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Mathematical Note

Pmbabﬂistic Gz;lois Theory of .
Reciprocal Polynomials =~ .

S. Davis!, W. Duke?, X. Sun?

1.Probabilistic Galois theory

What is the most likely Galois group of a randomly chosen monic integral
polynoinial of fixed degree n? Under appropriate assumptions the answer is:
the full symmetric group S,. This satisfying result was found by van der
Waerden in 1936.

Instead of fixing a polynomial and studying its properties individually,
probabilistic Galois theory studies a set of polynomials and the likely prop-
erties of a randomly chosen individual. One natural choice for the set is all
monic integral polynomials f(z) = 2™ + a;2" ! + ... 4+ a, with .

N

H(f} = max(|ai|,...|an]) < N.

This set contains (2N + 1)* polynomials if N is an integer. Let us recall
that the Galois group of f is defined to be the Galois group of its splitting
field, that it acts as a permutafion group on the roots of f and hence may be
considered as a subgroup of S,. This action is transitive exactly when the
polynomial is irreducible over the rationals.

Probabilistic Galois theory begins by trying to count the number R,(N)
of reducible polynomials in our set. Let’s suppose that n > 2, for the case
n = 2 is a little different and easily handled. Van der Waerden [W1] gave
the upper bound
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(1) R.(N) < N*%.

Here we are using the handy notation < to shorten the equivalent {formu-
lation: R,(N) < CN"™* for some positive constant C' (the implied constant)
depending only on n. Thus, since the total number of polynomials in our
set is about (2N)", the probability that a randomly chosen polynomial is
reducible is < N~!, which tends to 0 as N tends to infinity. The reader is
encouraged to observe that the upper bound for R.(N) is sharp in the sense
that no exponent smaller than n — 1 is valid. Actually, in 1963 Chela [Che]
found the asymptdtic formula

R.(N) ~ cuN™1

for a certain positive constant ¢,.

We are now in a position to recomsider our opening question. Let us
denote by E.(N) the number of polynomials in our set with Galois group
a proper subgroup of S,. In the classical terminology, we are counting the
polynomials “with affect.” Since S, acts transitively on the roots it is clear

that B,,(N) < E.(N). In fact, van der Waerden suggested that the bound (1)

should also hold for E,(N). Although he was not able to show this, he did
give a sufficiently good estimate to conclude that S, 1s the dominant Gralois
group, i.e. the probability that the Galois group s all of S, tends to 1 as
N — co. The actual bound for E,(N) was improved by Knobloch [Kno] in
1956 and then a big advance in the subject was made by Gallagher [Gal] in
1973 when he applied a powerful tool from analytic number theory, the large
sieve, to this problem. Gallagher obtained the bound

E.(N) < N*'*log N,

giving a significant step toward the expected bound N™~*. Later Lefton {Lef],
using a different method, improved this when n = 3 to N?* for any € > 0
thus getting essentially the best possible result for cubic polynomials.

Acknowledgment: We thank R. Bumby for helpful comments on an earhier
version of this paper. .
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2. Reciprocal polynomials - \

Our principal objective in this paper is to illustrate some of the techniques
used in probabilistic Galois theory and at the same time make a-tontribution
to the subject by considering a natural variation of our opening problem. We
impose invariance properties on the polynomials by considering the simplest
such property, namely that the polynomial f be reciprocal: f(z) = " f(1/z).
This means that the coefficients of f are palindromic, that is a, = 1,a,_; =

‘a1,.... The roots of such polynomials occur in reciprocal pairs. ‘Also, a

simple computation shows that f(z) = z™g(x + 1} for some polynomial g
of degree m. We shall assume that n = 2m is even since every odd degree
reciprocal polynomial has —1 as a root.

We find that the Galois group of a reciprocal polynomial is usua,lly as large

_as possible. This group is isomorphic to the group of all signed permutations

on m = n/2 objects. We realize it as a subgroup G of Sy, by taking for the
m objects the reciprocal root pairs and interpreting a change of sign as an
interchange of the roots of a given pair. The group G has order 2™m! and is
isomorphic to a semidirect product of (Z/22)™ with S,. It is clear that the
Galois group of a reciprocal polynomial is a subgroup of G since the Galois
group must send a pair of reciprocal roots to another such pair.

Let £,.(N) be the number of reciprocal polynomials f of degree 2m with
H(f) < N and with Galois group a proper subgroup of G. The following
result is proved in section 4.

Theorem 1. We have that
En(N) €« N™ 2 og N
with the implied constant depending only on m.

Since the total number of réciprocal polynomials we are considering is about
(2N)™ we see that this result implies that the Galois group of a random
reciprocal polynomial is likely to be G.

To prove this we use a development of the ideas of van der Waerden and
Gallagher together with some new combinatorial azguments. The main idea
is to detect reciprocal polynomials whose Galois groups are proper subgroups
of G by showing that certain cycle types must be missed by the groups and
hence, using a fundamental fact from Galois theory, the polynomials must
not factor modulo primes in the corresponding ways. Then the large sieve
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mequality limits the number of reciprocal polynomials which do not have
these corresponding splitting types. This is done by treating the polynomials
as integer vectors whose reductions modulo primes may be sieved.

It appears likely that more general results can be proved for other classes
of invariant polynomials.

3. Cycles and splitting types

In this section we give some needed information on the structure of G and
on the factorization of a reciprocal polynomial modulo a prime.
Let N; be the number of f-cycles in G.

Lemma 1. For £ > 2 we have Ny = 0 unless £ = 2k, in which case

}

NZk — Zkﬁl (T;L)(k - 1)!

Proof. That Ny = 0 for odd £ > 1 and N, = m follow since G is pair
preserving. We claim that every 2k-cycle can be uniquely expressed as a
product of an odd number of those 2-cycles in G which move only those roots
permuted by the 2k-cycle and a k-cycle of (ordered) pairs of reciprocal roots.
We count the number of k-cycles of pairs by noting that there are (';:) ways
to pick k pairs in the representation and (k — 1)! ways they can be ordered.
There are exactly 257! choices of combinations of 2-cycles. The product of
these gives Lemma 1.

The claim is shown by combining the following two facts. The number
of 2-cycles in the decomposition is odd since any product of a 2-cycle and a
k-cycle of pairs is a 2k-cycle. For example,

(4, =i {1, k) -1, k) = (1, .6, -+ 1), ok, -1, —ii 4 1 k)

The uniqueness of the decomposition is based on the fact that G is a semidi-
rect product of two subgroups.

Ll

We next show that a proper subgroup of G must miss some cycles.

Lemma 2. If a subgroup H of G contains 2-cycles, 4—cycles,(2m — 2)-cycles
and 2m-cycles then H = G.
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Proof. Since H contains a 2-cycle and a 2m- cycle by conjugation it contains -
all the 2-cycles. It is enough to show that F contains all 2-cycles of pairs.
Since all 2-cycles are present in H, the decomposztlon in the proof of Lemima .
1 implies that H contains a 2-cycle of pairs, «, an (m — 1)-cycle of pairs, 3.
and an m-cycle of pairs, y. Without loss of generality, we let

o= () ~4—3)y v =(1,2,.,m)(=1,=2, ..., —m)

where ¢ < j. Let the pair represented by I and —1 be the fixed pair of 2. By
conjugation of o by the 7 — 1 power of ¢ we obtain a 2-cycle of pairs, o, that
acts on the fixed pair of 8: o ="y~ = (1,7 — i+ 1)(=1,—(j — i+ 1)).
Then, by conjugation of o by powers of 3 we obtain those 2-cycles of pa.lrs
which transpose this fixed pair with any other pair.

U

We also need to count the number of reciprocal polynomials which have
certain factorization types modulo a prime p. Say a polynomial has splitting
type £ for pif its factorization into irreducibles (mod p) consists of distinct
factors which are all linear except for one factor of degree £. Let w(p) be
the number of degree 2m reciprocal polynomials with coefficients defined
(mod p) which have splitting type £ for p. The following lemma indicates a
close relation exists between w,(p) and the number of corresponding C‘ycles
of G. To prove the lemma, we will use the decomposition f(z) = z™g(z + 1)
and the classical formula of Dedekind [Ded] (see also [LN]) for the number
of all degree m irreducible polynomials (mod p) :

(2) ComT Y ()™
dim
where g is the Mobius function.

Lemma 3. For { > 2 we have we(p) = 0 unless £ = 2k in which case

N.
LA

Froof. Furst observe that a unique irreducible factor of degree £ > 1 must

Walk (P)

_be reciprocal. Tt follows that we(p) = 0 for odd £ > 1 since an irreducible

reciprocal polynomial must have even degree.
Let f(z) = z™g(z + %) Note that for f to be irreducible g must be
irreducible. This allows us to compute wy,,(p), the number of irreducible




268 S. Davis, W. Duke, X. Surf’

reciprocal polynomials, by counting the number of irreducible g and excluding
those for which f is reducible. If g is irreducible then f cannot have a proper
reciprocal factor. It follows that if g is irreducible yet f is reducible then

flz) = x™h(z)h(1/2)

where h is irreducible and non-reciprocal of degree m. The number of such
fis by (2} a polynomial in p with leading term p™/2m since when counting

the polynomials A(z), the reciprocal polynomials of degree m contribute at .

mf2

most p™'* when m is even, none otherwise. By (2) we conclude
4

TTL

(3) Wom(p) — g—m < "

To count wy(p) generally we simply apply (3) with m = k and count the
remaining 2m — 2k linear factors, which occur in pairs. This leads to

pm—k pk

am-k(m — k)l 2k

so the proof is finished by Lemma 1 and the formula |G| = 2™ml.

war(p) < p™t.

]

One may consider other cycle and splitting types, not just those special
ones considered here which are sufficient for our purposes. In fact, Gallagher
used a result similar to Lemma 3 for all cycle types of S,,.

4. Sieving polynomials by splitting type

The main tool used in the proof of Theorem 1 is a multidimensional form of
the large sieve inequality that allows one to estimate the number of integral
polynomials whose reductions modulo primes are not evenly distributed over
all residue classes. Let 7(z) be the number of primes p < 2 and 74,(z) be
the number of primes p < 2 such that f has splitting type £ for p. Below
we will prove, using the large sieve, that m;,(z) does not differ much from
(N¢/|G|)m(2) for most f. Precisely, we have

Lemma 4. For each ¢ we have

37 (wple) — (N/IG)7(2))? € N™n(z)

H{f)<N

where the sum is over reciprocal polynomaials f, provided N > 22.
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Before proving Lemma 4, we show that it implies Theorem 1. By. [WQ,

sec.61] we know that if f has splitting type £ for some prime p theti the Galois' |

group of f, as a permutation group on the roots of f, contains an {-cycle.
Thus by Lemma 2, each polynomial with Galois group a proper subgroup of
G will have m7,(z} = 0 for some £ € {2,4,2m — 2,2m}. ;From Lemma 4
with ¢ = v/N we conclude that ‘ .

En(N) € N [x(vN) < NV log N,

after applying the prime number theorem, and this is Theorem 1.
Lemma 4 is a particular application of the large sieve. To describe this,
for each prime p, let £2(p) be a subset of Z™/(pZ)™. For each vector a € Z™,

let P{a, z) be the number of primes p < z for which a{mod p) is in £2(p) and

set

P(z) = i@p)p™.

e

The following result, which is Lemma A in [Gal], shows that most integer
vectors are evenly distributed in different residue classes modulo primes.

Lemma 5. For N > z?,

> (P(a,z) - P(z))* < N™P(z)

fal<h
where the implied constant depends only on m and |a| = maz(|ai],..., |am]).

To apply this to Lemma 4, identify a with the coefficients (aq, . . . , G ) of
fso H(f) = |a] and f (mod p) corresponds to a (mod p). Let Q(p) be the
set of f having splitting type £ for p so |Q(p)| = we(p) and P(a,z) = 7/ 4(z)
By Lemma 3 we have

P(z) = (Nof|Gl)n(z) < Y p~* < log(log z).

p<=

Finally, Lemma 4 follows from Lemma 5 by a straightforward application
of Cauchy’s inequality. .

We remark that Gallagher stated a result similar to Lemma 4 for all of
the splitting types of S,.. Thus in concluding his theorem for E.(N), he
summed over all splitting types where as we only used the four particular
typesin Lemma 2. Gallagher's ideas may be extended as we did for reciprocal
polynomials to determine dominant Galois groups for other polynomial sets.
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