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In this paper, regularized Petersson inner products of certain weight 3
2 weakly holomo-

rphic (or harmonic) modular forms are expressed in terms of real quadratic analogs

of traces of singular moduli. The proofs make use of the theory of weight 1
2 mock-

modular forms.

1 Introduction

There are numerous connections between quadratic fields and modular forms. One of

the most beautiful is provided by the theory of singular moduli, which are the values of

the classical j-function

j(τ ) = q−1 + 744 + 196884q + 21493760q2 + · · · (q = e(τ ))

at imaginary quadratic irrationalities. (Singular moduli are also sometimes called

singular invariants, for instance in [8]. Strictly speaking, this is more accurate since

the term moduli refers to values of the modulus k(τ ) of an elliptic integral.) It was

observed recently by Kaneko, and independently by Duke et al. that it is possible to
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Real Quadratic Analogs of Traces of Singular Moduli 3083

define real quadratic analogs of singular invariants through cycle integrals of the j-

function. Although their theory is still in its infancy, various results and conjectures

about them have been given in [3, 5]. In this paper, we will explore them further and

give some new applications of the results of [3]. In particular, we will express certain

sums over classes (“traces”) of these invariants as regularized inner products of weakly

holomorphic modular forms of weight 3
2 .

2 Statement of Results

Unless otherwise specified, in this paper d always denotes a discriminant, which means

that it is a non-zero integer with d≡ 0, 1 (mod 4). It is called fundamental if it is the

discriminant of the number field Q(
√

d). Every discriminant d is a unique square mul-

tiple of a fundamental discriminant. Suppose that d is a non-square discriminant. For

each such d, let Q(d) be the set of all complex numbers of the form

w = −b + √
d

2a
where d= b2 − 4ac

with relatively prime a, b, c ∈ Z. When d< 0 we assume that a> 0 and that
√

d∈H, the

upper half-plane. The modular group Γ = PSL(2, Z) splits Q(d) into equivalence classes

through its natural linear fractional action. The set of classes Γ \Q(d) forms a finite

abelian group of order h(d), which is the class number. The group operation can be

defined through that of associated binary quadratic forms, where we associate to w the

form ax2 + bxy + cy2. The identity class is represented by
√

d/2 if d is even and by (−1 +√
d)/2 if d is odd. The isotropy group Γw = {γ ∈ Γ ; gw = w} consists of all transformations

γ = ±

⎛
⎜⎝

t + bu

2
cu

−au
t − bu

2

⎞
⎟⎠ , (2.1)

where (t, u) is an integral solution to the Pell equation t2 − du2 = 4. When d< 0 this group

is trivial unless d= −3,−4, in which case it has order 3 or 2, respectively. When d> 0 it

is infinite cyclic with generator in (2.1) coming from t, u> 0 with t minimal. In all cases

the regulator R(d), which is a certain co-volume of Γw, depends only on d and is given

for any w ∈Q(d) by

R(d) =
⎧⎨
⎩2π(#Γw)−1 if d< 0,

2 log εd if d> 0,
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3084 W. Duke et al.

where εd = (t + u
√

d)/2. If d �= 1 is fundamental, then we have the elegant class number

formula of Dirichlet

R(d)h(d) = |d|1/2L(1, χd), (2.2)

where χd is the Kronecker symbol. For positive fundamental d> 1 the size of R(d) is both

erratic and mysterious as d varies. This makes the corresponding behavior of h(d) even

more inaccessible than that of L(1, χd).

It is useful to define the general Hurwitz function h∗(d) for the non-square dis-

criminants d by

h∗(d) = 1

2π

∑
�2|d

R
(

d

�2

)
h
(

d

�2

)
. (2.3)

For d< 0 we have that h∗(d) = H(|d|), where H(n) is the usual Hurwitz class number.

By convention H(0) = − 1
12 and H(n) = 0 for n≡ 1, 2 (mod 4). Early on it was realized that

there is a connection between H(n) and modular forms of weight 3
2 . Let θ be the classical

Jacobi theta function

θ(τ ) = 1 + 2q + 2q4 + 2q9 + · · · , (2.4)

which is a modular form of weight 1
2 for Γ0(4), the usual congruence subgroup of Γ. Here

as usual q = e(τ ) = e2πiτ for τ = x + iy∈H. Then

θ(τ )3 =
∑
n≥0

r3(n)qn = 1 + 6q + 12q2 + 8q3 + 6q4 + 24q5 + · · · ,

where r3(n) is the number of representations of nas the sum of three squares. Now θ(τ )3

is a modular form of weight 3
2 for Γ0(4) and its coefficients are related to H(n) by the

famous result of Gauss, which states that for all n≥ 0 we have

r3(n) = 12(H(4n) − 2H(n)).

Zagier [9] (see also [4]) showed that if we allow a modular form to be harmonic we get a

generating series for H(n) itself. Specifically, the function

g0(τ ) =
∑
n≥0

H(n)qn + y−1/2
∑
n∈Z

β(4πn2y)q−n2
(2.5)
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Real Quadratic Analogs of Traces of Singular Moduli 3085

has weight 3
2 for Γ0(4), meaning that it transforms like θ3. Here for y> 0

β(y) = 1

16π

∫∞

1
t−3/2 e−yt dt

is an incomplete gamma function. The Fourier coefficients of g0 are supported on

integers nwith n≡ 0, 3 (mod 4), and there are no non-zero holomorphic forms of weight
3
2 for Γ0(4) with this property. If we allow poles in the cusps, then there are infinitely

many, and the space M!
3/2 of all such forms has a natural basis which is also found by

Zagier [10]. Its elements are parameterized by positive discriminants (squares allowed).

The first one is given explicitly in terms of the usual modular forms E4 and Δ by

g1(τ ) = θ

(
τ + 1

2

)
E4(4τ)

Δ(4τ)1/4
= q−1 − 2 + 248 q3 − 492 q4 + 4119 q7 − 7256 q8 + · · · . (2.6)

For each d> 0 there is a unique form gd ∈ M!
3/2 with Fourier series of the form

gd(τ ) = q−d +
∑

0≤n≡0,3(4)

B(d, n)qn, (2.7)

where the coefficients B(d, n) are all integers and

B(d, 0) =
⎧⎨
⎩−2 if d is a square,

0 otherwise.

For a fixed positive d, Zagier discovered that B(d, n) is analogous to the Hurwitz class

number H(n). This is illustrated by the simplest case when d= 1, n> 4 and −n is funda-

mental where

B(1, n) =
∑

w∈Γ \Q(−n)

j1(w), (2.8)

with j1 = j − 744 being the j-function normalized to have constant term 0. The fact that

B(1, n) is an integer reflects the classical result that j1(w) is an algebraic integer and the

sum over Γ \Q(−n) gives its algebraic trace. For every d and n such a formula holds for

B(n, d), but it involves character twists and more general modular functions.

In this paper we will consider the regularized Petersson inner product of two

different gd’s. Recall that for two modular forms f and g of weight 3
2 for Γ0(4) with
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3086 W. Duke et al.

singularities only in the cusps we can define

〈 f, g〉 = lim
Y→∞

∫
F4(Y)

f(τ )g(τ )y3/2 dx dy

y2
, (2.9)

where F4(Y) is the standard truncated fundamental domain for Γ0(4) obtained by remov-

ing Y-neighborhoods of the cusps and given explicitly below. Of course this might not

converge but when it does its value can be interesting.

Theorem 2.1. For d> 1 fundamental, and g0 and gd defined in (2.5) and (2.7) we have

〈gd, g0〉 = − 3

4π
d−1/2 (log εd) h(d). �

In view of the class number formula (2.2) this can be written as

L(1, χd) = −8π

3
〈gd, g0〉.

It is a pleasant surprise that the inner product of the “imaginary quadratic” functions g0

and gd contains real quadratic information! Note that it follows that g0 and gd are never

orthogonal for d> 1 fundamental. Theorem 2.1 should be compared with the weight 1
2

result of Borcherds [1, Corollary 9.6, p. 530].

What about 〈gd1 , gd2〉 when d1, d2 > 0? Looking at (2.8) for a clue, to give a formula

here we first must show how to extend the domain of the modular function j1 = j − 744

to include real quadratic numbers. This can be done by setting for d> 0

j1(w) = j1

(
−b + √

d

2a

)
= 1

2R(d)

∫α

−α

j1

(
− b

2a
+ i

√
d

2|a| eiθ

)
dθ

cos θ
, (2.10)

where

α = 2 tan−1

(
u
√

d

t

)
,

with t and u defined below (2.1). As will be shown below, this extension j1 is still

Γ -invariant. It is obvious from (2.10) that for w′ = (b + √
d)/−2a we have j1(w) = j1(w′) =

j1(−w). This observation was first made by Kaneko [5], who used a different looking but

equivalent definition of j1(w).

Suppose that D is a fundamental discriminant. It is known that the real charac-

ters χ of Γ \Q(D), the genus characters, are in one-to-one correspondence with distinct
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Real Quadratic Analogs of Traces of Singular Moduli 3087

(unordered) factorizations D = dd′ of D into fundamental discriminants. The value of χ

can be computed unambiguously from a representative w = (−b + √
D)/2a of Γ \Q(D) by

χ(w) =

⎧⎪⎪⎨
⎪⎪⎩

(
d

a

)
if (a, d) = 1,(

d′

a

)
if (a, d′) = 1.

Clearly χ(w) = χ(w′) = χ(−w). Using the definition of j1(w) for real quadratic w given

above we have the following evaluation.

Theorem 2.2. Suppose that d and d′ are distinct positive fundamental discriminants.

Then

〈gd, gd′ 〉 = 3

4π
D−1/2 log εD

∑
w∈Γ \Q(D)

χ(w) j1(w),

where D = dd′ and χ is the corresponding genus character of Γ \Q(D). �

In particular, we have

〈gd, g1〉 = 3

4π
d−1/2 log εd

∑
w∈Γ \Q(d)

j1(w).

We remark that Theorems 2.1 and 2.2 can be generalized to include some non-

fundamental discriminants.

3 Preliminaries

First we will review some basic facts about modular forms. Recall the Jacobi theta func-

tion θ(τ ), which was defined in (2.4). Set

jθ (γ, τ ) = θ(γ τ)

θ(τ )
for γ ∈ Γ0(4). (3.1)

As usual, for non-zero z∈ C and v ∈ R we define zv = |z|v exp(iv arg z) with arg z∈ (−π, π ].

We have the explicit evaluation [7, p. 447]

jθ (γ, τ ) = (cτ + a)1/2ε−1
a

( c

a

)
for γ = ± ( ∗ ∗

c a ) ∈ Γ0(4), (3.2)
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3088 W. Duke et al.

where (c/a) is the extended Kronecker symbol and

εa =
⎧⎨
⎩1 if a≡ 1 (mod 4),

i if a≡ 3 (mod 4).

For k∈ 1
2Z say that f defined on H has weight k for Γ0(4) (or just has weight k,

when the group is clear) if

f(γ τ) = jθ (γ, τ )2k f(τ ) (3.3)

for all γ ∈ Γ0(4). For k∈ 2Z and γ = (
a b
c d

) ∈ PSL(2, R) it is usual to write

( f |kγ )(τ ) = (cτ + d)−k f(τ )

and for such k we see from (3.2) that f has weight k for Γ0(4) if and only if f |kγ = f for

all γ ∈ Γ0(4).

The group Γ0(4) has three inequivalent cusps represented by i∞, 0, and 1
2 . Let

F4 be the fundamental domain for Γ0(4) shown in Figure 1. Let F4(Y) be the domain

truncated at cusp i∞ by the line Im(τ ) = Y, at cusp 1
2 by the circle |τ − ( 1

2 + i/8Y)| = 1/8Y,

and at cusp 0 by the circle |τ − i/8Y| = 1/8Y. Consider the scaling matrices in σ0, σ1/2 ∈
PSL(2, R) given by

σ0 = ±
(

0 − 1
2

2 0

)
and σ1/2 = ±

(
1 0

2 1

)
.

One checks that σ0 maps i∞ to 0 and Im(τ ) = Y to |τ − i/8Y| = 1/8Y and that σ1/2 maps

i∞ to 1
2 and Im(τ ) = Y to |τ − ( 1

2 + i/8Y)| = 1/8Y, both with unchanged orientation. The

next result follows easily.

Lemma 3.1. Suppose that f :H→ C is continuous and that f |2γ = f for all γ ∈ Γ0(4).

Then for Y ≥ 2 we have

∫
∂F4(Y)

f(τ ) dτ = −
∫1/2+iY

−1/2+iY
( f(τ ) + f |2σ0(τ ) + f |2σ1/2(τ )) dτ,

where the first integral is taken in the positive direction around the boundary

of F4(Y). �
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Real Quadratic Analogs of Traces of Singular Moduli 3089

Fig. 1. The fundamental domain F4 for Γ0(4).

If f of weight k for Γ0(4) is smooth, for example, it will have a Fourier expansion

in each cusp. For the cusp at i∞ we have the Fourier expansion

f(τ ) =
∑

n

a(n, y)e(nx) (3.4)

which, if f is holomorphic, has a(n, y) = a(n)e(niy). Set

f e(τ ) =
∑

n≡0(2)

a
(
n,

y

4

)
e
(nx

4

)
and f o(τ ) =

∑
n≡1(2)

a
(
n,

y

4

)
e
(n

8

)
e
(nx

4

)
. (3.5)

Suppose that k∈ 1
2 + Z and that the Fourier coefficients a(n, y) satisfy the plus space

condition, meaning that they vanish unless (−1)k−1/2n≡ 0, 1 (mod 4). An easy extension

of arguments given in [6, p. 190] shows that such an f satisfies

(
2τ

i

)−k

f
(

− 1

4τ

)
= α f e(τ ) and

(
2τ + 1

i

)−k

f
(

τ

2τ + 1

)
= α f o(τ ), (3.6)

where

α = (−1)�(2k+1)/4�2−k+1/2.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2011/13/3082/677378 by U
C

LA D
igital C

ollections Services user on 26 August 2020



3090 W. Duke et al.

In particular, the behavior of such an f at the cusps 0 and 1
2 is determined by that at

i∞. Thus to check that a form is weakly holomorphic, meaning it is holomorphic on H
and meromorphic in the cusps, one only needs to look at the Fourier expansion at i∞.

As is now standard, we denote by M!
k the space of weakly holomorphic modular forms

of weight k for Γ0(4) whose Fourier coefficients satisfy the plus space condition.

We need the differential operator ξk defined for any k∈ R by

ξk f(τ ) = 2iyk fτ̄ (τ ). (3.7)

Clearly ξk f = 0 if and only if f is holomorphic. The operator ξ is related to the weight k

Laplacian via

− ξ2−k ◦ ξk = Δk = −y2(∂2
x + ∂2

y) + iyk(∂x + i∂y). (3.8)

When k∈ 1
2Z it is readily checked that if f has weight k for Γ0(4), then ξk f has weight

2 − k for Γ0(4) (see [2] for further results about the operator ξk.)

Lemma 3.2. Suppose k∈ 1
2 + Z and that g is holomorphic on H of weight k for Γ0(4)

whose Fourier expansion satisfies the plus space condition. Suppose that h is a smooth

function of weight 2 − k for Γ0(4) whose Fourier expansion satisfies the plus space con-

dition for weight 2 − k. Then, for Y ≥ 2 we have

∫
F4(Y)

g(τ )ξ2−kh(τ )yk dx dy

y2
=

∫1/2+iY

−1/2+iY
(g(τ )h(τ ) + 1

2
ge(τ )he(τ ) + 1

2
go(τ )ho(τ )) dτ. �

Proof. By (3.7) and the identity dτ dτ̄ = 2i dx dy we have

∫
F4(Y)

g(τ )ξ2−kh(τ )yk dx dy

y2
=

∫
F4(Y)

g(τ )hτ̄ (τ ) dτ dτ̄ .

We now apply Green’s theorem in the form

∫
F4(Y)

g(τ )hτ̄ (τ ) + h(τ )gτ̄ (τ ) dτ dτ̄ = −
∫
∂F4(Y)

g(τ )h(τ ) dτ,

in which the second term of the first integral vanishes as g is holomorphic. Now f = gh

has weight 2 for Γ0(4) and so satisfies f |2γ = f for all γ ∈ Γ0(4). Thus, by Lemma 3.1
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we have

∫
F4(Y)

g(τ )ξ2−kh(τ )yk dx dy

y2
=

∫1/2+iY

−1/2+iY
( f(τ ) + f |2σ0(τ ) + f |2σ1/2(τ )) dτ.

We are reduced to proving the following identities, which follow easily from (3.6).

(gh)|2σ0 = 1
2 gehe,

(gh)|2σ1/2 = 1
2 goho. �

4 Inner Products

First we prove Theorem 2.1. In fact, we have a more general result. Recall the general

Hurwitz number h∗(d) defined in (2.3). Theorem 2.1 is a special case of the following

result.

Proposition 4.1. Suppose that d is a positive non-square discriminant. Then

〈gd, g0〉 = − 3
4 d−1/2h∗(d). �

Proof. Recall the function g0, which was defined in (2.5). It was shown in [3] that there

is a real analytic function h(τ ) having weight 1
2 for Γ0(4) with

ξ1/2h(τ ) = −2g0(τ ). (4.1)

Let P denote the set of all positive non-square discriminants and Pc the rest of the

discriminants. The Fourier expansion of h can be written as

h(τ ) =
∑
n∈P

n−1/2h∗(n)qn +
∑
n∈Pc

a(n, y)e(nx), (4.2)

where the function defined by the second sum is � y1/2 for y≥ 2. By Lemma 3.2 we have

〈gd, g0〉 = −1

2
lim

Y→∞

∫1/2+iY

−1/2+iY
(gd(τ )h(τ ) + 1

2
ge

d(τ )he(τ ) + 1

2
go

d(τ )ho(τ )) dτ.

Using the Fourier expansions of h and gd and the fact that gd(τ ) = q−d + O(q) from

(2.7) when d is not a square, we see that only the constant terms of the products can
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3092 W. Duke et al.

contribute to the last integral. Now we deduce Proposition 4.1 upon using (3.5) to check

that we get a non-zero contribution from ge
d(τ )he(τ ) only when d is even while we get one

from go
d(τ )ho(τ ) only when d is odd. �

It is easy to check that

ξ3/2g0(τ ) = − 1

16π
θ(τ).

Thus by (3.8) and (4.1) we see that h satisfies the inhomogeneous equation

Δ1/2h(τ ) = − 1

8π
θ(τ).

In order to prove Theorem 2.2 we need to employ weakly harmonic modular forms of

weight 1
2 for Γ0(4). For background on their theory we refer to [3] and the references

there, especially [2]. Suppose that f is a real analytic function on H of weight k for Γ0(4)

that is harmonic on H in the sense that

Δk f = 0.

Such an f will have a Fourier expansion at i∞ each of whose terms has at most linearly

exponential growth. Such an f is called weakly harmonic if it has only finitely many

such terms. If the Fourier expansion satisfies the plus space condition then by (3.6) its

growth in the other cusps is at most linearly exponential. The space of all such forms is

denoted by H !
k. It is clear from (3.8) that M!

k ⊂ H !
k.

It follows from [3, Theorem 1] that H !
1/2 has a natural basis {hd}d≡0,1(4) where

{hd}d≤0 is the Borcherds basis for M!
1/2 with hd(τ ) = qd + O(q) for each d≤ 0. For d> 0 we

have that hd satisfies ξ1/2hd = 2d1/2gd and its Fourier expansion has the form

hd(τ ) = ad(d, y)e(dx) − 4y1/2δ�,d +
∑

0<n≡0,1(4)
n�=d

n−1/2ad(n)qn +
∑

n≡0,1(4)
n<0

ad(n, y)e(nx),

where ad(d, y) ∼ 1/2π(dy)−1/2 e2πdy as y→ ∞ is the lone exponentially growing term and

the function defined by the second sum is bounded for y≥ 2. An argument like that in

the previous proof yields the following result.
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Real Quadratic Analogs of Traces of Singular Moduli 3093

Proposition 4.2. Suppose that n and d are distinct positive discriminants, not both

squares. Then

〈gn, gd〉 = 3
4 (nd)−1/2ad(n). �

It was shown in [3] that ad(n) = an(d) so it follows that 〈gn, gd〉 ∈ R. If d= n or

both are squares, then the regularized inner product will not be finite. However, one can

isolate the growing terms and subtract them in order to compute ad(n).

5 Values of Modular Functions at Real Quadratic Numbers

Now we apply more results of [3] to deduce Theorem 2.2. For any modular function

f ∈ C[ j] we define f(w) for w ∈Q(d) with d> 0 not a square by

f

(
−b + √

d

2a

)
= 1

2R(d)

∫α

−α

f

(
− b

2a
+ i

√
d

2|a| eiθ

)
dθ

cos θ
, (5.1)

where α = 2 tan−1(u
√

d/t) and t, u∈ Z+ solve t2 − du2 = 4 with u minimal. If w = (−b +√
d)/2a, a computation shows that for Q(x, y) = ax2 + bxy + cy2 we have

R(d) f(w) =
∫

C Q

f(τ ) dτQ where dτQ =
√

d

Q(τ, 1)
dτ

and C Q is any smooth curve from z= −b/2a + i
√

d/2|a| ∈H to gQz, where

gQ = ±

⎛
⎜⎝

t + bu

2
cu

−au
t − bu

2

⎞
⎟⎠ .

It follows from [3] that f(γw) = f(w) for all γ ∈ Γ . Observe that under this extension

a constant function remains constant. It is well known that C[ j], has a unique basis

{ jm}m≥0 of the form

jm(τ ) = q−m +
∑
n≥1

cm(n)qn. (5.2)

This jm can be obtained from j1 by applying the mth Hecke operator Tm or defined recur-

sively. The following is a special case of the main result of [3].
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Proposition 5.1. Suppose that d and d′ are distinct positive fundamental discriminants

and that m ≥ 1. Then

∑
n|m

χd

(m

n

)
ad′(n2d) = R(D)

2π

∑
w∈Γ \Q(D)

χ(w) jm(w), (5.3)

where D = dd′ and χ is the associated genus character. �

Theorem 2.2 now follows from Propositions 4.2 and 5.1 with m = 1.
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