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 PROCEEDINGS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 114, Number 3, MARCH 1992

 ON MULTIPLE SALME SUMS

 W. DUKE

 (Communicated by William Adams)

 ABSTRACT. This note shows that the Davenport-Hasse relation for Gauss sums
 is equivalent to the evaluation of some multidimensional exponential sums that

 generalize that of Salik.

 This paper shows that the Davenport-Hasse relation for Gauss sums is equiv-
 alent to the evaluation of some multidimensional exponential sums that gener-
 alize that of Salid. In addition to being interesting in their own right, these sums
 also occur in the analysis of Fourier expansions of certain Poincard series on
 the n-fold cover of GL(n). For example, if one considers the analogues of the
 exponential sums in Theorem 1 of M. Larsen's appendix to [B-F-G] that occur
 for the Poincard series on the 3-fold cover of GL(3), the hyper-Kloosterman
 sums that arise are of the type considered here when n = 3. Thus the evalu-
 ation given below may turn out to be important in the further development of
 the theory of such automorphic forms when n > 3. This is certainly the case
 for n = 2, as the work of Iwaniec [I] shows.

 Let F = GF(q), q = pr for p prime, and n E Z+ be such that q 1_
 (modn). For yI a multiplicative character of order n and a E F* consider
 the n-dimensional Salid sum defined by

 Sn(a)= I(X2X2 .** xn )eq(Xl + **+ xn),
 XiX2 *. xn=a

 xiEF*

 where eq(x) = e(trx/p). (Note that Sn(a) does not depend on the choice of
 V *)

 Theorem.

 Sn (a) = eq n q(n- 1)/2 eq(nx)
 x: xn=a

 where
 f 1 if n is odd,

 8q,n = '> (.4)(q-1)(n-2)/8+r-1 Ij(p-1)2 r/4 if n is even.
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 624 W. DUKE

 In fact (*) is equivalent to the Davenport-Hasse relation, which states that
 for any multiplicative character X

 (**) T(X)T(X x) -* T(X ) = T(xn) Xn (n) T(yi) T( #2). T( n- )

 where T (X) = ExEF X(x)eq(x) . For X with Xn = 1 this formula is trivial, and
 otherwise it was obtained by Davenport and Hasse in [D-H] (see also [L, p. 61]).
 In case n = 3 and q = p a proof of (**) that parallels one for the triplication
 formula for the r-function has been given by Greene and Stanton [G-S].

 To prove (*) first multiply both sides of (**) by x(a) and sum over X, i.e.,
 take the Fourier transform. This yields

 Sn(a) = T(V)T(V2) *... T(n-l) eq(nx).
 x :xn=a

 Now (*) follows from the classical formulas

 T(Vk)T(Vn-k) = Vk (_ l ) q , k = 1, .. n- 1,

 T ((P) = (_1)r-1i(P-1)2r/4q1/2 forp > 2,
 where (0 is of order 2, together with the fact that y,(- 1) -1 iff n is even
 and (q - 1)/n is odd (see for example [L-N, Theorem 5.15 and Remark 5.13]).
 The converse is similar.

 In the case of n - 2 this yields Salie's original result [S] (Salie worked with
 q =p)

 Z oP(x) eq(x + ax) - Eq,2 J eq(2x)
 X x : x2=a

 while for n = 3 it gives

 Z y(X2X2)eq(x1+X2+X3)=q eq(3x).
 xIx2x3=a x : x3=a

 We remark that many other multiple exponential sums can be similarly
 treated, for example those studied by Mordell in [M]. Also, S3(a3) was in-
 dependently evaluated by N. Elkies (unpublished) by an elegant argument using
 elliptic curves.
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