ON SUMS OF FRACTIONAL PARTS

W. DUKE

ABSTRACT. The difference between the sums of the fractional parts of integer multiples of two irrational numbers, when these irrationals differ by a rational number, is unbounded unless the difference is an integer.

1. INTRODUCTION

For $\alpha \in \mathbb{R}$ let $\{a\} = a - \lfloor a \rfloor$. For irrational α and a nonnegative integer n define

$$S(\alpha, n) = \sum_{k=1}^{n} (\{k\alpha\} - \frac{1}{2}).$$

This deceptively simple looking sum has been thoroughly studied for a long time,¹ but it still presents attractive unsolved problems. It is well known (see e.g. [10, p.104]) that $|S(\alpha, n)|$ is unbounded in n for a fixed irrational α . Since it is obvious that $S(\alpha, n) + S(\beta, n) = 0$ if $\alpha + \beta \in \mathbb{Z}$, a natural question arises: is it possible for

 $|S(\alpha, n) + S(\beta, n)|$

to be bounded when α is irrational and $\alpha + \beta \in \mathbb{Q}$ is not an integer?

Theorem 1. Suppose that α is irrational and that $\alpha + \beta$ is rational. Then the values of $|S(\alpha, n) + S(\beta, n)|$ are unbounded in n unless $\alpha + \beta \in \mathbb{Z}$, in which case it is zero.

As a consequence, given any (irrational) real quadratic α , we have that $|S(\alpha, n) + S(\alpha', n)|$ is bounded if and only if $\alpha + \alpha' \in \mathbb{Z}$, where α' is the conjugate of α . Under the additional assumption that $\alpha \alpha' = 1$, this consequence was conjectured in [3, Conj. 6.17] in relation to some interesting problems in symplectic geometry about symplectic embeddings of ellipsoids (see also [12]).

The sum S arises in the problem of counting lattice points in a right triangle whose sides are on the positive axes. This connection is also behind its appearance in [3]. Suppose that $\alpha, \beta > 0$. Consider the counting function of lattice points inside the closed triangle Δ with vertices at $(0,0), (0,\alpha)$ and $(0,\beta)$, when it is scaled by t > 0:

$$F(t) = \#(t\Delta \cap \mathbb{Z}^2).$$

A very special case of a well-known result of Ehrhart (see [2]) implies that for integers α, β and *integral* ℓ the function $F(\ell)$ is a quadratic polynomial in ℓ . Explicitly, when $gcd(\alpha, \beta) = 1$, we have

(1)
$$F(\ell) = \frac{\alpha\beta}{2}\ell^2 + \frac{\alpha+\beta+1}{2}\ell + 1.$$

¹See [10, IX, §2] for a summary of the classical literature on S up until about 1935. A more recent source is [11], especially Chapter 2. An elegant elementary approach to their theory was given in [15] (see the Math Review MR0006753 for some corrections). The book [1] contains a striking central limit theorem for $S(\alpha, n)$, when α is real quadratic.

W. DUKE

For general rational α, β , Ehrhart's result is that (1) still holds provided we replace the coefficient of ℓ and 1 by certain periodic functions of ℓ having integral periods. Although they need not be constant, these periodic coefficients are clearly still bounded.

Suppose now that $\frac{\alpha}{\beta}$ is irrational and define, for any t > 0,

(2)
$$C(t) = F(t) - \left(\frac{\alpha\beta}{2}t^2 + \frac{1}{2}(\alpha + \beta)t\right).$$

By [7, Theorem A1] we have that C(t) = o(t). When is $C(\ell)$ bounded for integers ℓ ? For certain α, β , the answer follows easily from Theorem 1.

Corollary 1. Suppose that $\alpha, \beta = \alpha'$ are the (real quadratic) solutions to

$$ax^2 - bx + b = 0,$$

where $a, b \in \mathbb{Z}^+$ are such that $b^2 - 4ab > 0$ is not a square and gcd(a, b) = 1. Then $|C(\ell)|$ is bounded if and only if α, β are real quadratic integers, in which case $C(\ell) = 1$.

Proof. For general $\alpha, \beta > 0$ and $m, n \in \mathbb{Z}^+$ we have the identity

$$C(\frac{m}{\alpha} + \frac{n}{\beta}) = 1 - S(\frac{\alpha}{\beta}, n) - S(\frac{\beta}{\alpha}, m).$$

For a proof see [16, Theorem I]. Our assumptions imply that $\frac{1}{\alpha} + \frac{1}{\beta} = 1$, so

$$C(\ell) = 1 - S(\frac{\alpha}{\beta}, \ell) - S(\frac{\beta}{\alpha}, \ell).$$

The result now follows from Theorem 1 after noting that α, β are real quadratic integers exactly when a = 1, while

$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{(\alpha + \beta)^2}{\alpha\beta} - 2 = \frac{b}{a} - 2.$$

Remark. Under the assumptions of Corollary 1, when α, β are real quadratic integers we have for $\ell \in \mathbb{Z}^+$ that

$$F(\ell) = \frac{b}{2}\ell^2 + \frac{b}{2}\ell + 1,$$

which is an example of the Ehrhart function of a pseudo-integral triangle (see [4]).

2. Proof of Theorem 1

Theorem 1 follows without difficulty from a result of Schoißengeier [17], which is a reformulation of one of Oren [13]. These papers give very useful developments of earlier work on local discrepancies of the sequence $\{k\alpha\}$, especially [6], [8], [9], [14]. Here "local" refers to the estimation of the discrepancy from uniform distribution of the sequence when measured with respect to a fixed interval or, more generally, with respect to integration of a fixed function.

Set $D(\alpha, \gamma, n) = S(\alpha + \gamma, n) - S(\alpha, n)$ where α is irrational and γ is rational. We want to show that $|D(\alpha, \gamma, n)|$ is unbounded unless $\gamma \in \mathbb{Z}$. Let $\gamma = \frac{p}{q} \in \mathbb{Q}$ be in reduced form with q > 1. We have

$$D(\alpha, \gamma, n) = \sum_{1 \le \ell \le n} \{\ell(\alpha + \frac{p}{q})\} - \{\ell\alpha\}.$$

Write $\ell = qk - r$ and $\delta = q\alpha$. We may assume that $1 \le r \le q - 1$ and $1 \le k \le m$ if n = mq - 1. Note that terms with r = 0 are zero and can be omitted. By splitting into arithmetic progressions modulo q, it follows that

$$D(\alpha, \gamma, n) = \sum_{1 \le r < q} \sum_{1 \le k \le m} \{k\delta - r\alpha - \frac{pr}{q}\} - \{k\delta - r\alpha\}.$$

Next apply the elementary identity for $x \in \mathbb{R}$:

$$\{k\delta + x\} = \{k\delta\} + \chi_{[0,\{-x\})}(k\delta) - \{-x\},\$$

where χ is the usual characteristic function made Z-periodic. Thus

$$D(\alpha, \gamma, n) = \sum_{1 \le k \le m} \left(\sum_{1 \le r < q} \chi_{[0, \{r\alpha + \frac{pr}{q}\})}(k\delta) - \chi_{[0, \{r\alpha\})}(k\delta) \right)$$
$$- m \sum_{1 \le r < q} \{r\alpha + \frac{pr}{q}\} - \{r\alpha\}$$
$$= \sum_{k \le m} f(k\delta) - m \int_0^1 f(x) dx$$

where f is a periodic step function. It follows from Cor. 3 of [17] that $D(\alpha, \gamma, n)$ is bounded if and only if f is in the space of periodic step functions generated by functions of the form $\chi_{I+\mathbb{Z}}(x)$, where $I \subset [0,1)$ is an interval whose length is in $\mathbb{Z} + q\alpha\mathbb{Z}$. Since α is irrational and $1 \leq r < q$, we see that f is not in this space, proving Theorem 1. See Figure 1 for an illustration of a step function f that arises.

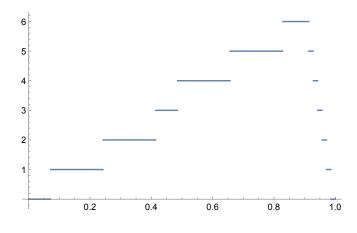


FIGURE 1. The step function f when $\alpha = \sqrt{2}$ and $\frac{p}{q} = \frac{4}{7}$

In case q = 2 the above calculation is quite transparent and the result is a consequence of [9] or [6]. For this, assume that $\frac{p}{q} = \frac{1}{2}$ and that $0 < \alpha < \frac{1}{2}$. Then

$$D(\alpha, \frac{1}{2}, 2m - 1) = \sum_{1 \le k \le m} \chi_{[\alpha, \alpha + \frac{1}{2})}(2k\alpha) - \frac{m}{2},$$

which is the local discrepancy of the sequence $\{2k\alpha\}$ for $1 \le k \le m$ in $[\alpha, \alpha + \frac{1}{2})$. By [9] this is unbounded since $\frac{1}{2} \notin \mathbb{Z} + 2\alpha\mathbb{Z}$.

W. DUKE

Remark. An apparently quite difficult problem is to give criteria for the one-sided boundedness of $D(\alpha, \gamma, n)$. In particular, the possible one-sided boundedness of Cfrom (2) is of interest for the problems of [3] mentioned above. This issue does not seem to have been extensively treated for general local discrepancies. Even simple local discrepancies like that of $\{2k\alpha\}$ in the interval $[\alpha, \alpha + \frac{1}{2})$ remain mysterious. Some results are given in [5].

Acknowledgements. I thank Peter Sarnak for informing me of the conjecture in [3] and Dan Cristofaro-Gardiner for some helpful comments. I also thank the referee for a useful correction and comment.

References

- Beck, J., Probabilistic Diophantine approximation. Randomness in lattice point counting. Springer Monographs in Mathematics. Springer, Cham, 2014. xvi+487 pp.
- [2] Beck, M.; Robins, S. Computing the continuous discretely. Integer-point enumeration in polyhedra. Second edition. With illustrations by David Austin. Undergraduate Texts in Mathematics. Springer, New York, 2015. xx+285 pp.
- [3] Cristofaro-Gardiner, D; Holm, T.S.; Mandini, A.; Pires A.R., On infinite staircases in toric symplectic four-manifolds, arXiv:2004.13062
- [4] Cristofaro-Gardiner, D.; Li, T.X.; Stanley, R. P. Irrational triangles with polynomial Ehrhart functions. Discrete Comput. Geom. 61 (2019), no. 2, 227–246.
- [5] Dupain, Y.; Sós, V. T. On the one-sided boundedness of discrepancy-function of the sequence {na}. Acta Arith. 37 (1980), 363–374.
- [6] Furstenberg, H.; Keynes, H.; Shapiro, L. Prime flows in topological dynamics. Israel J. Math. 14 (1973), 26–38.
- [7] Hardy, G. H.; Littlewood, J. E. Some Problems of Diophantine Approximation: The Lattice-Points of a Right-Angled Triangle. Proc. London Math. Soc. (2) 20 (1921), no. 1, 15–36.
- [8] Hecke, E. Uber analytische Funktionen und die Verteilung von Zahlen mod. eins. Abh. Math. Sem. Univ. Hamburg 1 (1922), no. 1, 54–76., also in Werke.
- Kesten, H. On a conjecture of Erdös and Szüsz related to uniform distribution mod 1. Acta Arith. 12 (1966/67), 193–212.
- [10] Koksma, J. F. Diophantische Approximationen. Reprint. Springer-Verlag, Berlin-New York, 1974. viii+157 pp.
- [11] Kuipers, L.; Niederreiter, H. Uniform distribution of sequences. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. xiv+390 pp.
- [12] McDuff, D.; Schlenk, F. The embedding capacity of 4-dimensional symplectic ellipsoids. Ann. of Math. (2) 175 (2012), no. 3, 1191–1282.
- [13] Oren, I, Admissible functions with multiple discontinuities. Israel J. Math. 42 (1982), no. 4, 353–360.
- [14] Ostrowski, A. Notiz zur Theorie der Diophantischen Approximationen. Jahresbericht d.D.M.V., 36, 1927, pp. 178–180., 39, 1930, pp. 34-46, In Collected Math. Papers Vol. 3.
- [15] Pillai, S. S. On a problem in Diophantine approximation. Proc. Indian Acad. Sci., Sect. A. 15, (1942). 177–189.
- [16] Pillai, S. S. Lattice points in a right-angled triangle. II. Proc. Indian Acad. Sci., Sect. A. 17, (1943). 58–61.
- [17] Schoißengeier, J., Regularity of distribution of (na)-sequences. Acta Arith. 133 (2008), no. 2, 127–157.

UCLA MATHEMATICS DEPARTMENT, BOX 951555, LOS ANGELES, CA 90095-1555 Email address: wdduke@ucla.edu