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1. Introduction

The classical j-function is defined for z in the upper half plane H
by

j(z) =

(
1 + 240

∑∞
n=1

∑
m|n m3qn

)3

q
∏∞

n=1(1− qn)24
= q−1 + 744 + 196884q + · · · ,

where q = e(z) = e2πiz. For−d a negative fundamental discriminant,
meaning that it is the discriminant of an imaginary quadratic field
K, let

(1) zd =

{
i
√

d
2

if d ≡ 0 (mod 4),
−1+i

√
d

2
if d ≡ 3 (mod 4).

The j-function has the remarkable property that j(zd) is an algebraic
integer of degree h(−d), the class number of K = Q(zd). In fact,
K(j(zd)) is the Hilbert class field of K [4]. The first few values of
j(zd) are:

j(z3) = 0, j(z4) = 123, j(z7) = −153, j(z8) = 203, j(z11) = −323

j(z15) = −191025−85995
√

5
2

, j(z19) = −963, j(z20) = 632000+282880
√

5,

and j(z23) is the real root of x3+3491750x2−5151296875x+233753 = 0.
In general, the sum of the conjugates of j(zd), which we will de-

note by Tr j(zd) for d > 4, is an ordinary integer that defines an in-
teresting arithmetic function of d. Thus, for the non-integral values
listed above:

Tr j(z15) = −191025, Tr j(z20) = 1264000, Tr j(z23) = −3491750.
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Concerning its size for large d, it is easy to show that for any α > 1/2

Tr j(zd) = (−1)d eπ
√

d + O(eαπ
√

d).

We will provide a much more precise asymptotic result. To state this,
define for any c ∈ Z+ the exponential sum

(2) Sd(c) =
∑

x2≡−d (c)

e(2x/c).

As a special case of Theorem 1 proven below, we will show that

(3) 1
h(−d)

(
Tr j(zd)−

∑

0<c<2
√

d
c≡0(4)

1
2
Sd(c) e4π

√
d/c

)
→ 720

as d →∞, with −d a fundamental discriminant. That a result of this
general type should hold was recently predicted by Bruinier, Jenkins
and Ono [3] (see §2 below).

To see the significance of the constant 720, consider the polyno-
mial algebraC[j] of all “weakly holomorphic” modular functions for
Γ = PSL(2,Z). The Laurent expansion f(q) =

∑
anq

n of any f ∈ C[j]
is completely determined by its principal part

f−(z) =
∑
n<0

anq
n.

Atkin (see [13]) introduced a canonical functional ϕ on C[j] defined
by

(4) ϕ(f) = a0 − 24
∑
n<0

anσ(−n),

where σ(n) is the sum of the divisors of n. This has an equivalent
formulation in terms of the regularized integral of f [1, Thm 9.2]:

(5) ϕ(f) = lim
Y→∞

3
π

∫∫

FY

f(z)dµ,

where dµ = y−2dx dy and

(6) FY = {z ∈ F : Im z ≤ Y }
is a truncation of the usual fundamental domain for Γ:

F = {z ∈ H : −1
2
≤ Re z ≤ 0 and |z| ≥ 1 or 0 < Re z < 1

2
and |z| > 1}.

In particular, the ”average” value of j is 720 since from (4)

(7) ϕ(j) = 720.
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To give the generalization of (3), recall that a positive definite
integral binary quadratic form

Q(x, y) = ax2 + bxy + cy2

with discriminant−d = b2−4ac is said to be reduced if the associated
root of Q(x, 1) = 0 in H, called a CM point and given by

zQ =
−b + i

√
d

2a
,

is in F . For any negative −d ≡ 0, 1 (mod 4) (a negative discriminant)
there is a principal form of discriminant −d given by x2 + d

4
y2 if d is

even and by x2 + xy + d+1
4

y2 otherwise, that is reduced and whose
corresponding CM point is zd of (1), extended to all discriminants.
We will always assume that zQ corresponds to a reduced form of
discriminant −d. For any function f onH and any negative discrim-
inant −d define

Tr f(zd) =
∑
zQ

f(zQ),

with the convention associated to a sum over zQ that a summand of
the form f(z3) or f(z4) be multiplied by 1/3 and 1/2, respectively.
Let H(d) = Tr 1(zd), called the Hurwitz class number.

For d > 4 with −d a fundamental discriminant we have that
H(d) = h(−d), and it follows from the classical theory of complex
multiplication that Tr j(zd) coincides with our previous definition
since the conjugates of j(zd) are precisely the values j(zQ), called
singular moduli. The main result of this paper is the following as-
ymptotic formula for Tr f(zd) for large d and any f ∈ C[j].

THEOREM 1. Suppose that f ∈ C[j]. Then

1
h(−d)

(
Tr f(zd)−

∑
Im zQ>1

f−(zQ)
)
→ ϕ(f),

as d →∞ with −d a fundamental discriminant.

Behind this result lies the uniform distribution of CM points in
H proven in 1988 [6]. We remark that the restriction to fundamental
discriminants is unnecessary and can be relaxed to allow all negative
discriminants. In fact, the proof becomes much easier if d has a large
square factor.



4 W. DUKE

In the special case f = j, Theorem 1 gives (3) upon using (7) and
the easily established identity:

∑
Im zQ>1

e(−zQ) = 1
2

∑

0<c<2
√

d
c≡0(4)

Sd(c) e4π
√

d/c.

There is another corollary worth pointing out. As Atkin observed,
setting 〈f, g〉 = ϕ(fg) defines an inner product on Q[j], which has a
unique orthogonal basis

A0(j) = 1, A1(j) = j − 720, A2(j) = j2 − 1640j + 269280, . . . ,

with monic polynomials An ∈ Q[x] of degree n [13]. It is clear that
Tr An(j(zd)) is a rational number. It follows from Theorem 1 that for
any fixed n ≥ 1

1
h(−d)

(
Tr An(j(zd))−

∑
Im zQ>1

A−
n (j(zQ))

)
→ 0,

as d →∞with−d a fundamental discriminant. An interesting prop-
erty of An is that for any prime p, if np is the number of (isomor-
phism classes of) supersingular elliptic curves over F̄p, then Anp has
p-integral coefficients and its roots in F̄p are exactly the supersingular
j-invariants (see [13]).

2. Meromorphic modular forms of weight 3/2

Before turning to the proof of Theorem 1, I will briefly explain
its connection to the rich theory connecting singular moduli with
meromorphic modular forms of half-integral weight. This theory,
initiated by Borcherds and Zagier, has stimulated much current re-
search (see [18]).

Consider, for example, the weight 3/2 modular form

(8) g(z) = θ1(z)E4(4z)
η(4z)6

=
∑

d≥−1

B(d)qd = q−1− 2 + 248q3− 492q4 + · · · ,

defined in terms of the usual modular forms:

θ1(z) =
∑

n∈Z
(−1)nqn2

, E4(z) = 1+240
∑
n≥1

n3qn

1−qn , η(z) = q
1
24

∏
n≥1

(1−qn).

It is clear from (8) that the Fourier coefficient B(d) is zero unless
d ≡ 0, 3 (mod 4). Zagier [22] proved the following striking connec-
tion between the traces of singular moduli and the coefficients B(d).
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THEOREM 2 (Zagier). For any positive d ≡ 0, 3 (mod 4)

(9) B(d) = −Tr j1(zd),

where j1 = j − 744.

Motivated by this result and its generalizations, Bruinier, Jenkins
and Ono [3] have recently obtained explicit formulas for the Fourier
coefficients of certain modular forms of half-integral weight for Γ0(4)
like g(z), that are holomorphic on H but can have poles in the cusps.
For g(z) their formula can be written as:

(10) B(d) = 24H(d)− (1 + i)
∑
c>0

c≡0(4)

δ(c)√
c

K(d,−1; c) sinh
(

4π
√

d
c

)
,

where δ(c) = 2 unless c ≡ 0(mod 8), when it is 1, and
(11)

K(m,n; c) =
∑

a(c)

(
c
a

)
ε̄a e(ma+nā

c
) where εa =

{
1, if a ≡ 1(4);
i, if a ≡ 3(4)

is a half-integral weight Kloosterman sum. As they mention, (10) is
analogous to the formula of Rademacher for the partition function,
but they derive it using the method of Poincaré series. Based on it
they observe that an asymptotic formula like (3) should hold, and
that a proof would follow from strong enough estimates for certain
sums of half-integral weight Kloosterman sums.

In this paper we realize this observation in a somewhat differ-
ent form. Instead of using Zagier’s identity, the proof of (3) and
Theorem 1 given here is based directly on methods used in [6] to
establish the uniform distribution of CM points. One ingredient is
the identification of the sum of a weight zero Maass form over CM
points, called a hyperbolic Weyl sum, with a Fourier coefficient of a
weight 1/2 Maass form. This predecessor of Zagier’s identity in the
non-holomorphic cusp form case goes back to Maass [16] and was
put in a more explicit form by Katok and Sarnak [14]. The estima-
tion of the Fourier coefficient, which is at the heart of the proof of
Theorem 1, does rely ultimately on non-trivial bounds for sums of
half-integral weight Kloosterman sums proven by Iwaniec [9]. For
our purposes here we need only adapt this known method to a mod-
ular function with exponential growth in the cusp, regularizing with
a certain Poincaré series. While Tr f(zd) is, after [22], the Fourier co-
efficient of an appropriate weight 3/2 modular form for any f ∈ C[j]
(provided a0 = 0), the method used here does not apply to modular
forms whose Fourier coefficients are not of this form.
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As a by-product of our analysis we will obtain a “Kloosterman
sum” proof of Zagier’s identity (9). This is done by combining the
formula (10) with a similar one for Tr j1(zd), which is easily obtained
directly. The following formula valid for any discriminant −d will
be proven in §4:

(12) Tr j1(zd) = −24H(d) +
∑

c≡0(4)

Sd(c) sinh
(

4π
√

d
c

)
,

where Sd(c) is defined in (2). The fact that the Kloosterman sum in
(11) can be evaluated is well known, going back to Salié. Such eval-
uations were applied by Kohnen in [15] to prove Waldspurger-type
identities; our proof of Theorem 2 is in much the same spirit. Al-
though the needed Kloosterman sum identity for general c ≡ 0(mod 4)
and any discriminant −d can be obtained by modifying Proposition
5 of [15], we shall give another proof based on a recent paper of Toth
[20]. In §5 we prove that for all such c, d

(13) δ(c)(1 + i) K(d,−1; c) =
√

c Sd(c).

Thus (10) and (12) combine to give Theorem 2.
We remark that it should be possible to employ variations on this

technique to prove more of Zagier’s identities from [22]. This is clear
for those obtained from (9) by Hecke operators but the formulas in
[3] are not limited to these cases.1 Recently the technique of theta
correspondences has been applied directly by Bruinier and Funke
[2] to prove generalizations of such identities.

3. Uniform distribution of CM points

In this section we will prove Theorem 1. For any nonnegative in-
teger m denote by jm the unique modular function such that jm(z)−
q−m has a zero at i∞. Thus j0 = 1, j1 = j − 744 and generally
jm ∈ Z[j]. Since for any f ∈ C[j]

f(z) =
∑
n≤0

anj−n(z),

it is clearly sufficient to prove Theorem 1 when f = jm, for each
m ≥ 1. In view of (5), Theorem 1 is a consequence of the following
result.

1Note added June, 2005: This idea has now been developed in [12].
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PROPOSITION 3. Fix any m ∈ Z+. Then

(14) 1
h(−d)

( ∑
zQ

jm(zQ)−
∑

Im zQ>1

e(−mzQ)
)
→ 3

π

∫∫

F1

jm(z)y−2dxdy,

as d →∞ with −d a fundamental discriminant. Here F1 is defined in (6).

PROOF. Let ψ : R+ → R be a C∞ function with ψ(y) = 0 for
y ≤ 1 and ψ(y) = 1 for y > 1 + ε, where ε > 0 is fixed. Consider the
Poincaré series for m ∈ Z:

hm(z) =
∑

γ∈Γ∞\Γ
e(−mγz)ψ(Im γz)

where Γ∞ ⊂ Γ is the subgroup of translations. Clearly we have that

hm(z) = e(−mz) for Im z > 1 + ε.

It follows that for a fixed m ≥ 0 the function

F (z) = Fm(z) = jm(z)− hm(z)

is in L2(Γ\H, dµ).
The function F (z) thus has a spectral expansion convergent in

norm (see [10])

(15) F (z) = c0 +
∑
n>0

cnun(z) + 1
4π

∫ ∞

−∞
c(t)E(z, 1

2
+ it)dt.

Here {un}n≥1 is an orthonormal basis of Maass cusp forms and E(z, s)
is the Eisenstein series, given for Re s > 1 by

E(z, s) =
∑

γ∈Γ∞\Γ
(Im γz)s.

Thus 4un = λnun where the eigenvalues λn of the hyperbolic Lapla-
cian 4 = −y2(∂2

x + ∂2
y) are ordered so that 0 < λ1 ≤ λ2 ≤ · · · . It is

easily checked that
∫∫
F dµ = π/3 and that for m > 0

(16) c0 = 3
π

∫∫

F
Fm(z)dµ = 3

π

∫∫

F1

jm(z)dµ.

Since F (z) is infinitely differentiable and of rapid decay at∞, it is
known [10] that (15) converges absolutely and uniformly on compact
subsets of H and in fact a standard refinement of the proof given in
[10] yields the bounds

(17) cn ¿ n−A and c(t) ¿ (1
4

+ t2)−A,

for any A > 0, the implied constants depending only on ψ, m and A.
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By (15) we have

(18)
∑
zQ

jm(zQ)−
∑
zQ

e(−mzQ)ψ(Im zQ) =

h(−d)c0 +
∑
n>0

cn

∑
zQ

un(zQ) + 1
4π

∫ ∞

−∞
c(t)

∑
zQ

E(zQ, 1
2

+ it)dt.

We quote from [7, (12.1) p. 35] the estimate for the hyperbolic ”Weyl
sum”

(19)
∑
zQ

un(zQ) ¿ n6d
1
2
− 1

28
+ε,

whose proof relies on the non-trivial bound for the Fourier coeffi-
cients of half-integral weight Maass forms proven in [6]. For the con-
tinuous spectrum contribution to (18) we can apply the well known
Dirichlet formula (see [21]):

(20) ζ(2s)
∑
zQ

E(zQ, s) = (d/4)s/2ζ(s)L−d(s),

where L−d(s) is the Dirichlet L-function

L−d(s) =
∑
n≥1

(−d
n

)
n−s.

On the critical line Re s = 1/2 we have the Burgess bound (see [11,
Theorem 12.9, p.329]):

|L−d(s)| ¿ |s|d 1
4
− 1

16
+ε.

Using this estimate, together with a trivial upper bound for ζ(s) and
a classical lower bound for ζ(2s) [19, Theorem 5.17, p.98], we infer
from (20) that for Re s = 1/2

(21)
∑
zQ

E(zQ, s) ¿ |s|2d 1
2
− 1

16
+ε.

Applying (17), (19) and (21) in (18), together with Siegel’s theorem

h(−d) Àε d
1
2
−ε

(see [5]), we get a smoothed version of (14):

(22) 1
h(−d)

( ∑
zQ

jm(zQ)−
∑
zQ

e(−mzQ)ψ(Im zQ)
)

= c0 + O(d−δ)

for any δ < 1/28, where c0 = 3
π

∫∫
F1

jm(z)dµ. It should be observed
that the implied constant in (22) is ineffective.



MODULAR FUNCTIONS AND THE UNIFORM DISTRIBUTION OF CM POINTS 9

In order to un-smooth this result suppose 0 < ε < 1/4 is fixed.
Consider the incomplete Eisenstein series

g(z) =
∑

γ∈Γ∞\Γ
φ(Im γz)

where φ : R+ → R is a C∞ function supported in (1− ε, 1 + 2ε) with
0 ≤ φ(y) ≤ 1 and φ(y) = 1 for 1 ≤ y ≤ 1 + ε. Now g(z) has an
expansion given by

g(z) =
√

3
π

φ̂(0) + 1
2πi

∫

Re s= 1
2

φ̂(s)E(z, s)ds,

where

φ̂(s) =

∫ ∞

0

φ(y)y−s−1dy

satisfies φ̂(s) ¿ |s|−A on Re s = 1/2 (see [10, sec. 7.3]). It follows that

(23) #{zQ : 1 ≤ Im zQ ≤ 1 + ε} ≤
∑
zQ

g(zQ) ≤ 4εh(−d),

using (21) again, provided d is sufficiently large. Finally, we get from
(22) and (23) that for

R(d) = 1
h(−d)

( ∑
zQ

jm(zQ)−
∑

Im zQ>1

e(−mzQ)
)

we have lim supd R(d) ≤ c0 + 4e3πmε and lim infd R(d) ≥ c0 − 4e3πmε.
Now Proposition 3 follows since ε is arbitrarily small. ¤

4. An exact formula for Tr jm(zd)

We now prove (12) using a variation on the argument given above.
It is no more difficult to consider Tr jm(zd) for any m ∈ Z+. Thus de-
fine

(24) Sd(m, c) =
∑

x2≡−d (c)

e(2mx/c),

so that Sd(1, c) = Sd(c) from (2).

PROPOSITION 4. For any m ∈ Z+ and any discriminant −d we have
that

Tr jm(zd) = −24H(d)σ(m) +
∑

c≡0(4)

Sd(m, c) sinh
(

4πm
√

d
c

)
,

the series being convergent.
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PROOF. Define for y > 0 the function Vs(y) = 2πy1/2Is−1/2(2πy),
where Is−1/2 is the usual Bessel function so that

(25) V1(y) = 2 sinh(2πy).

For m ∈ Z+ consider the Poincaré series

(26) jm(z, s) = −24σ(m) +
∑

γ∈Γ∞\Γ
e(−m Re γz)Vs(m Im γz),

which converges absolutely for Re s > 1. It is readily seen that
jm(γz, s) = jm(z, s) for γ ∈ Γ and4jm(z, s) = s(1−s)jm(z, s). Niebur
[17] showed that jm(z, s) has an analytic continuation to s = 1 and
that

(27) jm(z) = jm(z, 1).

A standard calculation using the orbits of the CM points under Γ∞\Γ
shows that for Re s > 1

(28) Tr jm(zd, s) = −24H(d)σ(m) + 1
2

∑
c>0

c≡0(4)

Sd(m, c)Vs(2m
√

d
c

).

Using (27) and (25) we can finish the proof, since it follows easily
from well known results (see e.g. [8]) that the series (28) converges
uniformly for s ∈ [1, 2], say. ¤

5. Kloosterman sums

We conclude by providing a simple proof of the Kloosterman
sums identity (13), which implies Theorem 2. Recall that from (11)
and (2),

K(m,n; c) =
∑

a(c)

(
c
a

)
ε̄a e(ma+nā

c
) and Sd(c) =

∑

x2≡−d (c)

e(2x/c).

PROPOSITION 5. For c a positive integer with c ≡ 0 (mod 4) and d
any integer with d ≡ 0, 3 (mod 4) we have

(29) δ(c)(1 + i) K(d,−1; c) =
√

c Sd(c).

where δ(c) = 1 if 8| c and δ(c) = 2 otherwise.

PROOF. We shall adapt an elegant method found recently by Toth
[20], whose proof applies directly when 8|c, where no restriction on
d is necessary. In general, we have for any b, d and c > 0
(30)
c

∑

x2≡−d(c)

e(bx/c) =
∑

x(c)

e(bx/c)
∑

a(c)

e
(

a(x2+d)
c

)
=

∑

a(c)

G(a, b; c)e(ad/c)
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in terms of the Gauss sum G(a, b; c) =
∑

x(c) e(ax2+bx
c

). It is well known
that G(a, b; c) vanishes if n = (a, c) > 1 unless n| b, in which case

G(a, b; c) = nG( a
n
, b

n
; c

n
).

Thus we have

cSd(c) =
∑

n|c

∑
a(c)

(a,c)=n

G(a, 2; c)e(ad/c),

and G(a, 2; c) = 0 in the inner sum unless n = 1 or n = 2. If n = 2 we
have G(a, 2; c) = 2G(a

2
, 1; c

2
), which vanishes when 8|c.

Proceeding under this assumption

(31) cSd(c) =
∑

(a,c)=1

G(a, 2; c)e(ad/c).

Since when (a, c) = 1 we have G(a, 2; c) = e(−ā/c)G(a, 0; c), we may
write

(32) cSd(c) = G(1, 0; c)
∑

(a,c)=1

G(a,0;c)
G(1,0;c)

e(ad/c)e(−ā/c).

Now for c ≡ 0(4) we have G(a,0;c)
G(1,0;c)

=
(

c
a

)
ε̄a and also it is well known

that G(1, 0; c) = (1 + i)
√

c. Thus (29) holds in case 8|c for any d.
Suppose now that c = 4q where q is odd. A simple application of

the Chinese remainder theorem and quadratic reciprocity gives [9,
Lemma 2]:

(33) K(m,n; c) =
(
cos π(m+n)

2
− sin π(m+n)

2

)
(1− i)εq S(4̄m, 4̄n; q),

where S(m,n; q) =
∑

a(q)

(
a
q

)
e(ma+nā

q
) is a Salié sum.

Suppose first that d = 4D. Then

(34) K(d,−1; c) = (1− i)εqS(D,−4̄; q).

Since
Sd(c) = 2

∑

x2≡−D(q)

e(x/q),

by (30) we get as before that
q
2
Sd(c) =

∑

(a,q)=1

G(a, 1; q)e(aD/q) = G(1, 0; q)
∑

(a,q)=1

G(a,0;q)
G(1,0;q)

e(Da−4̄ā
q

),

but now we using that for (a, q) = 1 we have G(a, 1; q) = e(−4̄ā/q)G(a, 0; q).

Now G(a,0;q)
G(1,0;q)

=
(

a
q

)
and also G(1, 0; q) = εq

√
q, so we have

√
c Sd(c) = 4εq S(D,−4̄; q).
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From this and (34) we derive (29). In case d = 4D − 1 we start with

Sd(c) = 2e( 1
2q

)
∑

x2+x≡−D(q)

e(x/q) = −2
∑

x2≡4̄−D(q)

e(x/q),

since e( 1
2q

)e(−2̄
q

) = −1, as (1 − 22̄) is odd. Now proceed as before to
get √

c Sd(c) = −4εq S(D − 4̄,−4̄; q).

Using again (33) we have

K(d,−1; c) = (i− 1)εq S(4̄(4D − 1),−4̄; q),

giving (29). ¤

We remark that (29) does not hold in general if d ≡ 1, 2(4) and
8 - c, since K(d,−1; c) need not vanish yet Sd(c) does.
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