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1. Introduction 

A great many problems in analytic number theory lead indirectly to counting 2 x 2 
matrices having fixed determinant and integral entries over various ranges. More 
explicitly, one often encounters sums of the type 

f(u, v, r, s), 
auvT-brs=h  

where a, b, h are fixed positive integers and f is a smooth function whose partial 
derivatives are under control. This may be viewed as counting the representations 
by a quadratic form Q(u, v, r, s), a study initiated by H. Kloostermann [KI]. 
A special case of the above sum, known as the additive divisor problem 

z(n)z(n + h), 
n < x  

where z(n) stands for the number of positive divisors of n was investigated by 
A. Ingham [In] who first gave an asymptotic formula and then by T. Estermann 
[Es] who established the asymptotic expansion 

z(n)z(n + h) = XPh(IOgx) + O(X tl/12 log 3 X), 
n < x  

where Ph(T) is a quadratic polynomial with leading coefficient 61r-2a_ l(h). The 
key ingredient in Estermann's paper is an estimate for Kloostermann sums 

S(m,n;q)= Y~* e ( ~ ) ,  
d(mod q) 
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where, as usual, the asterisk restricts the summation to reduced classes. After 
A. Weil established the best bound 

S(m, n; q) ~ (m, n, q)l/2 ql/2"c(q) 

substantial improvements on the error term of Estermann became possible, 
cf. [HB], [Wi]. Further advances have been made by J.-M. Deshouillers and 
H. Iwaniec [DeI1] by exploring the spectral theory of automorphic forms; see also 
N.V. Kuznetsov [Ku]. The state of the art of this approach is reached in works of 
M. Jutila [Ju2] and Y. Motohashi [Mo]. 

As usual in practice one needs asymptotic formulas with a good error term 
which are valid uniformly in the parameters a, b, h of considerable size. These can 
be very difficult problems indeed. Motohashi's result [Mo] is very strong with 
respect to h, but unfortunately for us he considers only the case a = b = 1. For 
other relevant results see [He], I-Sm]. 

Motivated by specific applications in mind [DFI2] in this paper we investigate 
sums of type 

D.r(a, b; h) = ~ "c(m)'r(n)f(am, bn), (1) 
a m + b n = h  

wherefis nice smooth function on R § x R +. Not only do we allow the coefficients 
a, b to be large but a lsof to  oscillate mildly. In fact all the properties of f  to be used 
are expressed in the following estimate for partial derivatives 

with some P, X, Y > 1 for all i , j  > 0, the implied constant depending on i , j  alone. 
We shall use Weil's bound for Kloosterman sums rather than the spectral theory of 
automorphic forms since the latter approach would require us to deal with the 
congruence group Fo(ab) facing intrinsic difficulties with small eigenvalues. The 
results obtained this way would not be good enough for large a, b. However, if an 
averaging over a, b was included then the density theorems for small eigenvalues 
might help (see [DeI2]). Such a result is given by N. Watt [Wa]. 

Our objective here is to quickly get results useful for applications without 
straining for the best from available technologies. As in [DFI1], [Dul] we have 
chosen to use the 6-method which is a simple alternative for the circle method. 
A direct approach starting from the definition of the divisor function is also 
a possibility, however it could not generalize to the corresponding problem with 
T(m) replaced by the Fourier coefficients of cusp forms. We anticipate applying the 
6-method for the latter problem elsewhere. Yet, in this case the results of J. Hafner 
[Ha] can be used as well. 

2. Statement of results 

The main term in our asymptotic formula will be expressed in terms of the series 

l ~ q 2(ab ' A,,bh(x, y) = - q)cq(h)(log x - 2aq)(log y -- 2bq), (3) 
q 
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where cq(h)= S(h, 0; q) denotes the Ramanujan sum and 2aq, 2bq are constants 
given by 

aq 2 
)-aq = 27 + log  (a, q)2" (4) 

Theorem 1. Suppose a,b > 1, (a, b) = 1, h ~ 0 and f satisfies (2). Then we have 

or, 

Dy(a,b; h) = ~ 9(x, +_ x y h)dx + O(PS/a(X + Y)1/4(Xy)1/4+~), (5) 
f) 

where ~(x, y) = f (x ,  y)A~hh(X,y) and the implied constant depends on s 6nly, 

Remarks. Since the main term has the order of magnitude of (ab)- ~ rain (X, Y) the 
result is valuable only if 

ah < P-5/4(X + Y) s/4(Xy)3/4 ~. 

Notice that the error term in (5) does not depend on h but it is a trivial result 
whenever Ih[ > (ab)- 2(X + y)3/2 

The exponent 5/4 in (5) can be replaced by 3/4 by refining the argument and, we 
expect, by 1/2 with more elaborate refinements. 

Corollary. For a, h, M > 1 we have 

M 

r(m)z(am + h) = ~ 2(x, ax + h)dx + O(al/9(am + h)Z/9M2/3+e), (6) 
m < M  0 

where 

q = l  

Remark. The error term in (6) is smaller than the main term provided a < M ~/3 
and h < a-1/2M 3/z-~. 

Proof Apply Theorem 1 for the tesl function f(x,  y) = f l  (x)f2 (y) where f i , f2  are 
single variable functions, smooth, non-negative, supported on [0, X + X P  ~], 
[0, 2Y] respectively, such that 

. L ( x ) = l  i f 0 < - x < X ,  , f ] i ) ~ p j x - . i  

and 

f(J) y J. f l : ( ) , ) =  I i f 0 < y _ _ <  Y, , z "~ (8) 

We take X = aM and Y = aM + h, so the sum (6) is majorized by Dr(a, 1; h). Since 
f satisfies the hypothesis (2), by (5) we get 

Df(a, 1; h) = ~ + O(PS"'(aM + h)ti2(aM)l/4+~). 

Here the integral differs from that in (6) by ~ P -  ~M log 2 M. We make the optimal 
choice P = a-I/9M1/3(aM Jr h) -2/9. This yields the upper hound in (6). The proof 
of the lower bound is similar. 
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3. The 6-symbol 

Take a smooth, compactly supported function w(u) on R such that  w(u) = w( - u) 
and w(0) = 0 . .  Normalize w(u) by requiring 

w(q) = 1. (9) 
q-1 

Then for any n s Z we have 

6 ( n ) = 2  w ( q ) - w  = 
ql. if  n # 0. 

Using additive characters to detect the divisibility q ln we get 

~ (Yl)q~l= d (mod2* q) e ( d ~ A q O  q j (10) 

where 

W U 

Lemma 1. For anyf~ C~(R) we have 

f(u) Aq(u) du = f(O) f w(r) dr 

0 r " w(u)uJf(j)(ru)ldud r 

where j >= 1 and 

~9(z) = - ~ (2~im)-J(e(mz) + ( - l)Je( - mz)). 
m=l 

Proof We split into two parts and change the variable in the second one getting 

/ f(u)Aq(u)du= j f ( u ) ( , ~ t ( q r ) - l w ( q r ) ) d u - /  w(u)(r~=lf(qru))du. 

Then we evaluate the sums over  r by the Euler -Maclaur in  formula (cf. [Ra,  p. t4]). 
For  the first sum it gives 

w(qr) ~ + [ dr. z... (qr)-iw(q r) = ~ qr ur ,=t \ q / 

Since w(u) is even we can write the second part as follows 

f(O) S w(u)du-  I w(u f(qru du. 
0 r eo 

Next by the Eu le r -Mac laur in  formula we get 

f(qru) = f(qru) dr + ~pj(r) ~ r  j f(qru) dr. 
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Combining these formulas we arrive at (12) after an obvious change of variables 
and observation of the cancellation of the leading integrals. 

Now, suppose w(u) is supported in Q < lut < 2Q and it has derivatives bounded 
by 

w ~j) ,4 Q- j - l ,  j > O. (13) 

Since JCj(z)l < 1 the terms on the right side of (12) are bounded by 

f(0) (1 + O(Q-J- 1)), (14) 

qJQ-;- a ISf(u)dut, (15) 

q~Q.J-i ~ i/(;~(u)i du, (16) 

respectively. We also have 

f(O) ~ ~ (If(u)] + ]f~J)(u)J)du. (17) 

Then there follows from (12)-(17) the following 

Corollary. Let j >= l. We have 

- o o  

If q < QI-~ this shows that Aq(u) approximates to the Dirac distribution very 
well on test functions such t h a t f  ~j) ~ (qQ~ +~)-;. 

Lemma 2. We have 

Aq(u) ~ (qQ + Q2)-1 + (qQ + lul)-l. (19) 

Proof By the Euler-Maclaurin formula we get 

where {x} denotes the fractional part of x. Hence we infer by (17) that 

IAq(u)l __< i m i n  (1, ~ ) d w ( r ) ~  w(u/r) 

< i m i n ( 1 , ~ )  d ~ .  r) + i m i n ( ~ , ~ ) l d r w ( r ) l  

�9 1 1 1 t 

which gives (19). 

4. A p p l y i n g  the  di-symbol 

We shall present only the case am - bn = h since the other one of am + bn = h is 
obtained by changing signs in relevant places of our arguments. 

Using a smooth partition of unity for the proof of Theorem 1 we may assume 
that f(x,  y)is supported in the box IX, 2X] • [Y, 2Y]. We may also attach to 
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f (x ,  y) a redundant factor q~(x -- y - h), where cp(u) is a smooth function supported 
on lul < U such that ~0(0) = 1 and ~0 ") ~ U - (  This, of course, does not alter 
Ds(a, b; h) nevertheless it will help to improve the forthcoming performance by 
taking U optimally. The new function F(x, y) = f(x,  y)q~(x - y - h) has partial 
derivatives bounded by 

F(iJ) ~ U q- + ~ U - i - j  (21) 

provided U < P -  1 min(X, Y) which condition we henceforth assume to hold. Next 
we apply (10) to detect the equation am - bn = h. For the test function w(u) we 
choose Q = U l/z, so Aq(u) vanishes if lul < U and q > 2Q. Therefore we get 

Df(a, b; h) = Df(a, b; h) 

= ~ ~ ,  e ( - d h ) ~ z ( m ) z ( n ) e ( _ d a m ~ d b n )  E(m, n), (22) 
l<_q<2Qd(modq) \ q / m .  -, 

where E(x, y) = F(ax, by)dq(ax - by -- h). 

5. Applying poisson summation 

We shall execute the summation over m, n in (22) by means of the following Poisson 
type formula (cf. Jutila [Ju:] ,  Theorem 1.7) 

Proposition 1. Let g(x) be a smooth, compactly supported function on R + and let 
(d, q) = 1. Then we have 

/ d n \  
~ l o g x  27 21ogq)g(x)dx 

+ +~- ,=x ~ z ( n ) e ( ~ )  g• 

where 

g - ( y ) =  ----2n J g(x) Y o (  ~ @ )  dx 

,q + ( y )  = 

and Yo(z), Ko(z) are the Bessel funetions. 

By Proposition 1 applied once to each variable, we get 

= l +,.=a_ z(m)e - q la(m) + , ~  z(n)e n l,(n) 
(ab, 

+ . = l  ~ ,=l~v(m)T(n)e(-ma-~d+nb-~dq) (23) 
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where  a/q, b/q have to  be put  in reduced  forms before taking the inverses, and 

I = SS( logax  - 2aq)((log by - 2bq)E(x, y ) d x d y ,  

Ib(n) = -2~SS( logax-2 .q)  Yo(4-r~(b'~xfl~)E(x,y)dxdy, 

As it is evident  from Propos i t ion  I there are five more  terms * * * * *  in (23) involving 
the Ko-Bessel  funct ion.  These can be es t imated by the same m e t h o d  as we use for 
the ones  displayed.  

Inser t ing  (23) in to  (22) we get f rom the s u m m a t i o n  in d ( m o d q )  comple te  
K l o o s t e r m a n  sums. We  obta in  the following formula: 

D(a, b; h) = ~ q-2(ab, q) IS(h, 0; q)l + ~ r(m)S(h. 6m; q)la(m) 
q<2Q 1. m = l  

+ ~ ~(n)S(h, - bn; q)lb(n) 
n - 1  

+ ~ ~ r(m)z(n)S(h'&n-6n;q)I~b(m'n)+*****} (24) 

To the K l o o s t e r m a n  sums in this formula  we shall apply Weil's b o u n d  

S(h, &n - bn; q) ~ (h, q)t/2 ql/2"r(q). (25) 

In case m = n = 0 we get the R a m a n u j a n  sum for which we have a simple fo rmula  
and a bet ter  b o u n d  

S(h,O;q)= 2 v#(q-~(h,q)" (26) 
~'l(h, ql \ V /  

6. Evaluating the main term 

First  we evaluate  the integral  I. We have 

abI = SSC(x,y)Aq(x - y - h ) d x d y  

= S i c ( x ,  x - h + u)Aq(u)dudx 

where C(x, y) = ( logx  - 2 ,q)( logy - 2hq)F(x, y). By (18) and  (21) we get 

S C(x, x - h + u)Aq(u)du = C(x, x - h) + 0 
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Assuming q < Q~-~ we make the error term above very small by taking j large. 
Hence we obtain 

abI = ~C(x, x - h)dx + O(Q-a). 

We also have the bound abl ~. (X + Y ) -  ~X Ylog Q, which is valid for all q, see (30). 
Therefore the first part of (24) yields 

q -  2(ab, q)cq(h) ~ C(x, x - h)dx + O((ab) -1 
X Y  1+~ \ (ab) -1 y Q -  I (27) 

x + / q = l  k 

where the error term takes care of the tail q > Q~-~. 

7. Est imating the error term 

We need estimates for Ia, Ib, lab To this end we integrate by parts in x, y using the 
bound 

1 { a b \  i+j 
E,',, ( 3 )  (28) 

and the recurrence formula (z~Y~(z)) ' = z~Y~_ l(z). In this way we show that these 
integrals are very small unless 

m < aXQ -2+~, n < bYQ -2+~. (29) 

For m, n in this range we estimate the integrals trivially using the bound 
Yo(z) ~ z-1/2, which gives 

(aq2~ 1/4 
l . (m) ~ \ 7 ]  (log Q) f~, 

{bq2\l/4 
Ib(n) ~ ~ - ~ )  (logQ) I f ,  

( )l j, 
lob(m,.) ~ \ ~ )  (~oge) II, 

where 

I I = I I Iv (~ ,  by) Aq(ax -- by - h) l dx dy 

= (ab)- ~ f f I F(x, x -- h - u)A,(u)l dx du 
U 

�9 ~ (ab)- ~ min(X, Y) ~ IzJq(u) l du ~ (ab)- ~(X + Y ) -  ~ X Ylog Q (30) 
- U  

by (19). Next summing over m, n in the range (29) we obtain 

ql/2 X 3 / 2 _ ~  ( ~ - 3 / 2 + e  

~'r(m)11,~(m)[ ~. b X + Y'~ ' 
r a  

~'r(n)llb(n)l ~ ql/2 X y 3 / ;  Q_ 3/2 +% 
. a X +  

(XY)  3/2 O-3+~. 
~ z ( m ) r ( n ) [ l a b ( m ,  n)l "r q 
in n 
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In t roduc ing  these bounds  in to  (24) we get (5) with the er ror  te rm 

- ~ X Y  a + e +  (Xy)3/2 0 5/2+e. 
( a b ) - l X  + Y Q -  X +  Y 

O n  taking  U = Q2 = p -  l ( x  + y ) -  i X y the above  e r ro r  term becomes  that  of  (5). 
This  comple tes  the  p r o o f  of  T h e o r e m  1 in case f ( x ,  y) is suppor t ed  in a dyadic  box. 

Final ly  T heo r e m  1 in its general  form is derived f rom the dyadic  version by 
breaking smooth ly  the  summat ion  in (1) into boxes [X' ,  2 X ' ]  x [ Y', 2 Y ]  and  using 
(2) to de te rmine  tha t  the wors t  case is X ' ~  X,  Y ' ~  Y. 
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