constant.
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can be used to produce similar results when M is composite (see [34] for details). To each
A € CI(F), the class group of F', one can associate a theta series 0 4(z) defined by

(1.7) Daz) =1+ 3 O =S ramyg

aCOp n>0

[a]eA
Hecke showed that 0 4(z) € Mi(p, xp), the space of weight one holomorphic modular forms
for I'g(p) with character x,. Let ¢ be a character of CI(F) and consider gy(z) € Mi(p, x,)
defined by

(1.8) gu(z):= Y P(A)a(z) = Y ry(n)g".

A€CI(F) n>0

When ¢ = 1)y is the trivial character, the form gy, (2) is just E;(z) from (1.4), as a consequence
of Dirichlet’s fundamental formula

(1.9) Ry(n)= Y ra(n).

A€eCI(F)
Otherwise, gy(#) is a newform in S; (p, x,), the subspace of M;(p, x,) consisting of cusp forms.
Let H be the Hilbert class field of F' with ring of integers Og. The following result shows
that the Fourier coefficients of certain mock-modular forms of weight one with shadow g, (2)
can be expressed in terms of logarithms of algebraic numbers in H.

Theorem 1.1. Let p = 3 (mod 4) be a prime with p > 3. Let ¢ be a non-trivial character
of CI(F), where F' = Q(y/—p). Then there exists a weight one mock-modular form

gu(z) =Y ri(m)q"

with shadow gy(2) such that the following hold.

(i) When x,(n) =1 orn < —BHL the coefficient r,,(n) equals to zero.

(ii) The coefficients r;“(n) are of the form
(1.10) ri(n) = =2 > W*(A)logu(n, A),

AECI(F)
where k, € Z, u(n, A) are units in Oy when n < 0 and algebraic numbers in H when
n > 0. In addition, k, depends only on p and u(n, A) depends only on n and A.
(i1i) Let oc € Gal(H/F) be the element associated to the class C € CI(F) via Artin’s isomor-
phism. Then it acts on u(n, A) by

oc(u(n, A)) = u(n, AC™).
(iv) Ngjg(u(n, A)) is an integer and satisfies
— L log(|N g u(n, A))]) = R (1)
for all non-zero integers n.

Observe that parts (ii) and (iii) are very similar in form to Stark’s Conjectures for special
values of derivatives of L-functions (see [16, 44]). In fact, they are consequences of known
cases of his conjectures when n < 0. Part (iv) can be viewed as a mock-modular version of
Dirichlet’s identity (1.9). It is important to observe that g,(z) is not necessarily unique.

The proof of this result relies heavily on the Rankin-Selberg method for computing heights
of Heegner divisors as developed in [25], but entails the use of weight one harmonic forms
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with polar singularities in cusps in place of weight one Eisenstein series and hence requires
regularized inner products. In order to get to the individual mock-modular coefficients, it
is necessary to consider modular curves of large prime level N and their Heegner divisors of
height zero. The relation of this part of the proof to [25] has some independent interest.

Zagier observed that his identity with Gross for the norms of differences of singular values
of the modular j-function can be neatly expressed in terms of the coefficients R;r (n) given in
(1.6) (see Eq. (0.21) in [33]). For simplicity, let —d < 0 be a fundamental discriminant not
equal to —p. and set F' = Q(v/—d). As is well-known, the modular j-function is well-defined
on ideal classes of F' and F” and takes values in the rings of integers of their respective Hilbert
class fields. Also, values of the j-function at different ideal classes are Galois conjugates of
each other. For any A € CI(F') define the quantity

(1.11) aa= [ GA)-iA)).

A'€CI(F)
The norm of aq 4 to F is thus [ Acci(F) @a,4 and is an ordinary integer. The result of Gross

and Zagier [24, Theorem 1.3] is that this integer can be expressed in terms of R;(n) as
follows:

(1.12) log [ laga®" ==L o(k) Rjf (255,

A€ECI(F) keZ

where wy is the number of roots of unity in F” and d(k) = 2 if p|k and 1 otherwise.

There are two proofs of this factorization in [24]: one analytic and one algebraic. In fact,
the algebraic approach, which is based on Deuring’s theory of supersingular elliptic curves
over finite fields, gives the factorization of the ideal (a4.4) in Op for each class A € CI(F).
To state it, suppose ¢ is a rational prime such that x,(¢) # 1. Then the ideal (¢) factors in
Op as

o(¢
(1.13) (= J] o
AeCI(F)

The [4’s are primes in H above ¢ uniquely labeled so that o¢([4) = [4¢-1 for all C € CI(F)
and complex conjugation sends [4 to [4-1. Let Ay be the principal class. It is shown in [24]
that the order of a4 4, at the place associated to the prime [4 is given by

(1.14) ordy, (aq,a,) 25 Z T2 (pZZf) :

kEZ m>1

The Galois action then yields the prime factorization of the ideal (aq.4) for any A.
Our second main result gives a mock-modular interpretation of the individual values |a4 4|.
It is convenient to give it as a twisted version of (1.12).

Theorem 1.2. For any gy(z) = > 5., r:;(n)q” giwen by Theorem 1.1 and —d < 0 any
fundamental discriminant different from —p we have

(1.15) 7 (A loglagal” = =1 a(k) ()
A€eCI(F) keZ
where agq 4 is defined in (1.11).
As with Theorem 1.1, this is proved using the methods of [25] and not the analytic technique

of [24], which uses the restriction to the diagonal of an Eisenstein series for a Hilbert modular
group. In particular, we will define a real-analytic function ®(z), which transforms with
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weight 3/2 and level 4, and use holomorphic projection to obtain an equation between a
finite linear combination of 7/ (n)’s and an infinite sum, similar to the one in [25]. We also
make use of machinery from [32]. One interesting new feature is an elementary counting
argument needed to construct a Green’s function evaluated at CM points. Actually, Eq.
(1.15) is a particular example of a more general identity involving values of certain Borcherds
lifts. Although we will not carry this out here, it will become clear that similar methods can
be used to prove a level N version in this form.

Let us illustrate our Theorems in the first non-trivial case, which occurs when p = 23.
The class group CI(F) has size 3 and two non-trivial characters ¢ and 1. The Hilbert class
field H is generated by X® — X — 1 over F. Let a = 1.32472... be the unique real root
of X? — X — 1, which is also the absolute value of the square of a unit in H. The space
S1(23, x23) is one dimensional and spanned by the cusp form

9v(2) = n(2)n(23z),
where 7(z) = ¢"/**T],»,(1 — ¢") is the eta function. According to Theorem 1.1, there exists
a mock-modular form g, (z) having a simple pole and the following Fourier expansion
gz = Y rim)d".

n>—1
x23(n)#1

The condition on the principal part determines g, (z) uniquely in this case, though this is
not true in general. Using Stokes’ Theorem and Stark’s calculation at the end of [44, II], one
can show that
7y (=1) = {gy, gy) = 3log(a) and 7 (0) = —log(c).

From the numerical calculations of r(n), we can predict the values of , and u(n,.A) in
Theorem 1.1. Let &, and @(n,.A) denote the predicted values for k, and u(n, .A) respectively.
The following table lists 7’:; (n), which are calculated numerically, and the predicted values
@(n, Ayg) when &, = 1 for the principal class Ay € CI(F) for 1 < n < 23 and a few other
values of n, all with xo3(n) # 1. It also contains the norms of 4(n,.Ay), which agree with
condition (iv) in Theorem 1.1.

n ri(n) a(n, Ao) | Npjg (a(n, Ag)) "™
5| 1.1001149692823391 s 52
7| 1.7161505040673007 T 7
10| 3.9614773685309742 | 5wy ! 5t
11| 0.052996471463740862 T 112
14| 1.6582443878082415 | Ta™*m; ! 7
15| -1.9437136922512246 Sams ! 54
17| -4.2163115309750479 7 172
19| -2.7119255841404505 1o 192
20 | 5.9051910607821988 5a77 50
21| 6.7198367256215547 | 7Ta 107 ! 7t
22| -4.2709900863081686 | 1la’m;,! 114
23| -3.8460181706191355 T3 23
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28 | 4.2179936148444277 Ta™ 7°
34| -2.532478252776036 17087 17
38 | -9.942055260392833 19074 19*
40 | -14.92826076712649 5al9my 5%

TABLE 1. Coeflicients of gy (z) for gy(z) = n(2)n(23z) € 51(23, x23)

Here, 7, is a generator of the prime ideal [4, in Oy and is given below in terms of «.

14 Ty

5 202 —a—1

7 a’?+a—2

11 202 — «

17 202 + 3a + 3

19 3a% +

23 \/_173(100? +8a+1)

TABLE 2. Generators of [4,.

To illustrate how Theorem 1.2 supports these predictions, consider the classical example
—d = —7, which also appeared in [48]. First, we can combine Eq. (1.15) and Theorem 1.1 to

write
41og |ag.a)?/ "t = %p Z d(k)log ‘u <pd;k2,,4)’ :
keZ

For p = 23 and A = Ay, we can use the predicted values in Table 1 to rewrite the equation
above as

log |u(40, Ag)| + log |u(38, Ao)| + log |u(34, A)|+
4loglaz 4, = 4

log |u(28, Ao)| + log [u(20, Ag)| + log |u(10, Ao)]|
= 4log|5*-7-17- 77 -19- 714 - .

This agrees with the exact of value of a;_4,, which is 5% - 7-17-7,;' - 19 - 74" - %, Applying

the Galois action to these predicted u(n,.4,) shows that they also agree with Theorem 1.2.
This and several other numerical examples, together with Eq. (1.14), motivate us to make

a conjecture about the factorization of the fractional ideal generated by u(n,.4) in Theorem

1.1. It is not hard to see that the following conjecture implies (1.14).

Conjecture. In (ii) of Theorem 1.1 we have the following.

(i) The number k, is an integer dividing 24H (p)hy, where hy is the class number of H.
(i1) For B € CI(F), let Iz be a prime ideal above the rational prime £ as in (1.13). Then
the order of u(n, A) at the place of H corresponding to lg is

ordy, (u(n, A)) = K, Z T(A-1B)2 <€£m> :
m>1

At all other places of H, u(n,A) is a unit. In particular, u(n, A) € Oy for all n, A.

In general (for prime level p =3 (mod 4)) , the Deligne-Serre Theorem [17] (see also [40])
identifies the L-function of a newform f € Si(p, x,) with the Artin L-function of an irre-
ducible, odd, two-dimensional, complex representation p; of the Galois group of a normal
extension K /Q. Such a p; gives rise to a projective representation p; : Gal(K/Q) — PGLy(C)
whose image is isomorphic to Dy,, Sy, or As, in which case we say that f is dihedral, octa-
hedral, or icosahedral, respectively. The forms g, (z) are precisely the dihedral forms and for



HARMONIC MAASS FORMS OF WEIGHT ONE 7

them K = H. Since gy, (2) = gy,(2) if and only if ¥, = by or ¢, = 1)y, there are exactly
(H(p) — 1)/2 such forms. Theorem 1.1 relates the Fourier coefficients of a mock-modular
form with dihedral shadow g¢,(2) to linear combinations of logarithms of algebraic numbers
in the number field K = H determined by the Galois representation. Furthermore, the co-
efficients in these linear combinations are algebraic numbers in the field generated by the
Fourier coefficients of the shadow.

Non-dihedral newforms are often referred to as being “exotic” since their occurrence is
rare and unpredictable. We have carried out some numerical calculations for mock-modular
forms whose shadows are certain exotic newforms and have observed that they also seem to
be related to linear combinations of logarithms of algebraic numbers in the number field K
determined by the associated Galois representation. For instance, when p = 283 the space
S1(283, x283) contains a pair of octahedral newforms associated to a Galois representation of
Gal(K/Q), where K is the degree 2 extension of the normal closure of Q[X]/(X* — X — 1)
with Gal(K/Q) = GLy(F3). Similar to the dihedral case, the Petersson norms of these
newforms come from the residue of a certain degree four L-function. As a consequence of
proven cases of Stark’s conjecture, this residue is the logarithm of a unit inside a subfield Fj
of K. This determines the principal part of a mock modular form whose shadow is one of
these octahedral newforms. Using this hint and some numerical calculations, we noticed that
the other coefficients also seem to be linear combinations of logarithms of algebraic numbers
in the same subfield Fs. Furthermore, these algebraic numbers generate ideals with nice
factorizations. Thus, it is natural to expect a statement analogous to Theorem 1.1 and the
Conjecture should hold for exotic newforms. In the final section of the paper we will give
computational details when p = 283.

We end the introduction with a brief outline of the paper. Section 2 gives general properties
of a weight one mock-modular form, such as its existence (§2.1) and the relationship between
its Fourier coefficients and the regularized inner product via Stokes’ theorem (§2.2). We also
decompose the space of weight one harmonic Maass forms into a plus space and minus space
in §2.3 and include some facts about basis of modular functions of prime level N.

In §3 we study the principal part at infinity of a mock-modular form with shadow g (z).
The proof of Theorem 1.2 is in §4, which can be read independently of the other sections and
gives a model of the procedure to produce relationships between Fourier coefficients of weight
one mock-modular forms and CM-values of modular functions. Sections 5 and 6 contain the
integral weight versions of Theorem 1.2 for level 1 and prime level N respectively. One
of their consequences, Proposition 7.1, is the algebraic property satisfied by various linear
combinations of Fourier coefficients of weight one mock-modular forms. This is used in §7,
along with a modularity lemma, to finish the proof of Theorem 1.1. Finally, an analysis of
the specific case p = 283 is given in §8.

The main results of this paper were announced by the first author in February 2012 in the
Symposium: Modular Forms, Mock Theta Functions, and Applications in Kéln. We have
since learned that there is substantial overlap with [21] and [46]. In particular, Theorems 1.1
and 1.2 are also obtained in [21] for square-free level but by different methods. Also, many
cases of the conjecture above could be resolved by carefully studying the height pairings
between Heegner points (see [47]). The relationship between our approach and the theta-
lifting technique is similar to the one between [12] and [13]. It would be interesting to
generalize these approaches to the exotic cases.
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2. PRELIMINARY FAcTS OF HARMONIC MAASS FORMS

2.1. Existence of Harmonic Maass Forms of Weight One. We begin with some basic
definitions (see [9]). Let k € Z. For any function f : # — C and v € GLj (R), define the
weight k slash operator |,y by

de k/2
(Fln) () o= G002 )

where ~yz is the linear fractional transformation of z under v. We will write f|y for f|iy
when the weight of f is understood. For M € Z* let To(M) denote the usual congruence
subgroup of SLy(Z) of level M, namely

Po(M) ={(25) € SLa(Z)[(23) = (§1) mod M}.

Let v : Z/MZ — C* be a Dirichlet character such that v(—1) = (—1)* and v(v) := v(d) for
v=(2b)eTy(M). Let Fr(M,v) be the space of smooth functions f : H — C such that for
all v € I'y(M)

(f |k 7)(2) = v(7) [ (2).

Recall from (1.1) and (1.2) the differential operator & and the weight k£ hyperbolic Laplacian
Ay. Let z = x +iy. Then Ay can be written as

Ay = =y (83_; + g—;) +iky (a% —1—2'8%) .
Then f(z) € Fr(M,v) is a weight k& harmonic weak Maass form of level M and character v

(or more briefly, a weakly harmonic form) if it satisfies the following properties.
(i) f(z) is real-analytic.
(i) Ag(f) =0.
(iii) The function f(z) has at most linear exponential growth at all cusps of T'o(M).

Let Hy(M,v) be the space of weakly harmonic forms of weight k, level M and character v,
whose image under & is a holomorphic modular form. Denote by M} (M,v), My(M,v) and
Si(M,v) the usual subspaces of weakly holomorphic modular forms, holomorphic modular
forms and cusp forms, respectively. A mock-modular form is a formal Laurent series in g,

iz)= Y )",

such that for some k € Z, there exists g(2) = > -, c(n)q" € My (M, D) satistying

Z ct(n)g" — Zc(n)ﬁk(n,y)q’" € Hy(M,v).

n>>>—oo n>0

The form g(z) is called the shadow of g(z). The expression ) _,ct(n)g" is called the
principal part of g(z). Let My (M, v) be the subspace of mock-modular forms whose shadows
are in My_ (M, 7). Since every weakly harmonic form can be written uniquely as the sum
of a holomorphic part and a non-holomorphic part, the spaces Hy(M,v) and My (M, v) are
canonically isomorphic to each other.
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Property (ii) and Eq. (1.2) gives the following map
fk : Hk(M, V) — Mgfk(M,ﬁ),

whose kernel is exactly M} (M,v). When k # 1, the map above is surjective as shown in [6]
and [9]. When k = 1, one can still prove surjectivity by analytically continuing the weight one
Poincaré series, the same family as in [6] for & = 1, via spectral expansion or slightly modifying
the abstract arguments employing Serre duality in [9]. Since the arguments are standard and
not necessary for our main results, we omit the proof of the following proposition. Interested
readers can check [34] for more details.

Proposition 2.1. In the notations above, the following map is a surjection
&1Z}¥1(A4,V)‘—%;31(A1,v),
i.e. for any cusp form h(z) € S1(M, D), there exists h(z) € My (M, v) with shadow h(z).

2.2. Regularized Petersson Inner Products. From now on, we fix M = p to be a prime
number congruent to 3 modulo 4 and v = y,, = X,. The spaces H,(p, X,), Mi(p, X»), M1(p, Xp),
S1(p, Xp), M (p, xp) are the same as before, and we will drop x, and sometimes p in these
notations when they are fixed. In this section, we will relate the regularized inner products
between g(z) € Si(p) and f(z) € Mi(p) to linear combinations of coefficients of a mock-
modular form §(z), whose shadow is g(z), via Stokes’ theorem. The regularization technique
is standard and has been used in many places before (see for example [4, 7, 9, 11, 20, 27]).
Given f(z) € Mi(p) and g(z) € Si(p), the usual Petersson inner product (f,g) can be
regularized as follows. Since p is prime, I'g(p) has two inequivalent cusps, 0 and co. They are

7 -V ‘/ﬁ). Take a fundamental domain of T'y(p)\H, cut

off the portion with Im(z) > Y for a sufficiently large Y and intersect it with its translate
under og. We will call this the truncated fundamental domain F(Y). Now, define the
regularized inner product by

(21) = Jim [ 1)y

related by the scaling matrix og =

dxdy

Y2
If f(z) € My(p), then this is the usual Petersson inner product. Now let g(z) € Hi(p) be a
preimage of g(z) under & with the following Fourier expansions

g(Z) = ZC;(n)qn - Z C(gan)61<nv y>q—n’

nez n>1
GhW)(2) = e (n)g” = elgliWy, n)Bi(n,y)g ™",
nez n>1

where W, = (, ') is the Fricke involution that acts on f(z) € Hj(p) by

(FhW)(2) = 2= (=)

The expression for (g|;W,)(z) follows from the commutativity between & and the slash
operator. Note that Y, - ¢t (n)g" and Y, _, ¢f(n)¢" are mock-modular forms with shadows
g(z) and (g|1W,)(#) respectively.

Suppose f(z) € Mj(p) has Fourier expansions Y, ¢oo(f,n)g" and >, co(f,n)g™ at the
cusp infinity and 0 respectively. Then as a special case of Proposition 3.5 in [9], we can
express (f, g)reg in terms of these Fourier coefficients.
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Lemma 2.2 (See Proposition 3.5 in [9]). Let f(2) € M;(p) and g(z) € Si(p). In the notations
above, we have

(22) (f,9)ree = D ch(n)eso(f, —n) + ¢ (n)eo(f, —n).

nez
Remark. Notice that the right hand side of Eq. (2.2) depends on the choice of §(z), whereas
the left hand side only depends on g(z). So if we replace §(z) with h(z) € Mi(p), then
Lemma 2.2 still holds and we obtain

0= Z Coo(h7 n)coo(fv —TL) + CO(hv n)CO(fa —TL),
nez
where h(z) has Fourier expansions ), ¢oo(h,n)q" and Y, co(h,n)q™ at the cusp infinity
and 0 respectively.

2.3. Weight One Plus Space. In this section, we will canonically decompose the space
H,(p) into the direct sum of two subspaces, which behave nicely with respect to & and the
regularized inner product. This type of decomposition has appeared in [30, §3.1] for weight
two holomorphic modular forms of prime level p = 1 (mod 4), and also in [8] for weakly
holomorphic modular forms of any weight and any prime level. This section is a slight
generalization of §3 in [8] to the harmonic setting.

For e = +1, we define the following space

(2.3) Hi(p) = {f(z) = Za(n,y)q" € Hi(p) : a(n,y) = 0 whenever x,(n) = —e} .
nez
By imposing the same condition on the Fourier expansions, we can define M;*(p), Mt (p), S(p)
and M (p). Notice that M;(p) is the same as the space AS(p, x,) defined on page 51 of [§]
for k = 1. By the definition of R,(n) in (1.5), it is clear that Ey(z) € M; (p). Also, the
weight one mock-Eisenstein series F(z) belongs to My (p). This can be checked from the
factorization (1.6) and the fact that Fy(z) € M (p).
Recall the standard operator U, on H;(p) defined by

-1

(2.4) 2)hU, = Z

=0

Its action on the Fourier expansion of f(z) = Zm a(m,y)¢™ € Hi(p) is
(2.5) (FhU) () = Y a(pm. 2) g".

The U, operator preserves the space H;(p). This is also true for the Fricke involution W),
since x, is a real character. Applying W, twice produces a negative sign for odd weight, i.e.
(fLW2)(2) = —f(2).

For e = +1, define the operator pr¢: H,(p) — Hi(p) by

(26) pre(f) = 3 (cilFLUW,) + £ ).

By considering the actions of U, and W, on the associated weakly harmonic form, one can
define pr¢ on M (p) as well. These operators then decompose Hi(p), resp. M (p), into the
direct sum of H; (p) and H (p), resp. M (p) and M (p). The lemma below is a generalization
of Lemma 3 in [8, §3] to the harmonic setting.
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Lemma 2.3. Let f € Hi(p). Then for e = +1,

(2.7) (fliW)(2) = —ie(f11Up)(2),

if and only if f(z) € Hi(p). As a result, the operator pr¢ is the identity when restricted to
the subspace H{(p), annihilates the subspace H; “(p) and

(2.8) Hy(p) = pr(Hy(p)) ® pr~(Hi(p)) = H{ (p) ® Hy (p).

Remark. The same decomposition above holds for M (p) and subspaces Si(p) C Mi(p) C
M;(p) C Hy(p) as well.

Proof. Let f(2) = >_,cpa(n,y)q" € Hi(p). It suffices to show that for e = +1, pr=<(f) €
Hi(p) and
pro(f) =0 f € Hi(p).

These then imply the first half of the lemma after applying the definition of pr¢ and f |;
sz = —f. They also imply the second half since

f=pr(f)+pr(f) € H (p) + Hy (p)
and for any h € H; (p) N H; (p)
h=prt(h)+pr (h)=0+4+0=0.

With the matrix calculations in Lemma 3 of [8], one has

—€ 1 . n €

(pr=<f)(z) = 5 <—€Z(f|1Wp)(pZ) + Y (1= xp(n)e) a(n, y)g ) € Hi(p).
neZ

So if pr=¢(f) = 0, then a(n,y) = 0 whenever y,(n) = —e and f € Hi(p) by definition.

Conversely if f € Hf(p), then the Fourier coefficients & (pr=¢(f)) € M|(p) are supported on

multiples of p. A lemma due to Hecke ([37, Lemma, p. 32] ) implies that

My*(p) N My~ (p) = {0}

So &1 (pr~<(f)) = 0 and pr—<(f) is holomorphic. But it is contained in M, (p) N My~ (p),
hence vanishes. O

The decomposition above behaves well under the action of &. Combining with Proposition
2.1, it proves a statement about surjectivity of & : H{(p) — M “(p). Furthermore, there is a
nice characterization of the space S¢(p) as a consequence of facts about weight one modular
forms.

Lemma 2.4. For e = +1, the following map is a surjection

& Hi(p) — Sy°(p).

In other words, for any g € Sy (p), there exists a mock-modular form g € M{(p) whose
shadow is g.
In addition, S{ (p) contains all dihedral cusp forms. If there are 2d_ non-dihedral forms in
1

S1(p), then the spaces Si (p) and ST (p) have dimensions £(H (p)—1)+d_ and d_ respectively,

where H(p) is the class number of Q(v/—p) as in the introduction.

Proof. By Proposition 2.1, the following map is surjective

& - Hi(p) = S1°(p)-



12 W. DUKE AND Y. LI

Since &; commutes with the action of U, and W, and conjugates their coefficients, it commutes
with the operator pr¢ as follows

(2.9) & (pre(f)) = pr=<(&u(f))-

The operator pr—¢ is the identity when restricted to S “(p). So the preimage of S;(p) under
& lies in H{(p) and the map & : H{(p) — S; “(p) is surjective for e = +1.

Now if f € Si(p) is a dihedral newform, then it is a linear combination of theta series, whose
n'™ coefficient is zero if x,(n) = —1. So f € S{ (p) by definition. If f(z) = > -, c(f,n)g"

is an octahedral or icosahedral newform, then f(2) and f(2) := f(z) = >, -, c(f,n)q" are
linearly independent newforms. When ¢ # p is a prime number, we have the relationship

(2.10) c(f,€) = xp(O)c(f, £).

This is a consequence of the formula of the adjoint of the /" Hecke operator with respect to
the Petersson inner product [38, p.21]. Together with the recursive relation

c(f, O)c(f,n) = c(f,nl) + x,(O)c(f,n/l),

a simple induction shows that whenever p t n,

c(f,n) = xp(n)e(f,n).

So f+ f € S{(p) and f — f € S;(p). Since the number of octahedral and icosahedral
newforms is always even and set to be 2d_, we obtain the formulae for the dimensions. [

Remark: The spaces S§(p) should be compared to the spaces M, and M_ in (9.1.2) in
[40]. If all octahedral and icosahedral newforms f(z) € Si(p) satisfy

(2.11) (fLW)(2) = —if(2),

then M, is the span of the weight one Eisenstein series and S;"(p) and M_ = S; (p).
Besides compatibility with &;, the decomposition also behaves nicely with respect to the
regularized inner product. As a consequence of Lemma 2.2, we have the following proposition.

Proposition 2.5. Let f(z) € My“(p), g(z) € S¢(p) and §(z) € M;¢ (p) with shadow g(z)
and Fourier expansion ) ., ct(n)q". If e =€, then

(2.12) (f Dhreg = Y S(n)e(f, —n)e™ (n).

neL

Here §(n) is 2 if pjn and 1 otherwise. If € # €, then (f, g)reg = 0.

Proof. Let §(z) € Hy(p) be the harmonic Maass form associated to §(z). Then both
assertions are immediate consequences of Lemma 2.2 and

(f1W)(2) = —ie(fLUp)(2), (9hW5)(2) = —i€'(911Up) (2).

Since the adjoint of W), (resp. U,) is W, = =W, (resp. W,U,W, ') with respect to the
regularized inner product, it is easy to check that pre is self-adjoint, which also proves the
second claim. 0

When ¢(z) above is zero, i.e. g(z) is modular, Eq. (2.12) reduces to an orthogonal rela-
tionship between Fourier coefficients of weakly holomorphic modular forms. In particular, we
can take g(z) to be a cusp form and obtain relations satisfied by {c(f, —n) : n > 1}. These
relations turn out to characterize the space M;*(p), which gives a nice characterization of
the space M{(p). The following proposition is a slight generalization of Theorem 6 in [8, §3].
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Proposition 2.6. Let g(z) € S{(p). Then there ezists a mock-modular form g(z) € M “(p)
with shadow g(z) and prescribed principal part Y~ o c¢™(n)g"™ if and only if

(2.13) > " 6(n)e(h, —n)ct(n) = (h, @) reg

n<0

for every cusp form h(z) € S<(p).

Proof. When ¢ is modular, this follows from Theorem 6 in [8, §3]. When §(z) is mock-
modular, the necessity part follows from Proposition 2.5. Since h(z) is a cusp form, the
summation in (2.12) only extends over n < 0. Let ) _c™(g1,n)¢" be the principal part
of g1(z) € M;“(p), whose shadow is ¢g(z). This exists by Lemma 2.4. Then the difference
Y oneolcT(n)—ct(g1,n))q" satisfies Eq. (2.13) with the right hand side being 0. So there exists
a weakly holomorphic form d(z) € My~ “(p) with the prescribed principal part 37 <olct(n) —
c¢™(g1,n))q™. Thus, the sum §;(2) +d(z) € M;“(p) is the desired form with shadow g(z) and
principal part )" ¢ (n)g". O

2.4. Echelon bases of modular forms. In this section, we will gather some facts about
bases of the spaces of the weight 0 and weight 2 modular forms with level. These will be
useful during the proof of Theorem 6.1.

Let N be 1 or an odd prime and Mj(N), resp. M}(N), be the space of weakly holomorphic
weight 2 modular forms, resp. modular functions, of level N, and trivial nebentypus. Denote
its subspaces of cusp forms and holomorphic modular forms by Ss(N), My(N) respectively.
Let My™"(N) be the subspace of M}(N) containing weakly holomorphic modular functions
f(2) satisfying

(2.14) (fIWn)(2) = =N (f|Un)(2),

where Wy is the Fricke involution and Uy acts on f via

(FIUNG) =5 f ()
pn=0
Note that M"*¥(1) = {0}. Define the trace down operator TrY¥ by
1
(2.15) s Sl DENNCARI B}

v€T0(N)\SL2(Z)

Using the trace down operator, one can decompose M} (N) into the direct sum of My"™(N)
and modular functions of level 1.

Lemma 2.7. Let f(2) be a modular function of level N, where N is either an odd prime or
1. Then it can be written uniquely as

f(z) = fi(Nz) + fa(z),
where fi = TN (f | Wy) € MY(1) and fo(z) € My™"(N).
Proof. When N = 1, the space is My""(N) = {0} and fy(z) = f(z). When N is an odd

prime, some matrix calculations give us
NfIUNWy = =f+ (N + 1Ty (f | Wa)(Nz).
Using this, one can verify that fo(z) € Mg""(N). O
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For the rest of the section, NV is an odd prime. The space Mé’neW(N ) has a nice g-echelon
basis, whose principal parts are closely related to the space Sa(N).

Definition 2.8. A set of numbers {\,, € C:m > 1} is called a relation for Sy(N) if

(i) A\, is zero for all but finitely many m.
(ii) For any cusp form h(z) =3 -, c(h,m)q™ € Sa(N), the numbers {\,} satisfy

(2.16) > n(m)Ame(h,m) = 0.

m>1

where dy(m) = N 4+ 1 if N|m and 1 otherwise.

A relation {A;,}m>1 is called integral if A, € Z for all m > 1. Denote Ay the set of all
relations for Sy ().

For any f(z) € My™"(N), one knows that the principal part coefficients, {c(f, —m) :
m > 1}, is a relation for Sy(N) from works by Petersson. By considering the Fourier expan-
sion of vector-valued Poincaré series, (see [7, 29, 35]), one can also show that the converse is
true. So given A = {\,,} € Ay, the expression

> g™

m>1

is necessarily the principal part of the Fourier expansion at infinity of a unique function
ir(z) € M(!)’new(N ). Alternatively, this statement follows essentially from an application of
Serre duality [5, §3].

Suppose A € Ay is integral. Then the n'® Fourier coefficient of fy(z) is integral when n # 0
since f) is a rational function of j(z) and j(Nz). Applying Eq. (2.16), with the sum over all
m > 0, to f, and the Eisenstein series

(217)  N-Ey(Nz)— By(z) = (N—1)— 243 (Nal (%) - Jl(m)> g™ € Ma(N)

then shows that (N%—1) times the constant term in the Fourier expansion of f is an integer.
Here, E5(z) is the non-holomorphic Eisenstein series of weight 2, level 1 defined by

A

(2.18) Eg(z):E()———1—24Zal n)g" — —

v
n>1 y

Let gy be the genus of To(N). From [1], we know that for all h(z) € So(N), ords(h(z)) <
dim(S2(N)) = gy < (N +1)/12. So the space Sa(NN) has a g-echelon basis {h;,1 < j < gy}
with

hi(z) = ¢ + O(g™ ™).
Using matrix computations similar to that in the proof of Lemma 2.7, one can show that
(2.19) hloUn = —h[;Wy

for all h(z) € My(N), implying that Uy o Uy is the identity operator on My(N). Note
that since N is prime, dim(M>(N)) = gy + 1 with the extra contribution coming from the
Eisenstein series in Eq. (2.17). Combining these facts together gives us the following lemma
about M (N).
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Lemma 2.9. The space Mé’new(N) is spanned by two disjoint sets Syi1,Sn2 of modular
functions defined by

Snvi ={fm(z)=q¢ ™+ Z cm(n)g" :m > 1+ gy, N>t m},
(2.20) n=—gn
Sva = {hm(z) = ¢ V" = Ftbg™™ 4+ 0(g) :m > 1}.

For these m > gn + 1, ¢u(n) € Z when n # 0 and (N? — 1)¢,,(0) € Z.
There is a similar duality statement dictating the existence of forms in M;(N).

Lemma 2.10. For every n > 0, there exists P, n(2) = >, 7 ¢(Pon,m)q™ € My(N) such
that

(i) At the cusp infinity, P, n(2) = q¢ ™+ O(q).
(46) (Pan|2Wn)(2) = =(Pan|2Un)(2).
Furthermore, if f(z) = >,z c(f,m)q" € M (N), then

> n(m)e(fm)e(Py, —m) = 0.

mEZ

Remark. Notice that (N — 1)Py n(z) € My(N) is the Eisenstein series defined by Eq. (2.17).

3. COEFFICIENTS OF THE PRINCIPAL PART OF §y(2)

Let g4(2) € S{ (p) be a dihedral newform associated to a class group character ¢. Lemma
2.4 tells us that there exists a mock-modular form §,(z) € Mj (p) with g,(2) as shadow.
However, g, (%) is only well-defined up to the addition of a form in M}~ (p). In this section,
we will show that there exists a g, (z) € M (p) such that its principal part coefficients satisty
nice properties. These principal part coefficients can be related to L-functions via Kronecker’s
limit formula. In a sense, this section gives a model of how to study the other coefficients, in
which case there will no longer be L-functions to work with.

Let F, H be the same number fields as in §1. For a class A € CI(F), a CM point 74 =
ra+iya € HNE is associated to A if the Op-fractional ideal Z+Z7 4 is in the class A € CI(F).
Let A € CI(F') denote the principal class. For any A, B € CI(F'), define uyp,us € H by

6
YUA(TA

(3.1) UpB = —éAET | | UAT,
ysA(75) ZeCI(F)

where A(7) = n?*(7) is the unique normalized cusp form of weight twelve, level one. Although
T4 is not unique, its equivalence class under the action of PSLy(Z) is well-defined. Since
y®n?*(7) is invariant under the action of PSLy(Z), the quantity u4 s is independent of the
choices of 74 and 75. Let o¢ € Gal(H/F) be the Galois automorphism associated to the
class C € CI(F) via Artin’s isomorphism. Then by the theory of complex multiplication [42,
Chap. II §2], us s and uy are units in H and satisfy

(3.2) oc(uap) =vuac-1pc-1, 0c(ua)=uasc-1.

For an integer M, let Ej(z,s) be the non-holomorphic Eisenstein series of weight zero,

level M defined by
(3.3) Eu(z,s)= Y, (Im(y2))’,

7€loe\Lo(M)
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where Too = {(§ *) € SLy(Z)}. It has a simple pole at s = 1 and the well-known expansion
En(z5) =y" + ou(s)y' " +0(e™)
as y — oo, where z = x + 1y and
@1(8) _ r (%) r (8 — %) C(QS _ 1)
['(s) ¢(2s)
)

om(s) = Mlgs](\%s ! ¢1(s) when M is prime.

For convenience, we write F(z,s) for F(z,s). Kronecker’s first limit formula states that
7T
(3.4) 20(2)E(2,8) = —— + 27 (7 — log(2) — log(v/yn(2)[*)) + O(s = 1),

where v is the Euler constant. The factor of 2 comes from +I € T's,. Using (3.4) and
Rankin-Selberg unfolding trick, we can relate the inner product between dihedral newforms
to logarithm of w4 4, as follows.

Proposition 3.1. Let 1,4 be characters of CI(F), with 1 non-trivial. If ' =) or 1), then

35 {guo) =2 S W) log ) = 15 D W A)loglua] = Hp)lye

AECI(F) AECI (F)
where Ay € CI(F') is the principal class and
(3.6) I == > ¢*(A)log|y/yan(ta)’|-
AECI(F)

Otherwise, (gy, gy) = 0.

Proof. Since p is prime, the Eisenstein series E,(z, s) has a simple pole at s = 1 with residue

ﬁ, which is independent of z. So we have the relationship
3 dxdy
s nae) =Resy [ gD sl
w(p+1) 07 o y?

Now, we can use the Rankin-Selberg method to unfold the right hand side and obtain

drdy  T'(s) Ty (n)ry (1)
J s s = S

ns
Yy n>1

Let py : Gal(Q/Q) — GLy(C) be the representation induced from . Then it is also the
one attached to g,(z) via Deligne-Serre’s theorem. Up to Euler factors at p, the right hand
side is L(s, py @ pyr), the L-function of the tensor product of the representations py, and py .
From the character table of the dihedral group Dspy(y), we see that

Py @ Py = Py D Py

So when ¢’ # 1 or ¢, the L-function L(s, py, ® pyr) is holomorphic at s = 1 and (gy, gy) = 0.
Otherwise, we have

$ ry(n)ry(n) _ C(s)L(s, xp) L(s, py2)
2w @)1+p)
Putting these together, we obtain
p
(3.7) (9v, 95) = 55 L(1, Xp) L(L, py2).

2
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From the theory of quadratic forms (see Eq. (5) and (6) in [42, Chap. 1 §1]) , we have
VPL(s.py2) = ((25) Y UP(A)B(ra.s).
AECI(F)
Since ) is non-trivial and H(p) is odd, 1? is non-trivial and (3.4) implies that
2m

L(l,pw):—% > W (A)log(vyaln(ra)).
A€eCI(F)

Along with the class number formula for p > 3
_ 2nH(p) _7H(p)

L 17X - = )
( p) wp\/ﬁ \/ﬁ
we arrive at
3.8 __Hb) 2(A) log |45 A
(3.8) (g0 96) = ——57 D W (A)loglyiAlra)l
AECI(F)
Since 9)? is non-trivial, this implies Eq. (3.5). O

Remarks.

i) The calculations above also follow from [44, IT §6].

ii) By the same procedure, one can analyze the inner product between any pairs of weight
one newforms. In particular, if g(z),h(z) € Si(p) arise from different types of Galois
representations, then (g, h) = 0.

iii) This proposition is really a proven case of Stark’s conjecture in the abelian, rank one
case for the abelian extension H/F' (see Conjecture 1.1 in [16]).

Next we prove the existence of a preimage whose principal part coefficients are special.

Proposition 3.2. Let ¢ be a non-trivial character of Cl(F'). Then there exists G,(z) =
> nsne T (M) € My (p) with shadow gy(z) such that

(i) When x,(n) =1 orn < —BHL the coefficient r,,(n) equals to zero.

(i) Forn <0, the coefficients 7 (n) are of the form

_ ]' 2
ry(n) = 12H (p)r, A%%F)w (A)log Ju(n, A),

where r, € Z is defined by Eq. (3.9) and depends only on p. The units u(n, A) € Of

depends only on n and A. When n < 0, u(n,A) is an H(p)"™ power in O}.
(11i) Let oc € Gal(H/F) be the element associated to the class C € CI(F) via Artin’s isomor-
phism. When n <0, it acts on the units u(n, A) by

oc(u(n, A)) = u(n, AC™1).
Remark. In practice, one could choose u(n, A) and 1/k, € Z such that 1/k, | 12H(p) (see
the example p = 23 in §1).

Proof. From Lemma 2.4, we know that the dimension of S{"(p), denoted by d., is $(H(p) —

1)+d_. Let {g1, 92, .-, 9a, } be abasis of ST (p). Suppose we have chosen nq, ns,...,ng, >0
such that x,(n;) # —1 and the matrix

+

P = [c(g;, ) ]1<) k<d,
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is invertible. Then for any 1, there exists g,(z) € My (p) with shadow g¢,(z) and principal
part coefficients rg(—n) = 0 for all positive integers n not in the set {ni,ns,...,nq } by
Proposition 2.6. Furthermore, these r:g(—n) can be uniquely determined from solving a
dy x di system of equations. We will show that such g,(z) can be made to satisfy the
proposition.

First, we will show that it is possible to choose such {n; : 1 < k < d,} satisfying n; <
(p+1)/24. Let {h1,hs, ..., ha,} to be a g-echelon basis of ST (p). Then these ny’s can be
chosen to be bounded by the supremum of the set

{ordooh(2) : h(2) € S{(p)}.

Now, the square of a cusp form in S;(p) is in Sa(p), the space of weight 2 cusp form of trivial
nebentypus on I'g(p). This gives rise to a holomorphic differential form on the modular curve
Xo(p). Atkin showed (see [1, 31, 36]) that oo is not a Weierstrass point of the modular
curve Xo(p), i.e. ordsoh(2) is no more than the genus of Xy(p). Using the Riemann-Hurwitz
formula (see [41]), we know that the genus of Xy(p) is bounded by (p + 1)/12. So the ny’s
can be chosen to be bounded by (p + 1)/24. Note that with these n;’s, the matrix P above
will be non-singular with any basis {g;} of S; (p).

In particular, let {g;(z) : 1 <j < (H(p) —1)/2} be the dihedral newforms, and label the
class group characters as {¢; : 1 < j < H(p) — 1} such that gy, (z) = g;(2) and ¥; = ¥y ),
for 1 < j < (H(p) —1)/2. When (H(p)+1)/2 <j <d;, let g;(z) be linear combina-
tions of non-dihedral newforms such that g;(z) has integral coefficients and the set {g;(z) :
(H(p)+1)/2 < j <d,} islinearly independent. Then for each non-trivial ¢, Proposition 2.5
implies that the values {r}(—ny) : 1 <k < d,} satisfy the matrix equation

P [5(nk)r1—2(—nk)]1§k§d+ =R,

where R is the d; x 1 matrix ((g;, gy)) . By Proposition 3.1, the matrix R equals to

1<j<d+
0
0
R=| -H® s~ 42(A)log [ua |
0
0

Label the non-principal classes as A; for 1 < i < H(p)—1such that A; ' = App)—i- Let M’
be the matrix (Aél Id?i, >, where M; is a non-singular matrix of size 3 (H (p) —1) x 5(H(p) —1)
defined by

(105 (Ad) + ¥ (An)-i) — 2)/HP)h<ij<m-1),2
and Idy is the d_ x d_ identity matrix. The product M’P is the matrix

(T-Al (n1> —TAo (nl)) T (TAI (nd+) — T4 (nd+))
M/P — (T.A(H(p)fl)/g (n1> - T-AO (nl)) e (TA(H(p),l)/2 (nd+) - TAO (nd+))
c(g(H(p)+1)/2: M) - (G (p)+1)/2: Ny ) ’

C(gd+7 nl) T c(gd+a nd+)
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which has integer coefficients and is also non-singular. The product M’R is the d; x 1 matrix

15 24 9% (A) log [ua(Ar)]

MR — 13 224 ¥ (A) log [ua(Agrp)-1)2)]
O )

where
ua(B) = UayBAY 4 5" 4 € Oy
Also by (3.2), we have
oc(ua(B)) = uac-1(B)
for any class A, B,C € CI(F).
Since M'P is a non-singular matrix with integer entries, one can write its inverse as
é(ahj)lgk’jgcu with Qg € Z, and

(3.9) K, = —det(M'P) € Z.
Since ny is bounded by (p + 1)/24 as chosen earlier, p{ nj and d(n) =1 forall 1 <k < d,.

Thus, r;;(—nx) can be written as

(Hp)-1)/2 Hw
+ 2 Qg j
ry (=) = 12H Z¢ ) log 1 ua(A;)*
From this, we can choose
(Hp)=1)/2 Hw
u(—ng, A) == H ua(A;)*I
=1

Then 7 (—ny) satisfies conditions (ii) and (iii) in the proposition.
Finally, applying Propositions 2.5 and 3.1 to the Eisenstein series E,(z) € M; (p) in Eq.
(1.4) and the cusp form g,(z) gives us

dy
H(p)r(0) + > Ry(ni)r (—ni) = (Ey, gy) = 0.
k=1
So we can write 7, (0) = 12H( = log |u(0, A)| with
dy
u(0, A) = [ u(ng, A~ € O,
k=1
which satisfies condition (iii) as well. O

As a consequence of the analysis in Proposition 3.2, we have the following corollary.

Corollary 3.3. Let g(z) € S (p) be a cusp form with integral Fourier coefficients at infinity.
Then for any character ¢ : CI(F) — C*, one can write

1
(g.90) = 55— D loglug(A),

P AcCIF)
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where the unit uy(A) € O is independent of 1 and satisfies oc(ugy(A)) = uy(AC™) for all
C € CI(F).

Proof. If 1 is trivial, then g, is the Eisenstein series and its inner product with g(z) is
0. Otherwise, write g(z) = )Y o, c(n)¢” with ¢(n) € Z. In the notation of the proof of
Proposition 3.2, we can write

(g,90) = (c(nl) c(ng) ... c(nd+)) -(M'P)"Y(M'R).

From the shape of M'R in Proposition 3.2 and det(M'P) = —&,, we can deduce the corollary.
O

4. VALUES OF BORCHERDS LIFT AND PROOF OF THEOREM 1.2

In this section we will prove Theorem 1.2. It will be deduced as a corollary of a more general
identity for special values of certain Borcherds lifts of weight 1/2 weakly holomorphic forms
from an application of Rankin’s method to forms with poles. We remark that the method
also yields another proof of Eq. (1.12), whose analytic proof in [24] uses Hecke-Eisenstein
series of weight one. The method can also be generalized to higher levels in order to obtain
some refinements of certain results of [26] on height pairings of Heegner divisors.

4.1. Binary Quadratic Forms, Borcherds Lift and Theorem 4.1. Let —d < 0 be a
discriminant, not necessarily fundamental, and Q_, the set of positive definite integral binary
quadratic forms

q(z,y) = ax® + bry + cy?
with —d = b — 4ac, where a,b,c € Z. For any q € Q_4, the associated CM point is defined

to be
Ty = b+—\/_d c H7
2a

where # is the upper half plane. Clearly ¢(7,,1) = 0. The modular group I' = PSLy(Z) acts
on g € Q_4 by a linear change of variables, which induces linear fractional transformation on
7, Let w, be the number of stabilizers of ¢ and H(d) the number of equivalence classes of
quadratic forms, which is the Hurwitz class number. Those classes represented by primitive
forms (those with ged(a, b, c) = 1) comprise a finite abelian group under composition, which
is called the class group. When —d is fundamental, this class group is canonically isomorphic
to the ideal class group of Q(v/—d) by sending [g] to the class A € Cl(Q(v/—d)) containing
the fractional ideal Z + Z7,.

Let M| /o be the space of weakly holomorphic modular forms of weight 1/2 and level 4
satisfying Kohnen’s plus space condition. It has a canonical basis {f;}s>0 with d = 0,3
(mod 4) and Fourier expansions

faz) = ¢4+ el fan)g"
n>1
Let f(z) € M, /o be a weakly holomorphic form with integral Fourier coefficients ¢(f,n). In

3], Borcherds constructed an infinite product W;(z) using ¢(f,n) as exponents, and showed
that it is a modular form of weight ¢(f,0) and some character. The divisors of Uy (z) are
supported on cusps and imaginary quadratic irrationals. In particular, if 7 is a quadratic
irrational of discriminant —D < 0, then its multiplicity in Wy(z) is

ord, (W) =Y c(f, —Dk?).

k>0
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For example, when f(z) = fq(2) with d > 0, the Borcherds product ¥, (z) equals to

(4.1) [T GG i)

qgeQ_4/T

Note that when —d is fundamental, w,, the number of roots of unity in Q(1/—d), is equal to
2w, for all ¢ € Q_,.
Given f(z) € M, define a modular form f*(2) € M;(p) by

(4.2) FH0(2) = Ua(f(p2)8(2)),

where Uy is the standard U-operator. It is easy to verify that fif¢(z) € M " (p) from its
Fourier expansion.

Let ¢ be a non-trivial character of CI(F) and g4(z) € Si(p) the associated weight one
newform. The main theorem of this section relates the regularized inner product {f%% g,) e
to the value of the Borcherds lift W(z).

Theorem 4.1. Let f(z) € Mi/z be a weakly holomorphic modular form with integral Fourier

coefficients c(f,n), and V¢(z) its Borcherds lift. Suppose 1 is a non-trivial character of
CI(F'). Then we have

(4.3) (M, i) reg = —21im > w ) (log [T 4(m4 + €)” + Cy log[yal) ,
AECI

where Cp = 3", c(f, —pk?) is the constant term of f"""?(2), and 74 is a CM point associated
to the class A.

Remark. It will clear from the proof that the limit in Eq. (4.3) exists and is independent of
the choice of 74.

Let

er )q" € M7 (p)

neL

be a mock-modular form with shadow g,(z). By Proposition 2.5, the regularized inner
product (fi¢ g,) .. can be expressed in terms of rqj(n) as

(4.4) P g = D > 7 (pm k2>c(f,m)6(k:).

meZ keZ

By setting f = f; for —d a fundamental discriminant and choosing gy (%) as in Proposition
3.2, one can see that Theorem 1.2 is a direct consequence of Theorem 4.1 and Eq. (4.4).

The plan of the proof goes as follows. First, we will recall from [24] the construction of
the automorphic Green’s function as the limit of an infinite sum and express the Borcherds
lift in terms of such sum. Then we will prove an identity between (f¢ g,) ., and the limit
of another similar infinite sum through Eq. (4.4). Finally, an elementary counting argument
will connect these two infinite sums and finish the proof of Theorem 4.1, from which Theorem
1.2 is deduced. In some sense, the proof is in the same spirit as Zagier’s proof of Borcherds’
theorem in [49].
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4.2. Automorphic Green’s Function. Here, we will follow the construction in [24, §5].
For two distinct points z; = x; +iy; € H, the invariant hyperbolic distance d(z1, z2) between
them is defined by
(21— @2)* + y7 + 3

2Y1Y2 .

Note d(z1, z2) = d(yz1,7v22) for all v € PSLy(R). The Legendre function of the second kind
(Q)s—1(t) is defined by

(4.5) coshd(zy, z9) =

Qs1(t) = / (t +Vt? — 1coshu) *du, Re(s) > 1,t> 1,
0

Qo(t) = %log (1 + %) )

For two distinct points z1, 2o € PSLo(Z)\H, the following convergent series defines the auto-
morphic Green’s function

(4.6)

(47) Gs(zl>z2) = Z 98(217’722)7 Re(s) > 1a
YEPSL2(2)

where

(4.8) gs(z1, 22) = —2Qs_1(cosh d(z1, z2)).

Recall that E(7,s) is defined in (3.3) and ;(s) is the coefficient of y'~* in the Fourier
expansion of F(7,s). Proposition 5.1 in [24] tells us that for distinct z, 20 € PSLo(Z)\H,
the values of the j-function are related to the values of the automorphic Green’s function by

(4.9) log |7(z1) — j(2)]* = P_r}r%(GS(zl, 29) + 4T E (21, 8) + AT E (22, s) — 4mpq(s)) — 24.

Along with Eq. (4.7), this gives us the following proposition.

Proposition 4.2. Let d,D > 0 be congruent to 0 or 3 modulo 4 and QQ € Q_p. If g # 7,
for any q € Q_q4, then
(4.10)

k
log |\I/fd(TQ)’2 = 1111% Z pQ(kI, d)(—Z)Qs,l (—,—) + H(d)47TE(TQ, 8) + R(d, S) s
. k>vdD aD

where R(d, s) = co ,r(ATE(Ty, s) — Ampi(s) — 24) and po(k,d) is the counting function
defined by

(4.11) po(k,d) = #{q € Q_4| coshd(r,, 7q) = \/%}
and 1s independent of the choice of the representative ().
Remark. A similar equation holds when 7o = 7, for some ¢ € Q_4 (see Eq. (4.25)).
Proof. For 7¢, 1, as above, it is easy to verify that
VdD coshd(rg, 1) € Z.

Furthermore, coshd(rg,7,) = 1 precisely when 7o = 7,. Otherwise, coshd(rg, 7,) > 1.
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Now let 21 = 79,20 = 7, in Eq. (4.9) and sum over ¢ € Q_4/I". With the following

observation
1
Z w_ (10, Ty) Z Z 2)Qs—1(coshd(rg,v7,))
q€Q_q/v 1 q€Q_4/T 7ET q
= Z (—2)Qs—1(coshd(mg, 7))
q€Q—d
= S polb d)(=2)Qu (%)
k>+vdD
we have Eq. (4.10). O

4.3. Infinite Sum Expression of the Regularized Inner Product. For convenience, we
denote

(4.12) a(d, ) = (4", G )ree-

The following lemma relates a(d, v) with the limit of an infinite sum involving the r,(n)’s.

Lemma 4.3. Let d > 1 be an integer congruent to 0 or 3 modulo 4. Then we have

413)  a(d,p)— LD oy S 6(k)ry <#+k2> 20, 1 (\/%)

The idea of the proof is to define a non-holomorphic function ®*(z) of weight 3/2 and
level 4, which satisfies Kohnen’s plus space condition and a mildly decaying condition at the
cusps. Then its holomorphic projection vanishes since there is no holomorphic cusp form
of weight 3/2, level 4 satisfying the plus space condition. This, along with Eq. (4.4), gives
us the desired identity. The function ®*(2) is analogous to Gp(z) in [32], where the inner
product between Gp(z) and a weight k + 1/2, level 4 eigenform g¢(z) gives the special value
of the L-function associated to the Shimura lift of g(z).

Proof. Let gy(2) € My (p) be a mock-modular form with shadow g, (z) and

ords.gy(2) > —14.

Forms satisfying these conditions exist by Proposition 3.2. The restriction on the order of
Gy (2) at infinity simplifies the proof and is not important. But the requirement that gy(z)
be in the minus space is crucial for the validity of the statement.

Denote g,(z) € Hy (p) the associated harmonic Maass form and define the function ®(z)
by

(2) = Ty ((9|Uy) (42)6(p2))

: (G | Up)(42)0(p2) + (94(42)0(2)) | Up) -

p pt1

Here Trjp is the trace down operator from level 4p to level 4 of weight 3/2, similarly defined

as in Eq. (2.15). The function ®(z) transforms like a weight 3/2 modular form of level 4 and

should be compared to Gp(z) in [32], which was defined by applying the trace down operator

Tri” to the product of the holomorphic weight &k Eisenstein series and 6(|D|z). If one replaces

the weight k& holomorphic Eisenstein series by the weight one real-analytic Eisenstein series

with an s variable, and consider the derivative with respect to s, then it is something quite
similar to this ®(z).
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Now, we can calculate the Fourier expansion of ®(z) as

B (2) = ]ﬁ (b(n, ) + a(m) "
= = D Ry (m)s (M. ).
z ()

Note that we have used the fact
ry(m) = ry(m)
for all m > 1 when expressing b(n,y). Since p = 3 (mod 4), ®(z) satisfies Kohnen’s plus

space condition and n = 0 or 3 (mod 4). Also, the right hand side of Eq. (4.4) equals to a(d)
for f(2) = fa(z) as ordsgy(z) > —p/4, So we have

(4.14) a(d) = a(d, ).

Let F(z) be the weight 3/2 Eisenstein series studied in [30], which has the following Fourier

expansion
o

= Z H(n)q" +y ™'/ Z 53/2( 2y
n=0 m=—o0
and satisfies Kohnen’s plus space condition. Recall that f; is defined in §1. For all n € Z,
notice that b(n,y)q" is exponentially decaying as y — co. Also, a(n) vanishes for all n < 0.
Thus, the function

Q*(2) := D(2) —

is O(y~1/?) as y — 0o. The same decaying property holds at the other two cusps of I'y(4) as
well, since ®*(z) satisfies Kohnen’s plus space condition. So we can consider the holomorphic
projection of ®*(z) to the Kohnen plus space S;F/Q( 0(4)). Define the weight 3/2 Poincaré
series by

Pulsrs)i= 30 i 2) S m(y2) 2,
V€T o \T'o(4)
where for v € I'y(4)
) 002)

This series converges absolutely for Re(s) > 1 and can be analytically continued to Re(s) > 0.
As s — 0, the inner product vVd(®*(z), P4(2,s)) is the d™ Fourier coefficient of a cusp form
in 53/2( 0(4)), since ®*(z) is already in the plus space. Given S;F/Q( 0(4)) = {0}, we know
the limit is zero and obtain the following equation after applying Rankin-Selberg unfolding,

I (—1'58) a(0)H (d) > Ard dy
i - 2 7 7 —Ardy, 1/24+s/279 | _
(4.15) ilH(l) (<4 Lk (a(d) H(0) ) —|—/O b(d,y)e Y ) ) 0.
After some manipulations, we have

dy F(1+s>
—47d 1/2+s/2
/ Bi(d, py)e= "yt 2/ » —(47rd)1/2+s/298 (1),
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where the function g,(u) is defined by

o du
(4.16) o= [ T s
1 (pu+1)72
After substituting u = = — 1, we arrive at the following expression
* d i —nd + k2 k2
(4.17) —/ b(d, y)e’“dyyl/”sﬂ—y 2 2 Z d(k <L> 0s <—1 + —)
0 Yy (4rd)e 4 pd
k>+/pd

Here, we used the fact
/81 (da ay) = Bl (dOé, y)

for all o, y,d € Ryg. Since r4(m) = 0 whenever m < 0, the sum changed from k € Z to
k > /pd and produced a factor of 2. Now substituting (4.14) and (4.17) into (4.15) gives us

a(0,¢)H(d) . —pd + k? 2
e U I G e T )

With the following comparisons (see [24, §7] for similar arguments).

0o(p) = 2Qo(v/ i+ 1),
Qs i 1) = s () = O )

we could substitute g4(—1 + ’;Z) with 2Qs_ 1(\/17) in the limit and obtain Eq. (4.13). O

4.4. Counting CM Points with Distinct Discriminants. In preparation for the proof
of Theorem 4.1, we will count the number of CM points on a hyperbolic circle in terms of the
representation numbers of positive definite binary quadratic forms. Such a counting argument
is needed to construct a Green’s function at special points. This construction follows the ideas
of [24], but in the counting argument given there one also sums over all classes of a given
discriminant. Even when one discriminant is prime, which we are assuming, their proof
involves quite an intricate application of algebraic number theory. Surprisingly, the refined
version we need for a fixed class has a completely elementary proof using the classical theory
of composition of binary quadratic forms. It has the further advantage that it applies without
extra effort when the other discriminant is not fundamental. Although we will not give details
here, the argument adapts to give a corresponding refinement of the level N case in [25].

First, we will recall some facts about positive definite binary quadratic forms. Good
references for this theory include the books by Buell [2] and Cox [15]. Let —D < 0 be a
discriminant, Q € Q_p a primitive binary quadratic form and Q? denote a representative of
the square class of (). Associated to () is the counting function

ro(k) = 3#{(z,y) € Z*| Q(x,y) = k},

which is finite and can be non-zero only for non-negative integers k. Clearly rq(k) is a class
invariant. When —D < —4 is fundamental and A € Cl(Q(v/—D)) is the class associated to
(@], the counting function rg(k) is the same as 7 4(k), the number of integral ideals in the

class A having norm equals to k. The goal now is to relate rg2 to the counting function pg
defined in (4.11).
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Proposition 4.4. Let ) be a positive definite binary quadratic form of discriminant —D
where D = p =3 (mod 4) is a prime. Suppose that —d < 0 is a discriminant and that k > 0.
Then

(4.18) pa(k, d) = 5(k) rg=(552).

4

Our proof of this result is an entirely elementary exercise in the classical theory of binary
quadratic forms. It relies on a remarkable algebraic identity given in (4.23) below for a
particular quadratic form in the square class, whose existence can be coaxed out of the work
of Dirichlet [18].

Lemma 4.5. Every class of primitive positive definite binary quadratic forms of discriminant
—D contains a representative of the form

(4.19) Q(z,y) = Ax* + Bry + ACy?

with —D = B? —4A%C, A > 0 and gcd(A, B) = 1. Furthermore, the class of the square of Q
15 represented by the form

(4.20) Q*(z,y) = A%2* + Bay + Oy

Proof. It is a well-known result of Gauss (][22, §228], see also [2, Prop 4.2 p.50]) that a
primitive form of discriminant — D properly represents a positive integer A prime to —D and
is thus, upon an appropriate change of variables, equivalent to a form of the shape (A, b, c)
with b? — 4Ac = —D. In particular we have that ged(A,b) = 1.

Next, by means of a simple translation transformation x — = + ty,y — y we will arrange
that (A4,b,¢) ~ (A, B, AC) as desired. This transformation leaves A alone and changes b to
B = b+ 2At. We now choose t to force

B? = (b+2At)? = — (mod 4A?).
Since ¢ = bZLAD this is equivalent to solving for ¢ the congruence
tb=c (mod A),

which is possible since ged(b, A) = 1.
The fact that (A% B, C) represents the square class of (A4, B, AC) is a consequence of a
classical result of Dirichlet on the convolution of “united” forms (see [2, p.57]). O

Turning now to the proof of Proposition 4.4, it is easily checked using (4.5) that for
q(z,y) = ax® + bry + cy* € Q_y
and Q € Q_p as in (4.19) above we have
(4.21) VdD coshd(r,,79) = 2Ac + 2ACa — Bb.
It follows that the statement of Theorem 4.4 is equivalent to the equality
(4.22)  #{(a,b,¢) € Z°| b¥* — 4ac = —d and 2Ac + 2ACa — Bb = k} = 6(k) oo (E=12),

4

when D = p. Note that a > 0 for any (a, b, c) in the set since k& > 0.
In order to prove this we will establish a direct bijection between the solutions to the
relevant equations. A calculation verifies the truth of the following key identity:

(4.23) 4Q*(z,y) = (2Ac +2ACa — Bb)? — (B* — 4A%C)(b* — 4ac)
where ? is as in (4.20) above and

xr=c—Ca, y= Ba— Ab.
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Thus every solution (a, b, ¢) from (4.22) gives rise to a solution (z,y) of

(4.24) @y =212

In fact, there is no need to assume that D = p for this part of the argument.

This assumption simplifies our treatment of the converse, to which we now turn. Suppose
we are given a solution (z,y) of (4.24). The result is trivial when d = pm? and k = pm for
some integer m, so assume otherwise. Then (—x, —y) is another distinct solution. Observe
that since p = 4A?C — B? we have

4A*Q*(z,y) = A*(4A%2* + 4By + 4Cy*) = (24%2 + By)?  (mod p).
Thus
(Ak — (2A%z + By)) (Ak + (24%z + By)) =Ak* — (24%z + By)?
=A%k* — 4A%Q%*(xz,y) =0 (mod p).

Since @ is assumed to be primitive we know that p 1 A.
If ptk we can find an integer a such that

An = +(2A4%z + By) + pa

in precisely one of the two cases of &. Suppose as we may that Ak = 2A%z + By + pa. Thus
we have

Ak —2A%z — By
5 :

a

Then since p = 4A%2C' — B? we have

k= 2A(z + Ca) + 24Ca — BB2 Y.

Since ged(A, B) = 1 we must have that A | (Ba — y) and we may define
b=(Ba—vy)/A, c=z+Ca.

Then we have 24c + 2ACa — Bb = k. A computation also shows that b? —4ac = —d. If p | k
then we get two distinct triples (a, b, ¢) for +(x,y) which both satisfy these. Obviously the
definition of (a,b,c) inverts the map we started with to get (z,y), at least for those pairs
that correspond to an (a, b, ¢). This finishes the proof of Proposition 4.4.

Remark. To give a level N version of Proposition 4.4, we can start with the more general
identity
4N Q*(x,y) = (2ANc+2ACNa — Bb)* — (B* — 4A*NC)(b* — 4Nac)
where Q*(z,y) = A2Na? + Bay + Cy? and
x =c—Ca, y= Ba— Ab.

4.5. Proof of Theorem 4.1. First, notice that both sides of Eq. (4.3) are additive with
respect to f(z). So it suffices to prove the theorem when f(z) = fq(z) foralld > 0 and d =0
or 3 modulo 4.

When d = 0, fi(z) = 0(2) is the Jacobi theta function, fit9(z) = 204, (2) is twice the

weight one theta series associated to the principal class Ay € CI(F). The Borcherds lift of
0(z) is n*(z) and Eq. (4.3) becomes

(2040, 90) = =4 Y P (A)log |y/yan*(ta)| = 4,

A€ECI(F)
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which is justified by Eq. (3.6), (3.8) and the fact that

<19A0791/1> = ]¥L Z <9w’79¢>'

(p) ¢/ :C1(F)—CX

When —d < 0 is a discriminant not of the form —pm? for any integer m, we know that
7o # 1o forall Q € Q_p,qg € Q_g4. In this case, Uy, = 0 and the limit in € on the right hand
side of Eq. (4.3) is not necessary. Now we can substitute D = p, 79 = 74 for A € CI(F) in
Eq. (4.10), apply Eq. (4.18) and sum over all A with a non-trivial character 2. This yields

> WA A)log Uy, ()l =lim | Y S(k)ry (k’tpd) (=200 s (\/%)+

AeCI(F) k>/pd
+ H(d)4m lim E V2 (A)(E(74,8) + R(d, s)).
s—1
AECI(F)

Adding twice the equation above to Eq. (4.13) cancels the infinite sum on the right hand side
and gives us

> VA gy ()l + ald ) — TS =
A€CI(F)
2H (d)4m }gl_rg Z Y} (A)(E(14,8) + R(d, s)).
A€CI(F)

The function R(d, s) is independent of A and will disappear from the right hand side. Then
the rest of the right hand side exactly cancels the term —“(Oﬁ—()gw) on the left hand side by
Kronecker’s limit formula (Eq. (3.4)) and we obtain Eq. (4.3).

When d = pm? for some positive integer m, neither side of Eq. (4.10) makes sense, since for
any () € Q_,, ¥y, (z) has a simple zero at z = 79 and pg(pm,d) =1 = %Cfd by Proposition
4.4. To accommodate this, we can slightly modify Eq. (4.10) to obtain
’2

lim(log| W 1, (1 + €)= po(pm, d)gi(1q + €, 70)) =

(4.25) . (

s—1

Z pQ(kv d)(_Q)stl (%) + H<d)47TE<TQ) + R(d> S))) )

k>pm+1

for any ) € Q_,,. Since g1(z + ¢, 2) = —log (1 + 46%2) and 1? is non-trivial, we have

(4.26) Z V(A )hmgl(TA+6 Ty) = —2 Z w2 ) log(ya)-

AECI(F) AeCI(F

Applying the same procedure to Eq. (4.25) as before gives us Eq. (4.3) in this case.

5. RANKIN’S METHOD AND VALUES OF GREEN’S FUNCTION I

In this section, we will prove Theorem 5.1, which is the integral weight analogue of Theorem
4.1. In this case, the weakly holomorphic form in Eq. (4.3) will be replaced with lifts of level
one modular functions, and the regularized inner product is related to the values of the
Borcherds lifts of these modular functions.

This result is more or less a twisted version of the Gross-Zagier formula at level one, where
there is no weight two cusp form or L-function. It prepares the way for §6, where we treat
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the level N case. Furthermore, the information provided by this theorem will be a stepping
stone to the proof of Theorem 1.1 in §7.

For m > 0, let j,,(2) = ¢~™ + O(q) be the unique modular function of level one with a
pole of order m at infinity, e.g. jo(z) = 1 and j;(2) = j(z) — 744. For each B € CI(F’), choose
an associated CM point 75 = x5 + iys € H and define ji5(2) e M (p) by

(5.1) T B (2) = Gm(p2) 95 (2)-

Let My(Z) be the space of 2 x 2 matrices with integer coefficients. For m > 1,(z1,22) €
(PSLy(Z)\H)?, define the function W,,(21, z3) by

(5.2) Un(n,2) =[] (=) - i)

Y€ESL2(Z)\M2(Z)
det(y)=m

It is the value of the modular polynomial ¢,,(X,Y) at X = j(z1),Y = j(z2), and also the
Borcherds lift of 7,,(z) to a function on the degenerated Hilbert modular surface. The main
result of this section is as follows.

Theorem 5.1. Let ¢ be a non-trivial character of CI(F) and m > 1. Then

< IOg |\IJ (TA/B/—I + €,TA/B/)‘ +>

(5:3) (" gy)reg = —2lim A
o iy 2 C(Jm 5 0) log [y a1

A’€CI(F)

where B' € CI(F) is the unique class such that B* = B and c(ji%8 0) = rg(pm) is the
constant term of jiftB(z).

Remark. When B = Ay is the principal class in CI(F'), we can write
2 0(2) = Jm(p2)Ua(8(p2)6(2))

= (jm(4z)0<z))“ft’9
llft@
- Z am_r2 (%
teZ
t2<4m

Suppose 74,(m) = 0, then m is not a perfect square and the right hand side of Eq. (5.3)
becomes

=3 @/) ) log | Wi (7.4, 7a)] -

AeCl(F

By Kronecker’s identity, this is the same as

=3 @/) A [ S log vy, L (7a)l

AeCI(F teZ
t2<4m

Thus, this case of Theorem 5.1 is a consequence of Theorem 4.1.

The procedure of the proof will be the same as that of Theorem 4.1 with all half-integral
weight objects replaced by their integral counterparts. The analogue of the counting argu-
ment, Proposition 4.4, is also given in [25, §I1.3].
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Proof of Theorem 5.1. Let gy,(z) € My (p) be a mock-modular form as in Proposition 3.2
with Fourier expansion
=2_rin)a

nez
and gy (z) the associated harmonic Maass form. For a class B € CI(F'), define

C5(gy, 2) = (p+ 1) Try(=i(gy[Wp) (2)05(2))
= (9ulUp)(2)08(2) + (9u(2)08(2))|Up.
This should be compared to ®,(z) in Proposition (1.2) of [25, §TV]. In that case, the derivative
of ®,(z) at s =1 when N =1 is more or less our ®(gy, 2) for 1 trivial.

Here, ®5(gy, #) transforms like a level one, weight two modular form and has the following
Fourier expansion at infinity

‘I)B(flm Z) = Z(bB(gwana y) + aB(gd)?n))qn?

nez
ba(Gy,m,Y) 25 Jry(k ( )rg(anrk),
keZ
8(Gy,n Z d(k Yre(pn — k).
keZ

p+1
24

all n < 0. It is easy to see from the definition above that jift8 M “(p). So we can apply
Proposition 2.5 to obtain

(5'4) <jahnftB>gw>reg = aB(gw>m>‘

In particular when m = 0, we have jo™8 = 155 — 94(z) and
<19Bv ng) - CLB@; O)

Now, let E’g(z) be the non-holomorphic Eisenstein series of level one, weight two defined in
Eq. (2.18). Then we can use Poincaré series to apply holomorphic projection to the function

D5 (Gy, 2) = PGy, 2) — an(Gy, 0)Es(2),

since it satisfies the growth condition ®%(gy, 2) = O(1/y) at the cusp infinity. For m > 0, let
Pra(z,s) be the Poincaré series of level one, weight two defined by

Pra(z8) = Y. @™y

7€T 0o \PSL2(Z)

By the choice of §y(%), we have ords(Gy(2)) > —%= > —p. So the sum ap(gy, n) is zero for

As s goes to zero, the quantity m(®5(gy, 2), Pm.i(z, s)) is the m™ Fourier coefficient of a
cusp form of weight two, level one. Since the space of such forms is trivial, we have

(55) i (859 2), Py (2.5)) = 0.

Using the Fourier expansion of ®3(gy, z) and Rankin-Selberg unfolding, we can rewrite Eq.
(5.5) as

(5.6) ag(gy, m) + 2401(m)as(gy, 0) = ngli%z O(k)rs(pm + k)ry(k) 021 (%) )

k>1



HARMONIC MAASS FORMS OF WEIGHT ONE 31

where o,(u) was defined by Eq. (4.16). Comparing Q_1(t) and gos—1(pt) near s = 1, we see
o1(p) = 2Qo(1 + 2p),
Qa1 (14 2p) = 0201 (1) = O 7).

That means we can substitute 2Q),_; (1 + ;—2) for 0951 <%> in the limit as s approaches 1.
Together with (1.8) and (5.4), Eq. (5.6) becomes,

<]i;11ft Ba gw>reg+240'1 <m> <19B7 gd)) =

(5.7) —lim Y o (A) Y o(k)rspm + k)ra(k) (—262571 (1 + ,%)) :
A

k>1

which is the integral weight analogue of Eq. (4.13).
Now the counting argument in Proposition (3.11) in [24] tells us that

0(k)rs(pm + k)ra(k) = p™ (A, B, k),
where p™ (A, B, k) counts the number of v € My(Z)/{%1} such that det(y) = m and
cosh d(7 /z5=1,77ya8) = 1 + ;—7’;

In particular when k£ = 0, the number of v € My(Z)/{£1} such that det(y) = m and
YT ag = Tyag=t is exactly rg(pm) = rz(m). Since k£ > 1 in the summation, Eq. (5.7)
becomes

(B Gy hreg + 2401 (m) (95, gy) = — hme Y. 9 (e Tvas)
Wecll\/lz((Z))/{il}
et(y)=m
(58) ’YT\/AT#T\/F
=l lim () (G (g +7aw) — rolm)on(riges + 6 7))

where g, is defined in (4.8) and
G (21, 22) = > gz,

~vE€SL2(Z)\M2(Z)
det(y)=m

From this expression, it is clear that the choice of these CM points do not matter.
Applying the m'™ Hecke operator to 2, on both sides of Eq. (4.9) gives us [24, Eq. (5.2)]

Gy (21, 22) + dmor(m) E (21, s)+ ) — 2401(m),

(5.9) log [ W (21, 22)[* = hm (47rm 01-25(m) E (22, ) — 4mo (m)e:(s)

where o, (m) = >_,,, d”. This implies

hmzw (T 6T aB) = Z¢ )1og |V, (T a5=t + €, Tyam)|*—
Aoy (m) £1_r)rizw E(t gt +€5) + E(T a8 5)) -

From Eq. (3.5) and H(p)ds(z) = >, ¢ ' (B) gy (2), it is easy to see that

(U8, 90) = (Y(B) + ¢ (B)) Ly
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By Eq. (3.4), we have
lim 4 > (AN E(r,5mr. ) + Bryas. ) = 24(6(8) + DB Ly = 240, 90
A

After substituting these into Eq. (5.8), canceling 240, (m)(¥s, g») and changing A, B to
(A2, (B')? respectively, we obtain Eq. (5.3). O

6. RANKIN’S METHOD AND VALUES OF GREEN’S FuncTION 11

In this section, we will give an analogue of Theorem 5.1 for modular functions of prime
level N. This is necessary when we prove Theorem 1.1 in §7. The main result here, Theorem
6.1, is also interesting on its own as the analogue of the Gross-Zagier formula with trivial
Heegner divisor on Jy(V), the Jacobian of the modular curve X,(N).

Let N be an odd prime number such that x,(/N) = 1. For a modular function f(z) of level
N and B € CI(F), one can define fitN5B(z) € M| (p) by

(6.1) FHNE(2) == [To(p) : To(Np)] - Try((f[Wx) (p2)I5(N2))
= (f | Wx)(p2)Us(Nz) + (f(p2)05(2)) | Un,
where Wy = (, ~') is the Fricke involution. Notice that the form fif-N-5(z) is the same
as fi5(z) from §5 when N = 1. If f = > c(f,m)g™ € My™"(N) as in §2.4, then
f| Wy = —=Nf | Uy. Define modular functions fy, fy € Mj(N) by
(6.2) In(z) = el =Nm)jw (N2),  fo(2) == f(2) = fn(2).
m’>0

Then the (—Nm/)™ Fourier coefficient of fo(z) at infinity is zero for all m’ > 0.

Since N satisfies x,(N) = 1, one can write N = nn in Op and N := [n] € CI(F'). Let
B’ N’ € CI(F) be the unique square roots of B and A respectively. Denote the Heegner points
(Op,n, ABN") and (Op,n, A'(B)'N") by 7; = 7;(A", B, N) for j = 1,2 respectively.

The main result of this section is the following generalization of Theorem 5.1.

Theorem 6.1. Let f(z) be a modular function in the C-span of Sn1 given by Eq. (2.20) and
U ar(21,22) be the modular function defined in (6.6). Then

(6.3) o 0 guhes == Y P(A)log | Wy n(71, )| + Crvs,
A'€CI(F)

where Cy zr gy 15 the constant

Cinpy =—c(f,0) (NY(BN) + Np(BN ) — (BN = (B~'N)) L
+ (2N = 2)elf,0) + 4e( /5", 0) ) (BN )Ly

and Iy is as in Eq. (3.6).

Remark. If B and N are both the identity class in CI(F'), the constant Cy 5, becomes
Ae( NP 0) .

(6.4)

The structure of the proof is the same as that of Theorem 5.1. First, we will recall
some facts about Heegner points and height pairings on Jy(/N). The modular function Wy
will come from the height pairing between Heegner divisors. Then, we will introduce the
automorphic Green’s function for level N, which will be slightly different from that for level
one in §5. The counting argument again follows from Proposition (3.11) in [25, Chap. II].
After that, we will prove Lemma 6.3, which is the analogue of Lemma 4.3 and Eq. (5.7). The
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calculations will be more involved here. Finally, we will combine Lemma 6.2 and Lemma 6.3
to deduce Theorem 6.1.

6.1. Heegner Points and Height Pairings on Jacobian. Now, we will recall some facts
about Heegner points on the modular curve from [23] and their height pairings on the Ja-
cobian. Let X(/V) be the natural compactification of Y;(V), the open modular curve over
Q classifying pairs of elliptic curves (E, E’) with an order N cyclic isogeny ¢ : E — E'.
The complex points of Xy(/N) have a structure of a compact Riemann surface and can be
identified with # UP!(Q) modulo the action of ['y(NN). Heegner points on Xy(NN) correspond
to pair of elliptic curves (E, E’) having complex multiplication by the same ring O in some
imaginary quadratic field F'. This occurs only when there exists an O-ideal n dividing N such
that O/n is cyclic of order N. In this case, F(C) is isomorphic to C/a with a an invertible
O-submodule in F'. Since this a can be chosen independent of homothety by elements in F'*,
we only need to consider [a], the class of a in Pic(O). So a Heegner point on Xy(N) can be
expressed as the triplet (O, n,[a]). The index ¢ := [Op : O] is called the conductor of this
Heegner point. To find the image of such a Heegner point in H, choose an oriented basis
(wi,ws) of a such that an~' has basis (wi,ws/N). Then 7y, := wi/ws € Do(N)\H is the
image of this Heegner point.

Heegner points of conductor ¢ are rational over the field H, := F(j(O)) C C. The theory
of complex multiplication spells out the Galois action as follows. Let b € Pic(O) and oy €
Gal(H./F) the corresponding automorphism under the Artin isomorphism. Then

(07 n, [a])% = <07 n, [ab_l])'

For prime ¢ 1 N, the Hecke correspondences on X,(/NV) stabilize divisors supported on
Heegner points of F' with conductors prime to N. The action is given by

T,(0n,[a) = > (Op,me, [b]),

a/b=Z/¢

where the sum is over the (¢ + 1) sublattices b C a of index ¢, O, = End(b) and n, =
(nOp) N Oy. When d | N, the Atkin-Lehner involution of Xo(NV), W, also acts on Heegner
points. In particular, the action of Wy is

WN(Oana [a]) = (O’ﬁ’ [Cl]./\/),

where N/ € Pic(O) denotes the class of n.
For our purpose, F' = Q(y/—p) and O = Op. Then we require x,(N) = 1 for Heegner
points to exist. In that case, N splits into ni in F' with

n=ZN + Z2t"P,

Let A € Pic(Op) = CI(F). A point 7 € H corresponding to the Heegner point (Op,n, A)
must satisfy an equation

AT+ BTt +C =0,

with B? — 4AC = —p, N|A, B = b, (mod 2N) and ged(A/N, B, NC) = 1. We will denote
this image by 7(A,n). Notice 7(A,n) is well-defined up to the action of I'g(N).

Let Jo(NN) be the Jacobian of Xy(N). Its complex points is a compact Riemann surface
and can be viewed as the set of divisors of degree zero modulo the set of principal divisors on
Xo(N). Let (,)c be the height symbol on Xo(N)(C). It is the unique bi-additive, symmetric,
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continuous real-valued function defined on the set of divisors of degree zero and satisfies

<Z ni (), b> = Z n;ilog |W(x;)|?
i C i

if b = (V) is a principal divisor.
Let f = >, czc(f,n)¢" be a modular function of prime level N spanned by functions in
Sn1 as defined in (2.20). Then ¢(f, —N?n’) = 0 for all positive integers n'. Define T} to be

(6.5) Tpo= | Y e(f,—m)T — (N +1) D e(f, —~Nm') Ty Wy
m>1 m/>1
Nim Nim/!

Given any newform h(z) € Sa(N), we know that (h|Wy)(z) = —(h|Un)(z). It is then easy to
check that T¢(h(z)) = 0. Since N is prime, S3(N) is spanned by newforms. So T’y annihilates
any h(z) € Sy(N).

For j = 1,2, let z; € ‘H and z; € Xo(N)(C) the corresponding points on the modular
curve. Then T¢((xz2) — (0)) is a principal divisor on Jy(N), since the actions of the Hecke
operators and Fricke involution on the Jacobian are the same as those on Sy(N). Thus, there
exists a modular function Wy ar(z1,22) on (Fo(N)\H)? such that the divisor of Wy (-, 29) :
Lo(N)\H — Cis T¢((z2) — (0)) and

(6.6) log |Wyn (21, 22)| = ((21) = (00), Ty ((w2) — (0)))c-

When 2z, 2o are Heegner points of discriminant —p on Xo(N)(C), the divisor Tt ((z2) — (0))
and the value Wy r(21,22) are both defined over H, the Hilbert class field of F. As in §5,
we will relate these special values of Wy to an infinite sum via the automorphic Green’s
function.

6.2. Level N Green’s function and Counting CM Points of Equal Discriminant. In
Theorem 4.1 and 5.1, one needs to take a limit in € when the CM points coincide. Nevertheless,
the limit is still the value of a modular function. To obtain this modular function directly
without the limit in €, one could deform the definition of the Green’s function as done in
[25, §11.5]. We will follow this approach here and define the automorphic Green’s function of
level N to be

Grs(z2) = > gz + Y. gilz),

yELo(N)/{£1} v€lo(N)/{£1}
217722 21=722

where g4(21, 22) is defined in Eq. (4.8) and
go(2) 1= lim (gs(2, w) — log [2min(2)*(z — w)
w—z
= —log |2 (z — Z)n(2)*)* + 25 (s) — 25 (1).

When ged(N,m) = 1, the m™ Hecke operator Ty, acts on 2y in Gy 4(21,22) and defines
G\ o(21, 22) as follows. Let Ry be the subset of My(Z) containing all matrices whose lower
left entry is divisible by N. For 21,20 € H and k > 0, let pR(z1, 20, k) be the counting
function defined as

(6.7) PR (21, 22, k) := #{~v € Ry/{x1} : det(y) = m, coshd(z1,72z2) =1+ QIfV_m’f}
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Then G (21, 22) can be written as

Gy (21, 22) i= Z gs(21,722) + Z 9gs(21)

vERN /{x£1} yERN /{x1}
det y=m det y=m
217722 Z1=7%2
= —QZPK}(Z‘M 29, k)Qs-1 (1 + QIfV—mk> + pn (21, 22,0)g5(21).
k>0

Notice for arbitrary z1,29 € H, there could be non-integer k such that pR(z1, 22, k) is
non-zero. When zy, 2y € H are Heegner points of discriminant —p though, p(z1, 29, k) is
necessarily supported on integral k’s.

Let z; € Xo(NN)(C) be the points corresponding to z; € H. By Proposition (2.23) in [25,
p.242], one can relate the Green’s function to the height pairing between (z1)—(00), (x2)—(0)
and Wy ((z2) — (0)) on the Jacobian as follows

(6.8) ((21) = (00), Tin((22) = (0)))c = lim

—1

( G%S(zl, 29) + dmoy(m)En(Wy 21, s))
+4rmoy_os(m)En(z2,8) + R(N,m, s)
Gﬁ:s(zl, Wi z2) + dmor(m')En(z1, s)
(6.9) ((z1) = (00), TwWn((22) = (0)))c = lim (') 0105 (M) En (W22, 5)
+R(N,m’, s)

Here En(z,s) is the Eisenstein series defined in (3.3) and R(N,m, s) is an explicit function
depending on N, m and s only.

For j = 1,2, let A; € CI(F) and 7; € I'o(N)\H be the image of the Heegner points
z; = (Op,n, A;). Let a; be integral ideals in the class A; such that n|a;, N(a;) = A;. Then
by Proposition (3.11) in [25], the counting function p% (7, 7o, k) satisfies

pr (11,72, k) = #{(a, B) € (@) "ay ! x a7 'ay ') /{#1} | Npjg(a) = EE2,
Nro(B) = 2%, Aids(a— ) =0 (mod 0)},
= TA1A51(Nk: + pm)TAIAQNfl(k’)(S(/{?)

for k£ > 0, where 0 = \/—pOp is the different of F'. The first equality is established by the
bijection
o =TTy +dT1 — aty — b,

—(ab
7=(0d) € Rn/{#1} B =cnme+dr —ary —b.

The Fricke involution Wy sends z; to the Heegner point 2 := (Op,w, AN ). Set Ay =
AN~ and @), an ideal in the class A, such that 7 | a. then the same bijection establishes

PR (11,3, k) = #{(, B) € (@) (ay) 'R x oyt ay ) {£1} | Njgla) = 24,
Nro(B) = %,Au‘b(a —pf)=0 (modd)},
= 7“_,41(.,4/2)—1/\/—1(IC/)’I’ALAI2 (Nk?/ — pm')é(k")

= TAlAgl (k/)TA1A2N’1 (Nk/ - pm/)(s(k/)
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for k¥ > pm//N. After applying these counting arguments to G¢ (71, 72) and G% (11, Wy T2),
we obtain

G (1, 12) = = 23 14yt (VK P a1 (R)3 () Qoo (14 25 +
(6.10) k>1
7 aya51 (PM)gs(T2),
Es(Tl,WNTQ _—2 Z TA.A rAl.AzN 1(Nk —pm) (k,)Qs—l (—1—}-%)—}—
(611) k'>pm//N
T.AlA;l(pTTnl)gs(Tl)'

Since N 1 m’ in the definition of GTNn:S(Zl,ZQ), the term TAlAgl(pTW)QS(Tl) above vanishes.

Putting these together gives us the following lemma, which is the level N analogue of Eq.
(5.9).

Lemma 6.2. Let f =3 ., c(f,m)g" € M"¥(N) be a modular function in the C span of
Sy defined in (2.20) and Vyar(21,22) as in Eq. (6.6). Let B,N € CI(F) be as above and
denote their unique square roots in C1(F) by B’ and N respectively. Then

(6.12) Z w2(,4/) log | U s n (11, 72)| = Sy npw + Urnpa,
A'ECI(F)
where
YpNBy :—h_rﬁ c(f, —m)Zé(k)rB(pm—l—Nk)rw( )2Q4_1 ( 2kN) n
m>1 k>1
Ntm
(N+1 hmz (f, Nm 25 ka —pm)2Q81< 1+2k’N)
m'>1 k'>1

U == c(f,0)(NY(BN) + N(BTN ™) —h(BTIN) = (BN )12

=24 [ > e(f, =Nm)or(m') | ($(B) + % (B™))($(N) + (N )1y
i

+ E c(f,—m)rg(m) 1ZJ(BN_1)4I¢2.
m>1
Ntm

Proof. Using the definition of Sy 1, ¥, Eq. (6.8) and (6.9), one can rewrite the left hand
side of Eq. (6.12) as

LHS of (6.12) —hmE c(f,—m) E YA
s—1
m>1
Nim

. G (11, WnTy) + 4oy (m/) En (11, 5)
—(N 4+ 1) lim c(f,—Nm' (A N’ s .
( >s—>1 n"/z>1 ( ); (4) ( +drw(m') o1_95s(M") En (W T2, 5)
Nim/

( Ns(ﬁ, Ty) + dmoy (m) Exy (W, s)>
+4rm®oy_os(m)En (T2, 8)

!
=XsNBy +Urngy
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where the second equality follows from Eq. (6.10), (6.11) and
U]/“,N,B,w =4 Z c(f, —m)or(m) il_lg Z V(A (En (Wi, ) + En(72,5))
A/

—4r(N+1) Y e(f,=Nm')ar(m hme )(Ex(r1,8) + En(WyTs, 5))
=
+Z (f,—m)rg(pm hmzw AN gs(12).

Note that Wy7; corresponds to the Heegner point (Op,w, AN ~'). Using the elementary
identity (see Eq. (2.16) in [25, Chap. II])

1
N2s —1

and Kronecker’s limit formula (Eq. (3.4)), we have

En(z,s) =

(N*E(Wnz,s) — E(z,9)),

| 94 [ NY(BN) + Ny(B'N

Upnse = | D_clf,—m)oi(m) N2 -1 ( — (BTN — w(BNl)) a
m>1

Ntm

oo 24 [(NY(BTIN) 4+ Ny(BNTY)
— m/Z>1 c(f,—Nm')oy(m') N 1 ( (BN —1/1(15’/\/)> Iy
Ntm/!

+ Z C(f> _m)TB<pm) ¢(BN_1)4[1/127
m>1
Nim

where I2 is defined by Eq. (3.6). Using the relationship

24 | Y elfi=m)ar(m) + 3 el f,—Nm')(or(Nm') = Noy(m)) (N +1) | = (1=N*)e(.0),
m>1 m,
Nim N’[’i}
we can rewrite U} y 5, as U N5y O
6.3. Infinite Sum Expression of Regularized Inner Product II. For m > 0, some
calculations tell us that

(m(N2)HNE = o (p2)Tn (98) ()
(6.13) = Jm(p2)(Wnn(2) + (In-1)(2))
() 4 )

where Ty is the N*® Hecke operator. So denote the inner product

(6.14) pN,B,d}(m) = <jm(pZ)TN(19B)7g¢>reg‘
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In particular for jo(z) = 1, the inner product py 5.(0) becomes

pn B (0) = (Usar, gg) + (U1, 9y)
= (P(B) + ¢¥(B™")(W(N) + (N 1)) L.

Let f € My""(N). The following lemma relates (fiN5 g, . to pyp,(m) and the infinite
sum defined in Lemma 6.2. This is the level N version of Eq. (5.7).

Lemma 6.3. Suppose f(z) = ., c(f,m)q" € MG™™(N). In the notations above, we have

(6.15) (/"N gyl = —Spnmy + Y c(fi=Nm') (pvso(m') + 2401 (m") pi 5.4 (0))

m/>1
where Xy Ny gy ts defined in Lemma 6.2.

Proof. Let gy(z) € M7 (p) be a mock-modular form as in Proposition 3.2 with Fourier ex-
pansion gy(z) = 3.5 7 (n)g" and gy (2) the associated harmonic Maass form. By Eq. (5.4)
and (5.7), we have the following identities

pN.Bw(n) = Z r (k) (rs (B5%) + 75 (pNn — Nk)) 6(k),

pNJgﬂ/,(n) = — 240'1(n>pN,B1[J —+ hmz5 TN 193 pn =+ ]{I)ﬁ/,( )2@5 1 ( 2k>

k>1

The first equality holds for n > 0 while the second one holds for n > 1. Similar to the proof
of Theorem 5.1, define

O (g, 2) =(p + D Tey (=i(3IW,) (N2)95(2))

(6.16) =(91U,) (N2)05(2) + (3(2)95(N2)|U,.

When N = 1, this is the same as ®z(gy, 2) defined in the proof of Theorem 5.1. It transforms
like a modular form of level NV, weight two and has the following Fourier expansion at infinity

q)N,B(ng Z) = Z(bN,B(gtba m, y) + aN,B(gwa m))qma
mEZ

bNB gw,my 25 T¢ 61< ) (pm+Nk:)

keZ

an,5(gy, m ZW rg(pm — Nk)o(k).
keZ

Since f € MJ™"(N), one could use Eq. (2.14) and (6.1) to calculate the —k™ Fourier
coefficient of fift-N:B a5

(6.17) c(f1NE k) =D e(f. —m) (rs(pm — Nk) = Nrg (P55F) )

meZ
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From this and the condition x,(N) = 1, it is easy to see that fifN8(z) e My (p). So we
can apply Proposition 2.5 to obtain

<flift,N,B7 g¢>reg _ Z c(f, —m) (Z ri(l{:)rlg(pm — NEk)o(k) — N Z 7“14/,_(]?)7‘3 (pm]\;QNk) 5(k5>>

meZ kEZ keZ

== N Y el =Nm) S0 (k) (s (B2 + rs(pNm’ — NE)) 6(8)

m'E€Z kEeZ

+ > n(m)e(f, —m)ay s(Gy, m)

meZ
(6.18) :Z/f,N,B,zp — N Z c(f,—=Nm")pn g.p(m),
m'>0
where 3 y 5, is defined by
(6.19) S nsw = Y ov(m)e(f, —m)ans(gs, m).

meZ

The sum over m’ € Z changes to be over only m’ > 0 in Eq. (6.18) since r;[(k:) = 0 for all
k < —p by the choice of gy ().

For n > 0, let P, n(2) = ¢"" + O(q) € M}(N) be the weakly holomorphic modular form
as in Lemma 2.10. Consider ®} 5(gy, 2), defined by

(6.20)

(I)*N,B(gﬁh Z) = (I)N,B(gwa Z) - Z aN,B(Q’l/M _n)Pn,N(Z)

n>0

_ Npnps(0)

R0 2 (Ba(2) = Ba(N2)).

Now it is easy to check that ®% 5(gy,2) is O(1/y) at the cusp infinity. At the cusp 0, some
calculations show that

N .5(Gy, 2) Wi = (9(2)08(N2)) | Up + (9 | Up)(2)05(Nz),
On5(9y, 2)|Un = (9(2) (08 [ Un)(2)) [ Up + (9 | Up)(2) (V5 | Un)(2).
Thus using the relationship Vs(Nz) + (V5 | Un)(2) = Ipa(2) + Ipa-1(2), we have

S 5(Gy, 2) W + ns(Gy, 2)|[Unv = @1 sa(Gy, 2) + P1gav-1(gy, 2).

From the proof of Theorem 5.1, we know that @1 gar(gy, 2) + P1.sa-1(Jy, 2) has no pole and
a constant term py 5.4(0). So @y 5(gy, 2) is also O(1/y) at the cusp 0.
For m > 1, let P, n(z, s) be the Poincaré series of level N, weight two defined by

Prn(z,s) = Z (y°e*™ ™) |51y.
YET o \I'o(N)
It is characterized by the property that
h
lim(h(2), Pm.n(z,8)) = c(h,m)

50 4mm
for any h(z) = >, 5, c(h,m)g™ € Sy(N). Since {c(f,—m) : m > 1} € Ay is a relation for
Sa(N) (see Def. 2.8), we know that

(6.21) lim <h(z), > " moy(m)e(f, —m) P (2, s)> =0,

s—0
m>1
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for any h(z) € So(N). So limg_,g ng méy(m)c(f,—m)Pmn(2,s) € So(N) is 0.
Now we can consider the inner product between ®% 5(gy,2) and this linear combination
of Poincaré series and obtain

(6.22) dmlim Y my (m)e(f, —m) (@ 5(ds, 2), Pun(z,5)) = 0.

m>1

Since @y 5(y, 2) is O(1/y) at both cusps, we can apply Rankin-Selberg unfolding as in the
proof of Theorem 5.1. The limit on the left hand side of Eq. (6.22) then breaks up into two
parts. The first part is

ans(Gem) =Y ans(Gy, —n)e(Poy,m)
(6.23) > dn(m)e(f, —m) n=0
m>1 _ ANpnss(0) (01 (%) — 01(m))

N2 -1

Since (f|Wn)(2) = —=N(f|Un)(2) and P, n(2) = ¢~ ™ + O(q), Lemma 2.10 tells us that for
n >0

S Sy (m)e(f, —m)e(Pox.m) =~y (n)e(f,n).

m>1

So expression (6.23) becomes

24N
(6.24) S N8y — ]\sz_Blf > on(m m) (o1 (2) — o1(m)) .
m>1

The second part of the left hand side of Eq. (6.22) involves the limit of an infinite sum, which
can be evaluated as

_ Llelg(l) ZéN(m)c(f, —m) Z (k)rg(pm 4+ Nk)ry(k)02s+1 (%)
m>1 k>1
. 2kN
=~ iy 3 (e, ) Y ok -+ Nk (120,114 20
m>1 k>1
re(N(pm + k)
— (N + 1)1}1_13 Z c(f,—Nm') Z(S . (pm’ + k) 7y (K)2Qs-1 ( ?,];n]\/[)
m/>1 k'>1 N

+ XN By

(6.25)

=S nse — (N +1) Y elf, —Nm')(pws.e(m') + 2401 (m)) px5.4(0)).

m’/>1
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Adding expressions (6.24) and (6.25) together yields 0 and can be used to solve for ¥ y 5,

24N pn s (0) m
X NBp = NZ 1 Z(S —m) (o1 (%) — 01(m))

m>1

= Spnsp+ (N+1)> " clf,=Nm')(pnsp(m') + 2401 (m) py.5.6(0))

m’/>1
= —Yynep+ Y clf ") (pns0 (M) + 2401 (M) piv 5,4(0))

m’/>1

‘|‘N Z Nm pNgw( )

/>0

where we have used the following equation obtained from applying Lemma 2.10 to Py n(z) €
Mj(N) and f(z) € My"™"(N)

(6.26) co(f,0) = 35 Y (Noy (8) — o1(m)) dy(m)e(f, —m).
m>1
Substituting this expression of X y 5, into (6.18) gives us Eq. (6.15). O

6.4. Proof of Theorem 6.1. In terms of py g (0), the quantity U n gy in Eq. (6.12) can
be written as

Upnsp == c(f; 0)(NY(BN) + NY(BTN ) = (B7N) — (BN ™))Lz

=24 | Y elf. =Nmor(m') | pxsp(0) + | Y e(f,=m)rs(m) | (BN )ALz,
=

Since f is in the span of Sy, ¢(f,—Nm') = 0 for all m’ > 1 divisible by N. Adding Eq.
(6.12) and (6.15) will cancel the term 24 (Zm,21 o(f,—Nm')o1(m')) pnsw(0) and give us

<flift,N,ngw>reg _ Z ¢2(A/) log |\I/f,N(7'177'2)| + Z c(f, —Nm’)pN,B,w(m’)
(6.27) AECI(F) m2l
+ C},Nﬁ,zp,

where

Crnpy = — c(f0)(NY(BN) + Np(BN ) = h(B7N) = (BN ™))Ly

+ E c(f,—m)rg(m) 1/1(BN_1)4]w2.
m>1
Nim

From the definition of fy in Eq. (6.2) and the fact that c(f, —N?m") = 0 for all m” > 0, it
is easy to see that

ift,N,B i
< (l) o 7g¢>reg <fl fthag¢>reg - Z C(f? _le)pN,B,w(m/)v
m/'>1
C( éift,NB ) _ f —m rB )
m>1,Ntm

Substituting these into Eq. (6.27) gives us '} v 5 4 = Crn 5 and Eq. (6.3).
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7. ALGEBRAICITY, MODULARITY, AND PROOF OF THEOREM 1.1

We are now in position to prove Theorem 1.1. First, we will use the theory of complex
multiplication and Theorems 5.1 and 6.1 to show that regularized inner products, such as
the ones on the left hand sides of Eq. (5.3) and (6.3), can be put into the form of the right
hand of Eq. (1.10) when the modular function has rational Fourier coefficients. Then, we
will prove Lemma 7.2, which tells us when a generating series is a modular form of weight
one. Finally, we will combine these two results to deduce Theorem 1.1.

7.1. Algebraicity of Regularized Inner Product. The main result of this section is as
follows.

Proposition 7.1. Let B € CI(F), N be 1 or an odd prime satisfying <%) =1land f €

M(N). Write f(z) = fi(Nz)+ f2(2) as in Lemma 2.7. If f; has integral Fourier coefficients
in the principal part for j = 1,2, then for each A" € CUF), there exists urp(A’) € H
independent of the character i such that

1

71 lift, N,B rop =

> WA log ups(A)],

A'eCI(F)
where k, € Z is defined in Eq. (3.9) and

N? -1, when N #1,
EN =
1, when N = 1.

Furthermore for any C € CI(F), the algebraic integer usp(A’) satisfies
(7.2) oc(ugs(A)) = uss(AC)
where oc € Gal(H/F) is associated to C via Artin’s isomorphism.

Proof. Since we could write f(z) as the integral linear combination of j,,(Nz) and some
functions in Sy 1, Sy2 with integral principal part Fourier coefficients, there are really three
cases to consider.

Case 1: f(2) = jm(N2).
When N = 1, we have fiftNB(z) = jliftB(2) as defined in Eq. (5.1). If m = 0, then
fHENB () = 95(2) and

(fHNE, gy) =((B) + ¢ (B™)) Ly

1
12H (p) Z wQ(A/ﬂOgWO,B(A’)],
p A ECI(F)

where uog(A) = (uapuap)-1)"" with us, € H* defined by Eq. (3.1) and B’ € CI(F) the
unique square root of B. By the theory of complex multiplication, uz(A’) satisfies Eq. (7.2).

If m > 1, then for any » > 0 and 7,7 € H, define the level one modular function
Uy (257, 7', 7) by

U (27,7 1) =
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where W,, is defined in Eq. (5.2). In terms of V¥ (z;7,7',7), we can use Eq. (5.3) to re-write

(B gy) as
=2 > A (log V5, (rass T, Tas, ra(m))| + ra(m) log [y ws ' (Tas)|)
A'eCI(F)

The quantity W% (7ap; Ty Tas, rs(m)) is well-defined and non-zero, since the order of
U, (Tap-1,2) at z = Ty is exactly rg(m) from the proof of Theorem 5.1. By Eq. (3.2) and
the fact that

(4'(2))° = 4(2)" (5 (2) — 1728)*A(2),

we have

Yo (Tap)° _ H Ye-1apd (Te-1um)° cH.

g,
¢ NG & A(1er)

C’eCI(F) C’'eCI(F)

Similarly, the modular function V¥ (z; 7451, Tas, rs(m)), which is defined over H, is sent
to ¥ (z;7e-148-1, Te-1 4, 7(m)) under o¢. So if we let

—4rg(m)
Z/f’mB/J'(T A’B/)G

U 5(A') = U (Tap; Tag-1, Tas, r(m)) 247 EP) N ;
c! !

C’'eCI(F)

then we can write

Unt % gohee = gy 2 WHA)oglums(A)
p A’eCl(F)

with u,, g(A’) € H satisfying Eq. (7.2).
When N > 1, Eq. (6.13) tells us that

fliﬁ,N,B(Z) _ (jm(NZ))lift,N,B _ jiift’BN(Z) _|_ji)ilft,8/\/_l(z)'

In terms of the results for N = 1, we could write

lift, N, B 1 2/ a1 /
<f 7gw>reg - 12H(p) Z @Z’ (A)10g|uf73("4)‘7
A'eCI(F)

where usg(A") = U gr (A")um sr-1(A’) also satisfies Eq. (7.2).
Case 2: f(z) = fa(z) € Sna.
By Lemma 2.9, there exist integers r > 0,m’ > 1 such that ged(N,m’) = 1 and
,NTWLQm/ _N"m/
f(z)=q — w4 +0(q)

at the cusp infinity. From Eq. (6.17), it follows that the —n'® Fourier coefficient of fift-.5(z)
can be written as

e pN"™m/’ n
lift, N,B pN"™ ™ 'm/—n N+1 N
c(f ,—n)=—N|rs < & > — swin B &

- <r3(—Nn +pN"?m/) — 5N](V]\,+T;1,)T3(—Nn - pNTm’)) :
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When » =0 and n > 0, we can rewrite the equation above as
o(fiNE —n) = — (N +1) (rg (pm' — &) + rg(pm’ — Nn))
+ (s (2=2) 4 re(N (N = n)))

= — (N + Ve (Tw(i ™), =n) + ¢ G (p2) T (95) (), =) .

Since the principal part and the constant term uniquely determine a form in M1!’+(p) up to
a form in S} (p), we have

. i 1 ;i -

for some g¢(z) € S{ (p) with integral linear combinations of ¢(f,n)’s as Fourier coefficients.
When r > 1, the situation is similar. In this case, we have

FINE(2) = (N + DTy (N52)) + (Ve (p2) + v (p2))Tiv(U5) + 95 (2)

for some g;(z) € Sy (p) with integral linear combinations of ¢(f,n)’s as Fourier coefficients.

The modular function f(z) is a rational function in j(z) and j(Nz). Since ¢(f,n) =
c(fa,m) € Z for all n < 0, we know that ¢(f,n) € Z for all n € Z. Applying Corollary 3.3 to
gy, we see that the Proposition holds in this case. The presence of g; is responsible for the
K, in the denominator on the right hand side of Eq. (7.1).

Case 3: f(z) = fa(z) € Sn1.

This case follows from Theorem 6.1 and the same analysis in case 1. In the first summand of
the right hand side of Eq. (6.27), the value Wy z(71, 72) is defined over H. So it can be written
in the same form as the right hand side of Eq. (7.1). The Galois action is also satisfied as 7;
corresponds to (O, n, A/B'N") and (Op,n, A'(B')~'N") for j = 1,2 respectively. Applying
the analysis in case 1, we see that the second summand ) o, c¢(f, —Nm/)py p.,(m') and the
third summand C} x5, can also be written in the same form as the right hand side of Eq.
(7.1) with appropriate Galois action. Thus the proposition holds in this case. The presence
of ¢(f,0) is responsible for the factor N2 — 1 in the denominator of the right hand side of Eq.
(7.1), since (N? — 1)c(f,0) € Z by Lemma 2.9. O

7.2. Modularity Lemma. Let gy(z) = >, ., r:;(n)q” be a mock-modular form with fixed
principal part as in Proposition 3.2. Expression (6.18) gives rise to the following equation
involving a linear combination of r:[ (n)’s and regularized inner products

S Gn(m)elf,—m) 3 8(n)rs(pm — Nujrf (n) =(FVE g},

(7.3)

+N Y elf, =Nm)pxsp(m).
m’>0

In this section, we will show that as solutions to the above equations for various B, N and

f, the set {r(n) : n > 1} is unique up to adjustments by Fourier coefficients of elements in

ST (p). Then one can choose an appropriate gy, (z) satisfying Theorem 1.1.
For a class B € CI(F), an odd prime N satisfying x,(N) = 1 and a formal power series

D(z) = d(n)q" € C[q].

n>1
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define the formal power series @y (D, z) € C[q] by
On5(D, 2) := (D|Up)(N2)0p5(2) + (D(2)05(N2))|Up,
where U, acts formally on g-expansions by

(D | Uy) Z d(pn)q
n>1

If D(z) € Sy (p), then &y (D, z) agrees with the definition in Eq. (6.16), hence is in Sa(N).
In this case, the set {d(n) : n > 1} is a solution to Eq. (7.3) with the right hand side replaced
by 0.

Conversely, if d(n) = 0 whenever x,(n) = 1 and ®x5(D, z) is in Sy(NV) for sufficiently
many N, then it turns out D(z) € Sy (p). This will be proved in the following modularity
lemma, which is the key to the proof of Theorem 1.1.

Lemma 7.2. For a set of complex numbers
{d(n) : n > 1,d(n) = 0 whenever x,(n) = 1},

let D(2) = >,5,d(n)q" be the associated formal power series. Suppose that for some class
B e CI(F),
CI)N,B(D, Z) € SQ(N)

for all primes N =1 (mod p) and N = 1. Then D(z) is a weight one cusp form in Sy (p).
Proof. Let Ny := 1 and pick an arbitrary set of odd primes {N; : 1 < j < (p—1)/2,N; =

1 (mod p)}. For 0 < j < (p—1)/2, denote @y, 5(D, z) by ®;5(2). From its definition and
the fact that N; =1 (mod p), we have

(7.4) <I>j,s<z>—p§(ﬂg( £) +is(2)) D (X)),
Set
(p— 1/2

Then ®; 5 (pM;z) is a modular form of weight two, level pM for all 0 < j < (p—1)/2. Define
the following matrices with entries in C[q] by

L= (193 (sz + %) + ﬁB(psz))%J‘S(p—l)/?
0<k<

<p—-1
X = (D (Mz n E))
PJJ)o<k<p-1

R = (0®;5(0M;2))oc j< 1y 2

The dimensions of L, X and R are (p+1)/2 x p,p x 1 and (p+ 1)/2 x 1 respectively. Then
we can rewrite Eq. (7.4) in the following matrix expression

(7.5) L-X=R.
Let S = (1 —2mikk'/ p) be a p x p matrix and D(z) the formal power series
0<k,k' <p—1
Dip(z):= > dn)q"
n>1,
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for 0 <k <p—1. Then S~'= (e2mk/k/p)o<k/ k<p—1 and

L-S=|6(k) > ran)g*" :
n=k’ (mod p) 0<j<(p—1)/2
0<K <p—1.

Sil X = (pDk'(MZ))OSkISP—l :

After permuting columns, the matrix L - S is composed of a (p + 1)/2 x (p — 1)/2 zero
submatrix and a (p+1)/2 X (p+ 1)/2 submatrix L’ of the form

n=n, (mod p) 0<j,v<(p—1)/2

Here ng = 0 and 0 < n; < ng < -+ < np_1)2 < p are all the quadratic residues modulo
p. Since the series Dy(z) is identically zero when x,(k) = 1, the p x 1 matrix S™! - X has
(p —1)/2 x 1 zero submatrix and a (p+ 1)/2 x 1 submatrix of the form

(pDy, (Mz))ogyg(p—l)/2 :
For each 0 < v < (p —1)/2, let ng, be the smallest positive integer such that
np, =n, (mod p), ra(ng,) # 0

and npg := max,(np,). By changing the index v if necessary, we could suppose ng, < ng,
whenever v < v/. Now, choose the primes N;, 1 < j < (p —1)/2 such that

(p—1)/2 1 1
7.6 - .
(7.6) 2 N < wen
Jj=t+1

forall 0 <t < (p—3)/2.

Let ¢ be any permutation of {0,1,2,...,(p—1)/2}, which is not the identity permutation.
Then there exists a unique positive integer ¢, < (p — 3)/2 such that «(t,) > ¢, and «(t) = ¢
for all t < t,. The monotonicity of {ng,} then implies that ng;, < ng,q,). From inequality
(7.6), we can deduce

(p—1)/2 p—1)/2

) t, i (
(7.7) > Mng; < (Z MjnB,j> + My, <Y Ming,gy < Y Myng,).
Jj=0 j=0 j=0 j=0

That means det(L') = O(ngglm Mjns.3) is a non-zero power series, and L’ is invertible in the
ring of Laurent series over C. Also, the entries in L' and R can be considered as holomorphic
functions on H. Thus, the formal power series pD,,, (M z), which are the entries in (L')~!- R,
are meromorphic functions in z on H, with possible poles at the zeros of the power series
det(L’).

This argument could then be used to show that the formal power series D,, are all holo-
morphic on H, which implies that D is holomorphic on H since
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For a particular zo = zo + 1yo € H, it suffices to show that we could pick the N;’s such that
det(L’) does not vanish at ¢ = e*™#. First, choose N; large enough such that

L/ = (5(nu)TB(nB,V)e(MjnB’y)QﬂiZO + O(ei(Mj (n67y+p))2ﬂ-y0))O§j7l,§(p,1)/2 )

with the constant in the O-term independent of zy and N;. If we further require the N;’s to
satisfy inequality (7.6), then inequality (7.7) implies that

(p—1)/2 (p—1)/2
Z Ming,g — > Ming; > Mg_1)2
7=0

for any non-trivial permutatlon t. Thus, after making M,_1)/2 large enough by increasing
the N,’s, we could make sure that the power series det(L’) has the main term

s (p—1)/2 )
H (5(ny)7’3(n87y) e(zuzo MV”B,V>27TZZO

at ¢ = e*™* and does not vanish there.
So for a fixed set of N;’s satisfying inequality (7.6), the submatrix L’ has full rank in
Mpi1)/2,p+1)/2(Clg]). The null space of L is spanned by the column vectors

<l 627rik:n,,/p>
p 0<k<p—1

with 1 < v < (p—1)/2. This also shows that L has rank (p+1)/2 in My,_1)/2,,-1)(C) after
substituting ¢ = €*** for all z in a dense subset U € H.

Let v = (i §) € To(pM), then applying |»7 to both sides of Eq. (7.4) gives us a new
equation with the same right hand side. Let ¢ denote the multiplicative inverse of ¢ modulo
p and we have the following standard transformation of ¥z(2)

I <sz n 1%) () = { Xp(a + ck)Vp (M z+ (“+Ck)dk> , ?f a+ ck % 0 mod p
i/PXp(—c)UB(pM;2), if a + ck =0 mod p
Os(pM;2) |1 (pire ) = Wﬂﬁ’ (sz - %) :
Using these properties, Eq. (7.5) transforms into
L-T-X'=R,
where

T = (Ter o<k k' <p—1,

Tipr = Xp\(/_;)i (054(k) —

» ixp(—¢) (k), if Kk = —ac mod p

2200 { Xpla+ k) (0 () — 28, if & # —at mod p
“2yp Ip

, ifa=p
0, otherwise

CESED R ER A

0
X' = (D(Mz—i—k—/> |17> :
p 0<k/<p—1

0a(B) :

I
—N—
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So when ¢ = €2™* for any z € U C H, the column vector X — T - X’ with entries in C
is in the null space of L, which is spanned by the column vectors (%62”’“””/ p) with

0<k<p—1
I1<v<(p—-1)/2.
Now define a 1 x p row vector V' by

Vi (3o +8)
It is orthogonal to the null space of L when z € U. So for all z € U,
V.- X=V.T X

Simple calculation shows that

VT = )V,

VX = xp(d)D(Mz),

V- X' = x(d)(D(M2)[17).
So we know that (D(Mz)]17) = xp(d)D(Mz) for all z € U. Since U C H is dense and both

sides are holomorphic, we have (D(Mz)|17) = x,(d)D(Mz) for all z € H. This is true for
any v € ['o(pM), or equivalently

(D1 (. "a"))(2) = xp(d)D(2)

for all (% "") € o(p),b € Z.
‘CL 8) € To(p) : M|b}. It is not too hard to see that I'g(p) is generated by

Let F()(pu ) = {(
Lo(p, M) and T'= (1 }) € To(p). Since D(z) is also invariant under the action of T, it has

level p. By the shape of the Fourier expansion of D(z), it is in Sy (p). O

Corollary 7.3. Let B € CI(F) be any class. Then the rational vector space Ml!’+(p) s
spanned by the set

{fHNB() B e CI(F), f(2) € Sy1 U Sya, N =1 (mod p) prime} U {515 . m > 0}

Proof. Suppose the subspace of M, (p) spanned by the set above, denoted by M; ™ (p), is
strictly smaller. Then Proposition 2.6 implies that there exists D( ) =>_,>.d(n )q € Q[q]
satisfying -

(i) d(n) =0 for all n with x,(n) =1, .

(ii) 2@1 c(G,—n)d(n)d(n) =0 for all G(z) =, ., c(G,n)q" € Mi’*’hft(p),

(iii) D(z) € Sy (p)-

For N being 1 or any odd prime satisfying x,(N) = 1, the statement ®y 5(D, z) € Sy(N)
is equivalent to

0= Z In(m)e(f,—m Z(S n)rg(pm — Nn) = Zc(fhft’N’B, —n)d(n)é(n).
meZ n>1 n>1
for all f(2) € Sy1USn2 by Lemma 2.9. Specialize G to fiV5 for all such f, condition (ii)
then implies that ®x (D, 2) € S2(N) for all primes N = 1 (mod p) and N = 1. Together
with condition (i) and Lemma 7.2, we know that D(z) € Sy (p), which contradicts (iii). Thus,
My (p) = My (p). 0

Remark. A version of this corollary with finitely many N’s could provide a bound on &, in
Theorem 1.1.
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7.3. Proof of Theorem 1.1. Denote the dimension of S; (p) by d_ and the g-echelon basis
by

{hi(2) € ST(p) : hal2) = 4" + O(g"+),1 <t < d_}.

Choose a mock-modular form gy(z) = 3 -, 75 (n)¢" € My (p) such that it has a fixed
principal part as in Proposition 3.2 and 7 (n,) satisfies conditions (ii) and (iii) in Theorem
1.1 for 1 < ¢ < d_. We claim that this g,(z) is a desired choice. Note that if S (p) = 0,
then there is only one g,(z) € My (p) with a fixed principal part.

Let n > 0 be any integer such that y,(n) # 1 and n # n; for any 1 <t < d_. Then by

Proposition 2.6, there exists a weakly holomorphic form G(z) € My (p) with the Fourier

expansion
Gz)=q "+ Y

k>—n+1

at infinity and ¢(G,k) € Q. By Corollary 7.3, we could find B € CI(F), o; € Q, f; €
My™"(N;) and fo € M}(1), all with rational Fourier coefficients, such that

lift, N, ,B
G(z) =) asf; (2)
j=0
By Proposition 2.5 and , we have
(p—1)/2
+ Y S(R)(G =Yg (k) = (G guhres = D (SN gy ) e
k<n-—1 7=0

After applying Proposition 7.1 and a simple inductive argument on n, we can write r:;(n) in
the form

) == Y A log fun, AP

K.
P AcCI(F)

for all n € Z with k,, € Z,u(n, A) € H* independent of ¢ and oc(u(n,A)) = u(n, AC™")
for all C € CI(F).

In a similar fashion, we will show that one can choose &, ,, independently of n. Fix a finite
set of primes

M, ={N,:1<v<p—1x,(v) =1, N, =v (mod p)}.
and define
pi=lem{k,p k< (p+1)/12} -lem{N?* —1: N € M,}.

Then for n < (p+1)/12, we could replace &, with , and u(n, A) with u(n, A)"/%»»_ Notice
that for n < 0, the algebraic number u(n, A) is a perfect (N? — 1) power in H* for any
N e M,.

When n > (p + 1)/12 and p { n, pick N € M, and a positive integer m such that
pm — Nn = 1. Notice N fm and m > gy + 1 where gy is the genus of the modular curve
Xo(N). With such a choice of N and m, let f,, € Sy1 be a modular function as in (2.20).
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Then §(n)on(m)ra,(pm — Nn) =1 and Eq. (7.3) becomes

ry(n)=— Z o(k) (Z Sn(m")e( fr, —m" )1 4, (P — Nkz)) ry (k)

0<k<n m/'=1

~ 3 5(k) ( S G () fons ="y (o — Nk)) 5 (k)

k<0 m'<gn

+ <f7lfiLft7N’A07 g¢>reg + NC(fTrM O)pN,Ao,@Z}(O)'

In the summation on the right hand side, the coefficient of r;[(k) is an integer when k& > 0 by
Lemma 2.9 and is rational with denominator dividing (N? — 1) when k& < 0. When n = pn/
with n’ > 1 an integer, we could substitute f = j,/(2) into Eq. (5.4) and have

r(n) = G, gudreg — Y 8(k)rs(on’ — k)i (k).

k<n

By Propositions 3.2, 7.1 and a simple induction on n, we could choose ,, = &, for n >
(p+ 1)/12 while keeping u(n, A) € H*.

With property (ii) and (iii) known, one could slightly change the choices of &, and u(n, A)
such that property (iv) is also satisfied. By changing , to 2H(p)k,, we could suppose
that (2H(p)) | , and u(n, A) is a (H(p))™ power in H*. For each n # 0, we know that
exp(Rf(n)) € Q by Eq. (1.6). Then there exists ¢, € Q depending only on n and p such that

_log Ngg(cau(n, A))

Kp

= RS (n).

Since 1? is non-trivial, we could replace u(n, A) with c,u(n, A) if necessary to make it satisfy
property (iv), as well as properties (ii) and (iii).
For all n € Z, define r{(n) by

= g (s X i)

1 non-trivial

1 + 1 . 2
= m <Rp (n> + /i_p lOg |NH/@(U(T7,, A))|> _ R_p log |u(n7 \/Z)’ |

where the second equality is due to the transitive action of Gal(H/F) on {u(n, A) : A €
CI(F)}. The generating series >, _,rfi(n)¢" is a mock-modular form with shadow 0 4(z).
When n > 0, property (iv) implies that

ri(n) = —% log [u(n, V.A)?

P

R;(n):—%i Z log |u(n, V.A)|* = Z ri(n).

P Aeci(F) A€ECI(F)

This is the analogue of Eq. (1.9) for mock-modular forms as mentioned in the introduction.
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8. CASE p = 283: SOME NUMERICAL CALCULATIONS

Finally, we will present another numerical example to demonstrate that statements similar
to the Conjecture in §1 should be true for octahedral newforms. These calculations were
conducted in SAGE [45]. When p = 283, CI(F) has order 3 and the space Si(p) is 3-

dimensional spanned by a dihedral newform h(z) and octahedral newforms fi(z) = fi(z) £
vV —2f5(z), where
h(z)=q+q" =4 +4¢°+0(q"),
fiz)=a—q"+2¢" —¢" — ¢+ O(¢"),
fQ(Z) — q2 _ q3 _ q5 —l—O(qu).
By Lemma 2.4, h(2), fi(z) € S (p) and fo(z) € S; (p). By the Deligne-Serre Theorem, f(z)
arises from p : Gal(K/Q) — GL2(C), where K is the degree 2 extension of the normal closure
of Q[X]/(X* — X — 1) such that Gal(K/Q) = GLy(TF3).
Let Fg be the subfield of K fixed by a subgroup of Gal(K/Q) isomorphic to Z/8Z, and Hj
the cubic subfield of Fg. Explicitly, we can write
Hy = Q[Y]/(Y® +4Y +1),
Fs = Q[X]/(X® —3X° +6X* —7X? +10X* — 7X +6),
with the embedding
Hs — Fg
Vi X2 - X+1

Fix a complex embedding of Fz < C such that X =¢,Y = 0 with ¢, € C having positive
imaginary part. Since Fg is totally complex, the unit group of Fg has rank 2 and is generated
by

=t —t+1luy=1>+t—1.

As in the case of dihedral newforms, one can express the Petersson norms of f, (z) and f_(z)
_p+1

" _ ((s)L(s, Fy)
(fr, fo)=(f-f)= 19 Resg:lL(s,Hg,)Q(?S)(l +p*5)'

Notice the ratio L(s, Fg)/L(s, H3) is the L-function of the quadratic Hecke character of Hj
associated to the Hilbert quadratic norm residue symbol of Fiz/Hj. So it is holomorphic at
s =1 and the right hand side can be evaluated to be 8log |uju3|.

By Proposition 2.6, there exist mock modular forms fl(z) € Mj (p) and f2(2) € M (p)
with shadows fi, fo respectively such that

AE) = (=4 +cf(-Dg ' +c7 0+ > &)

L) = (=20 +d 0+ > )"
n>07XP(n)7éfl

Using Proposition 2.5, we find that
—cf (—4) = cf (=1) = &5 (=2) = 2log [uyuj].

Since M (p) € M (p) and M; (p) € My (p) are both non-empty, the principal part of f;(z)

does not determine it uniquely. However, once i (2) is chosen, then fi is fixed. Similarly,

once ¢ (0),c5 (1) and ¢ (4) are chosen, f is fixed. Since we expect ¢ (n) to be logarithms
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of absolute values of algebraic numbers in Fg, it is natural to choose ¢ (2), c3 (0),c5 (1) and
cy (4) this way and study the other coefficients. So for j = 1,2, we will write

1
il | .
s og |UJ (n)],

where x; € 7 and wu;(n) € C* is some complex number. Then we fix f;(z) by letting
K1 =2,k = uz(0) = us(1) =1 and
—— Pt - P -t

wal) =w(2) = =gt gt gt Tt
From the numerical calculations, we can make predictions of the algebraicity of u;(n). In
the table below, we list c;L (¢) for 7 = 1,2 and various primes ¢. Also, we list the predicted
fractional ideals generated by u;(n) in Fg.

When x,(¢) # 1, the ideal (¢) splits into £o£, in Hjz, and £ splits into I, 0,2 in Fg.
When x,(¢) = 1 and ¢(f1,¢) = %1, the ideal (¢) splits into 1l in Fg. When x,(¢) = 1 and
c(f1,€) = 0, the ideal (¢) splits into £,0Ls1 in Hs and £, splits into l,1l,2 in Fg, where
[;; has order 4 in CI(F§), the class group of Fg. Since Fgz and Hjz have class numbers 8 and
2 respectively, the fractional ideals in Table 3 and Table 4 are all principal. For example,
the value we chose for u;(2) generates the fractional ideal (Iy;/lz2)?, where [, and Iy, have
order 8 in Cl(Fs). So it is necessary to take x; = 2. The numerical pattern also justifies this

choice of f;(2).

7 > 7 47 13 19

TABLE 3. Coefficients of f;(z)

C c(f20) c1 (0) (@1(£))
2 1 1.2075349695016218 | (It /l22)"
3 | -1 |-0.44226603950742649 | (I31/l32)"
5 | -1 | -3.9855512247433431 | (I51/52)
17 [ 0 | -3.2181607607379323 | (ly7.1/li72)"
19 [ 1 | 5.3481233955176073 | (lyo.1/l0.2)"
31 | 1 | -1.7192005338244623 | (I311/T312)"
37 | 0 | 0.32541651822318252 | ([37.1/l372)"
43 1 | -4.6200896216743352 | ([13.1/l132)"
A7 | -1 | -1.0203031328088645 | ([47.1/l17)"
53 | 0 | 5.8419201851710110 | (Iss1/l532)
67 | 0 | -3.9318486618330462 | (Ig7.1/lg72)"
79 | 0 | 7.5720154112803967 | (Lrg1/lro2)®
107 0 | -0.81774052769784944 | (11071 /T107.2)"
109 -1 | 4.8808523053451562 | (I100.1/T100.2)"
283 0 6.86483405137284 | ([as3.1/Tos32)"
TABLE 4. Coefficients of f5(2)

C | e(fr,0) ¢ (€) (a2(0))

7T -1 [-3.27983974462451 | (71 /l75

11| 1 | -2.56257986300244 | 111/
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14.
15.

16.

17.

18.
19.

20.
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3] 1 -5.57196302179201 li3.1/ 030

23 | -1 1.01652189648251 [25,1/123,2

29 | -1 1.54494007675715 l29.1/T20 2

411 1 0.771808245755645 (11/l12

1] 0 -4.99942007705695 | (I71.1/l1.2)?

73] 0 -1.64986308549260 | (l73,1/l732)>

83 | -2 8.97062724307569 1

89 | -1 | -0.399183274865547 | Is91/ls02

101] 0 5.99108448704487 | (lio1.1/01.2)

283 1 4.48531362153791 1

643 2 |2.32782185606303¢-10 1

7731 2 | 5.08403073372794e-9 1

859 | -2 -8.97062719191082 1
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