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1 - INTRODUCTION

The theories of integral guadratic forms and modular forms
are intimately connected. This connection hasg not been fully exploi-
ted for ternary forms due to a barrier in the estimation of the
Fourier coefficients of cusp forms of weight half an odd integer.
Recently Iwaniec [6] has shown how to break this barrior for such
holomorphic cusgp forms of welght B/2 or greater. In (2] it is shown
that his method extends in a straightforward way to include certain
non-holomorphic Maass forms asg well as holomorphic cusp forms of
weight 3/2. There applications are given of the non-holomorphic
case to certain geometric distribution questions related to indefi-
nite ternary forms. In this note I will briefly indicate how the
case of weight 3/2 applies to the classical problem of determining
the asymptotic behavior of the representation number of an arbitra-
ry integral positive definite ternary dquadratic form. This repre-
sentation number is the number of lattice points on an appropriate
ellipsoid in Euclidean 3-space.

2 - REPRESENTATION OF INTEGERS BY POSITIVE QUADRATIC FORMS

Let Q[X] be a non-degenerate integral quadratic form in
m 2 3 variables represented by an mxm non-singular symmetric
semi-integral matrix Q. Two such forms Q, and Q, belong to the
same class (in the wide sense) if there is a U € GL_ (Z) such
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that QIUIY. *UQ,U = Q, and to the same genus if this holds

for some U, € GLm(Zp) for all primes p, includihg P = o. The
genus of a given @, denoted by genQ, is known to consist of fini-
tely many classes. For indefinite forms under rather general con-
ditions this class number is one, while for positive forms it is
in general large (see [1] p. 202 and p. 364). This circumstance
makes the study of representations by individual positive forms
more difficult in general than for indefinite forms.

Let now Q@ be positive definite and define the arithmetic
functions for n € 2° .

rqo(m) = # {a € 2" ; Qlal = n } and
ro(nd = # {¢ € Z"™ primitive ; QLal = n).

Ciearly rg(n) = rq(n/d?) so also
' d*|n '
ro(n) = “(d)rg(nsa®).
d?in

Both functions are class invariants sc we may define the "average'
genus representation number

(1) rdn,gen@) = ()  re. ME@)H Y () E@) Y-t
Q’€genq Q’€genQ

and similarly r*(n,genQ), where
E@) = # {U € GL_ (2> ; QIU]l = @)

is the (finite) number of units of Q. Siegel's formula evaluates
r(n,genl) explicitly as the n'' Fourier coefficient of an Eisenstein
series. The set of n with r(n,genQ) > 0 or r*(n,genQ) > 0 are deter-
mined locally by the solvability of certain congruences. For m > 5
it followe that

(2) ri(n,genQ) » n® 2!

as n » o through n such that r(n,genQ) > 0. For m = 4 this holds pro-
vided r*(n,genQ) > 0. For m = 3 the best statement is given in [185]
but requires the notion of a spinor genus, which is an intermediate
classification between class and genus. We will not develop this

notion here but will be content to impose the additional condition



37-03

that n not lie in finitely many dquadratic sequences {t1!2;262+}
where t, are explicitly determined divisors of det(2Q) (see [191).
For n with r*(n,genQ) > 0 it is known that
(1851 p. 298) for all & > 0.

(3) r¢(n,genQ) » n*7?%*"°
[

as n -+ o, where Siegel’s theorem is being employed, making the
implied constant ineffective. We shall denote by QQ the set of
n indicated for which () or (3) holds.

In general, r(n,genQ)-ro(n) 1is the n'" Fourier coeffi-
cient of a holomorphic cusp form for T'y(N) of weight m/2 with
a certain real character ¥,, where

N = min {f € 2* ;(4/2)(2Q) ' is semi-integral)
is the level of Q. The bound corresponding to .
Weil’s estimate for Kloosterman sums (which is much easier to
obtain for m odd) gives the asymptotic formula

rq(n) = r(n,genQ) + O(n(m-1t)/4tey,

Thus, for m 2 4 by (8) every sufficiently large n € 0y is repre-
sented by Q. For m = 3 the error term exceeds the main iterm by
n®. This breakdown of the "analytic method" was one motivation
for Linnik’'s ergodic method, which was partially successful in
handling the ternary case. However, for a general ternary always
an extra unnatural condition or an unproved hypoithesis is assu-
med (see {51,{71,[103,0111,[193, and cited literature).

By Iwaniec’s method we may now return successfully to
the analytic method for positive ternary forms.

THEOREM 1. - For n = t4? € Q, with t square-free and (Z,N) =1
we have, as n =2 o,

3/1d 1/4+¢
t

ro(n) - r(n,genQd) « n

€,Q

for any positive definiite integral ternary quadratic Fform Q and
any & > 0.

COROLLARY. Notation as above, for any & > 0

ron) » nt7¥"¢

€,Q
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a8 n » o, provided n € QQ and (f,N) = 1. The implied constant ts-
ineffective. '

Thus, in particular, every sufficiently large square-free
integer which is represented by scme form in the genus of Q is
represented by Q. This was conjectured by Ross and Pall
(C13]1 p. 680.) in 1948,

3. AN ESTIMATE FOR FOURIER COEFFICIENTS

The essential new ingredient in the proof of Thecrem 1 is
a deep estimate of Iwaniec for a certain sum of Kloosterman sums
{Theorem 3 in [8]1). In this section the resultiing estimate for
half-integral weight Fourier ccefficients from which Thecrem 1
follows will be stated, ' '

Let, for k¥ = 1/2 + L, L € 2%, and ¥ a real character modN,
N =0 (mod 4), S,(N,X¥) be the space of holomecrphic cusp forms of
weight k with character X for TI's T, (N) (see e.g. [18]1). Sk(N;X)
is a finite dimensional Hilbert space with the inner product

<f,g> = J f(z)g(z) y* * dxdy.
r'/H

If k = 3/2 let U be the subspace of 8,,,(N,X) which is spanned

by theta functions of the form Z y{n)ne(tn?z) where t is square-
nzl

free, ¥ is an odd Dirichlet character, and e(z) = exp{2miz).

Let U' be the orthogonal complement of U in 8;,,(N,X) with res-

pect to <.,.>2

THEQREM 2.- Suppose f(z) = z a(n)e(nz) € S, (N,X) with f € Ut
nzl
if k = 3/2. ret & » 0 be given. Then, for n = t8?2 with t square-
free,
a(n) « gB8/14 peR-1ys2He
f,e
as n =+ w, provided (¢{,N) = 1 .

Theorem 1 follows from Theorem 2 by the result of Schulze-Pillot
([151,5atz 4) that

Z (rg(n) - r(n,spn@)) e(nz) € Ut
nzl
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where r(n,spnQ) is defined similarly as in (1) with respect to
the spinor genus. We use that r(n,gen®) = r(n,spn®) for n € Qq.

Theorem 2 follows from Theorem 5 in [R] after reduction
to square-free n by the Shimura 1ift. More precisely, define as
in [161 for square-free t the t-Shimura 1ift F, of f by

F,(z) = ) A,(nde(nz) where
nzl
(4) ) A (mn"* = L(s-k+3/2,%,) ) a(tn®)n"* ,
nz1 ‘ -nzl
1 t
with X,(n) = A(n) (-—)*"172(~). Under our conditions it is
n n

known that F, € 8,,_,(N/2) (see [1B] p. R85 for a discussion
and references). We may also suppose that F is an eigenfunction
of all Hecke operators T , for p*N prime. Then by [168] cor. 1.8,
for (I,N) = 1, P :

(3) A () = a(t)A, (8)

Thus, by (4) and (8) for ({£,N) = 1

a(te?) % L, (dyu(dyA, (2/d)
ale

a(t) % X (@YR(AIA, (L/d)
d|¢

ja(t) [£¥"%*% Dby Deligne’s estimate

A

g th72-27T4epk-14¢ By Theorem B in [2].
Theorem 2 now follows.

In conclusion we remark that by using theta functions with
spherical harmonic coefficients we may employ Thecrem 2 to prove
that the lattice pocints @ € 2% with Q[a] = n become uniformly dis-
tributed on the ellipsoid {QfX] = n} as n 2 o, provided n € Q
and ({,n) = 1. In connection with this we refer to [31,.{71,[8],
[101, and [12].
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