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1 Introduction

When Linnik introduced the classical large-sieve in 1941 [Lin], he was
motivated by the following problem: given a non-trivial primitive character
x modulog, how large (compared @) can be the firat such thaty(n) # 1?

From the Riemann Hypothesis one can deduce (see [Mon] chapter 13
for instance)

n < (loga)?

and the (weaker) conjecture« ¢ for all ¢ > 0 is known as Vinogradov’s
conjecture.

Linnik’s technigue makes it possible to prove that the number of excep-
tions to these conjectures is extremely small. For examplé\(&, «) be
the number of primitive charactegsof modulusg < Q such that

x(n) =1

for all n < (log Q)%, (n,q) = 1, @ > 1 being given; then from the large-
sieve inequality for Dirichlet characters, we can derive

N(Q, @) « Q¥«*® @)

for all ¢ > 0, whereas there are aboQF primitive characters of modulus
at mostQ L.

* With an appendix by D. Ramakrishnan.
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1 What Linnik actually did was, foy a real character, to assumén) = 1 in the larger
rangen < Q¢ and prove that there are at m@tiog log Q) possibley of level less tharQ.
He was also using his own additive form of the large-sieve.
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Moreover, because the exponent is less than fer 2 and there are
aboutQ real characters of modulus less th@nour statement also proves
that there are very few exceptions for real characters, which corresponds to
the problem of the least quadratic non-residue. In particularQfeending
to infinity, the probability that two real characters take the same values for
all primesp < (log Q)¢ tends to zero.

In recent years, it has been widely perceived that elliptic curves over
Q are a natural analogue of real Dirichlet characters. In this context, the
corresponding problem would be, given two elliptic cuniesand F of
conductor less tha®, how large (always compared @) cann be if E and
F have the same number of points modpléor all primes less than and
yet are not isogenous?

This problem was considered by Serre, for instance, in [Ser]. Assuming
the Riemann-Hypothesis for Artib-functions, he showed that in this case
toon « (log Q)? follows.

In this paper, we are able to prove some analogues of (1).

Theorem 1 LetM(Q, «) be the maximal number of isogeny classes of semi-
stable elliptic curves ove® with conductor less than or equal @ which
for every primep < (log Q)¢ have a fixed number of points moduydo

Then we have for any > 0

M(Q, o) < Q¥/ete,

It follows from this and a lower bound for the number of isogeny classes
of semi-stable elliptic curves with conductor less tigathat the probability
that two such elliptic curves have this property tends to zer@ #&nds to
infinity, if « is large enough. We also have other results in more general
cases.

As in Linnik’s original treatment, we attack the problem by means
of an analytic inequality for a larger class of objects encompassing the
elliptic curves, namely holomorphic cusp-forms of weight two. Thus we
use the Theorem of Wiles [Wil], and its further extensions, which prove
the modularity of many elliptic curves ové€), to embed the set of isogeny
classes of modular elliptic curves ov@iin the set of primitive cusp formds

However, due to incomplete knowledge of lower bounds for the Fourier
coefficients of cusp forms it will appear that this inequality is not sufficient
to prove the result we are seeking. We have to supplement its use by that
of another similar inequality for the coefficients of the symmetric square
L-function of cusp forms, and also appeal to a result of Ramakrishnan
about the possible multiplicity of the symmetric square, the proof of which
appears in an Appendix to this paper.

2 Also called “newforms” in the literature; we use the vocabulary of [Miy] to emphasize
again the analogy with Dirichlet characters.
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This other inequality requires the study of Rankin-Selberg convolutions
of GL(3) automorphic forms, and it is actually not much harder to prove
a generalization of our mean-value estimate toGll(n), in the context
of automorphic representations satisfying the Ramanujan-Petersson bound.
The result is related to the large-sieve, although it is not as powerful as one
could expect; roughly it corresponds to the case of sums much longer than
the conductor of the forms appearing.

We will first study the Linnik problem for primitive cusp forms, stating
the analytic results required for the proof before showing how our main
result follows from this.

We then apply the theorem to elliptic curves, with a short preliminary
discussion of estimates for the number of isogeny classes of elliptic curves
over Q with conductor at mos@Q. Both upper and lower bound are used
in our theorem. The problem of finding an upper bound féixed level q
was recently considered by Brumer and Silverman [B-S]. Their individual
bound can be strengthened on average and we show how this is done.

It is then time to come back to the proof of the mean-value estimate, in
its full generality forGL(n). This result may be of independent interest,
although it falls short of the hypothetical large-sieve inequalities which can
be expected by analogy with the case of Dirichlet characters (hamely, the
case ofGL(1)). A variant for Maass forms is used by Luo in [Luo].

AcknowledgementWe wish to thank H. lwaniec for helpful discussions about this paper,
and especially for suggesting to look at the symmetric squares to circumvent the difficulties
with lower-bounds for the Fourier coefficients. We also thank A. Brumer and J. Silverman
for communicating their result about the number of elliptic curves of a given conductor and
allowing us to present here the straightforward application of their ideas which strengthens
their bound on average.

Notational remark.When using Vinogradov'sk notation, it will often
occur that we consider inequalities such as “for any 0, it holds f(x) «
Xfg(x)"; as is customary in this case, the implied constant always depends
one.

We may also remind that, as is usual in analytic number theory the
may be different from line to line in an argument.

2 The Linnik problem for cusp forms
2.1 Notations and statement of the mean-value estimates

Our main result in this section is about (families of) primitive cusp forms
having the same Fourier coefficients for the first few primes. even,

k > 2, we will denote byS(g)™" the set of primitive cusp forms of weighkt
and levelg and by S((< Q)* the set of primitive cusp forms of weight
and level less than or equal @. Moreover, forf € S(< Q)*, we will
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write ¢ (n) its Hecke eigenvalues, normalized so that the critical line for

the L-function
L(f, s = Z,\f(n)n*S
n>1
is the lineRe(s) = 1/2. This means that the Fourier expansionfa

f@ =) armens

n>1
with
ri(p) = p P 2ac(p)

for all primesp.
Note that

[At(M] < z(n) 2

is then the Ramanujan-Petersson bound (proved by Delignd). for

We need some estimates for the cardinality of the various sets appearing.
The easiestone & (< Q)*. Classical results about the genus of the modular
curvesXo(q) and the index of"g(q) in SL(2, Z) show that| S(< Q) ™| is
aboutk Q?, more precisely there is a constak) > 0 with

|S(LQT| ~ ckQ? (3)

(see for instance [Shi] pages 25 and 46). Only the dependerigadatually
matters to us.

We will need to argue, here and in Section 4, in the language of auto-
morphic representations, which is better suited to the variofisnctions
and to the context o6 L(n) automorphic forms. Many useful facts, and
precise references, for the analytic properties of gerieffainctions of au-
tomorphic representations GfL(n) which interest us here can be found in
the paper [R-S] of Rudnick and Sarnak.

Recall first that there is an injective mdp— 7 from S(q)* to a cer-
tain subset of the set of cuspidal automorphic representatidas ¢f) over
Q (see [Del], or [Gel]). This map is compatible withfunctions in the sense
thatL (f) = L*°(7¢), whereL () is the classical Heckle-function, defined
above, and._(xr¢) is the Jacquet-Langlands-function (complete with the
Gamma factor at infinity), which is defined in terms of representation the-
ory; here and elsewhele™, for automorphic-representatido-functions,
denotes the finite part of such anfunction.

Moreover, Gelbart and Jacquet have described amap 7@ associ-
ating a “symmetric square”, a certain automorphic representati@i.¢8),
to a cuspidal automorphic representatiorzdf (2) [G-J].

Let L>®(r'?) be the finite part of thé -function ofz'?; it is a Dirichlet
series which we write

L*@?.9 => 2P mn.

n>1
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We then claim that for squarefree we have
AP M) =5 (n?). 4)

This is actually due to Shimura, and it follows from the local compu-
tations of [G-J] with the fact thaf +— 7 preserved -functions: indeed,
writing ¢n(S) = L(s, en) for any integerN > 1 whereey is the trivial
Dirichlet character modul® (so ¢y is the Riemann zeta function with the
Euler factors ap | N removed), we have

(029 Y h (P e = LG5
n>1

(whereq' is the conductor ofr{”) whence

2

1P =Y eqdig (%)

d?|n

which immediately implies (4) for squarefree

The automorphic representatiari? is not always cuspidal, however,
which means that.(7®) is not always entire. More precisely, Gelbart
and Jacquet have established th& is non-cuspidal if and only if there
exists a non-trivial (primitive) charactef such thatr = = ® 5. Such
representations, and the cusp formsSiig)* to which they correspond,
are called monomial representations. It is known from the work of Hecke,
Maass, Langlands and others, that they are the forms obtained from Hecke
charactersy of a quadratic extension @ by automorphic induction, so
thatL(s, 7) = L(s, x).

We will write S((< Q) for the set of primitive cusp forms of level less
than or equal t&Q which are not monomial. Then we wrig” (< Q)* for
the image ofS(< Q)* by the mapf > 7\?. The number of monomial

representations can be easily shown toeQ* for any e > 0, so the
estimate

|S(< Q)F| ~ c(k)Q?

holds again.
The monomial representations are exceptional in many respects, in par-
ticular we will see this in the case of the Linnik problem (see the remarks

at the end of the next section).

The mapf - 71 — =\? is notinjective; roughly, twisting by quadratic

characters doesn’'t change the symmetric square, but the corollary to Theo-
rem A of the Appendix shows that this is the only case that can occur. We
state it here in the form we will use.
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Theorem 2 (Ramakrishnan) Lef and g be primitive cusp forms of level
gs andqg. If

ngZ) _ néz)
then there exists a quadratic characteiof conductord dividing g gg such
that

Ai(P) = Ag(P)x(P)

for almost all primesp, or equivalently, by the strong multiplicity one
theorem forGL(2) (see [Gel])

Ty =7gQ X. (5)
Moreover, ifqs andqgy are squarefree, ther = g.

(We do not have necessarily = g ® x, becausegy ® x might be non-
primitive; but (5) is correct because the tensor product is in the sense of
automorphic representations, angl® x is the representation whode
function coincides with that off ® x for all but finitely many places, in
other words it corresponds to the “newform” associated to the (possibly)
“old-form” g ® x.)

As in Section 4, we suppose that we are given for egepy 1 a subset
S(@) C S()*. We then write

S<Q=J s

asQ

and assume thak > 0 is such that

IS(< Q)| = O(QY) (6)

(note that this holds for any choice of subsgtg) for d = 2; indeed taking
d = 2 in what follows only results in having a slightly larger const&gt
and is not of great importance, so the reader may prefer to assuma

for simplicity).

As above, the superscriptestricts the set to the subset of non-monomial
forms, and the superscrig®) to the image of the non-monomial forms by
the symmetric square map.

Now we can quote from Section 4 the mean-value estimates that we will
require in the proof of the main theorem in the next subsection, namely
Corollary 5: if 8 > 2d + 2 then for any: > 0 we have

2
Y anio] <@ Y Jal ()
feS(<Q)? n<QF n<QA
and Corollary 6: if8 > 2(d + 3) then for anys > 0

> X f:lnk(f)(n)\2 <Y Janl 8)

71eS@(<Q)F n<QP n<QP
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From this last equation we deduce by (4), for any 0,

> ‘Zb an/\f(nz)‘2 < QF** Zb |an|? 9)

71eS@(LQ)? n<QF n<QFf

for any complex number&@n)1<n< ot WhereZb denotes a sum restricted to
squarefree integers. Remark that this is not a sum ovdrsilice quadratic
twists give the same.

2.2 The main result

Now fix a set® of prime numbers of positive natural densitgfor instance,
all primes in an arithmetic progressi@m + b with (a, b) = 1), and a real
numbera > 1. For (non-monomial) primitive form$ andg in S(< Q)¥,
write f ~ gif A¢(p) = Aq(p) for all primesp € 2, p < (log Q)3

Then clearly~ is an equivalence relation (depending®8nQ, k, andx)
on the finite selS(< Q)¥, inducing one on the subs&< Q)*, which is
thus partitioned into finitely many finite equivalence classes. We will denote
by Ms(#, Q, «) the maximum cardinality of such an equivalence class: in
other wordsMs(P, Q, «) is the largest possible number of non-monomial
forms in the setlS(< Q) whose Hecke eigenvalues are all equal for primes
p < (log Q)°.

The analogue of Linnik’s result is the following:

Theorem 3 There exists a consta®y > 0 such that for alle > 1, we
have

Ms(P, Q. a) < QE+4'+e

for all ¢ > 0O, the implied constant depending en? and the familyS.
Furthermore, ifT is any fixed set of primes, then the number of elements
of any equivalence class whose level is squarefree oufs{tleat is, p* | q

impliespe T) is « Q%“ for anye > 0, the constant depending further
onT.
Moreover,By = 2(d + 3) is admissible.

Of course, this result is non-trivial only #< Q)* contains more elements
than the bound given for the exceptions, so the efficiency of our result
depends also on a lower bound for the number of forms we are considering.
In particular, it is always trivial ifd < 1/2 (but the result for forms with
almost squarefree conductor is not, éolarge enough, as long &5(< Q)|
is larger than some fixed positive power@j.

As one immediate corollary, we have for instance, taksg) = S(Q)
and using (3):

3 Itis possible to relax this condition by asking that the equality holds only with a “small”
number of exceptions (to exclude ramified primes for instance). This complicates the argu-
ment slightly so we will not do it here, as our results are not definitive anyway.
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Corollary 1 Fix o > 2B,/3. Then forQ tending to infinity, the probability
that two non-monomial primitive forms of level less ti@rave the same
Hecke eigenvalues for all primes less thdog Q)* in a fixed arithmetic
progression tends to zero. HeBz = 10is admissible.

Proof of Theorem 3We will omit & in the notation and write onlils(Q, «)
in the proof.

Take an equivalence class of cardinalitig(Q, «) for ~, and an elem-
ent f in this class, of leved);.

The idea of the proof is that because of the multiplicativity of the Hecke
eigenvalues the hypothesis implies that for gny f, we have

A1(N) = Ag(N)

for anyn such that all its prime factors aredn and less thaflog Q)%; those

n form a rather large set, but on the other hand chooaing A ;(n) in the
mean-value estimate (7), we get the same sum over thwith multiplicity
Ms(Q, o), and it remains only to find a lower bound for this common sum
to get some result by positivity. The quality of the result depends on that
of the lower bound, and we will see that this fails to give a good result
because of the impossibility to be sure that Fourier coefficients are “large”
for enough primes; however tldeus ex machinis the well-known formula

(for p unramified)

(P2 = (p?) =1, (10)

which implies that ifx ¢ (p) is “small” thenx; (p?) can not be, and in this
case we use the inequality (9) instead (Wath= A (n?) this time). This

trick has already been used, for instance in [DFI], in other contexts when
this problem of the lower bound for Fourier coefficients of cusp forms arose.
The great virtue of (10) is its complete uniformity in any parameter involved.
Since we are considering very small primes (compared to the conductor),
this is absolutely vital.

We now come to the details.
By the assumption, the number of primesfiess thanlog Q)¢ is

§(log Q)
aloglogQ’

Sinceq; has only« log Q prime divisors, the se?(Q) of primes
p < (log Q)* not dividing g+ satisfies also

é(log Q)*
aloglogQ’

For anyp € £(Q) we have, as mentioned, (p)®> — A¢(p?) = 1, SO
one of the two sets of primes

P1(Q) ={peP(Q | Iri(p| =>1/2}

mp((log Q)) ~

|P(Q)] ~
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and
P(Q) ={pe PQ | Ir:(p)| = 1/2}
(say £ (Q)) must satisfy

3(log Q)*

PQI=>12QI/2> 37050

for Q large enough.
If g ~ f, we havea fortiori 14(p) = A¢(p) for all primesp € £ (Q)
so that, by multiplicativity and the Hecke relations:

Ag(n) = A¢(N)

if N = []pep 0 P™ has all its prime factors it (Q).

Among those integers consider the 9étQ) of squarefree integens
such thatn hasm (which will be chosen later) prime factors exactly, all in
P (Q). From the definition ofP; (Q), it follows that

Ihgnh] = 27m (11)

foralln € #(Q) and allg ~ f (note thei on the left hand side). Let
N = Max (N (Q)), soN < (log Q)*™ = N'.

We now assume tham is chosen so thall’ is less than, but neaf”,
with 8 > 2(d + 3). Then forn < QF take

a, — 2t(nh) for ne N (Q)
] 0 otherwise

in(7)or (9)ifi =1 ori = 2, respectively.
In the first case we get by positivity

MsQ.a)| Y P < YY) avnm|

new (Q) heS(<Q)F n<QP

b
< QMY anl?

n<QP

= QM Y

NeN(Q)
foranyes > 0, whence

Ms(Q.e) « @ ( Y 1rempP)

neN(Q)
< Q2N (Q) !

by (11).
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In the second case, 1812 (Q, o) be the cardinality of the image of

the equivalence class dfvia f — 7\?. Then by the second mean-value
estimate:

M(SZ)(Q,a)| > |xf(n2)|2|2< > ‘Zban)»h(nz)‘z

neN (Q) heSA(LQ)F nLQP
b

< QMY T janl?
n< QP

= Q™ Y )P

neN(Q)

foranye > 0, and

MP(Q.) « (X medR)

neN(Q)
< Q2N Q!

by (11).

We now choosen and estimatéN’ and |V (Q)].

As already mentioned, we seleutso that the upper bound’ for N is
about the same a®”, namely

[ BlogQ
~ | aloglogQ |’
Then we have2 « Q¢ if Q is sufficiently large. Similarly
(5/3a)(logQ)/(loglogQ) > Q7°.

Finally, by unique factorization of integers and Stirling’s formula

PN 1 |m<Q>|)’“
|MQ>|>( ¢ )>>m (—m

8(logQ)* «loglog Q>m e
3aloglogQ plogQ
((|Og Q)ail)ﬂ(IOgQ)(“|09IogQ)—171

> Q7°
> QP
(for Q sulfficiently large again), so that we get from the above estimate, for
anye > 0:
o Ifi =1,
Ms(Q.@) « QF A7+ = Qi+

which concludes the proof in this case, with a much better exponent
actually B8 = 2d + 2 is enough then).



A problem of Linnik for elliptic curves 11

o Ifi =2,
MP(Q. o) « QF A&+t = Qute

and it remains to relath! Y’ (Q, o) andMs(Q, «), which may be bigger
sincef — 7? is not injective.

Take a formg in the equivalence class dfwhose symmetric square has
maximum multiplicity, sayMg, SO

Ms(Q, @) < MgMZ(Q, )

and chooseg furthermore so that its levey, is the smallest possible.

If his a form equivalent tg with the same symmetric square, then by
Theorem 2 there exists a quadratic charagt@f conductod, such that
Th =g ® X.

If we write uniquelyd = did, with dy | qg® and (dz, gg) = 1, then
comparing conductors we get an equality

Oh = d3d;0q

whered; | d2. For any givert;, we may have as many g&Q/qy < Q*/2
possible values al,. Since the number of integers less ti@ulivisible
only by primes dividinggg is < Q° for anye > 0, it follows that

SO
Ms(Q, @) « QZtute

foranye > 0.

If however we are given a fixed finite set of primesuch that we only
consider forms of level squarefree outsiigthen clearly from

Oh = d3d;0q

we see that the conductor of the charagtenust be divisible only by
primes inT or dividing gy. The number of such less thanQ is again

<« Qf for anye > 0, and the last statement of the theorem follows
accordingly.

So the theorem is proved. O
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3 The Linnik problem for elliptic curves
3.1 Notations and counting problems

We can now approach the Linnik problem for elliptic curves by means of
the L-functions of elliptic curves and their modularity.

Recall that the general modularity conjecture for elliptic curves Qver
says that the map which associates to an elliptic c&rtiee inverse Mellin
transform of its Hasse-Weil zeta function

LE, 9 =[[@-a@p+en(pp>)"
p

(whereN is the conductor oE, andag is defined as usual by the equality
|E(Fp)| = p+1—ae(p),if pdoesn’tdivideN) induces a bijection between
the setEll(g) of isogeny classes of elliptic curves ov@rof conductorq
and the se$(q, Z)* of primitive cusp forms of weight two and levelwith
integer Fourier coefficients. In particular, this would emgid< Q) (with
obvious notation) into the s&(< Q).

This modularity conjecture is now, after the breakthrough of Wiles [Wil],
known in many cases: according to Diamond’s extension of Wiles’ result,
any elliptic curveE/Q which doesn’t have additive reduction at either 3 or
5 is modular. We will work either with all elliptic curves. assuming the full
modularity conjecture, or with classes which are known to be modular. Our
results can also be restated as holding for modular elliptic curves.

The cusp formfg corresponding to a modular elliptic curizeis known
to be monomial if and only iE has complex multiplication. In that case,
the modularity was already well-known. As we apply our result of the
previous section we have to exclude those curves. We will viiite< Q)*
for the set of isogeny classes of non-CM elliptic curves @ef conductor
less thanQ, and Ell(< Q)" for the subset ofEll(< Q) given by semi-
stable elliptic curves, i.e. those whose conductor is squarefree. We have
Ell(< Q)" ¢ El(<L Q) since CM-curves are not semi-stable. Also, by
Wiles’s Theorem, the curves fll (< Q)” are modular.

As in the previous subsection, we first need to estimate the cardinality of
the sets we will consider. This is a subtler question than the corresponding
one for cusp forms.

First we consider the problem of an upper bound |l (< Q)|. We
will actually deal with&ll (< Q), the set of isomorphism classes of elliptic
curves overQ of conductor less tha®). According to results of Mazur
and Kenku (see [Sil], page 265), there are at most 8 isomorphism classes
of elliptic curves ovelQ isogenous to a given curde/Q, so all ourO()
estimates fogll (< Q) will also be true forEll (< Q).

Recently, Brumer and Silverman [B-S], proved the estimate

€l ()] < q*/#+ (12)

forall e > 0. This trivially gives|&ll (< Q)| <« Q¥?*¢, but the proof of (12)
can actually be extended to give a sharper bound on average.
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Proposition 1 For anye > 0it holds

lEll(< Q)| <« QM

and
IEI(L Q)| <« Q.

Proof. We have already seen how the second statement follows from the
first.

Brumer and Silverman actually count elliptic curves having good reduc-
tion outside a given (finite) set of prim&containing 2 and 3) by writing,
for such an elliptic curvee/Q,

1728A¢ = ad® (13)

wherea is 6-th power free, and observing thag(E)/d®, c4(E)/d?) is then
an S-integral point on the elliptic curvé, given by

E:Y=X"+a

so that it only remains to estimate how maady are possible, how many
S-integral points there are d@ for a givena and how many different curves
E can be associated to the same

We begin by writing

E< Q=Y lel()]

asQ

<) 1E@|

a<Q

where&ll (q) is the set of isomorphism classes of elliptic curves dyer
having good reduction outside the set of prime divisorg,ofvith 2 and 3
added.

Now we rewrite straightforwardly the counting argument of Brumer and
Silverman foré€ll (g)’, obtaining

EEQI< Y. > > [EP)

q<Q acA(g) Peéa(Zg)

where:

e A(Q) is the set of possibla’s for a given level.
e ZyisZsfor Sthe set of prime factors af, with 2 and 3 added.

e E(P) is the set of elliptic curves that give the poiRte &,(Z,) in the
way sketched above.
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Brumer and Silverman show that the inner surxisQ¢ for anye > 0, so
we get

ENEQI < QY. > |€aZy)
a<QacA(Q)
and then, still following their argument, we apply deep bounds of Silverman
and Evertse fof€.(Zq)| to obtain the estimate

EN<QI < Q )Y Y hy(Q(W-a)

a<QacA(q)

in terms of the 3-part of the class group of the imaginary quadratic field
Q(+~/—a) (here and in the remainder of the argumenis different from
line to line). This is where the saving on average will come from: whereas
no better individual bound fohz(Q(./—a)) is known thanh; < h <
a%/?(log 2a), Davenport and Heilbronn established a sharp average bound
in [D-H]. We now apply it.

For this, write the sum overas the sum over the squarefree keraétsf
elements ofA(g). Using thata is 6-th power free and @-unit to bound the
multiplicity, it follows that the number o for a givena’ is again bounded

by Q¢, giving
EI(< QI < QY > hs(QW/=a)).
q<Q &

Then we exchange the order of summatiaeing squarefree implies
|a| <1728 < 1728Q (see (13)) and moreover divides the discriminant
A of any curve (of conductar) for which it may appear, so again becaase
is squarefree it must actually divide the conductowhence the multiplicity
of g for a givena’ is less than the number of divisors@fand thus

EN<QI < Q" Y haQW=-a))
la/|<1728Q
which is < Q¢ by Theorem 3 of Davenport and Heilbronn, as clained.
We need also a lower bound of the form

[EI< Q) > Q
for somed > 1/2, or for semi-stable curves
[EI< Q) > Q¢

(which of course implies the former inequality). This is proved in [FNT]
with d = 5/6, namely

IEI(L Q)| > Q°. (14)

Remark.The caseK = 1 of the main Theorem of [FNT] is not far from
giving also Proposition 1; the difference is that it deals with the discriminant
instead of the conductor, but most of the ingredients are present there.
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3.2 The Linnik problem for elliptic curves

We will now deduce from Theorem 3 our applications to Linnik’'s problem
for elliptic curves. Assuming the general modularity conjecture, we take
for S(q) the set of primitive forms associated to isogeny classes of elliptic
curves ovel with conductorg. From Proposition 1 we can takle= 1+ ¢

for anye > 0, so the constarB in the theorem may b8 = 8 + 2¢, and
actually e can be absorbed in the otheffrom Theorem 3, sB = 8 is
admissible.

Consider first the case of semi-stable elliptic curves dyeand take
thereforeT = ¢ in the second statement of Theorem 3. In this case we need
not assume the modularity conjecture. Using the lower-bound (14), we get
Theorem 1 from the introduction, the statement of which we now recall.

Corollary 2 Let M(Q, «) be the maximal number of isogeny classes of

semi-stable elliptic curves ové) with conductor less than or equal ©

which for every primg < (log Q)* have afixed number of points modyo
Then we have for any > 0

M(Q, C() < QB/a+€

and this is non-trivial fora > 6B/5. Moreover, if we only ask that the
curves have a fixed number of points modpldor p in a fixed set of
primes of positive natural density, the bound still holds, with a constant in
<« depending on the set.

Or, applied to a special case in a probabilistic phrasing:

Corollary 3 Fix @ > 6B/5. Then forQ tending to infinity, the probability
that two semi-stable elliptic curves of conductorQ have the same number
of points modulop for all primes less tharflog Q)* in a fixed arithmetic
progression tends to zero.

We have a somewhat weaker estimate for the general case.

Corollary 4 Assume the general modularity conjecture.

Fix « > 3B and a set? of primes with positive natural density. Then
for all ¢ > 0 the maximal number of isogeny classes of elliptic curves of
conductor< Q without complex multiplication which have the same number
of points modulg for all p < (log Q)¢ in & is bounded byQY/2+B/«+¢ yp
to a positive constant depending only gre and .

The probabilistic statement also holds in this general case.



16 W. Duke, E. Kowalski

Remarks.

e The case of CM-curves (or monomial forms) is actually different, since
an estimate such as the one for gengtah Corollary 2, with exponent
tending to zero ag tends to infinity, is false for them. For example,
taking all curves

Ep:y?=x34+D (15)

it is known that
agp ( p) =0

for all p congruent to 2 mod 3 unramified, so if we choose this arith-
metic progression as our st we have as many a3'/2 elliptic curves
of conductor less tha@ having the same Fourier coefficients foe 2.

This shows that our introduction of the symmetric square, because of
the lack of lower bound for the Fourier coefficients of cusp-forms, is not
purely technical.

However, if we consider all primes, then on the Generalized Riemann
Hypothesis two monomial forms are still distinguished by some prime
less than(log Q)?, so the corresponding analogue of Linnik's result
should hold.

We can actually prove it: iE/Q is an elliptic curve with complex mul-
tiplication and conductor less th&p, then it follows from our proof of
Theorem 3 and the knowledge of the Fourier coefficients of the corres-
ponding primitive forms that the number of isogeny classes of elliptic
curves ovelQ with complex multiplication and conductor less th@n
having the same Fourier coefficientsEfor p < (log Q)% is « QB/e+s
foranye > 0 and someB > 0 (actually,B = 6 is enough).

Indeed, there are only a finite number joinvariants of elliptic curves
over Q with complex multiplication, and each possibjlagives rise to

a family of twists similar to (15) above (see [Si2], appendix A for in-
stance).

It then suffices to find a lower bound for each family, which is not very
difficult (see [DFI] page 224 for the reasoning in the casg ot x3+D).

Once the lower bound is known, it remains to apply the same proof
with the mean-value estimate f&L(2) forms applied to the family of
primitive forms associated to complex multiplication curves.

Of course, it is then possible to bring both results together and say that
the number of elements in the whole &(< Q) which have the same
Fourier coefficients for all primep < (log Q)* for « large enough is

& QV?+B/ete for anye > 0 and someB > 0.
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4 A mean-value estimate for automorphic representations

The original large-sieve inequality for primitive Dirichlet characters is

Y axm| <N+ @) Yl (16)

q<Q x (@ n<N n<N

for any sequencea,)n<n Of complex numbers.

This is a kind of quasi-orthogonality statement for the truncated se-
quences x(n))1<n<n considered as elements of a finite dimensional Hilbert
space.

After the work of Jacquet and Langlands, it has appeared that Dirichlet
characters are only the case= 1 of a much more general theory of
automorphic representations on the algebraic gréugn). For such an
automorphic representation, a (standdrdfunction L () is also defined;
it is the product of a Gamma factor and a Dirichlet series

L®(rr,s) = Z A (MN~S.

n>1

It is expected that the coefficients (n) of those L-functions should
satisfy inequalities similar to (16) when (large enough) increasing families
of automorphic representations, where certain parameters (the conductor,
the weight, or others) are bounded, are considered in the outer sum on the
left-hand side. The hypothetical bound on the right hand side would be
roughly the lengthN of the inner sum plus the number of representations
considered, up to small factors. Some results exist, with the weight varying
for instance, for the classical case GfL(2)-automorphic forms, see for
example [D-].

We will establish such an estimate for certain families of automorphic
representations, but only in the easiest case, when the ldhgttihe sum
is much larger than the number o%.

To define those families, fix first an admissible representatignof
(the Hecke group algebra o§ L(n, R) considered as infinite component
of some cuspidal automorphic representatiorzdf(n) over Q — for ex-
ample, ifn = 2, andn,, is the discrete series representatiaip,, 1)
with Mlugl(t) = tk-1sgnt) (see [Gel] page 91 for the notations), for some
integerk > 2, thenn, is the infinite component of all automorphic repre-
sentations corresponding to classical weightodular forms.

Fix also a charactey of the idéle class group @).

Then for any integeg > 1 we let Aut(g) denote the set of cuspidal
automorphic representationsof G L(n) overQ such that:

e 7 is the infinite component of, andy its central character;
e 7 satisfies the Ramanujan-Petersson conjecture: if

L®(rr,s) = an(n)n*s

n>1
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is the finite part of the standatd-function ofr, we have
Az(N) K n® (17)

foranye > 0;
e The conductor ofr isq.

With respect to the Ramanujan-Petersson bound, we recall that because
of the Euler product

L9 =[] [] @-exij(@p™>"

P 1<j<n
it is known that (17) implies
laz (Pl <1

which shows that the bound (17) is actually uniform with respeat. tdhis
will be important.
It should then be true th&tut(q) is finite and its cardinality (as a function
of q) is bounded by a fixed power gf We don't actually need this fact.
We further set

Aut(< Q) = [ Aut(@).

a<Q

Again, Aut(< Q) should be finite and its cardinality at most polynomial
in Q.

Now we will suppose given for every > 1 a subse§(q) of Aut(q) and
write

S<Q = s

asQ

We can now state our result.

Theorem 4 Fix n > 0. Given setsS(< Q) as above, assume that
IS(S Q)| = 0(QY. (18)

There exists an absolute constaBtq > O such that ifN > Qf with
B > Bp g, then for anye > 0 the inequality

2
> X anm| < NN g (19)
7eX(<Q) ngN n<N

holds for all complex number&,)1<n<n. Moreover,B,q = 2d +nis
admissible.
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Proof. The strategy is familiar, being based on the well-known duality
principle.
The inequality (19) is equivalent to the estimate

I Th.l1? < N
for the norm of the linear operator

Tno @ (@Bnngn (Z an%z(”))

N 7e(<LQ)

where both the domain and range are finite dimensional Hilbert spaces (with
the natural hermitian form). Now by general Hilbert theory, we know that
the norm ofTy g is the same as that of (the conjugate of) its adjoint, which
is the operator

Thg * (@r)res<o = ( > an/\n(n)) o
7eS(<Q) s
In concrete terms this means that (19) is equivalent to the dual inequality

Z| Z an/\n(n)|2<< N1“Z|a,,|2. (20)

n<N 7eS(<Q) 7

We now choose a smooth, positive, compactly supported test function
¥ on[0, +oo[, equal to 1 between 0 and 1, and such that §(x) < 1 for
allx e R.

Then by positivity the left-hand side of (20) is less than

Y Y am] o

n>1 reS<Q)

so it is enough to prove the inequality for this last expression.
This we write, expanding the square and interchanging the order of
summation, as

Y T Y An (WA (My(n/N).

71,2 Q) n>1

Let us denote by (1, 7») the inner sum,
SNOTL ) = ) dy (M A, (MY(/N).
n>1

We thus have

ITRo@IP< Y. oS, m2). (21)

71,12€ (L Q)

We will use the following well-known lemma:
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Lemmal Let
Q@) = ) 0ty K1, 72)

1,72

be a quadratic form, withkK (1, 72) € C. Then we have

< Max K(rq, .
1Qll < Ma %} (71, 72)|

We are thus reduced to the problem of estimating the s&ys,, 75).
This we will achieve by studying the analytic properties of the Dirichlet
series .

Lo(m1 ® #2,9) = Y Ay (MAg, (NN~
n>1

(which might be called the “naive” convolution of the automorphic repre-
sentationsr; andr;,) and expressing the sums as Mellin transforms.

The necessary properties bf are consequences of a result which
compare it to the Rankin-Selberg convolution »f and 7,. In com-
plete generality, Jacquet, Piatetskii-Shapiro and Shalika have developed
a theory of Rankin-Selberg convolutions of automorphic representations of
GL(n) x GL(m) ([JPS] and other papers); in particular, they have defined
a correspondingd--function and studied its properties (analytic continua-
tion and functional equation). Some points which they didn’t treat have been
established by various other authors (among whom Shahidi, Moeglin and
Waldspurger for instance).

In our case, this allows us to consider thdunction L (71 ® 7») of the
representation-theoretic convolutionsof and the contragredient represen-
tation ofry. 4

We will prove below

Proposition 2 Let 7; and 7, be automorphic representations GfL(n)
satisfying the Ramanujan-Petersson bound, of condugtandd, respec-
tively.

There exists an Euler product

H(ry, 7123 9) = [ | HpGra, 72 p7°)
P

whereH (1, ) is a rational function for allpand a polynomial (of degree
bounded by a constant depending onlyngrandn,) for almost all p, such
that H(rrq, ) converges absolutely f&re(s) > 1/2 (in particular, has no
poles in this region), and

Lp(m1 ® 72, 8) = H(my, m2; L (11 ® 2, 9).

4 In the case of5L(3), the convolution of the symmetric squares of two cusp fofms
andg has already been used in other contexts in analytic number theory by Hoffstein and
Lockhart [H-L] and by Luo, Rudnick, Sarnak [LRS] to obtain deep results adut?)
automorphic forms, especially non-holomorphic Maass forms.
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Moreover, we have for any > 0 and uniformly forRe(s) = o > 1/2
a bound

H(mq, w25 9) < [a1, 02]° H(o)

whereH is a fixed Dirichlet series absolutely convergent Re(s) > 1/2
satisfying in this region

H(o) < (0 —1/2)7A
for someA > 0 depending only on; andn,.

This reflects the fact that the coefficientslof (71 ® 75) and Ly (71 ® 75)
are the same for squarefree integelsee equation (26) below).

In particular, becausé ™ (r; ® 7o) has a meromorphic continuation,
this gives the analytic continuation of, up to the critical line.

If we grant the proposition we can now apply Mellin inversion, namely
if we let ¢ denote the Mellin transform af,

A oo Jax
U(s = YOO —-

0

then we have

Y0 = o [ oxds
27 J 3
(the integral being on the linke(s) = 3 of the complex plane), from which
easily follows the basic formula

1 R
SuCm, ) = 5 - /3 NG (9) Lot @ 7, s
3

= —— | NSY(9H(ry, 772 YL (1 ® 72, 9)ds,
27T| 3)

We now move the line of integration ®e(s) = 1/2+ cwherec < 1/2

will be chosen later. The Mellin transforfhis easily seen to be holomorphic
for Re(s) > 0 and quickly decreasing in any vertical stbip< Re(s) < b
(6 > 0); the other terms in the integral being at most of polynomial growth,
shifting the contour is possible.

The only singularities we can pick up by doing so are those of
L (1 ® 72).

From the Rankin-Selberg theory, those are known. Indeed [M-W] estab-
lishes:

Theorem 5 If there are na € C such thatry = 7o ®| - |, thenL (7, ® 72)
is entire.

If 711 = 7y, thenL (;r; ® 72) has two simple poles & and 1 and is
holomorphic outside those points.
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In our case,r; and s, having unitary central character we can have
m =m®|- [t onlyif t =0, so this theorem describes all possible cases
where poles may appear in the convolution.

Keeping this in mind we then estimate the integral on the other line,
namely

1 o
—f N3y () H(ry, 7F2; L™ (11 ® 7o, S)ds.
21t J a2+

We are only interested in thepaspect of the matters. By the bounds for
H in Proposition 2, for any > 0 we have

H(my, 72, 1/2 + ¢+ it) « Q°c™A.

As for the Rankin-Selberg convolution, after inserting the correct Gamma
factors it has a functional equation relating its values atith that of the
contragredient convolutioh (7, ® o) at 1— s(see the references to several
articles of Shahidi in [M-W]):

L(m1 ® 2, 9) = 9(m1 ® 2)q(r1 ® 72) > SL (71 @ 12, 1 — 9)

whereg(r; ® 7) is a complex number of absolute value 1 &y, ® 75)

is the conductor ofr; ® 7. By a theorem of Bushnell and Henniart [B-H],
it is bounded by the product of threth powers of the conductors af and
o, which themselves are at ma3t so that

A(m ® 72) < (QH)" = Q™.

From the functional equation, Stirling’s formula and the convexity prin-
ciple of Phragmen-Lindeldf, this implies in turn

LOO(T[]_ ® ﬁZ, 1/2 +Cc+ |t) <« Q2n(l/4fc/2)|t|E — Qn/27nc|t|E

for someE > 0. With the previous bound far, and using the fact thak

decreases faster than any polynomial on the line, we get the estimate
C—AN1/2+ch/2—nc+s

for the integral. Recalling thall > Q” and takingc = (log Q)~* so that

1« Q°« 1,N¢ « 1 andc” = (log Q)” we obtain therefore for any
e>0

Sn (1, 2) = 8(rr1, T Y (D)NRy, + O(NYZHV(@+e) (22)

whered (1, ) is the Kronecker delta, ang,, is the residue of the naive
convolution considered when, = m,, namely

Ry = H(r, w; )Res_1 (L™ (7 ®@ 7, 9)).
We then claim that for any (and uniformly insx)

R, <« Q° (23)
forall ¢ > 0.
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This is a straightforward consequence of (22) #«gr= 7, = 7 and
the Ramanujan-Petersson bound (17) which, we have already mentioned, is
uniform inz. °

Now according to Lemma 1, the quantity we have to bound is actually

Max .
2 Z [ S\ (1, 72) ]
m2€(<Q)
Therefore (22) and Lemma 1 give (see also (18) and (23))

2
> |Z ankn(n)‘ & (N 4 NVZHEHD/ED)NE S ™ |, |2
7eX<Q) n<N i

for anye > 0, and this implies (20) if + 2g§n <1, thatisg > 2d+n. O

Proof of Proposition 2.We actually treat a more general case wherées
an automorphic representation®L (n;) fori = 1, 2.
Write

L®(mi, s) = Z Ai(mn~s

n>1

for the finite part of the standatd-functions, and put as above

Lo(m1 ® 72,9) = Y Aa(M)a(mn~>.
n>1

We have to comparé,(r; ® m,) and the Rankin-Selberg convolution
L (1 ® m2).

The Rankin-Selberg convolution has an Euler product by the general
theory, and the naive convolution also has one because it's a Dirichlet series
whose coefficients are multiplicative:

Lo(r1 ® m2,9) = [ [ Y 2(P)r2(p) p .

p k>0

Therefore, since we claim the existence of an Euler product

H(ry, ) = [ | HpGrr. m2)
p

relating the two, we can proceed locally for each prime
For any automorphict.-function, we denote by, , its p-factor, consid-
ered as a polynomial (ip~%) with complex coefficients.

5 Forn = 2 orn = 3 for the symmetric square, which are the two applications used in
the Linnik problem, it is possible to give an elementary proof of (23) - not using Deligne’s
proof of the Ramanujan-Petersson conjecture - using a trick of Iwaniec, see [Ilwa] page 131
forn=2.
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Assume first thap is an unramified prime of the Rankin-Selberg con-
volution. This is true for almost alp, and we will prove now the existence
of a polynomialH (1, 2) such that

> mP922(P9YX = Hp(r, m2) L p(m1 ® 7). (24)
k>0

We know thatp is unramified for bothr, andrn,, so that thep-factor of
the standard.-function is

Loyt = [] @-aijX (25)
1<j<n;
whereq; j are the Satake parameters of the local representatipn at

Again, the general theory gives tipefactor of the Rankin-Selberg con-
volution

Lo(m ® mp)~* = l_[ (1 — oy, jazkX).

1<j<ny
1<k<n;

Assume, to begin with, that theg ; are all distinct and theq ja, « also.
Coming then to thep-factor of the naive convolution, we deduce from the
Dirichlet series forL*°(7;) that

DX = ] @=aijx™

k>0 1<j<n,

_ i,
- Z 1—q;X

1<i<ni
for some complex numbers; (partial fraction expansion, since thés are

distinct), whence
M= D rijef.

1<j<n;
This implies
S (PR = 30 (D0 raira ke ) X-
k>0 k=0 1<i<m
1<j<ny

_Z rlIij
—Otl|062JX

Reducing to a common denominator, which is exattyr, ® o), we
get the required formula (24).
Moreover, it is obvious that the coefficientsldf (1, 2) are polynomi-
als in thea's and since the Ramanujan bound implies;| < 1 it follows
that those coefficients are bounded by some constants depending only on
n, andn,. Hence the absolute convergence (and the absence of poles) in
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Re(s) > 1/2 of the product over the unramified primes will follow if we
can show that the coefficient of of Hy (1, 2) vanishes, since there is no
term in p~° then.

But for any rational function

[ = —
g

with polynomials f andg, satisfyingr(0) = 1, the coefficient oiX of the
numeratorf of r is f’(0), and so equalg(0)r’(0) + g'(0).
If r =", by XX is the power series developmentrofve have therefore

f'(0) = g(0)by + g'(0).
Assume moreover that= ]'[J- (1—pBjX). Then

f'(0)=b1— ) B;.
j

Applying this to the local factor of, which is of this form, we see that
the corresponding coefficient is indeed zero since

M(Pra(p) =Y arica). (26)
i

We can now use a continuity argument to deduce that the existence of the
polynomial H, satisfying formula (24) and the vanishing of the coefficient
of X remain valid when some of the roots of the lotafunctions are the
same.

It remains to treat the case of the ramified primes. The local factpr at
of the L-functions ofrr; andrn, is still of the form

LoGr) = [] -}
1<j<n]

for somen; < n;. The same proof as the unramified case shows again that
the local factor of the bilinear convolution is a rational function which has
poles only among the reciprocals of the productsa, . So we can define

Hp (1, m2) by

Ho(rs, 72) = (3 m(PIR(BOX ) Lpme ) (@27)
k>0

and it's also a rational function.
It remains to establish that the finite product over the ramified primes
has no pole foRe(s) > 1/2. But a polesy of Hy (i1, w2, p~°) must satisfy

oy japp =1

(for somej andk), so by the Ramanujan bound again weRetsy) < 0.
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As for bounding H(rq, 75; S), clearly by the Ramanujan bound the
product over the unramified primes is absolutely convergenR&js) >
1/2. It is dominated (termwise) by the Euler produdt whose factors
are obtained by taking the corresponding factoHgfand replacing each
coefficient of the polynomial by its absolute value, which in turn, since the
coefficient ofX? is absolutely bounded (say 1), is dominated by an Euler
product which may be written (by factoring by for¢€2s)) as(2s)” J(s)
where J(s) is absolutely convergent f&e(s) > 1/3. The estimate

H(o) < (o —1/2)~A

then follows directly.
We now estimate the product over the ramified primes

1_[ Hp(1, 725 p~°)

pllo1,02]

using (27).
ForLp(m ® m5)~L, which is a polynomial of degree at masin, we
write, by the Ramanujan bound again:

[[ Lom®m) < J] @+p)me
pllas,02] pl[a1,02]
<[] 2me
pl[a1,02]
< [q1, o]

for anye > 0, since (see [H-W], chapter 22 for instance) the number of
prime divisors of an integar is O(logn/ loglogn).
On the other hand, still by Ramanujan, for any 0

Y mP9a(php e < Y pe?

k>0 k>0
1
 1— pste

so that taking the product over| [, gz] we obtain by the same reasoning
the same bound as above for the product of those terms, and in the end

l_[ Hp(1, 25 p°) < [a1, Ge]° -
pi[d1.2]

O

It is clear that as increases the conditioN > QB¢ beyond which
the inequality is proved becomes more restricted. It seems that further ideas
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are required to establish sharp forms of the large-sieve inequalities in those
cases (or even to refute them if they happen to be false). Using variants
of a trick due to Viola and Forti for Dirichlet characters, it is likely that

a sharp large-sieve inequality would follow if we could tdkgy = d in the
mean-value estimate (19).

We now state the corollaries which are used in the Linnik problem, see
Subsection 2.1.

First forn = 2, and for any weighk > 2, we have mentioned already
that for a certainr,, andn = 1, it holds

Aut(g) = S(a)*

since Deligne has proved that cusp-forms of weight larger than 2 satisfy
the Ramanujan-Petersson bound. Take thei®(gs some subset of the
automorphic representations correspondingtec Q) (recall thatt means
non-monomial) such that

IS(S Q)| = O(QY).
Then:
Corollary 5 If N = Q with 8 > 2d + 2, then for anye > 0, it holds
2
> Y anim| < NHY fa
fes(<Q)f n<N n<N

for any sequenceéa,)n<n Of complex numbers.

Now forn = 3;if f € S(q)*, its infinite component is fixed; let,, be the
representation 0B L(3, R) which is its local symmetric square (see [G-J]),
and agaim = 1.

From the Gelbart-Jacquet theory we see that the ima@(ef Q)* by
the mapf — n(fz) already mentioned in Subsection 2.1 is contained in the

correspondingfut(q); we write againS? (< Q)* for the image ofS(< Q)*
and apply Theorem 4. Hei®@? replacesQ and since trivially

1SP(< QI = 0(Q
we get:
Corollary 6 If N = Q* with 8 > 2(d + 3), then for anye > 0, it holds
2
> S| <Nt Y
71€S2(<Q)F <N n<N

for any sequencéa,)n<n Of complex numbers.
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Note added in proof: Breuil, Conrad, Diamond and Taylor have announced
a proof of the full modularity conjecture for elliptic curves ov@r Corol-
lary 4 thus holds unconditionally.

Appendix
Recovering modular forms from squares

Dinakar Ramakrishnan

253-37 Caltech, Pasadena, CA 91125, USA (e-ndailakar@cco.caltech.edu )

The purpose of this appendix is to provide a proof of the fact that a holo-
morphic newformf of weight X, level N and trivial character, with Hecke
eigenvaluega, | (p, N) = 1}, is determined up to a quadratic twist, in fact
on the noséf N is square-free, by the knowledge aif for all primesp in

a set of sufficiently large density. We will in fact prove a more general state-
ment (Theorem A) below, including the case of odd weight and non-trivial
character, and also establish a mfod@halog, where the twisting character

is shown to be unramified @t We found this result in the summer of 94,
and we have since learned that Theorem A has also been known to others,
including Don Blasius and J.-P. Serre. Also, Siman Wong has recently come
up with a different proof in the weight 2 case (with trivial character). So we
do not intend any display of great achievement by this write-up, and we give
all the details for ease of use by those working in classical modular forms
and number theory. We have also found a non-trivial extension of this result
(in characteristic zero) to Maass forms using an array of results on auto-
morphicL —functions, and this is the subject matter of another paper [Ra2].
This work was partially supported by an NSF grant. We thank Serre for his
helpful comments on an earlier version which led to a finer resuilt.

For every pair of integerd|, k > 1, and charactew : (Z/N)* — C*,
denote bys,*"(N, w) the set of normalized newfornfsof weightk, level N
and charactew, with Hecke eigenvaluea( f), for all p not dividing N,
and corresponding—Euler factors

Lps ) = Q—app ™)@ —Bpp )7
wherea, = ap(f) andg, = Bp(f) are non-zero algebraic integers satisfy-
ing
a(f) = ap+pp  and  w(PP = aphp
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Let us set

1 1
Lp(s, Ad(f)) = <1— %p_s) (1_ p—S)’l (1 _ ﬁp—S) .

p Up

Theorem A. Let f € 8°"(N, w) andg € 8°"(N', '), k > K/, be such
that, for all primesp outside a seSof Dirichlet densitys(S) < -&, we have

18’
() Lp(s, Ad(f)) = Ly(s Ad(9)).

Thenk = K/, and there exists a Dirichlet charactey of conductor M
dividing NN’ such that

ap(f) = ap(@x(p),

all p prime toNN'. In particular, v = o' x°.

If f,gare not of CM type and have weightsk’ > 2, then the same
conclusion results if (*) is assumed to hold only for a set of primes of positive
density.

When f and g have thesame character we can deduce the stronger
result below:

Corollary. Let f € 8/*"(N, w) andg € $*"(N’, w) be such that, for all

primesp outside a seSof density§(S < 1—18 we have

ap()? = ap(9)?,

Then there exists guadratic character y of conductorM dividing NN’
such that
ap(f) = ap(@x(p),
for all p not dividingNN’. Moreover, ifo = 1andN, N’ square-freg then
f=g
When f, g are not of CM type and of weight 2, we get the same
conclusion assuming only thétS) is < 1.

Theorem A= Corollary. The hypotheses imply théak,(f)/Bp(f)) +
(Bp(H)/ap(f)) + 1 equals(ap(9)/Bp(9) + (Bp(9)/ap(@) + 1), for all p
outsideS. It is then easy to see thaty(s, Ad( f)) equalsL (s, Ad(Q)), for
all suchp. So we may apply the Theorem and deduce the existence of a
such thab,(f) = ap(g)x(p), for all p prime toNN'. Comparing squares,
we see thaj must be quadratic.

Next let N, N" be square-free, and trivial. Supposey is non-trivial.
Denote byr, ' the cuspidal automorphic representations of(51Aq)
of trivial central character associated fg g respectively. Then, up to
exchangingf and g if necessaryN = N(x) must beN(7’ ® ), the
conductor ofr’ ® (x o det). (Here we are identifying with the idéle class
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character ofQ it defines.) SinceN’ = N(xr') is square-free, and sincg

has trivial central character, one sees easily from the description of local
representations and their conductors in [Ge], p.73, thaptheomponent

7, must be the unramified special (Steinberg) representation at every prime

p dividing N’. One sees then, by using the same theorem (loc. cit.) that
ordy(N(7' ® x)) = 2, for any p dividing the conductoM of x. SinceQ
has class number, there are no unramified charactersin other words,
N = N(’ ® x) is not square-free, giving the desired contradiction.
]

Proof of Theorem A We will in fact give two proofs. We fix a prime

¢ not dividing NN, and begin with the theorems of Deligne ([De], for
k > 3), Eichler-Shimura ([Sh], fok = 2), and Deligne-Serre ([DS] for
k = 1), giving the existence, fdr = f or g, of an irreducible, continuous
representation

oe(h) : GalQ/Q) — GL2(Qy).
such that, for any prime not dividing N¢,

tr(oe(h)(Frp)) = aph) = ap(h) + Bp(h),
lap(h)| = |Bp(h)| = p*kM=D72,

and
det(o,(h)) = w(h)xg,?*l.

Here Fr, denotes the Frobenius conjugacy clasp,a), a fixed algebraic
closure ofQ,, and . the cyclotomic character given by the Galois action
on the inverse system é6f'—th roots of unity. {(h) is w or »’ depending on
whether is f or g; similarly for k(h).) If we consider the fieldE generated
by the coefficients off, and a place. of E above¢, then one has in fact
a representation of G&/Q) into GL,(E,), and ouro, is its extension
to Q,. We work overQ, because we will need to appeal to Schur’'s lemma.

For any two dimensionaD, —representation, of Gal(Q/Q), set

Ad(oy) = symf(oy) ® detio) .

Theorem B. LetK be a number field, and let, ando, be irreducible two

dimensionalQ,-representations of G&R/K) with Frobenius tracesap,
ap (for almost all primesP) and conductorsN, N’ respectively. Suppose

Ad(oy) ~ Ad(s}). Then there existy, € Hom,n(Gal(Q/K), Q,) such
that

oy = Ué@Wg.
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Next letK = Q. Suppose we know either that and o, are Hodge-Tate
(see [Sel]) or that the ratio of their determinants is a finite order character
times an even power ofyc. Then

(%) Ve = Xyeve.

wherer is an integer, and, the £—adic character defined by a Dirichlet
characterv.

Theorem B— Theorem A. Let f, g be as in Theorem A. Since ( f)
and o,(g) are simple Ad(o,(f)) and Ad(o,(Q)) are semisimple, and we
claim that they are isomorphic.

Modulo this claim, we proceed as follows. Applying the first part of
Theorem B, we get a charactgr suchthat,(f) ~ o,(g)®1,. Comparing
determinants, we get for almost al)

(I Ye(Frp)? = xeye(Frp)* o(po/'(p) 7.

At this point, one can use (at least) three different methods to finish the
argument. The first uses a theorem of Faltings [Fa], which saystliat
is Hodge-Tate for any newforrh of conductor prime tof. So, by the
second part of Theorem B and k' are of the same parity, and we get
(**) with r = (k — K')/2. Let H(f) (resp.H(Q)) be theQ-Hodge structure
of weightk — 1 (resp.k’ — 1) associated to (the motive of) (resp.g).
Then we must havel( f) ~ H(g)(r), whereH(g)(r) denotes the Tate twist
H(g) ® Q(r). Thenr must be zero, since the Hodge typetdff) (resp.
H(g))is{(k—1,0), (0,k — 1)} (resp.{(k — 1,0), (0, K — 1)}), while that
of HQ)(r) is{(K —1—r,—r), (—r,K —1—r)}. Done.

The second method usksfunctions. Let be the finite order character
defined asngé'f,{k)/z. Then by (I) we have, for every Dirichlet character
an identity

Los, f@u) = Lp(s—(k—=k)/2,g® uv),

for all pin the setT of all primes not dividing¢NN" and the conductor
of u. We may fix au, sufficiently ramified at the primes if, such that the
local factors off ® u andg ® vu at any prime inT are 1. Interchanging

f andg if necessary, we may assume tka& k'. Since the archimedean
factor attached td ® 1 is (27) ~5T'(s), and since its product with (the global
Euler product)L (s, f ® w) is entire, any pole of the Gamma factor results
ina zero ofL(s, f ® w), which is]‘[méT Lo(s, f ® ) by the choice ofx.
This happens for example si= 0, and consequently, by the identity above,
L(s+ (K —k)/2) has a zero & = 0, even though its the archimedean factor
does not have a pole there (gs> k). Then, by applying the functional
equation forg ® wv (which relatessto k' — s), we see that (s, g ® v)
has a zero a$ = (K + k)/2. This is absurd (see [JS]) as this point is in
the region (resp. on the boundary) of absolute convergerice-ifl (resp.

k =1). So we must havk = K.
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The third method is to appeal, férlarge enough, to the mo@result
proved later in this appendix.

Now we prove the claim. The identity (*) says that the characteristic poly-
nomials of the Frobenius classes, agree onAd(o,(f)) andAd(o,(9)),
for all p outside a sef of densitys < lis If (S = 0, then by the Tcheb-
otarev density theorerd\d (o, ( f)) andAd(o,(g)) would be equivalent, and
our object is to get the same conclusion under the weaker hypothe&is on
By [GJ], we know that, foh = f or g, there is an (isobaric) automorphic
representatiordd(h) of GL(3, Ag), whose standardl -function identifies,
after removing the archimedean factors, m Lp(s— 1, Ad(h)). It suf-
fices to show thafd( f) andAd(g) are isomorphic. Suppose not. Then we
can find (isobaric) automorphic representatiens’ of GL(k, Ag), k < 3,
such thatAd( f) ~ = B n andAd(g) >~ =’ H n, wheren is an automorphic
representation of GI3 — k, Ag), taken to be 0 ik = 3. Let Zg(s) be as in
equation (3) of [Ral]. In the present casanifresp.r) denotes the number
of cuspidals occurring in the isobaric decomposition [Lajrofresp.n’),
necessarily with multiplicity 1, we haveords_; Zs(s) = m?+r? (compare
with (4) of [Ral]). Since one knows the Ramanujan conjecture for holo-
morphic forms by Deligne, it is easy to verify that Lemma 2 of [Ral] holds
for  (resp.7’) with 8 less thark?m?s (resp.k?r2s). Then the argument of
Sect. 2 of [Ral] shows that we must havel12k?s. Sinces < 1/18 and
k < 3, we get the desired contradictiction.

It remains to treat the case wheing are not of CM type and have
weights> 2, with § assumed to be just 1. One knows by the works of
Serre and Ribet [Ri] that, ( f) is absolutely irreducible under restriction to
any open subgroup. We note then that the same must be tradfor( 1)),
as otherwise the restrictiosy ( f)x will, for some number fieldK, be in-
duced by a character of G&l/F), for a quadratic extensiofr/K (see
below), makingo,( f)r reducible. Now, applying Theorem 2 of [Raj] for
example, we may conclude that, &s 1, Ad(o,(f)) must be isomorphic
to Ad(o,(Q9)) ® v, for some one-dimensional of Gal(Q/Q) defined by
a Dirichlet character. LeK be the cyclic extension of corresponding
to v, and letr be a generator of GEK/Q). Then, sinceAd(o,( f)x) and
Ad(o,(g)k) are isomorphic, we may apply Theorem B and conclude that
ov(Hk ~ 0v(g)k ® A, fOr a charactei, of Gal(Q/K). Sinceo,(f)x and
o¢(Q)k are invariant undet, we get

o@Dk ® (/A = oy (Q)k.

Sinceoy(g) is irreducible under restriction to any open subgrosfg)
cannot admit any non-trivial self-twist, andnust be invariant underand
hence must extend to a character of @&lQ). The rest of the argument
goes through as above, and Theorem A follows.
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Proof of Theorem B First we need a simple

Lemma. Letp, be anirreduciblen—dimensional, self-du@e-representa-

tion of GalQ/K). Then there exists an invariant non-degenerate bilinear
form B on (the space ofy,, which is symmetric or alternating, such that

0] B is unique up to a non-zero scalar; and
(i)  If p,isanother irreduciblen—dimensional, self-dud,-representa-
tion of GalQ/K) with invariant non-degenerate bilinear for®’,

such thatp, and p, are isomorphic, then they arsometric relative
toBandB'.

Indeed, (i) and the statement above it are immediate consequences of
Schur’s lemma. Also, sind®, is algebraically closed;B is isometric toB
for anyc e QZ; hence we get (ii) as well.

Now let o, ando, be as in Theorem B. Suppose (the semisimple rep-
resentation)Ad(o,) is reducible. Then it must contain a one dimensional
summandy,, say. Them, occurs in the (self-dual) Eidy) = oy ® 0, =
Ad(o;) @ 1. Schur’s lemma above forceg to be non-trivial. Eithem, is
quadratic, or otherwisg,” will also occur in Endoy). In either case, we see
that Endo,) must contain a quadratic characéer say; letF be the corres-
ponding quadratic extension &f with non-trivial automorphisnd. Denote
by o, the restriction oy, to GakQ/F). We claim (as is well known) that
if 7, is another semisimple representation of(@;(IK) whose restriction to
Gal(Q/F) is isomorphic tasg ¢, thent, ~ o, ® 8}, for j € {0, 1}. Indeed,
by the hypothesis, the restriction gf := 7, ® o, t0 GalQ/F) contains
the trivial representation; so by Frobenius reciprocity, there is a non-trivial
homomorphism betweep and the representation of G&l/K) induced by
the trivial representation of G@/F), which decomposes asfi §,. Sosé
occurs iny, for j = 0 or 1. Equivalently, there is an intertwining operator
between, ando, ® Sé, which implies the claim by virtue of the irreducibil-
ity of o,. Next observe thatr, must be reducible as Eqg-,) contains
1 with multiplicity 2 (as the restriction of, to GakQ/F) is trivial). Write
OF.¢ = v ® g, With vy, 1, being one-dimensionals of G/ F). We claim
thatv, is not@-invariant. Indeed, otherwise, would also b&-invariant as
ok, 1S, and bothy, andu, would admit extensions to G@&/K) and result
in a reducible extension af, ¢, which is impossible by the claim above.
Thus, is not fixed byd, and so we must have: ; ~ v, @ v\. This forces
o, to be the induced representation ffrd,), as this induced representation
has the same restriction to G@l/F) aso, and is moreover isomorphic to its
twist by any character of GAD/K) trivial on GakQ/F). Since Endo,) =
Endo,), o, must also be of the form Ir’ﬁotvg), for some one-dimensional
v, of Gal(Q/F). Since the determinant of Ifé(dl)g) is the transfer ob, to
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Gal(Q/K) timess,, we see that
Ad(oy) = IndE (ve/vl") @ 5.

and similarly forAd(o}). This implies that, up to replacing by v\”’, we
have

e /v = v/ ()P,
Thenv /v, is6—invariant, and hence extends to acharagtesf Gal(Q/K).
In other wordsg, ~ o, ® ¥, as claimed.

We next consider the case whed(c,) andAd(o;) are irreducible. Let
A¢ denote the product of the determinaais ), of o, o, respectively. Set

L ’
Ne = 0¢ Q0.

Then
symf(ne) ® 1, ~ Ad(oy) ® Ad(o)) & 1.

SinceAd(o,) andAd(o;) are irreducible, self-dual and isomorphic, 1 occurs
in their tensor product. Hence the multiplicity af is greater than 1 in
syn¥(n,), showing thaty, is reducible. Now supposg, contains a two
dimensional summang, say. Then the one dimensional @g} occurs in
the exterior square af,. But on the other hand, we have

A?(np) ~ symi(oy) ® w, ® ), ® synt (o)),

showing that, as the symmetric squarespbindo, are irreducible, there
can be no one dimensional summand\dtn,). This shows that), has no

two dimensional summand. Since it is reducible, it must then have a one
dimensional summang, say. Then

So we get the desiregl, by taking it to bew[lvg.

Now let K = Q. Comparing determinants, we see thaf =
det(o;)det(o;) 1. So we get (**) immediately if the ratio of the deter-
minants is a finite order character times an even powex.f Finally,
supposer; ando, are Hodge-Tate. Thewr, will also be Hodge-Tate as it
occurs inoy ® (0,)”. Consequently, it corresponds to an algebraic Hecke
charactery. Since we are working ove), it must be a finite order character
times a power ofcyc. Done.

For the second proof, we begin by recalling the fact that the adjoint rep-
resentation AdPGL(2, Q,) — GL(3, Q,) is isomorphic onto the special
orthogonal group S@, Q,). Denote byz, (resp.o;) the composite o,
(resp.o;,) with the natural homomorphism of G2, Q,) onto PGL(2, Q,).
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Then it is easy to see that Ad,) identifies with the Ado,) defined ear-

lier (above Theorem B). So, by our hypothesis, we get two representa-
tions, namely Ado,) and Ada)), into SQ(3, Q,), which are equivalent in
GL(3, Q,). Suppose they are irreducible. Then we may apply part (i) of the
Lemma and deduce that they are in fact isometric. By changing the isometry
by —1 if necessary, we may assume that they are equivalent 8,8D).
Since Ad is an isomorphisna, ando, define equivalent homomorphisms
into PGL(2, @). Henceo, must be equivalent te; ® v, for somey,
Hom(Gal(Q/K), Q,). When Adoy) is reducible, one uses explicit argu-
ments as in the reducible case of the first proof to conclude thatAdnd
Ad(o,) are isometric. The rest follows. O

The mod ¢ version. For each newfornf, let K¢ denote the number field
generated by the coefficients of If g is another newform, leD ¢ 4 denote
the ring of integers of the compositukis Kq. Forh = f or g, write for p
not dividing the level,

ap(h) Bp(h) )
=(1-E=T)a-D(1-2=2T),
QD ( Bp(h) ) ( R ( ap(h)

so that Ly(s,Ad(h)) = Qn(p~®~1. Note that, sincexp(h)Bp(h) =
w(h)p™=1 o (h) and Bp(h) are invertible modulo any primeé not di-
viding pN(h).

Theorem C. LetZ be an odd prime number and, N’ positive integers
prime to{. Let f (resp.g) be a newform of leveN (resp. N’), weightk
(resp.K’), and charactemw (resp.«’). Leti be a prime ideal aboveéin O g.
Suppose we have

©) Qi(MN = Qg(N (modir),

for all poutside a se§(containing the primes divisors 6N N') of density0.
Thenk = k' (mod¢ — 1), and there exists a characté, unramified at¢,
such that

ap = bpB(p) (ModAr),
for all p not dividing¢NN'.
Remark. Note that ifw and o’ are the same mod, and ifk — k' =
0(mod¢ — 1), the hypothesis (C) is equivalent to the congruence
2 _ K2
a, = bp (mod A).

In this caseB is necessarily quadratic. MoreoverNfandN’ are in addition
square-free, one can conclude (as in the characteristic zero casg)ishat
trivial.
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Proof. Let F, denote the residue field,/A. Reducing the (integrally
defined){-adic representations associatedftg modulox and extending
scalars td~,, we get representations

7, : GallQ/Q) — GL(Fy)

and - L
o) : GalQ/Q) —> GLa(Fy)

such that, for allp not dividing NN'¢, tr(o, (Frp)) (resp. t(o;, (Frp))) is the
image ofa,, (resp.bp) in F;. Moreover, by hypothesis, dét,) and detc’} )
both equaly* '@ (resp.x¥ ~@'), wherey : Gal(Q/Q) — F is the mod¢
cyclotomic character and (resp.@’) the reduction (mod) of w (resp.’).
Clearly, the images of G&D/Q) under these two representations are finite.

For anyF,-representation; of a finite groupG of dimensiond, let ¢;°
denote its semisimplification. Note that in characterigtithe semisimplifi-
cation is determined by the characteristic polynomials ¢j) for all gin G
whend > ¢, and also whed = ¢ = 3 if 1, is orthogonal of determinant 1.

By the hypothesis (C), the characteristic polynomiaBmgfin the adjoint
representations &, andga; are the same for alp in a set of density 1.
Thus, by the Tchebotarev density theorem and the remark above, we see
that

Ad(T3) ~ Ad(a;%).

Since Endc3® (resp. Endo’ ) is Ad(c5%) @ 1 (resp.Ad(c}>) & 1), it
follows thato, is irreducible iffo is.

First suppose that; anda), are irreducible. In this case the detailed
¢-adic argument given in the proof of (the first part of) Theorem B goes
through, withQ, replaced everywhere ¥, once one notes the availability
of the relevant form of the Frobenius reciprocity in characterisficf. [A],
chap. Ill, Lemma 6) and the fact that the tensor square of a simple Galois
module is semisimple [Se3]. One deduces an isomorphisi; ofvith
o5 ® vy, for some character, of Gal(Q/Q) into F;. Sincew, andw) are
the same moduld, we see by comparing determinants thiis Koo
We may writev, asy!g,, for somej € {0, ... , £ — 2}, and a charactes,
unramified at. Consequentlyk — k' = 2j( mod¢ — 1), 82 = @/, and

(% * %) GL =T, QX B

Let G, denote the decomposition group fabf Gal(Q/Q), and letl de-
note the inertia subgroup. When is not zero modulo., one knows by
Deligne (cf. [E], Theorem 2.5, for example), that s, is reducible, and its
semisimplification is of the formkflumeam,k, where eacly; ; is unram-
ified. Whena, is divisible by, a result of Fontaine (see [E], Theorem 2.6)
asserts that the restriction 8, is irreducible, while the restriction tb
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demposes agk 1 @ 1//“’1, wherey, ¥ are the two fundamental characters
of level 2 [Se2]. Similarly for the restriction af; atZ. In either case, we
see that the only way (***) can hold is fgrto be 0 modula — 1.

It remains to consider whe, (and hencer;) is reducible. Here we
may write

o3~ ® X B/,
and

5% ~ n, @ x“ 'o/n),
for someF, -valued characters, , i, of Gal(Q/Q). Then we have

Ad@S) = n?/ox @ lewx/n?,
and ) ) )
Ad(E;LSS) ~ 773\ /EXI(—].GB:I_eaa)(k/—l/n;L .

Since Ad commutes with semisimplification, it follows, after possibly re-
placingn;, with x*@/n;, thatn?/x¥ = n,?/x¥ . Arguing as above, we see
thatn, is of the formn; x!B,, for somej € {0,... ,¢ — 2} withk — k' =

2j(mod¢ — 1), and a charactes, :GallQ/Q) — F,, unramified ate,
such thatp? = w/@'. We obtain

EASS ~ n;ﬁ)\X(kik )/2 @ ﬂ}LX(k+k )/27]_5//’7;L

The reducibility ofz, (respz? ) forcesa, (respby) to be non-zero modulb,

as the restriction a&$° (resp.7}, > to | must then be given by a direct sum
of characters of level 1 [Se2]. Applying Deligne’s result on the shape of the
restriction toG, (see above), we see that the only possibility iskfandk’

—/ SS

to be congruent moduld — 1. Thena3®is isomorphic t&7, " ® B;. Done.
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Note added in proof: Blasius has recently brought to my attention that his
argument for Theorem A (minus the density assertion) can be found on
pages 90-91 of “Higher regulators, Hilbert modular surfaces, and special
values ofL-functions” by G. Kings, Duke Math. 92, no. 1 (1998), 61-127.



