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Introduction 

It is a classical problem to find an asymptotic formula for the number  of integral 
points in a region on the ellipsoid q(x l  . . . . .  x r ) = n  as n--+ oo where q is a positive 
definite integral quadratic form. In particular, one wants to prove that the inte- 
gral points on such an ellipsoid are asymptotically uniformly distributed. For  
r > 4, this problem has been solved by Pommerenke [Pom] (with some necessary 
restrictions on the set of numbers in which n tends to infinity if r = 4). Improve-  
ments of the error term have been obtained in [Ma, Pod, Go-Fo l ] .  The case 
r = 3 has remained open so far; in fact one could not even give an unconditional 
proof  of such a formula for the number  of integral points on the whole ellipsoid 
(i.e., the number of representations of n by the quadratic form q). Linnik's ergodic 
method has been applied to this problem by several authors (see [Pe, Tel and 
references given there). However, the method requires imposing a condition 
on the quadratic residue character of n modulo some fixed prime. In order 
to remove it one has to assume certain unproved hypotheses concerning zeros 
of Dirichlet L-functions. 

Recent advances in the theory of modular  forms of half integral weight 
[I, Du] as well as in the theory of quadratic forms [SP1, SP2, SP3] make it 
now possible to obtain the desired asymptotic formula unconditionally for r = 3 
following the well known approach that has been succesful for r>4 .  The only 
restrictions still present resemble those for r=4 .  How this may be done for 
a 3-dimensional sphere has been shown in [Du]  and [-Go-Fo2]. 

Although each single step of this proof  is in the literature, it might be of 
some interest to collect them in one place and thus make this beautiful result 
more easily accessible. Since it does not involve much extra work, we also 
allow congruence conditions on the integral points. 

1. A first asymptotic formula 

In this section we state the problem and show how, with the help of Iwaniec's 
result [I],  it can be reduced to that  of proving an asymptotic formula for the 
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number of representations of an integer by a positive definite integral ternary 
quadratic form. The argument used is essentially the same as in the special 
case of a 3-dimensional sphere. It should be noted, however, that we can omit 
most of the restrictions that are usually imposed on the square part of n. Also, 
our exponent in the error term is slightly better than that obtained in [Go-Fo2].  

Let q ( x ) = ½ ( x t A x ) ( x ~ 7 Z ,  3, A=(aij)Gms3Ym(~), a, e22g) be a positive definite 
integral quadratic form in 3 variables, N the level of q (i.e., N 
= m i n { N ' e N l N ' A  - t  integral with even diagonal}), ~- a convex region with 
piecewise smooth boundary on the ellipsoid g =  {xeN,3lq(x)= l}, hE(TZ,3) # 
= {x~(1)3{AxEZ 3} a fixed vector with q(h)~2g. 

Our goal is the determination of 

( 
r(q, ~ ,  h, n ) . ' =  :~:~XGt~ 3 IX 

Let r(q, h, n):=r(q, g, h, n). 

- h mo d TZ 3, q(x)=n, ~ e ~  . 

Lemma 1. [Go-Fo2]  Let 1~ be the characteristic function of g ,  p(~)  = ~ 1~ d# 
8 

the area of ~ (dp normalized to p(g) = 1), and 6 > 0  be given. 
Then there exist homogeneous q-harmonic polynomials P~+- of degree v such 

that 

(i) ~ P ( ( x ) < I ~ <  ~ g+(x) for a l l x e e  
v=O v=O 

(ii) I Po -+ -/~ (~)l  < 6 
(iii) JP~-+ (x)[ ~,3-Sv - ' -  1/2 for all x~d~(s~N arbitrary). 

Proof The assertion is proved for the sphere in Lemma 3 of [Go-Fo2].  Obviously 
it carries over to the case of an arbitrary ellipsoid by a suitable linear transforma- 
tion. 

Lemma 2. Let f(z) = ~ a, exp(2~ inz) be a cusp form for 
n = l  

FI(N) = {(~ bd)eSL2(2g)lc-OmodN, a=- l modN } 

of weight 3/2+v where ve2~, v>=O. I f  v=0,  assume further that the Shimura 
lifting of f [Shi] is a cusp form. Let e > 0  be given and let n ~ ~ under the 
restriction that n=tn~ with (no, N ) = I  and t=t 'n  2 with t' square-free and nl 
in some fixed finite set S of integers. 

Then 
la, I ~ , s  cv(f, f)1/2 nV/2 + 1/z- 1/z8 +~ 

where 

(4 n),/2 (v + 1) "~ 
c~- F(v+3/2)1/2 , 
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and 
=~'7/2, v odd 

t/~ [.9/2, v even" 

Proof We may suppose fe $3/2 +v (fro (N), ~0 for some Z (mod N). 
Suppose first that t is square-free. Then the required estimate for lat[ is 

an extension of that in [I] to F~(N) which includes the case v = 0  and which 
is uniform in v. 

It is proved using Proskurin's generalization of the Kuznetsov sum formula 
in a way similar to the proof of Theorem 5 in [Du] and is based ultimately 
on the estimate for sums of Kloostermann sums given in Theorem 3 of [I]. 

In the notation of [Du], for k =  1/2 or k=3/2,  ~, f l ~ ½ Z \ Z  with ~>3/2  and 
f l - ~ -  l ~ 2 Z  + let 

~,,Ax)=~p(x)=cx-%(x) 

where c=(-l f f- ' - l) /22"+l~e(-k/4)F(a+l)-i  and J~(x)is the usual Bessel 
function. 

This ~o satisfies the conditions of the sum formula and a straightforward 
calculation shows that ~b(t)>0 for t e R  or ire(-  1/2, 1/2). Also, for j >  1 

k j t~-~-i k . 

sin(n a+f123-k)  ~(~P (k+j - e + f i + l  
- z=o 2 +2) -~' 

Choosing ~=  5/2, f l= 11/2 if k = 1/2 and e = 7/2, f l= 13/2 if k=3 /2  we get that 
for j > 5  

k j _ e(-~+~)q~(k + 2j)>coj 1-~-~ 

for an absolute constant Co > 0. 
Now one proceeds as in §5 of [Du],  using that the sum formula given 

there holds for all Z, not only for real Z. 
The generalization to t = t' n~ as above is straightforward. 
If f is an eigenfunction of all the Hecke operators T(ng) with (n o, N )=  1 

with eigenvatues 2(no), then by Shimura's correspondence [Shi, Ni, Ci] 

at,g=a, ~ x(m) p(m)A , 
re[no 

where A(no/m)=2(no/m) is the T(no/m)-eigenvalue of the cusp form of weight 
2 v + 2  associated to f by this correspondence. Consequently, lat,~l 
< latl ~(no) 2 n~/2+~ ~ latl n~/2 + ~+~ (with T(n)= ~ 1) by the Ramanujan-Petersson 

rain 
bound [De], and our estimate for arbitrary f follows. 
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The first named author would like to point out that the above choices of 
e, fl should have been made instead of e = 3/2, fl = 9/2 in the proof of Theorem 5 
in [Du], justifying the estimate (5.3). The value of A given in Theorem 5 should 
be accordingly modified. 

Lemma 3. Let e > 0 be given. Then, with the notation of Lemma 1, one has for 
n-~oo (restricted to n=tn2n~ with t squarefree, gcd(no, p ) = l  for all primes p 
with q isotropic over ~p and h¢Z 3, n~ in some fixed finite set S of integers) 

oc 

2 Pv±(x)  <e,s, q r ( q , h , n )  (~+O-21/4-~n1/2-1 / zs+e  
V 1 x ~ h + Z  3 

q ( x ) = n  

Proof A similar estimate is proved for the sphere in Sect. 4 of [Go-Fo2] restrict- 
ing to n=tn~ with t squere free, (no, N)= 1 (and without the congruence condi- 
tion), using Lemma 1 and a slightly different version of Lemma 2 above. 

The proof proceeds by using the fact that for v > 0 the theta series 

0(P,, ±, q, h, z)= ~ P~±(x)exp(2niq(x)z)= ~ a~(n)exp(2ninz) 
x E h + Z  3 n = 1 

is a cusp form of weight 3/2 + v for F 1 (N) [Pf, Shi] and its Fourier coefficients 
a f  (n) can therefore be bounded with the help of Lemma 2 (using the bound 
on IP~ -+ (x)l from Lemma 1 to estimate the Petersson norm of 0(P~ ±, q, h, z)). 

[~ ~ ~] 

The sum over v is then divided into ~ and ~, , where the first 
v=[,5 -1 ~]+1 v = l  

sum is bounded by r(q, h, n) 6 using Lemma 1 for s large enough and the second 
sum is estimated by using the bound on Ja~(n)[ from Lemma 2 and (& 0) 
~s (v 6)-zs (4 n)-v F(v + 1) for 0 = 0 (P~+, q, h, z). The generalization to the ellipsoid 
is immediate as well as that to theta series with congruence conditions. 

To deal with n whose square part involves primes dividing N (under the 
additional condition on h), consider first p i n  with q isotropic over @p (i.e., 
there exists y ~ 3 ,  y =t = 0 with q(y) = 0). 

Then by Lemma 3 5 of [SP3] there are lattices K~, Mj on II) 3 and ro = ro (p, q) 
such that: 

(i) (Ki) I = (M j) l = 7/~ for all primes 14:p 
(ii) 0(P~ ±, p-,oq, h', Ki, z):= 2 P~+(x)exp(2nip-'°q(x) z)~S3/2+~'(ffl(g'))' 

x E h ' + K i  

O(p+_, p-rOq, h', Mj, z)~S3/2+v(FI(N' p)) with N'=N/gcd(N, pO~) 

(where h '~h+ Z ~  for all l+p, h'6(Ki)p, h'6(Mj)p for all i,j). 
(iii) i f 2 r > r o  and p2,~m one has 

a + (mpZ,)= ~ ~ ?i~p~t,-~) b+i(mp2~) + ~  ~jp~t~-~') c,~j(mp2~'), 
i s<r j 
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where r,=/.r0+ll- -ordpml3 b+-i(n), cfj(n) are the Fourier coefficients of ~ v, , 
L 

,9(P~ -+, q, h', Ki, z) and 0(P~ -+, q, h', Mj, z) respectively and where the constants 
7,~, ~7~ satisfy ~ 17i~1 + ~ 1~TjI = O((log n log N)) 

i ,s j 

(the argument given in [SP3] for v=0  generalizes to arbitrary v). Both sums 
occurring here can be estimated with the help of Lemma 2. 

If pIN is such that q is anisotropic over ~p, there is ro=ro(p, N) such that 
all XeQp 3 with q(x)Ep~°+2~Zp are in p'Z3(s+-O) ([E], Satz 9.4), i.e., for 2 r > r  o 

l0  if h¢7/3 
a,~-(mp2") = [2  + l l  9 [ r o + l l  

[ p [ ~ J " a + ( m p - [ ~ - l )  if h~Z  3. 

Putting together the results for the pIN proves the assertion. 

Remark. It should be noted that with the same argument as above the estimate 
of Lemma 2 can be generalized to arbitrary n if the cusp form f considered 
is restricted to the subspace of S3/z + v(F1 (N)) generated by theta series of quadra- 
tic forms in the genus of q with spherical coefficients and congruence conditions 
at most at those primes p for which q is anisotropic over Qp). 

An immediate conclusion from Lemma 1 3 is (putting 6 = n-  ~/~ vs). 

Theorem 1. Let e,>0. Then for n --* oo restricted as in Lemma 3 one has: 

Ir(q, ~ h, n ) - r (q ,  h, n)/~(~)[ ~,,s,~ r(q, h, n) n -  1/175 + nl/2-1/175 +~ 

where the implied constant does not depend on n. 
The restriction on n is empty if h e Z  3. 

This is an improvement over the error term n 1 / 2 - l / 3 3 6 + ~  obtained in [Go- 
Fo2]. 

2. Representation numbers of ternary quadratic forms 
and the final asymptotic formula 

Theorem 1 leaves us with the problem of giving an asymptotic formula for 
r(q, h, n). The classical method to attack this problem is to use Siegel's mass 
formula. Here we need van der Blij's generalization including congruence condi- 
tions as well as a modification of the mass formula for computing the average 
of the representation numbers by forms in a spinor genus. 

Recall that rationally equivalent nondegenerate quadratic forms q, q' with 
matrices A, A '= V 'A VE Msym(II~)(VE GLr(II))) are said to belong to the same class 
(q'~cls q) if VEO~)(A) GL,(2~)(OQ(A) = { UEGL,(Q)[ UtAU=A}) ,  to the same gen- 
us (q'egen q) if 

Ve 0 0 % ( A )  GL,(2g~), 
P 
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to the same spinor genus (q'e spn q) if 

V~ O~(A) ~ O'Q~ (A) GLr(7Zp), 
P 

where O~p(A) is the set of UeOc~p(A) of determinant and spinor norm 1 
([OM], § 55) (for r + 4, this is just the commutator  subgroup of OQ, (A)). 

We generalize these notions to congruence class (genus, spinor genus) mod 
N(clsNq etc.) by replacing GLr(Z) resp. GLr(Zp) by GLr(Z,N) 
• "={U~GLr(2g)l U = 1 modN} (resp. GLr(Zp, N)). 

Finally, let o (q, N)=  ~: (GLr (2g, N)n OQ(A)). 

Theorem 2. (i) (Siegel) For each prime p let 

ap(q, h, n)= lim p-2r~ {XG~3/pr 7]~3, x ~ h  m o d Z  3, q(x) = n modff}, 
r ---~ oo 

Let 
1 ))-1 r(q' ,h,n) 

r(genNq, h, n)= Z o(q', N ~ o(q', N) ' 
\(q')EgenNq (q')6genNq 

where the summation is over a set of representatives of the congruence classes 
mod N in the congruence genus mod N. 

Then 

r(gen~q, h, n )=2~  1-I ap(q, h, n) 
P 

(ii) Let 

r(spnNq, h,n) ( 1 ) -1 r(q',h,n) 
= Z o(q', N) Z o(q', N) ' 

(q')~spnNq (q')~spnNq 

Then there are finitely many explicitly computable numbers t~ such that for 
nCUti2g 2 

r(spnu q, h, n)= r(genN q, h, n). 

±i(q, h, n) (which are computable in Moreover, one can define local densities ~p, 
terms of numbers of solutions of congruences) such that for n=tin~etiTZ 2 on 
has 

r(spnNq, h,n)-r(genuq, h,n)=2rc 2 ~ t A l ~ I  p a + ( p,i(q, h, n)-e~,i(q, h, n)). 

Proof For i), see [Si,vB] (or [Kn] for an adelic version), for (ii) in case he•  3 
see [Kn] and [SP2] (where also the precise definition of the c~ + can be found). 
To modify the proof of [SP2] in order to include congruence conditions, replace 
O (L~) by {u e O (Lp)[ u x -  x mod N.  Lp for all x e Lp} and the condition no x ~ ui Lp 
by u ~ n o x e h + L p .  Note that explicit calculations of the e+i can be found 
in [SP2] for p with h ~ Z  3. 
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Lemma 4. Let~(q, h, z)= ~ r(q, h, n) exp(27rinz), 
n = O  

0(genNq, h)= ~ r(genNq, h, n)exp(27rinz). 
n=O 

(i) O(genuq, h)--0(q, h) is a cusp form of weight 3/2 for the group Fa(N) 
(ii) Let U be the space of cusp forms of weight 3/2 for Fx (N) generated by 

1-dimensional theta series 

z(n) n exp(2nitn 2 z) 

and U ± its orthogonal complement with respect to the Petersson inner product. 
Then 

O(q, h)-3(spnu q, h)eU ± 

O(spnN q, h) - 0 (genN q, h)e U. 

Proof In case he2~ see [Si], p. 376 for i), [SP1] for ii). The proofs in the 
general case are analogous (using again the decomposition Sk(F~(N)) 
= (~  Sk (Fo (U), Z). 

Z 

Note that by [-Ci, Stu] U x consists of those cusp forms of weight 3/2 whose 
Shimura lifting is cuspidal. 

Note also that the role played by the spinor genus in ii) is special to forms 
in 3 variables; for forms in more than 3 variables O(spnNq, h)=~(genNq, h) by 
[Kn]. 

Lemma B. (i) Let n tend to infinity in the set 
R~(genuq, h),={neNl~v(q, h, n)4:O for all primes p, p~Xn if q is anisotropic over 
Q.}. 

Then for all e > 0 

nl/2-~ ~ .... s r (genN q, h, n) ~ . . . .  N nl]2 +¢ 

(ii) l f  n is further restricted to the set 
R*(spnq, h)={n l3q '¢spnuq  and x~h+2~ 3 primitive with q'(x)=n} then for all 
¢>0 

nl/Z-~ ~ ,u r ( sp n u q ,  h, n ) ~ . u n  ~/2 +~. 

(Note that R* (spn q, h)_~R~ (gens q, h) for  some v depending on N). 

Proof For a proof of i) in case h¢~  3 see [Jo, Pe], where r(genq, n) is bounded 
from above and below by a constant times the number of classes of primitive 
positive binary forms of determinant 2ndetA (which is estimated in [Si2]). 
Alternatively one can compute the local densities for almost all primes and 
find that r(genuq, h, n) agrees up to a finite number of factors with nl/ZL(1, Z), 
where Z is the quadratic character associated with Q ( l / - 2 n  det A), and again 
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estimate L(1, Z) by [Si2]. Note that the lower bound from Siegel's estimate 
is not effective. 

ii) has been shown in [SP2], Korollar 2 for h~2g 3, again, the argument is 
unchanged for general h. 

Note also that the additional restriction on n in ii) is satisfied for all n 
not in one of finitely many square classes by the analogue of Theorem 2ii) 
for primitive representations ([Kn,SP2]), and that for n in one of those exception- 
al square classes and p , f N  one has neR*(spnNq, h ) if and only if 
npg~R * (spn~ q, h) I-Ea]. 

Note finally that without the above restrictions, the lower bound given 
becomes wrong, since r (genu q, h, np 2r) becomes constant for p with q anisotrop- 
ic over ll~p and r large and r(spnu q, h, np 2) becomes constant for large p (which 
are inert in a certain quadratic extension of •) if n is representend primitively 
by spnuq but not by all spnNq' in genuq [-SP2, p. 131]. Putting together the 
above results we arrive at 

Theorem 3. Let e > 0  be given, let n ~ ~ under the following restriction: I f  h¢• 3 
and N2 denotes the product of all p iN  for which q is isotropic over ~p and 
hCZ 3, and if n = t m  2 with t squarefree, then gcd(m, N ~ ) 6 S  for some fixed finite 
set of integers S. Then 

(i) r(q, h, n)=r(spnNq, h, n)+O(nl/2-1/28+~), 

where the main term satisfies 

r(spnNq, h, n)~>~,Nn 1/2-~" if n~R*(spnNq, h) 

and can be explicitly computed by evaluating local densities. 
(ii) r (q, ~,  h, n) = r (spnN q, h, n) p (~ )  + O (nl/2 - 1/1 7 5 + ~). 

The implied constants depend only on ~ and N. 

Proof The second part of i) is Lemma 5 ii), the first part follows from Lemma 4 ii) 
and Lemma 2 i) if n = the n21 with (no, N)=  1. The more general formulation given 
above can be deduced from Lemma 3-5 of [SP3] in the same way as in the 
proof of Lemma 3 of this article. The assertion of ii) finally follows from Theo- 
rem 1, using Lemma 5 ii). 

If there are no congruence conditions, we can give the desired result about 
uniform distribution in a simple formulation: 

Corollary. Let q(xt ,  x2, X3) be a positive definite integral ternary quadratic form. 
Then every large integer n represented primitively by a form in the spinor genus 
of q is represented by q itself and the representing vectors are asymptotically 
uniformly distributed on the ellipsoid q(x) = n. 
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