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A RELATION BETWEEN CUBIC EXPONENTIAL
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W. DUKE AND H. IWANIEC (RUTGERS UNIVERSITY)
Dedicated to the memory of E. Grossweld

Cubic exponential sums of the type

(1) 3 exp (mﬁﬂ&tﬁf)

x (mod q)

occur in numerous problems of additive number theory. Weil's estimate for
these sums is basic in their application. R. Livné [L1] has conjectured that these
sums satisfy the Sato-Tate distribution with respect to prime g provided that
ab # 0. He established in [L2] Birch’s conjecture that they satisfy the Sato-Tate
distribution with respect to the parameters a,b(modg),a # 0, as ¢ tends to
infinity over primes. Livné’s conjecture is perhaps out of the range of current
methods. However, one should be able to estimate sums of sums of type (1) over
all moduli q. A similar situation is well known for Kloosterman sums in which
case the spectral theory of automorphic forms yields good estimates (see [I] and
the references there).

In fact, we can show that the cubic sum (1) 4s a Kloosterman sum with cubic
character. This result should provide a spectral resolution of sums over ¢ of sums
(1) in terms of automorphic forms on the three-fold cover

of GL(2). The special case b = 0 is closely related to Kummer’s problem about
the distribution of cubic Gauss sums. Here the spectral theory (the FEisenstein
part) has already yielded important results (see [P]). The identity we give in this
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note is analogous to Nicholson’s formula for the Airy integral which states that

{see [W, p.190.)):

00 1/2
f cos8 (ts +ty) dt = LKU:} (2 (3/3)3/2) s Y > 0.
o 3

Here K, (z) is the usual Bessel function which has the following integral repre-
sentation (see e.g. [W, p.183.]):

T dt
K, (z) = % (;) -/0 e’t_zz"(ét)t—"wi—, z>0.

Thus Nicholson’s formula can be writien as

/m gt (e’ +2) gy = 371/2 /w (zfa)? e_m“(saam)ddf , ¢>0.
oo 0

We give the finite field analogue of this identity.

Theorem. Let F = GF(q), ¢ =p", withg=1 (mod 3) and e(z) = e(trz/p).
Then for ¢ a multiplicative character of order three and a € F* = F — {0} we
have

2 E elaz® + 1) = Z Pz d)e{z — ax)

zEF zEF*

where T = z~! for ¢ € F*.

To prove this, let for ¢ € F*

Bla)= Y e(az® + 1)

zEF

and compute for multiplicative characters x the Fourier transform
B(x) = x(a) B(a)
acF
= Z Z e(az® + ) x(a)
[+3 x
=" x(a) e(az®)e(z)
T a&

=(a- 1800 +7(X) S P (@)el@),



that

epre-

z/p).
0} we
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where T(x) = ) o x(z)e(z) and
1 ifx=1
6(X) = { K .
0 otherwise.

Thus A
B(x) = (g~ 1) () + (@) (x*) -

Now the triplication formula for Gauss sums states that for any x
3y _ 1.3 2
T(x") = R @A) (x¥") s
where as above 1 has order three. This is a special case of the Davenport-Hasse
relation which was first obtained in {D-H]. However, in case ¢ = p the triplication

formula was given an elementary proof in [G-S]. We refer to the discussion there.
Thus we have

B = (g - 1)6(x) + %xﬂ(s)»roz)r(x)ﬂxw)r(xwﬂ
= x(=3%)r ()T (x9?) .
after using the classical relation

()7 (%) = x(~1)g — 8(x)g — 1).

Hence
= wzx a)Bla) = —— }:x( ~3%a)r(x®)7(x¥*%)
W 3 ) Zx ~3%a)r ()T (x¥)
= 9P(a) Z w(z)e(z +y)
Ty=-3%3
= 1(a) Z P(x)e(z — 33az)
zEF*
proving (2).
Hemark:

For ¢ = p and (b,p) = 1 sum (1) reduces to (2). If ¢ is square-free the cubic sum
(1) can be treated through multiplicativity.
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