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1 Introduction

When Linnik introduced the classical large-sieve in 1941 [Lin], he was
motivated by the following problem: given a non-trivial primitive character
χmoduloq, how large (compared toq) can be the firstn such thatχ(n) 6= 1?

From the Riemann Hypothesis one can deduce (see [Mon] chapter 13
for instance)

n� (logq)2

and the (weaker) conjecturen� qε for all ε > 0 is known as Vinogradov’s
conjecture.

Linnik’s technique makes it possible to prove that the number of excep-
tions to these conjectures is extremely small. For example, letN(Q, α) be
the number of primitive charactersχ of modulusq 6 Q such that

χ(n) = 1

for all n 6 (log Q)α, (n,q) = 1, α > 1 being given; then from the large-
sieve inequality for Dirichlet characters, we can derive

N(Q, α)� Q2/α+ε (1)

for all ε > 0, whereas there are aboutQ2 primitive characters of modulus
at mostQ 1.

? With an appendix by D. Ramakrishnan.
?? Research supported in part by NSF Grant No. DMS-9507797.
??? Current address: Department of Mathematics, Fine Hall, Princeton, NJ 08544-1000,
USA (e-mail:ekowalsk@math.princeton.edu )

1 What Linnik actually did was, forχ a real character, to assumeχ(n) = 1 in the larger
rangen 6 Qε and prove that there are at mostO(log logQ) possibleχ of level less thanQ.
He was also using his own additive form of the large-sieve.
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Moreover, because the exponent is less than 1 forα > 2 and there are
aboutQ real characters of modulus less thanQ, our statement also proves
that there are very few exceptions for real characters, which corresponds to
the problem of the least quadratic non-residue. In particular, forQ tending
to infinity, the probability that two real characters take the same values for
all primesp6 (log Q)α tends to zero.

In recent years, it has been widely perceived that elliptic curves over
Q are a natural analogue of real Dirichlet characters. In this context, the
corresponding problem would be, given two elliptic curvesE and F of
conductor less thanQ, how large (always compared toQ) cann be if E and
F have the same number of points modulop for all primes less thann and
yet are not isogenous?

This problem was considered by Serre, for instance, in [Ser]. Assuming
the Riemann-Hypothesis for ArtinL-functions, he showed that in this case
too n� (log Q)2 follows.

In this paper, we are able to prove some analogues of (1).

Theorem 1 LetM(Q, α)be the maximal number of isogeny classes of semi-
stable elliptic curves overQ with conductor less than or equal toQ which
for every primep6 (log Q)α have a fixed number of points modulop.

Then we have for anyε > 0

M(Q, α)� Q8/α+ε.

It follows from this and a lower bound for the number of isogeny classes
of semi-stable elliptic curves with conductor less thanQ that the probability
that two such elliptic curves have this property tends to zero asQ tends to
infinity, if α is large enough. We also have other results in more general
cases.

As in Linnik’s original treatment, we attack the problem by means
of an analytic inequality for a larger class of objects encompassing the
elliptic curves, namely holomorphic cusp-forms of weight two. Thus we
use the Theorem of Wiles [Wil], and its further extensions, which prove
the modularity of many elliptic curves overQ, to embed the set of isogeny
classes of modular elliptic curves overQ in the set of primitive cusp forms2.

However, due to incomplete knowledge of lower bounds for the Fourier
coefficients of cusp forms it will appear that this inequality is not sufficient
to prove the result we are seeking. We have to supplement its use by that
of another similar inequality for the coefficients of the symmetric square
L-function of cusp forms, and also appeal to a result of Ramakrishnan
about the possible multiplicity of the symmetric square, the proof of which
appears in an Appendix to this paper.

2 Also called “newforms” in the literature; we use the vocabulary of [Miy] to emphasize
again the analogy with Dirichlet characters.
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This other inequality requires the study of Rankin-Selberg convolutions
of GL(3) automorphic forms, and it is actually not much harder to prove
a generalization of our mean-value estimate to allGL(n), in the context
of automorphic representations satisfying the Ramanujan-Petersson bound.
The result is related to the large-sieve, although it is not as powerful as one
could expect; roughly it corresponds to the case of sums much longer than
the conductor of the forms appearing.

We will first study the Linnik problem for primitive cusp forms, stating
the analytic results required for the proof before showing how our main
result follows from this.

We then apply the theorem to elliptic curves, with a short preliminary
discussion of estimates for the number of isogeny classes of elliptic curves
over Q with conductor at mostQ. Both upper and lower bound are used
in our theorem. The problem of finding an upper bound for afixed level q
was recently considered by Brumer and Silverman [B-S]. Their individual
bound can be strengthened on average and we show how this is done.

It is then time to come back to the proof of the mean-value estimate, in
its full generality forGL(n). This result may be of independent interest,
although it falls short of the hypothetical large-sieve inequalities which can
be expected by analogy with the case of Dirichlet characters (namely, the
case ofGL(1)). A variant for Maass forms is used by Luo in [Luo].

Acknowledgement.We wish to thank H. Iwaniec for helpful discussions about this paper,
and especially for suggesting to look at the symmetric squares to circumvent the difficulties
with lower-bounds for the Fourier coefficients. We also thank A. Brumer and J. Silverman
for communicating their result about the number of elliptic curves of a given conductor and
allowing us to present here the straightforward application of their ideas which strengthens
their bound on average.

Notational remark.When using Vinogradov’s� notation, it will often
occur that we consider inequalities such as “for anyε > 0, it holds f(x)�
xεg(x)”; as is customary in this case, the implied constant always depends
on ε.

We may also remind that, as is usual in analytic number theory, theε
may be different from line to line in an argument.

2 The Linnik problem for cusp forms

2.1 Notations and statement of the mean-value estimates

Our main result in this section is about (families of) primitive cusp forms
having the same Fourier coefficients for the first few primes. Fork even,
k > 2, we will denote bySk(q)+ the set of primitive cusp forms of weightk
and levelq and bySk(6 Q)+ the set of primitive cusp forms of weightk
and level less than or equal toQ. Moreover, for f ∈ Sk(6 Q)+, we will
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write λ f (n) its Hecke eigenvalues, normalized so that the critical line for
the L-function

L( f, s) =
∑
n>1

λ f (n)n
−s

is the lineRe(s) = 1/2. This means that the Fourier expansion off is

f(z) =
∑
n>1

af (n)e(nz)

with
λ f (p) = p−(k−1)/2af (p)

for all primesp.
Note that

|λ f (n)| 6 τ(n) (2)

is then the Ramanujan-Petersson bound (proved by Deligne) forf .
We need some estimates for the cardinality of the various sets appearing.

The easiest one isSk(6Q)+. Classical results about the genus of the modular
curvesX0(q) and the index ofΓ0(q) in SL(2,Z) show that|Sk(6 Q)+| is
aboutkQ2, more precisely there is a constantc(k) > 0 with

|Sk(6Q)+| ∼ c(k)Q2 (3)

(see for instance [Shi] pages 25 and 46). Only the dependence inQ actually
matters to us.

We will need to argue, here and in Section 4, in the language of auto-
morphic representations, which is better suited to the variousL-functions
and to the context ofGL(n) automorphic forms. Many useful facts, and
precise references, for the analytic properties of generalL-functions of au-
tomorphic representations ofGL(n) which interest us here can be found in
the paper [R-S] of Rudnick and Sarnak.

Recall first that there is an injective mapf 7→ π f from Sk(q)+ to a cer-
tain subset of the set of cuspidal automorphic representations ofGL(2) over
Q (see [Del], or [Gel]). This map is compatible withL-functions in the sense
thatL( f) = L∞(π f ), whereL( f) is the classical HeckeL-function, defined
above, andL(π f ) is the Jacquet-LanglandsL-function (complete with the
Gamma factor at infinity), which is defined in terms of representation the-
ory; here and elsewhereL∞, for automorphic-representationL-functions,
denotes the finite part of such anL-function.

Moreover, Gelbart and Jacquet have described a mapπ 7→ π(2) associ-
ating a “symmetric square”, a certain automorphic representation ofGL(3),
to a cuspidal automorphic representation ofGL(2) [G-J].

Let L∞(π(2)f ) be the finite part of theL-function ofπ(2)f ; it is a Dirichlet
series which we write

L∞(π(2)f , s) =
∑
n>1

λ
(2)
f (n)n

−s.
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We then claim that for squarefreen, we have

λ
(2)
f (n) = λ f (n

2). (4)

This is actually due to Shimura, and it follows from the local compu-
tations of [G-J] with the fact thatf 7→ π f preservesL-functions: indeed,
writing ζN(s) = L(s, εN) for any integerN > 1 whereεN is the trivial
Dirichlet character moduloN (soζN is the Riemann zeta function with the
Euler factors atp | N removed), we have

ζq′(2s)
∑
n>1

λ f (n
2)n−s = L∞(π(2)f , s)

(whereq′ is the conductor ofπ(2)f ) whence

λ
(2)
f (n) =

∑
d2|n

εq′(d)λ f

(n2

d4

)
which immediately implies (4) for squarefreen.

The automorphic representationπ(2) is not always cuspidal, however,
which means thatL(π(2)) is not always entire. More precisely, Gelbart
and Jacquet have established thatπ(2) is non-cuspidal if and only if there
exists a non-trivial (primitive) characterη such thatπ = π ⊗ η. Such
representations, and the cusp forms inSk(q)+ to which they correspond,
are called monomial representations. It is known from the work of Hecke,
Maass, Langlands and others, that they are the forms obtained from Hecke
charactersχ of a quadratic extension ofQ by automorphic induction, so
that L(s, π) = L(s, χ).

We will write Sk(6Q)] for the set of primitive cusp forms of level less
than or equal toQ which are not monomial. Then we writeS(2)k (6Q)] for
the image ofSk(6 Q)] by the map f 7→ π

(2)
f . The number of monomial

representations can be easily shown to be� Q1+ε for any ε > 0, so the
estimate

|Sk(6Q)]| ∼ c(k)Q2

holds again.
The monomial representations are exceptional in many respects, in par-

ticular we will see this in the case of the Linnik problem (see the remarks
at the end of the next section).

The mapf 7→ π f 7→ π
(2)
f is not injective; roughly, twisting by quadratic

characters doesn’t change the symmetric square, but the corollary to Theo-
rem A of the Appendix shows that this is the only case that can occur. We
state it here in the form we will use.
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Theorem 2 (Ramakrishnan) Letf and g be primitive cusp forms of level
qf andqg. If

π
(2)
f = π(2)g

then there exists a quadratic characterχ of conductord dividing qf qg such
that

λ f (p) = λg(p)χ(p)

for almost all primesp, or equivalently, by the strong multiplicity one
theorem forGL(2) (see [Gel])

π f = πg⊗ χ. (5)

Moreover, ifqf andqg are squarefree, thenf = g.

(We do not have necessarilyf = g ⊗ χ, becauseg ⊗ χ might be non-
primitive; but (5) is correct because the tensor product is in the sense of
automorphic representations, andπg ⊗ χ is the representation whoseL-
function coincides with that ofg⊗ χ for all but finitely many places, in
other words it corresponds to the “newform” associated to the (possibly)
“old-form” g⊗ χ.)

As in Section 4, we suppose that we are given for everyq > 1 a subset
S(q) ⊂ Sk(q)+. We then write

S(6Q) =
⋃
q6Q

S(q)

and assume thatd > 0 is such that

|S(6Q)| = O(Qd) (6)

(note that this holds for any choice of subsetsS(q) for d = 2; indeed taking
d = 2 in what follows only results in having a slightly larger constantBd
and is not of great importance, so the reader may prefer to assumed = 2
for simplicity).

As above, the superscript] restricts the set to the subset of non-monomial
forms, and the superscript(2) to the image of the non-monomial forms by
the symmetric square map.

Now we can quote from Section 4 the mean-value estimates that we will
require in the proof of the main theorem in the next subsection, namely
Corollary 5: ifβ > 2d+ 2 then for anyε > 0 we have∑

f ∈S(6Q)]

∣∣∣∑
n6Qβ

anλ f (n)
∣∣∣2� Qβ+ε ∑

n6Qβ

|an|2; (7)

and Corollary 6: ifβ > 2(d+ 3) then for anyε > 0∑
π f ∈S(2)(6Q)]

∣∣∣∑
n6Qβ

anλ
(2)
f (n)

∣∣∣2� Qβ+ε ∑
n6Qβ

|an|2. (8)



A problem of Linnik for elliptic curves 7

From this last equation we deduce by (4), for anyε > 0,∑
π f ∈S(2)(6Q)]

∣∣∣∑[

n6Qβ

anλ f (n
2)

∣∣∣2� Qβ+ε ∑[

n6Qβ

|an|2 (9)

for any complex numbers(an)16n6Qβ , where
∑[ denotes a sum restricted to

squarefree integers. Remark that this is not a sum over allf since quadratic
twists give the sameπ f .

2.2 The main result

Now fix a setP of prime numbers of positive natural densityδ (for instance,
all primes in an arithmetic progressionan+ b with (a,b) = 1), and a real
numberα > 1. For (non-monomial) primitive formsf andg in Sk(6Q)],
write f ∼ g if λ f (p) = λg(p) for all primesp ∈ P , p6 (log Q)α.3

Then clearly∼ is an equivalence relation (depending onP , Q, k, andα)
on the finite setSk(6 Q)], inducing one on the subsetS(6 Q)], which is
thus partitioned into finitely many finite equivalence classes. We will denote
by MS(P ,Q, α) the maximum cardinality of such an equivalence class: in
other words,MS(P ,Q, α) is the largest possible number of non-monomial
forms in the setS(6Q) whose Hecke eigenvalues are all equal for primes
p6 (log Q)α.

The analogue of Linnik’s result is the following:

Theorem 3 There exists a constantBd > 0 such that for allα > 1, we
have

MS(P ,Q, α)� Q
1
2+ Bd

α +ε

for all ε > 0, the implied constant depending onε, P and the familyS.
Furthermore, ifT is any fixed set of primes, then the number of elements

of any equivalence class whose level is squarefree outsideT (that is, p2 | q
implies p ∈ T) is� Q

Bd
α +ε for anyε > 0, the constant depending further

on T.
Moreover,Bd = 2(d+ 3) is admissible.

Of course, this result is non-trivial only ifS(6Q)] contains more elements
than the bound given for the exceptions, so the efficiency of our result
depends also on a lower bound for the number of forms we are considering.
In particular, it is always trivial ifd 6 1/2 (but the result for forms with
almost squarefree conductor is not, forα large enough, as long as|S(6Q)|
is larger than some fixed positive power ofQ).

As one immediate corollary, we have for instance, takingS(q) = Sk(q)
and using (3):

3 It is possible to relax this condition by asking that the equality holds only with a “small”
number of exceptions (to exclude ramified primes for instance). This complicates the argu-
ment slightly so we will not do it here, as our results are not definitive anyway.
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Corollary 1 Fix α > 2B2/3. Then forQ tending to infinity, the probability
that two non-monomial primitive forms of level less thanQ have the same
Hecke eigenvalues for all primes less than(log Q)α in a fixed arithmetic
progression tends to zero. HereB2 = 10 is admissible.

Proof of Theorem 3.We will omit P in the notation and write onlyMS(Q, α)
in the proof.

Take an equivalence class of cardinalityMS(Q, α) for ∼, and an elem-
ent f in this class, of levelqf .

The idea of the proof is that because of the multiplicativity of the Hecke
eigenvalues the hypothesis implies that for anyg∼ f , we have

λ f (n) = λg(n)

for anyn such that all its prime factors are inP and less than(log Q)α; those
n form a rather large set, but on the other hand choosingan = λ f (n) in the
mean-value estimate (7), we get the same sum over thosen with multiplicity
MS(Q, α), and it remains only to find a lower bound for this common sum
to get some result by positivity. The quality of the result depends on that
of the lower bound, and we will see that this fails to give a good result
because of the impossibility to be sure that Fourier coefficients are “large”
for enough primes; however thedeus ex machinais the well-known formula
(for p unramified)

λ f (p)
2 − λ f (p

2) = 1, (10)

which implies that ifλ f (p) is “small” thenλ f (p2) can not be, and in this
case we use the inequality (9) instead (withan = λ f (n2) this time). This
trick has already been used, for instance in [DFI], in other contexts when
this problem of the lower bound for Fourier coefficients of cusp forms arose.
The great virtue of (10) is its complete uniformity in any parameter involved.
Since we are considering very small primes (compared to the conductor),
this is absolutely vital.

We now come to the details.
By the assumption, the number of primes inP less than(log Q)α is

πP ((log Q)α) ∼ δ(log Q)α

α log logQ
.

Sinceqf has only� log Q prime divisors, the setP (Q) of primes
p6 (log Q)α not dividingqf satisfies also

|P (Q)| ∼ δ(log Q)α

α log log Q
.

For any p ∈ P (Q) we have, as mentioned,λ f (p)2 − λ f (p2) = 1, so
one of the two sets of primes

P1(Q) = {p ∈ P (Q) | |λ f (p)| > 1/2}
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and
P2(Q) = {p ∈ P (Q) | |λ f (p

2)| > 1/2}
(sayPi (Q)) must satisfy

|Pi (Q)| > |P (Q)|/2> δ(log Q)α

3α log logQ

for Q large enough.
If g ∼ f , we havea fortiori λg(p) = λ f (p) for all primes p ∈ Pi (Q)

so that, by multiplicativity and the Hecke relations:

λg(n) = λ f (n)

if n =∏p∈Pi (Q)
pvp(n) has all its prime factors inPi (Q).

Among those integers consider the setN (Q) of squarefree integersn
such thatn hasm (which will be chosen later) prime factors exactly, all in
Pi (Q). From the definition ofPi (Q), it follows that

|λg(n
i )| > 2−m (11)

for all n ∈ N (Q) and all g ∼ f (note thei on the left hand side). Let
N = Max (N (Q)), soN 6 (log Q)αm = N′.

We now assume thatm is chosen so thatN′ is less than, but near,Qβ,
with β > 2(d+ 3). Then forn 6 Qβ take

an =
{
λ f (ni ) for n ∈ N (Q)
0 otherwise

in (7) or (9) if i = 1 or i = 2, respectively.
In the first case we get by positivity

MS(Q, α)
∣∣∣ ∑
n∈N (Q)

|λ f (n)|2
∣∣∣2 6 ∑

h∈S(6Q)]

∣∣∣∑[

n6Qβ

anλh(n)
∣∣∣2

� Qβ+ε ∑[

n6Qβ

|an|2

= Qβ+ε ∑
n∈N (Q)

|λ f (n)|2

for anyε > 0, whence

MS(Q, α)� Qβ+ε
( ∑

n∈N (Q)

|λ f (n)|2
)−1

� Qβ+ε2m|N (Q)|−1

by (11).
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In the second case, letM(2)
S (Q, α) be the cardinality of the image of

the equivalence class off via f 7→ π
(2)
f . Then by the second mean-value

estimate:

M(2)
S (Q, α)

∣∣∣ ∑
n∈N (Q)

|λ f (n
2)|2

∣∣∣2 6 ∑
πh∈S(2)(6Q)]

∣∣∣∑[

n6Qβ

anλh(n
2)

∣∣∣2
� Qβ+ε ∑[

n6Qβ

|an|2

= Qβ+ε ∑
n∈N (Q)

|λ f (n
2)|2

for anyε > 0, and

M(2)
S (Q, α)� Qβ+ε

( ∑
n∈N (Q)

|λ f (n
2)|2

)−1

� Qβ+ε2m|N (Q)|−1

by (11).
We now choosem and estimateN′ and|N (Q)|.
As already mentioned, we selectm so that the upper boundN′ for N is

about the same asQβ, namely

m=
[
β log Q

α log logQ

]
.

Then we have 2m� Qε if Q is sufficiently large. Similarly

(δ/3α)(log Q)/(log logQ) � Q−ε.

Finally, by unique factorization of integers and Stirling’s formula

|N (Q)| >
(|Pi (Q)|

m

)
� m−1/2

( |Pi (Q)|
m

)m

�
(
δ(log Q)α

3α log logQ

α log log Q

β log Q

)m

m−1/2

� Q−ε
(
(log Q)α−1

)β(log Q)(α log logQ)−1−1

� Qβ α−1
α
−ε

(for Q sufficiently large again), so that we get from the above estimate, for
anyε > 0:

• If i = 1,
MS(Q, α)� Qβ−β α−1

α +ε = Q
β
α+ε

which concludes the proof in this case, with a much better exponent
actually (B = 2d+ 2 is enough then).
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• If i = 2,

M(2)
S (Q, α)� Qβ−β α−1

α +ε = Q
β
α+ε

and it remains to relateM(2)
S (Q, α) andMS(Q, α), which may be bigger

since f 7→ π
(2)
f is not injective.

Take a formg in the equivalence class off whose symmetric square has
maximum multiplicity, sayMg, so

MS(Q, α) 6 MgM(2)
S (Q, α)

and chooseg furthermore so that its levelqg is the smallest possible.

If h is a form equivalent tog with the same symmetric square, then by
Theorem 2 there exists a quadratic characterχ, of conductord, such that
πh = πg⊗ χ.
If we write uniquelyd = d1d2 with d1 | q∞g and (d2,qg) = 1, then
comparing conductors we get an equality

qh = d2
2d′1qg

whered′1 | d2
1. For any givend1, we may have as many as

√
Q/qg 6 Q1/2

possible values ofd2. Since the number of integers less thanQ divisible
only by primes dividingqg is� Qε for anyε > 0, it follows that

Mg� Q
1
2+ε

so

MS(Q, α)� Q
1
2+ βα+ε

for anyε > 0.

If however we are given a fixed finite set of primesT such that we only
consider forms of level squarefree outsideT, then clearly from

qh = d2
2d′1qg

we see that the conductor of the characterχ must be divisible only by
primes inT or dividing qg. The number of suchd less thanQ is again
� Qε for any ε > 0, and the last statement of the theorem follows
accordingly.

So the theorem is proved. ut
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3 The Linnik problem for elliptic curves

3.1 Notations and counting problems

We can now approach the Linnik problem for elliptic curves by means of
the L-functions of elliptic curves and their modularity.

Recall that the general modularity conjecture for elliptic curves overQ
says that the map which associates to an elliptic curveE the inverse Mellin
transform of its Hasse-Weil zeta function

L(E, s) =
∏

p

(1− aE(p)p
−s+ εN(p)p

1−2s)−1

(whereN is the conductor ofE, andaE is defined as usual by the equality
|E(Fp)| = p+1−aE(p), if p doesn’t divideN) induces a bijection between
the setEll(q) of isogeny classes of elliptic curves overQ of conductorq
and the setS2(q,Z)+ of primitive cusp forms of weight two and levelq with
integer Fourier coefficients. In particular, this would embedEll(6Q) (with
obvious notation) into the setS2(6Q)+.

This modularity conjecture is now, after the breakthrough of Wiles [Wil],
known in many cases: according to Diamond’s extension of Wiles’ result,
any elliptic curveE/Q which doesn’t have additive reduction at either 3 or
5 is modular. We will work either with all elliptic curves. assuming the full
modularity conjecture, or with classes which are known to be modular. Our
results can also be restated as holding for modular elliptic curves.

The cusp formfE corresponding to a modular elliptic curveE is known
to be monomial if and only ifE has complex multiplication. In that case,
the modularity was already well-known. As we apply our result of the
previous section we have to exclude those curves. We will writeEll(6Q)]

for the set of isogeny classes of non-CM elliptic curves overQ of conductor
less thanQ, and Ell(6 Q)[ for the subset ofEll(6 Q) given by semi-
stable elliptic curves, i.e. those whose conductor is squarefree. We have
Ell(6 Q)[ ⊂ Ell(6 Q)] since CM-curves are not semi-stable. Also, by
Wiles’s Theorem, the curves inEll(6Q)[ are modular.

As in the previous subsection, we first need to estimate the cardinality of
the sets we will consider. This is a subtler question than the corresponding
one for cusp forms.

First we consider the problem of an upper bound for|Ell(6 Q)|. We
will actually deal withE ll (6Q), the set of isomorphism classes of elliptic
curves overQ of conductor less thanQ. According to results of Mazur
and Kenku (see [Si1], page 265), there are at most 8 isomorphism classes
of elliptic curves overQ isogenous to a given curveE/Q, so all ourO( )
estimates forE ll (6Q) will also be true forEll(6Q).

Recently, Brumer and Silverman [B-S], proved the estimate

|E ll (q)| � q1/2+ε (12)

for all ε > 0. This trivially gives|E ll (6Q)| � Q3/2+ε, but the proof of (12)
can actually be extended to give a sharper bound on average.
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Proposition 1 For anyε > 0 it holds

|E ll (6Q)| � Q1+ε

and
|Ell(6Q)| � Q1+ε.

Proof. We have already seen how the second statement follows from the
first.

Brumer and Silverman actually count elliptic curves having good reduc-
tion outside a given (finite) set of primesS(containing 2 and 3) by writing,
for such an elliptic curveE/Q,

1728∆E = ad6 (13)

wherea is 6-th power free, and observing that(c6(E)/d3, c4(E)/d2) is then
an S-integral point on the elliptic curveEa given by

Ea : Y3 = X2+ a

so that it only remains to estimate how manya’s are possible, how many
S-integral points there are onEa for a givena and how many different curves
E can be associated to the samea.

We begin by writing

|E ll (6Q)| =
∑
q6Q

|E ll (q)|

6
∑
q6Q

|E ll (q)′|

whereE ll (q)′ is the set of isomorphism classes of elliptic curves overQ
having good reduction outside the set of prime divisors ofq, with 2 and 3
added.

Now we rewrite straightforwardly the counting argument of Brumer and
Silverman forE ll (q)′, obtaining

|E ll (6Q)| 6
∑
q6Q

∑
a∈A(q)

∑
P∈Ea(Zq)

|E(P)|

where:

• A(q) is the set of possiblea’s for a given levelq.

• Zq is ZS for S the set of prime factors ofq, with 2 and 3 added.

• E(P) is the set of elliptic curves that give the pointP ∈ Ea(Zq) in the
way sketched above.
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Brumer and Silverman show that the inner sum is� Qε for anyε > 0, so
we get

|E ll (6Q)| � Qε
∑
q6Q

∑
a∈A(q)

|Ea(Zq)|

and then, still following their argument, we apply deep bounds of Silverman
and Evertse for|Ea(Zq)| to obtain the estimate

|E ll (6Q)| � Qε
∑
q6Q

∑
a∈A(q)

h3(Q(
√−a))

in terms of the 3-part of the class group of the imaginary quadratic field
Q(
√−a) (here and in the remainder of the argument,ε is different from

line to line). This is where the saving on average will come from: whereas
no better individual bound forh3(Q(

√−a)) is known thanh3 6 h 6
a1/2(log 2a), Davenport and Heilbronn established a sharp average bound
in [D-H]. We now apply it.

For this, write the sum overa as the sum over the squarefree kernelsa′ of
elements ofA(q). Using thata is 6-th power free and aq-unit to bound the
multiplicity, it follows that the number ofa for a givena′ is again bounded
by Qε, giving

|E ll (6Q)| � Qε
∑
q6Q

∑
a′

h3(Q(
√−a′)).

Then we exchange the order of summation;a′ being squarefree implies
|a′| 6 1728q 6 1728Q (see (13)) and moreovera′ divides the discriminant
∆ of any curve (of conductorq) for which it may appear, so again becausea′
is squarefree it must actually divide the conductorq, whence the multiplicity
of q for a givena′ is less than the number of divisors ofq, and thus

|E ll (6Q)| � Qε
∑

|a′|61728Q

h3(Q(
√−a′))

which is�Q1+ε by Theorem 3 of Davenport and Heilbronn, as claimed.ut
We need also a lower bound of the form

|Ell(6Q)| � Qd

for somed> 1/2, or for semi-stable curves

|Ell(6Q)[| � Qd

(which of course implies the former inequality). This is proved in [FNT]
with d = 5/6, namely

|Ell(6Q)[| � Q5/6. (14)

Remark.The caseK = 1 of the main Theorem of [FNT] is not far from
giving also Proposition 1; the difference is that it deals with the discriminant
instead of the conductor, but most of the ingredients are present there.
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3.2 The Linnik problem for elliptic curves

We will now deduce from Theorem 3 our applications to Linnik’s problem
for elliptic curves. Assuming the general modularity conjecture, we take
for S(q) the set of primitive forms associated to isogeny classes of elliptic
curves overQ with conductorq. From Proposition 1 we can taked = 1+ ε
for any ε > 0, so the constantB in the theorem may beB = 8+ 2ε, and
actually ε can be absorbed in the otherε from Theorem 3, soB = 8 is
admissible.

Consider first the case of semi-stable elliptic curves overQ, and take
thereforeT = ∅ in the second statement of Theorem 3. In this case we need
not assume the modularity conjecture. Using the lower-bound (14), we get
Theorem 1 from the introduction, the statement of which we now recall.

Corollary 2 Let M(Q, α) be the maximal number of isogeny classes of
semi-stable elliptic curves overQ with conductor less than or equal toQ
which for every primep 6 (log Q)α have a fixed number of points modulop.

Then we have for anyε > 0

M(Q, α)� QB/α+ε

and this is non-trivial forα > 6B/5. Moreover, if we only ask that the
curves have a fixed number of points modulop for p in a fixed set of
primes of positive natural density, the bound still holds, with a constant in
� depending on the set.

Or, applied to a special case in a probabilistic phrasing:

Corollary 3 Fix α > 6B/5. Then forQ tending to infinity, the probability
that two semi-stable elliptic curves of conductor6 Q have the same number
of points modulop for all primes less than(log Q)α in a fixed arithmetic
progression tends to zero.

We have a somewhat weaker estimate for the general case.

Corollary 4 Assume the general modularity conjecture.
Fix α > 3B and a setP of primes with positive natural density. Then

for all ε > 0 the maximal number of isogeny classes of elliptic curves of
conductor6 Q without complex multiplication which have the same number
of points modulop for all p6 (log Q)α in P is bounded byQ1/2+B/α+ε up
to a positive constant depending only onε, α andP .

The probabilistic statement also holds in this general case.
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Remarks.

• The case of CM-curves (or monomial forms) is actually different, since
an estimate such as the one for generalP in Corollary 2, with exponent
tending to zero asα tends to infinity, is false for them. For example,
taking all curves

ED : y2 = x3+ D (15)

it is known that

aED(p) = 0

for all p congruent to 2 mod 3,p unramified, so if we choose this arith-
metic progression as our setP , we have as many asQ1/2 elliptic curves
of conductor less thanQ having the same Fourier coefficients forp ∈ P .

This shows that our introduction of the symmetric square, because of
the lack of lower bound for the Fourier coefficients of cusp-forms, is not
purely technical.

However, if we consider all primes, then on the Generalized Riemann
Hypothesis two monomial forms are still distinguished by some prime
less than(log Q)2, so the corresponding analogue of Linnik’s result
should hold.

We can actually prove it: ifE/Q is an elliptic curve with complex mul-
tiplication and conductor less thanQ, then it follows from our proof of
Theorem 3 and the knowledge of the Fourier coefficients of the corres-
ponding primitive forms that the number of isogeny classes of elliptic
curves overQ with complex multiplication and conductor less thanQ
having the same Fourier coefficients asE for p6 (log Q)α is� QB/α+ε
for anyε > 0 and someB> 0 (actually,B = 6 is enough).

Indeed, there are only a finite number ofj -invariants of elliptic curves
over Q with complex multiplication, and each possiblej gives rise to
a family of twists similar to (15) above (see [Si2], appendix A for in-
stance).

It then suffices to find a lower bound for each family, which is not very
difficult (see [DFI] page 224 for the reasoning in the case ofy2 = x3+D).

Once the lower bound is known, it remains to apply the same proof
with the mean-value estimate forGL(2) forms applied to the family of
primitive forms associated to complex multiplication curves.

Of course, it is then possible to bring both results together and say that
the number of elements in the whole setEll(6Q) which have the same
Fourier coefficients for all primesp 6 (log Q)α for α large enough is
� Q1/2+B/α+ε for anyε > 0 and someB> 0.
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4 A mean-value estimate for automorphic representations

The original large-sieve inequality for primitive Dirichlet characters is∑
q6Q

∑∗

χ (q)

∣∣∣∑
n6N

anχ(n)
∣∣∣2 6 (N + Q2)

∑
n6N

|an|2 (16)

for any sequence(an)n6N of complex numbers.
This is a kind of quasi-orthogonality statement for the truncated se-

quences(χ(n))16n6N considered as elements of a finite dimensional Hilbert
space.

After the work of Jacquet and Langlands, it has appeared that Dirichlet
characters are only the casen = 1 of a much more general theory of
automorphic representations on the algebraic groupGL(n). For such an
automorphic representation, a (standard)L-function L(π) is also defined;
it is the product of a Gamma factor and a Dirichlet series

L∞(π, s) =
∑
n>1

λπ(n)n
−s.

It is expected that the coefficientsλπ(n) of thoseL-functions should
satisfy inequalities similar to (16) when (large enough) increasing families
of automorphic representations, where certain parameters (the conductor,
the weight, or others) are bounded, are considered in the outer sum on the
left-hand side. The hypothetical bound on the right hand side would be
roughly the lengthN of the inner sum plus the number of representations
considered, up to small factors. Some results exist, with the weight varying
for instance, for the classical case ofGL(2)-automorphic forms, see for
example [D-I].

We will establish such an estimate for certain families of automorphic
representations, but only in the easiest case, when the lengthN of the sum
is much larger than the number ofπ ’s.

To define those families, fix first an admissible representationπ∞ of
(the Hecke group algebra of)GL(n,R) considered as infinite component
of some cuspidal automorphic representation ofGL(n) over Q – for ex-
ample, if n = 2, andπ∞ is the discrete series representationσ(µ1, µ2)

with µ1µ
−1
2 (t) = tk−1sgn(t) (see [Gel] page 91 for the notations), for some

integerk > 2, thenπ∞ is the infinite component of all automorphic repre-
sentations corresponding to classical weightk modular forms.

Fix also a characterη of the idèle class group ofQ.
Then for any integerq > 1 we let Aut(q) denote the set of cuspidal

automorphic representationsπ of GL(n) overQ such that:

• π∞ is the infinite component ofπ, andη its central character;
• π satisfies the Ramanujan-Petersson conjecture: if

L∞(π, s) =
∑
n>1

λπ(n)n
−s
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is the finite part of the standardL-function ofπ, we have

λπ(n)� nε (17)

for anyε > 0;

• The conductor ofπ is q.

With respect to the Ramanujan-Petersson bound, we recall that because
of the Euler product

L∞(π, s) =
∏

p

∏
16 j6n

(1− απ, j (p)p−s)−1

it is known that (17) implies

|απ, j (p)| 6 1

which shows that the bound (17) is actually uniform with respect toπ. This
will be important.

It should then be true thatAut(q) is finite and its cardinality (as a function
of q) is bounded by a fixed power ofq. We don’t actually need this fact.

We further set

Aut(6Q) =
⋃
q6Q

Aut(q).

Again,Aut(6Q) should be finite and its cardinality at most polynomial
in Q.

Now we will suppose given for everyq > 1 a subsetS(q) of Aut(q) and
write

S(6Q) =
⋃
q6Q

S(q).

We can now state our result.

Theorem 4 Fix n > 0. Given setsS(6Q) as above, assume that

|S(6Q)| = O(Qd). (18)

There exists an absolute constantBn,d > 0 such that if N > Qβ with
β > Bn,d, then for anyε > 0 the inequality∑

π∈S(6Q)

∣∣∣∑
n6N

anλπ(n)
∣∣∣2� N1+ε ∑

n6N

|an|2 (19)

holds for all complex numbers(an)16n6N. Moreover, Bn,d = 2d + n is
admissible.
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Proof. The strategy is familiar, being based on the well-known duality
principle.

The inequality (19) is equivalent to the estimate

||TN,Q||2� N1+ε

for the norm of the linear operator

TN,Q : (an)n6N 7→
(∑

n6N

anλπ(n)
)
π∈S(6Q)

where both the domain and range are finite dimensional Hilbert spaces (with
the natural hermitian form). Now by general Hilbert theory, we know that
the norm ofTN,Q is the same as that of (the conjugate of) its adjoint, which
is the operator

T∗N,Q : (απ)π∈S(6Q) 7→
( ∑
π∈S(6Q)

απλπ(n)
)

n6N
.

In concrete terms this means that (19) is equivalent to the dual inequality∑
n6N

∣∣∣ ∑
π∈S(6Q)

απλπ(n)
∣∣∣2� N1+ε∑

π

|απ |2. (20)

We now choose a smooth, positive, compactly supported test function
ψ on [0,+∞[, equal to 1 between 0 and 1, and such that 06 ψ(x) 6 1 for
all x ∈ R.

Then by positivity the left-hand side of (20) is less than∑
n>1

∣∣∣ ∑
π∈S(6Q)

απλπ(n)
∣∣∣2ψ(n/N)

so it is enough to prove the inequality for this last expression.
This we write, expanding the square and interchanging the order of

summation, as ∑
π1,π2∈S(6Q)

απ1απ2

∑
n>1

λπ1(n)λπ2(n)ψ(n/N).

Let us denote bySN(π1, π2) the inner sum,

SN(π1, π2) =
∑
n>1

λπ1(n)λπ2(n)ψ(n/N).

We thus have

||T∗N,Q(α)||2 6
∑

π1,π2∈S(6Q)

απ1απ2 SN(π1, π2). (21)

We will use the following well-known lemma:
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Lemma 1 Let
Q(α) =

∑
π1,π2

απ1απ2 K(π1, π2)

be a quadratic form, withK(π1, π2) ∈ C. Then we have

||Q|| 6 Max
π1

∑
π2

|K(π1, π2)|.

We are thus reduced to the problem of estimating the sumsSN(π1, π2).
This we will achieve by studying the analytic properties of the Dirichlet
series

Lb(π1⊗ π̃2, s) =
∑
n>1

λπ1(n)λπ2(n)n
−s

(which might be called the “naïve” convolution of the automorphic repre-
sentationsπ1 andπ2) and expressing the sums as Mellin transforms.

The necessary properties ofLb are consequences of a result which
compare it to the Rankin-Selberg convolution ofπ1 and π2. In com-
plete generality, Jacquet, Piatetskii-Shapiro and Shalika have developed
a theory of Rankin-Selberg convolutions of automorphic representations of
GL(n)× GL(m) ([JPS] and other papers); in particular, they have defined
a correspondingL-function and studied its properties (analytic continua-
tion and functional equation). Some points which they didn’t treat have been
established by various other authors (among whom Shahidi, Moeglin and
Waldspurger for instance).

In our case, this allows us to consider theL-function L(π1⊗ π̃2) of the
representation-theoretic convolution ofπ1 and the contragredient represen-
tation ofπ2. 4

We will prove below

Proposition 2 Let π1 and π2 be automorphic representations ofGL(n)
satisfying the Ramanujan-Petersson bound, of conductorq1 andq2 respec-
tively.

There exists an Euler product

H(π1, π2; s) =
∏

p

Hp(π1, π2; p−s)

whereHp(π1, π2) is a rational function for allpand a polynomial (of degree
bounded by a constant depending only onn1 andn2) for almost all p, such
that H(π1, π2) converges absolutely forRe(s) > 1/2 (in particular, has no
poles in this region), and

Lb(π1⊗ π2, s) = H(π1, π2; s)L∞(π1⊗ π2, s).

4 In the case ofGL(3), the convolution of the symmetric squares of two cusp formsf
andg has already been used in other contexts in analytic number theory by Hoffstein and
Lockhart [H-L] and by Luo, Rudnick, Sarnak [LRS] to obtain deep results aboutGL(2)
automorphic forms, especially non-holomorphic Maass forms.
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Moreover, we have for anyε > 0 and uniformly forRe(s) = σ > 1/2
a bound

H(π1, π2; s)� [q1,q2]ε H(σ)

whereH is a fixed Dirichlet series absolutely convergent forRe(s) > 1/2
satisfying in this region

H(σ)� (σ − 1/2)−A

for someA > 0 depending only onn1 andn2.

This reflects the fact that the coefficients ofL∞(π1⊗ π2) andLb(π1⊗ π2)
are the same for squarefree integersn (see equation (26) below).

In particular, becauseL∞(π1 ⊗ π2) has a meromorphic continuation,
this gives the analytic continuation ofLb up to the critical line.

If we grant the proposition we can now apply Mellin inversion, namely
if we let ψ̂ denote the Mellin transform ofψ,

ψ̂(s) =
∫ +∞

0
ψ(x)xsdx

x

then we have

ψ(x) = 1

2πi

∫
(3)
ψ̂(s)x−sds

(the integral being on the lineRe(s) = 3 of the complex plane), from which
easily follows the basic formula

SN(π1, π2) = 1

2πi

∫
(3)

Nsψ̂(s)Lb(π1⊗ π̃2, s)ds

= 1

2πi

∫
(3)

Nsψ̂(s)H(π1, π̃2; s)L∞(π1⊗ π̃2, s)ds.

We now move the line of integration toRe(s) = 1/2+ c wherec< 1/2
will be chosen later. The Mellin transform̂ψ is easily seen to be holomorphic
for Re(s) > 0 and quickly decreasing in any vertical stripδ < Re(s) < b
(δ > 0); the other terms in the integral being at most of polynomial growth,
shifting the contour is possible.

The only singularities we can pick up by doing so are those of
L∞(π1⊗ π̃2).

From the Rankin-Selberg theory, those are known. Indeed [M-W] estab-
lishes:

Theorem 5 If there are not ∈ C such thatπ1 = π2⊗| · |t, thenL(π1⊗ π̃2)
is entire.

If π1 = π2, then L(π1 ⊗ π̃2) has two simple poles at0 and 1 and is
holomorphic outside those points.
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In our case,π1 andπ2 having unitary central characterη, we can have
π1 = π2 ⊗ | · |t only if t = 0, so this theorem describes all possible cases
where poles may appear in the convolution.

Keeping this in mind we then estimate the integral on the other line,
namely

1

2πi

∫
(1/2+c)

Nsψ̂(s)H(π1, π̃2; s)L∞(π1⊗ π̃2, s)ds.

We are only interested in theq-aspect of the matters. By the bounds for
H in Proposition 2, for anyε > 0 we have

H(π1, π̃2;1/2+ c+ it)� Qεc−A.

As for the Rankin-Selberg convolution, after inserting the correct Gamma
factors it has a functional equation relating its value ats with that of the
contragredient convolutionL(π̃1⊗π2) at 1−s (see the references to several
articles of Shahidi in [M-W]):

L(π1⊗ π̃2, s) = g(π1⊗ π̃2)q(π1⊗ π̃2)
1/2−sL(π̃1⊗ π2,1− s)

whereg(π1⊗ π̃2) is a complex number of absolute value 1 andq(π1⊗ π̃2)
is the conductor ofπ1⊗ π̃2. By a theorem of Bushnell and Henniart [B-H],
it is bounded by the product of then-th powers of the conductors ofπ1 and
π̃2, which themselves are at mostQ, so that

q(π1⊗ π̃2) 6 (Q2)n = Q2n.

From the functional equation, Stirling’s formula and the convexity prin-
ciple of Phragmen-Lindelöf, this implies in turn

L∞(π1⊗ π̃2,1/2+ c+ it)� Q2n(1/4−c/2)|t|E = Qn/2−nc|t|E
for someE > 0. With the previous bound forH, and using the fact that̂ψ
decreases faster than any polynomial on the line, we get the estimate

c−AN1/2+cQn/2−nc+ε

for the integral. Recalling thatN > Qβ and takingc = (log Q)−1 so that
1 � Qc � 1, Nc � 1 andc−A = (log Q)A we obtain therefore for any
ε > 0

SN(π1, π2) = δ(π1, π2)ψ̂(1)NRπ1 + O(N1/2+n/(2β)+ε) (22)

whereδ(π1, π2) is the Kronecker delta, andRπ1 is the residue of the naïve
convolution considered whenπ1 = π2, namely

Rπ = H(π, π;1)Ress=1(L
∞(π ⊗ π̃, s)).

We then claim that for anyπ (and uniformly inπ)

Rπ � Qε (23)
for all ε > 0.
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This is a straightforward consequence of (22) forπ1 = π2 = π and
the Ramanujan-Petersson bound (17) which, we have already mentioned, is
uniform inπ. 5

Now according to Lemma 1, the quantity we have to bound is actually

Max
π1

∑
π2∈S(6Q)

|SN(π1, π2)|.

Therefore (22) and Lemma 1 give (see also (18) and (23))∑
π∈S(6Q)

∣∣∣∑
n6N

anλπ(n)
∣∣∣2� (N + N1/2+(2d+n)/(2β))Nε

∑
n6N

|an|2

for anyε > 0, and this implies (20) if12 + 2d+n
2β < 1, that isβ > 2d+ n. ut

Proof of Proposition 2.We actually treat a more general case whereπi is
an automorphic representation ofGL(ni ) for i = 1,2.

Write
L∞(πi , s) =

∑
n>1

λi (n)n
−s

for the finite part of the standardL-functions, and put as above

Lb(π1⊗ π2, s) =
∑
n>1

λ1(n)λ2(n)n
−s.

We have to compareLb(π1 ⊗ π2) and the Rankin-Selberg convolution
L∞(π1⊗ π2).

The Rankin-Selberg convolution has an Euler product by the general
theory, and the naïve convolution also has one because it’s a Dirichlet series
whose coefficients are multiplicative:

Lb(π1⊗ π2, s) =
∏

p

∑
k>0

λ1(p
k)λ2(p

k)p−ks.

Therefore, since we claim the existence of an Euler product

H(π1, π2) =
∏

p

Hp(π1, π2)

relating the two, we can proceed locally for each primep.
For any automorphicL-function, we denote byL p its p-factor, consid-

ered as a polynomial (inp−s) with complex coefficients.

5 For n = 2 or n = 3 for the symmetric square, which are the two applications used in
the Linnik problem, it is possible to give an elementary proof of (23) - not using Deligne’s
proof of the Ramanujan-Petersson conjecture - using a trick of Iwaniec, see [Iwa] page 131
for n = 2.
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Assume first thatp is an unramified prime of the Rankin-Selberg con-
volution. This is true for almost allp, and we will prove now the existence
of a polynomialHp(π1, π2) such that∑

k>0

λ1(p
k)λ2(p

k)Xk = Hp(π1, π2)L p(π1⊗ π2). (24)

We know thatp is unramified for bothπ1 andπ2, so that thep-factor of
the standardL-function is

L p(πi )
−1 =

∏
16 j6ni

(1− αi, j X) (25)

whereαi, j are the Satake parameters of the local representation atp.
Again, the general theory gives thep-factor of the Rankin-Selberg con-

volution
L p(π1⊗ π2)

−1 =
∏

16 j6n1
16k6n2

(1− α1, jα2,kX).

Assume, to begin with, that theαi, j are all distinct and theα1, jα2,k also.
Coming then to thep-factor of the naïve convolution, we deduce from the
Dirichlet series forL∞(πi ) that∑

k>0

λi (p
k)Xk =

∏
16 j6ni

(1− αi, j X)
−1

=
∑

16 j6ni

r i, j

1− αi, j X

for some complex numbersri, j (partial fraction expansion, since theα’s are
distinct), whence

λi (p
k) =

∑
16 j6ni

r i, jα
k
i, j .

This implies∑
k>0

λ1(p
k)λ2(p

k)Xk =
∑
k>0

( ∑
16i6n1
16 j6n2

r1,i r2, jα
k
1,iα

k
2, j

)
Xk

=
∑
i, j

r1,i r2, j

1− α1,iα2, j X
.

Reducing to a common denominator, which is exactlyL p(π1⊗ π2), we
get the required formula (24).

Moreover, it is obvious that the coefficients ofHp(π1, π2) are polynomi-
als in theα’s and since the Ramanujan bound implies|αi, j | 6 1 it follows
that those coefficients are bounded by some constants depending only on
n1 andn2. Hence the absolute convergence (and the absence of poles) in
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Re(s) > 1/2 of the product over the unramified primes will follow if we
can show that the coefficient ofX of Hp(π1, π2) vanishes, since there is no
term in p−s then.

But for any rational function

r = f

g

with polynomials f andg, satisfyingr(0) = 1, the coefficient ofX of the
numeratorf of r is f ′(0), and so equalsg(0)r ′(0)+ g′(0).

If r =∑k bkXk is the power series development ofr , we have therefore

f ′(0) = g(0)b1 + g′(0).

Assume moreover thatg=∏ j (1− β j X). Then

f ′(0) = b1−
∑

j

β j .

Applying this to the local factor ofLb which is of this form, we see that
the corresponding coefficient is indeed zero since

λ1(p)λ2(p) =
∑
i, j

α1,iα2, j . (26)

We can now use a continuity argument to deduce that the existence of the
polynomial Hp satisfying formula (24) and the vanishing of the coefficient
of X remain valid when some of the roots of the localL-functions are the
same.

It remains to treat the case of the ramified primes. The local factor atp
of the L-functions ofπ1 andπ2 is still of the form

L p(πi ) =
∏

16 j6n′i

(1− αi, j X)
−1

for somen′i 6 ni . The same proof as the unramified case shows again that
the local factor of the bilinear convolution is a rational function which has
poles only among the reciprocals of the productsα1, jα2,k. So we can define
Hp(π1, π2) by

Hp(π1, π2) =
(∑

k>0

λ1(p
k)λ2(p

k)Xk
)

L p(π1⊗ π2)
−1 (27)

and it’s also a rational function.
It remains to establish that the finite product over the ramified primes

has no pole forRe(s) > 1/2. But a poles0 of Hp(π1, π2, p−s) must satisfy

α1, jα2,k p−s0 = 1

(for some j andk), so by the Ramanujan bound again we getRe(s0) 6 0.
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As for bounding H(π1, π2; s), clearly by the Ramanujan bound the
product over the unramified primes is absolutely convergent forRe(s) >
1/2. It is dominated (termwise) by the Euler productH whose factors
are obtained by taking the corresponding factor ofHp and replacing each
coefficient of the polynomial by its absolute value, which in turn, since the
coefficient ofX2 is absolutely bounded (say byA), is dominated by an Euler
product which may be written (by factoring by forceζ(2s)) asζ(2s)A J(s)
whereJ(s) is absolutely convergent forRe(s) > 1/3. The estimate

H(σ)� (σ − 1/2)−A

then follows directly.
We now estimate the product over the ramified primes∏

p|[q1,q2]

Hp(π1, π2; p−s)

using (27).
For L p(π1 ⊗ π2)

−1, which is a polynomial of degree at mostn1n2 we
write, by the Ramanujan bound again:∏

p|[q1,q2]

L p(π1⊗ π2) 6
∏

p|[q1,q2]

(1+ p−σ )n1n2

6 (
∏

p|[q1,q2]

2)n1n2

� [q1,q2]ε

for any ε > 0, since (see [H-W], chapter 22 for instance) the number of
prime divisors of an integern is O(logn/ log logn).

On the other hand, still by Ramanujan, for anyε > 0∑
k>0

λ1(p
k)λ2(p

k)p−ks�
∑
k>0

pk(ε−s)

= 1

1− p−s+ε

so that taking the product overp | [q1,q2] we obtain by the same reasoning
the same bound as above for the product of those terms, and in the end∏

p|[q1,q2]

Hp(π1, π2; p−s)� [q1,q2]ε .

ut
It is clear that asn increases the conditionN > QBn,d beyond which

the inequality is proved becomes more restricted. It seems that further ideas
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are required to establish sharp forms of the large-sieve inequalities in those
cases (or even to refute them if they happen to be false). Using variants
of a trick due to Viola and Forti for Dirichlet characters, it is likely that
a sharp large-sieve inequality would follow if we could takeBn,d = d in the
mean-value estimate (19).

We now state the corollaries which are used in the Linnik problem, see
Subsection 2.1.

First for n = 2, and for any weightk > 2, we have mentioned already
that for a certainπ∞ andη = 1, it holds

Aut(q) = Sk(q)
+

since Deligne has proved that cusp-forms of weight larger than 2 satisfy
the Ramanujan-Petersson bound. Take then asS(q) some subset of the
automorphic representations corresponding toSk(6Q)] (recall that]means
non-monomial) such that

|S(6Q)| = O(Qd).

Then:

Corollary 5 If N = Qβ with β > 2d+ 2, then for anyε > 0, it holds∑
f∈S(6Q)]

∣∣∣∑
n6N

anλ f (n)
∣∣∣2� N1+ε∑

n6N

|an|2

for any sequence(an)n6N of complex numbers.

Now for n = 3; if f ∈ Sk(q)], its infinite component is fixed; letπ∞ be the
representation ofGL(3,R) which is its local symmetric square (see [G-J]),
and againη = 1.

From the Gelbart-Jacquet theory we see that the image ofSk(6Q)] by
the map f 7→ π

(2)
f already mentioned in Subsection 2.1 is contained in the

correspondingAut(q); we write againS(2)(6Q)] for the image ofS(6Q)]

and apply Theorem 4. HereQ2 replacesQ and since trivially

|S(2)(6Q)]| = O(Qd)

we get:

Corollary 6 If N = Qβ with β > 2(d+ 3), then for anyε > 0, it holds∑
π f ∈S(2)(6Q)]

∣∣∣∑
n6N

anλ
(2)
f (n)

∣∣∣2� N1+ε ∑
n6N

|an|2

for any sequence(an)n6N of complex numbers.
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Note added in proof:Breuil, Conrad, Diamond and Taylor have announced
a proof of the full modularity conjecture for elliptic curves overQ. Corol-
lary 4 thus holds unconditionally.

Appendix

Recovering modular forms from squares

Dinakar Ramakrishnan

253-37 Caltech, Pasadena, CA 91125, USA (e-mail:dinakar@cco.caltech.edu )

The purpose of this appendix is to provide a proof of the fact that a holo-
morphic newformf of weight 2k, level N and trivial character, with Hecke
eigenvalues{ap | (p, N) = 1}, is determined up to a quadratic twist, in fact
on the noseif N is square-free, by the knowledge ofa2

p for all primesp in
a set of sufficiently large density. We will in fact prove a more general state-
ment (Theorem A) below, including the case of odd weight and non-trivial
character, and also establish a mod` analog, where the twisting character
is shown to be unramified at̀. We found this result in the summer of 94,
and we have since learned that Theorem A has also been known to others,
including Don Blasius and J.-P. Serre. Also, Siman Wong has recently come
up with a different proof in the weight 2 case (with trivial character). So we
do not intend any display of great achievement by this write-up, and we give
all the details for ease of use by those working in classical modular forms
and number theory. We have also found a non-trivial extension of this result
(in characteristic zero) to Maass forms using an array of results on auto-
morphicL−functions, and this is the subject matter of another paper [Ra2].
This work was partially supported by an NSF grant. We thank Serre for his
helpful comments on an earlier version which led to a finer result.

For every pair of integersN, k > 1, and characterω : (Z/N)∗ → C∗,
denote bySnew

k (N, ω) the set of normalized newformsf of weightk, level N
and characterω, with Hecke eigenvaluesap( f), for all p not dividing N,
and correspondingp−Euler factors

L p(s, f) = (1− αp p−s)−1(1− βp p−s)−1,

whereαp = αp( f) andβp = βp( f) are non-zero algebraic integers satisfy-
ing

ap( f) = αp+ βp, and ω(p)pk−1 = αpβp.
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Let us set

L p(s,Ad( f)) =
(

1− αp

βp
p−s

)−1 (
1− p−s

)−1
(

1− βp

αp
p−s

)−1

.

Theorem A. Let f ∈ Snew
k (N, ω) and g ∈ Snew

k′ (N
′, ω′), k > k′, be such

that, for all primesp outside a setSof Dirichlet densityδ(S) < 1
18, we have

(∗) L p(s,Ad( f)) = L p(s,Ad(g)).

Thenk = k′, and there exists a Dirichlet characterχ of conductorM
dividing NN′ such that

ap( f) = ap(g)χ(p),

all p prime toNN′. In particular, ω = ω′χ2.
If f, g are not of CM type and have weightsk, k′ > 2, then the same

conclusion results if (*) is assumed to hold only for a set of primes of positive
density.

When f and g have thesame character, we can deduce the stronger
result below:

Corollary. Let f ∈ Snew
k (N, ω) and g ∈ Snew

k (N′, ω) be such that, for all
primesp outside a setSof densityδ(S) < 1

18, we have

ap( f)2 = ap(g)
2,

Then there exists aquadratic characterχ of conductorM dividing NN′
such that

ap( f) = ap(g)χ(p),

for all p not dividingNN′. Moreover, ifω = 1 andN, N′ square-free, then
f = g.

When f, g are not of CM type and of weight> 2, we get the same
conclusion assuming only thatδ(S) is< 1.

Theorem AH⇒ Corollary . The hypotheses imply that(αp( f)/βp( f))+
(βp( f)/αp( f)) + 1 equals(αp(g)/βp(g)) + (βp(g)/αp(g)) + 1), for all p
outsideS. It is then easy to see thatL p(s,Ad( f)) equalsL p(s,Ad(g)), for
all suchp. So we may apply the Theorem and deduce the existence of aχ
such thatap( f) = ap(g)χ(p), for all p prime toNN′. Comparing squares,
we see thatχ must be quadratic.

Next let N, N′ be square-free, andω trivial. Supposeχ is non-trivial.
Denote byπ, π ′ the cuspidal automorphic representations of GL(2,AQ)
of trivial central character associated tof , g respectively. Then, up to
exchanging f and g if necessary,N = N(π) must beN(π ′ ⊗ χ), the
conductor ofπ ′ ⊗ (χ ◦ det). (Here we are identifyingχ with the idèle class
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character ofQ it defines.) SinceN′ = N(π ′) is square-free, and sinceπ ′
has trivial central character, one sees easily from the description of local
representations and their conductors in [Ge], p.73, that thep−component
π ′p must be the unramified special (Steinberg) representation at every prime
p dividing N′. One sees then, by using the same theorem (loc. cit.) that
ordp(N(π ′ ⊗ χ)) > 2, for any p dividing the conductorM of χ. SinceQ
has class number 1, there are no unramified charactersχ. In other words,
N = N(π ′ ⊗ χ) is not square-free, giving the desired contradiction.

ut
Proof of Theorem A. We will in fact give two proofs. We fix a prime
` not dividing NN′, and begin with the theorems of Deligne ([De], for
k > 3), Eichler-Shimura ([Sh], fork = 2), and Deligne-Serre ([DS] for
k = 1), giving the existence, forh = f or g, of an irreducible, continuous
representation

σ`(h) : Gal(Q/Q) −→ GL2(Q`),

such that, for any primep not dividing N`,

tr(σ`(h)(Fr p)) = ap(h) = αp(h)+ βp(h),

|αp(h)| = |βp(h)| = p(k(h)−1)/2,

and

det(σ`(h)) = ω(h)χk(h)−1
cyc .

HereFr p denotes the Frobenius conjugacy class atp, Q` a fixed algebraic
closure ofQ`, andχcyc the cyclotomic character given by the Galois action
on the inverse system of`m−th roots of unity. (ω(h) isω orω′ depending on
whetherh is f or g; similarly for k(h).) If we consider the fieldE generated
by the coefficients off, and a placeλ of E above`, then one has in fact
a representation of Gal(Q/Q) into GL2(Eλ), and ourσ` is its extension
to Q`. We work overQ` because we will need to appeal to Schur’s lemma.

For any two dimensionalQ`−representationσ` of Gal(Q/Q), set

Ad(σ`) = sym2(σ`)⊗ det(σ`)
−1.

Theorem B. Let K be a number field, and letσ` andσ ′` be irreducible two
dimensionalQ`-representations of Gal(Q/K) with Frobenius tracesaP,
a′P (for almost all primesP) and conductorsN, N′ respectively. Suppose
Ad(σ`) ' Ad(σ ′`). Then there existsψ` ∈ Homcont(Gal(Q/K),Q

∗
`) such

that

σ` ' σ ′` ⊗ ψ`.
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Next letK = Q. Suppose we know either thatσ` and σ ′` are Hodge-Tate
(see [Se1]) or that the ratio of their determinants is a finite order character
times an even power ofχcyc. Then

(∗∗) ψ` = χr
cycν`,

wherer is an integer, andν` the `−adic character defined by a Dirichlet
characterν.

Theorem BH⇒ Theorem A. Let f , g be as in Theorem A. Sinceσ`( f)
andσ`(g) are simple,Ad(σ`( f)) and Ad(σ`(g)) are semisimple, and we
claim that they are isomorphic.

Modulo this claim, we proceed as follows. Applying the first part of
Theorem B, we get a characterψ` such thatσ`( f) ' σ`(g)⊗ψ`.Comparing
determinants, we get for almost allp,

(I) ψ`(Fr p)
2 = χcyc(Fr p)

k−k′ω(p)ω′(p)−1.

At this point, one can use (at least) three different methods to finish the
argument. The first uses a theorem of Faltings [Fa], which says thatσ`(h)
is Hodge-Tate for any newformh of conductor prime tò . So, by the
second part of Theorem B,k and k′ are of the same parity, and we get
(**) with r = (k− k′)/2. Let H( f) (resp.H(g)) be theQ-Hodge structure
of weight k − 1 (resp.k′ − 1) associated to (the motive of)f (resp.g).
Then we must haveH( f) ' H(g)(r), whereH(g)(r) denotes the Tate twist
H(g) ⊗ Q(r). Thenr must be zero, since the Hodge type ofH( f) (resp.
H(g)) is {(k− 1,0), (0, k− 1)} (resp.{(k′ − 1,0), (0, k′ − 1)}), while that
of H(g)(r) is {(k′ − 1− r,−r), (−r, k′ − 1− r)}. Done.

The second method usesL-functions. Letν be the finite order character
defined asψ`χ

(k′−k)/2
cyc . Then by (I) we have, for every Dirichlet characterµ,

an identity

L p(s, f ⊗ µ) = L p(s− (k− k′)/2, g⊗ µν),
for all p in the setT of all primes not dividing`NN′ and the conductor
of µ. We may fix aµ, sufficiently ramified at the primes inT, such that the
local factors of f ⊗ µ andg⊗ νµ at any prime inT are 1. Interchanging
f andg if necessary, we may assume thatk 6 k′. Since the archimedean
factor attached tof ⊗µ is (2π)−sΓ(s), and since its product with (the global
Euler product)L(s, f ⊗ µ) is entire, any pole of the Gamma factor results
in a zero ofL(s, f ⊗ µ), which is

∏
p/∈T L p(s, f ⊗ µ) by the choice ofµ.

This happens for example ats= 0, and consequently, by the identity above,
L(s+(k′−k)/2) has a zero ats= 0, even though its the archimedean factor
does not have a pole there (ask′ > k). Then, by applying the functional
equation forg⊗ µν (which relatess to k′ − s), we see thatL(s, g⊗ µν)
has a zero ats = (k′ + k)/2. This is absurd (see [JS]) as this point is in
the region (resp. on the boundary) of absolute convergence ifk > 1 (resp.
k = 1). So we must havek = k′.
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The third method is to appeal, for` large enough, to the mod̀result
proved later in this appendix.

Now we prove the claim. The identity (*) says that the characteristic poly-
nomials of the Frobenius classesFr p agree onAd(σ`( f)) andAd(σ`(g)),
for all p outside a setSof densityδ < 1

18. If δ(S) = 0, then by the Tcheb-
otarev density theorem,Ad(σ`( f)) andAd(σ`(g)) would be equivalent, and
our object is to get the same conclusion under the weaker hypothesis onδ.
By [GJ], we know that, forh = f or g, there is an (isobaric) automorphic
representationAd(h) of GL(3,AQ), whose standardL-function identifies,
after removing the archimedean factors, with

∏
p L p(s− 1,Ad(h)). It suf-

fices to show thatAd( f) andAd(g) are isomorphic. Suppose not. Then we
can find (isobaric) automorphic representationsπ, π ′ of GL(k,AQ), k 6 3,
such thatAd( f) ' π � η andAd(g) ' π ′ � η, whereη is an automorphic
representation of GL(3− k,AQ), taken to be 0 ifk = 3. Let ZS(s) be as in
equation (3) of [Ra1]. In the present case, ifm (resp.r ) denotes the number
of cuspidals occurring in the isobaric decomposition [La] ofπ (resp.π ′),
necessarily with multiplicity 1, we have−ords=1ZS(s) = m2+ r 2 (compare
with (4) of [Ra1]). Since one knows the Ramanujan conjecture for holo-
morphic forms by Deligne, it is easy to verify that Lemma 2 of [Ra1] holds
for π (resp.π ′) with β less thank2m2δ (resp.k2r 2δ). Then the argument of
Sect. 2 of [Ra1] shows that we must have 16 2k2δ. Sinceδ < 1/18 and
k 6 3, we get the desired contradictiction.

It remains to treat the case whenf, g are not of CM type and have
weights> 2, with δ assumed to be just< 1. One knows by the works of
Serre and Ribet [Ri] thatσ`( f) is absolutely irreducible under restriction to
any open subgroup. We note then that the same must be true forAd(σ`( f)),
as otherwise the restrictionσ`( f)K will, for some number fieldK , be in-
duced by a character of Gal(Q/F), for a quadratic extensionF/K (see
below), makingσ`( f)F reducible. Now, applying Theorem 2 of [Raj] for
example, we may conclude that, asδ < 1, Ad(σ`( f)) must be isomorphic
to Ad(σ`(g)) ⊗ ν`, for some one-dimensionalν` of Gal(Q/Q) defined by
a Dirichlet character. LetK be the cyclic extension ofQ corresponding
to ν`, and letτ be a generator of Gal(K/Q). Then, sinceAd(σ`( f)K ) and
Ad(σ`(g)K ) are isomorphic, we may apply Theorem B and conclude that
σ`( f)K ' σ`(g)K ⊗ λ`, for a characterλ` of Gal(Q/K). Sinceσ`( f)K and
σ`(g)K are invariant underτ, we get

σ`(g)K ⊗ (λ/λ[τ]) ' σ`(g)K .

Sinceσ`(g) is irreducible under restriction to any open subgroup,σ`(g)K
cannot admit any non-trivial self-twist, andλmust be invariant underτ and
hence must extend to a character of Gal(Q/Q). The rest of the argument
goes through as above, and Theorem A follows.
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Proof of Theorem B. First we need a simple

Lemma. Letρ` be an irreducible,n−dimensional, self-dualQ`-representa-
tion of Gal(Q/K). Then there exists an invariant non-degenerate bilinear
form B on (the space of)ρ`, which is symmetric or alternating, such that

(i) B is unique up to a non-zero scalar; and
(ii) If ρ′` is another irreducible,n−dimensional, self-dualQ`-representa-

tion of Gal(Q/K) with invariant non-degenerate bilinear formB′,
such thatρ` andρ′` are isomorphic, then they areisometric relative
to B and B′.

Indeed, (i) and the statement above it are immediate consequences of
Schur’s lemma. Also, sinceQ` is algebraically closed,cB is isometric toB
for anyc ∈ Q

∗
`; hence we get (ii) as well.

Now let σ` andσ ′` be as in Theorem B. Suppose (the semisimple rep-
resentation)Ad(σ`) is reducible. Then it must contain a one dimensional
summandη`, say. Thenη` occurs in the (self-dual) End(σ`) = σ`⊗ σ∨` =
Ad(σ`) ⊕ 1. Schur’s lemma above forcesη` to be non-trivial. Eitherη` is
quadratic, or otherwiseη∨` will also occur in End(σ`). In either case, we see
that End(σ`)must contain a quadratic characterδ`, say; letF be the corres-
ponding quadratic extension ofK with non-trivial automorphismθ. Denote
by σF,` the restriction ofσ` to Gal(Q/F). We claim (as is well known) that
if τ` is another semisimple representation of Gal(Q/K) whose restriction to
Gal(Q/F) is isomorphic toσF,`, thenτ` ' σ` ⊗ δ j

` , for j ∈ {0,1}. Indeed,
by the hypothesis, the restriction ofη` := τ` ⊗ σ∨` to Gal(Q/F) contains
the trivial representation; so by Frobenius reciprocity, there is a non-trivial
homomorphism betweenη` and the representation of Gal(Q/K) induced by
the trivial representation of Gal(Q/F), which decomposes as 1⊕ δ`. Soδ j

`

occurs inη`, for j = 0 or 1. Equivalently, there is an intertwining operator
betweenτ` andσ`⊗ δ j

`, which implies the claim by virtue of the irreducibil-
ity of σ`. Next observe thatσF,` must be reducible as End(σF,`) contains
1 with multiplicity 2 (as the restriction ofδ` to Gal(Q/F) is trivial). Write
σF,` = ν`⊕µ`, with ν`, µ` being one-dimensionals of Gal(Q/F). We claim
thatν` is notθ-invariant. Indeed, otherwiseµ` would also beθ-invariant as
σF,` is, and bothν` andµ` would admit extensions to Gal(Q/K) and result
in a reducible extension ofσ`,F, which is impossible by the claim above.
Thusν` is not fixed byθ, and so we must haveσF,` ' ν`⊕ ν[θ]` . This forces
σ` to be the induced representation IndK

F (ν`), as this induced representation
has the same restriction to Gal(Q/F) asσ` and is moreover isomorphic to its
twist by any character of Gal(Q/K) trivial on Gal(Q/F). Since End(σ`) =
End(σ ′`), σ

′
` must also be of the form IndKF (ν

′
`), for some one-dimensional

ν′` of Gal(Q/F). Since the determinant of IndK
F (ν`) is the transfer ofν` to
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Gal(Q/K) timesδ`, we see that

Ad(σ`) ' IndK
F (ν`/ν

[θ]
` ) ⊕ δ`,

and similarly forAd(σ ′`). This implies that, up to replacingν` by ν[θ]` , we
have

ν`/ν
[θ]
` = ν′`/(ν

′
`)
[θ].

Thenν`/ν′` isθ−invariant, and hence extends to a characterψ` of Gal(Q/K).
In other words,σ` ' σ ′` ⊗ ψ`, as claimed.

We next consider the case whenAd(σ`) andAd(σ ′`) are irreducible. Let
λ` denote the product of the determinantsω`, ω′` of σ`, σ ′` respectively. Set

η` := σ` ⊗ σ ′`.
Then

sym2(η`)⊗ λ−1
` ' Ad(σ`)⊗ Ad(σ ′`) ⊕ 1.

SinceAd(σ`) andAd(σ ′`) are irreducible, self-dual and isomorphic, 1 occurs
in their tensor product. Hence the multiplicity ofλ` is greater than 1 in
sym2(η`), showing thatη` is reducible. Now supposeη` contains a two
dimensional summandτ`, say. Then the one dimensional det(τ`) occurs in
the exterior square ofη`. But on the other hand, we have

Λ2(η`) ' sym2(σ`)⊗ ω′` ⊕ ω′` ⊗ sym2(σ ′`),

showing that, as the symmetric squares ofσ` andσ ′` are irreducible, there
can be no one dimensional summand ofΛ2(η`). This shows thatη` has no
two dimensional summand. Since it is reducible, it must then have a one
dimensional summandν`, say. Then

σ` ' σ ′`
∨ ⊗ ν` ' σ ′` ⊗ ω′`−1

ν`.

So we get the desiredψ` by taking it to beω′`
−1
ν`.

Now let K = Q. Comparing determinants, we see thatψ2
` =

det(σ`)det(σ ′`)
−1. So we get (**) immediately if the ratio of the deter-

minants is a finite order character times an even power ofχcyc. Finally,
supposeσ` andσ ′` are Hodge-Tate. Thenψ` will also be Hodge-Tate as it
occurs inσ` ⊗ (σ ′`)∨. Consequently, it corresponds to an algebraic Hecke
characterψ.Since we are working overQ, it must be a finite order character
times a power ofχcyc. Done.

For the second proof, we begin by recalling the fact that the adjoint rep-
resentation Ad: PGL(2,Q`)−→ GL(3,Q`) is isomorphic onto the special
orthogonal group SO(3,Q`). Denote byσ` (resp.σ ′`) the composite ofσ`
(resp.σ ′`) with the natural homomorphism of GL(2,Q`) onto PGL(2,Q`).
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Then it is easy to see that Ad(σ`) identifies with the Ad(σ`) defined ear-
lier (above Theorem B). So, by our hypothesis, we get two representa-
tions, namely Ad(σ`) and Ad(σ ′`), into SO(3,Q`), which are equivalent in
GL(3,Q`). Suppose they are irreducible. Then we may apply part (ii) of the
Lemma and deduce that they are in fact isometric. By changing the isometry
by−I if necessary, we may assume that they are equivalent in SO(3,Q`).
Since Ad is an isomorphism,σ` andσ ′` define equivalent homomorphisms
into PGL(2,Q`). Henceσ` must be equivalent toσ ′` ⊗ ψ`, for someψ` ∈
Hom(Gal(Q/K),Q

∗
`). When Ad(σ`) is reducible, one uses explicit argu-

ments as in the reducible case of the first proof to conclude that Ad(σ`) and
Ad(σ ′`) are isometric. The rest follows. ut
The mod` version. For each newformf , let K f denote the number field
generated by the coefficients off . If g is another newform, letO f,g denote
the ring of integers of the compositumK f Kg. Forh = f or g, write for p
not dividing the level,

Qh(T) =
(

1− αp(h)

βp(h)
T

)
(1− T)

(
1− βp(h)

αp(h)
T

)
,

so that L p(s,Ad(h)) = Qh(p−s)−1. Note that, sinceαp(h)βp(h) =
ω(h)pk(h)−1, αp(h) andβp(h) are invertible modulo any primè not di-
viding pN(h).

Theorem C. Let ` be an odd prime number andN, N′ positive integers
prime to`. Let f (resp.g) be a newform of levelN (resp. N′), weightk
(resp.k′), and characterω (resp.ω′). Letλ be a prime ideal abovèinO f,g.
Suppose we have

(C) Q f (T) ≡ Qg(T) (mod λ),

for all poutside a setS(containing the primes divisors of`NN′) of density0.
Thenk ≡ k′ (mod` − 1), and there exists a characterβ, unramified at̀ ,
such that

ap ≡ bpβ(p) (mod λ),

for all p not dividing`NN′.

Remark. Note that ifω and ω′ are the same modλ, and if k − k′ ≡
0(mod`− 1), the hypothesis (C) is equivalent to the congruence

a2
p ≡ b2

p (mod λ).

In this caseβ is necessarily quadratic. Moreover, ifN andN′ are in addition
square-free, one can conclude (as in the characteristic zero case) thatβ is
trivial.
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Proof. Let Fλ denote the residue fieldO f,g/λ. Reducing the (integrally
defined)`-adic representations associated tof, g moduloλ and extending
scalars toFλ, we get representations

σλ : Gal(Q/Q) −→ GL2(Fλ)

and
σ ′λ : Gal(Q/Q) −→ GL2(Fλ)

such that, for allp not dividing NN′`, tr(σλ(Frp)) (resp. tr(σ ′λ(Frp))) is the
image ofap (resp.bp) in Fλ. Moreover, by hypothesis, det(σλ) and det(σ ′λ)
both equalχk−1ω (resp.χk′−1ω′), whereχ : Gal(Q/Q) → F∗` is the mod̀
cyclotomic character andω (resp.ω′) the reduction (modλ) of ω (resp.ω′).
Clearly, the images of Gal(Q/Q) under these two representations are finite.

For anyFλ-representationτλ of a finite groupG of dimensiond, let τss
λ

denote its semisimplification. Note that in characteristic`, the semisimplifi-
cation is determined by the characteristic polynomials ofτλ(g) for all g in G
whend> `, and also whend = ` = 3 if τλ is orthogonal of determinant 1.

By the hypothesis (C), the characteristic polynomials ofFrp in the adjoint
representations ofσλ andσ ′λ are the same for allp in a set of density 1.
Thus, by the Tchebotarev density theorem and the remark above, we see
that

Ad(σss
λ ) ' Ad(σ ′λ

ss).

Since End(σss
λ ) (resp. End(σ ′λss)) is Ad(σss

λ ) ⊕ 1 (resp.Ad(σ ′λss) ⊕ 1), it
follows thatσλ is irreducible iffσ ′λ is.

First suppose thatσλ andσ ′λ are irreducible. In this case the detailed
`-adic argument given in the proof of (the first part of) Theorem B goes
through, withQ` replaced everywhere byFλ, once one notes the availability
of the relevant form of the Frobenius reciprocity in characteristic` (cf. [A],
chap. III, Lemma 6) and the fact that the tensor square of a simple Galois
module is semisimple [Se3]. One deduces an isomorphism ofσλ with
σ ′λ ⊗ νλ, for some characterνλ of Gal(Q/Q) into Fλ. Sinceωλ andω′λ are
the same moduloλ, we see by comparing determinants thatν2

λ isχk−k′ω/ω′.
We may writeνλ asχ jβλ, for somej ∈ {0, . . . , `− 2}, and a characterβλ
unramified at̀ . Consequently,k− k′ ≡ 2 j( mod`− 1), β2

λ = ω/ω′, and

(∗ ∗ ∗) σλ ' σ ′λ ⊗ χ jβλ.

Let G` denote the decomposition group at` of Gal(Q/Q), and let I de-
note the inertia subgroup. Whena` is not zero moduloλ, one knows by
Deligne (cf. [E], Theorem 2.5, for example), thatρλ|G`

is reducible, and its
semisimplification is of the formχk−1µ1,λ⊕µ2,λ, where eachµ j,λ is unram-
ified. Whena` is divisible byλ, a result of Fontaine (see [E], Theorem 2.6)
asserts that the restriction toG` is irreducible, while the restriction toI
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demposes asψk−1⊕ψ′k−1, whereψ,ψ′ are the two fundamental characters
of level 2 [Se2]. Similarly for the restriction ofσ ′λ at `. In either case, we
see that the only way (***) can hold is forj to be 0 modulò − 1.

It remains to consider whenσλ (and henceσ ′λ) is reducible. Here we
may write

σss
λ ' ηλ ⊕ χk−1ω/ηλ,

and
σ ′λ

ss ' η′λ ⊕ χk′−1ω/η′λ,

for someFλ
∗
-valued charactersηλ, η′λ of Gal(Q/Q). Then we have

Ad(σss
λ ) ' η2

λ/ωχ
k−1⊕ 1⊕ ωχk−1/η2

λ,

and
Ad(σ ′λ

ss) ' η′λ
2
/ωχk′−1⊕ 1⊕ ωχk′−1/η′λ

2
.

Since Ad commutes with semisimplification, it follows, after possibly re-
placingηλ with χk−1ω/ηλ, thatη2

λ/χ
k = η′λ2

/χk′ . Arguing as above, we see
thatηλ is of the formη′λχ jβλ, for some j ∈ {0, . . . , ` − 2} with k− k′ ≡
2 j(mod`− 1), and a characterβλ :Gal(Q/Q) → Fλ

∗
, unramified at̀ ,

such thatβ2
λ = ω/ω′. We obtain

σλ
ss ' η′λβλχ

(k−k′)/2⊕ βλχ(k+k′)/2−1ω′/η′λ.

The reducibility ofσ λ (resp.σ ′λ) forcesa` (resp.b`) to be non-zero moduloλ,
as the restriction ofσss

λ (resp.σ ′λ
ss) to I must then be given by a direct sum

of characters of level 1 [Se2]. Applying Deligne’s result on the shape of the
restriction toG` (see above), we see that the only possibility is fork andk′
to be congruent modulò− 1. Thenσss

λ is isomorphic toσ ′λ
ss⊗ βλ. Done.
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