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Abstract. Recent work has shown that the study of supercharacters on
abelian groups provides a natural framework within which to study certain
exponential sums of interest in number theory. Our aim here is to initiate the
study of Gaussian periods from this novel perspective. Among other things,
our approach reveals that these classical objects display dazzling visual pat-
terns of great complexity and remarkable subtlety.

1. Introduction

The theory of supercharacters, which generalizes classical character theory, was
recently introduced in an axiomatic fashion by P. Diaconis and I.M. Isaacs [6],
extending the seminal work of C. André [1, 2]. Recent work has shown that the
study of supercharacters on abelian groups provides a natural framework within
which to study the properties of certain exponential sums of interest in number
theory [4, 8] (see also [7] and Table 1). Our aim here is to initiate the study of
Gaussian periods from this novel perspective. Among other things, this approach
reveals that these classical objects display a dazzling array of visual patterns of
great complexity and remarkable subtlety (see Figure 1).

Let G be a finite group with identity 0, K a partition of G, and X a partition
of the set IrrpGq of irreducible characters of G. The ordered pair pX ,Kq is called a
supercharacter theory for G if t0u P K, |X | “ |K|, and for each X P X , the function

σX “
ÿ

χPX

χp0qχ

is constant on each K P K. The functions σX are called supercharacters of G and
the elements of K are called superclasses.

LetG “ Z{nZ and recall that the irreducible characters of Z{nZ are the functions
χxpyq “ epxyn q for x in Z{nZ, where epθq “ expp2πiθq. For a fixed subgroup A of
pZ{nZqˆ, let K denote the partition of Z{nZ arising from the action a ¨ x “ ax of
A. The action a ¨ χx “ χa´1x of A on the irreducible characters of Z{nZ yields
a compatible partition X . The reader can verify that pX ,Kq is a supercharacter
theory on Z{nZ and that the corresponding supercharacters are given by

σXpyq “
ÿ

xPX

e
´xy

n

¯

, (1)

where X is an orbit in Z{nZ under the action of A. When n “ p is an odd prime, (1)
is a Gaussian period, a central object in the theory of cyclotomy. For p “ kd ` 1,
Gauss defined the d-nomial periods ηj “

řd´1
`“0 ζ

gk``j

p , where ζp “ ep 1p q and g

denotes a primitive root modulo p [3, 5]. Clearly ηj runs over the same values as
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2 W. DUKE, S. R. GARCIA, AND BOB LUTZ

σXpyq when y ‰ 0, |A| “ d, and X “ A1 is the A-orbit of 1. For composite moduli,
the functions σX attain values which are generalizations of Gaussian periods of the
type considered by Kummer and others (see [10]).

(a) n “ 52059, A “ x766y (b) n “ 91205, A “ x2337y (c) n “ 70091, A “ x3447y

(d) n “ 91205, A “ x39626y (e) n “ 91205, A “ x1322y (f) n “ 95095, A “ x626y

(g) n “ 82677, A “ x8147y (h) n “ 70091, A “ x21792y (i) n “ 51319, A “ x430y

Figure 1. Each subfigure is the image of σX : Z{nZ Ñ C, where X is the
orbit of 1 under the action of a cyclic subgroup A of pZ{nZqˆ. If σXpyq and
σXpy

1q differ in color, then y ı y1 pmod mq, where m is a fixed divisor of n.

When visualized as subsets of the complex plane, the images of these superchar-
acters exhibit a surprisingly diverse range of features (see Figure 1). The main
purpose of this paper is to initiate the investigation of these plots, focusing our
attention on the case where A “ xay is a cyclic subgroup of pZ{nZqˆ. We refer to
supercharacers which arise in this manner as cyclic supercharacters.

The sheer diversity of patterns displayed by cyclic supercharacters is overwhelm-
ing. To some degree, these circumstances force us to focus our initial efforts on doc-
umenting the notable features that appear and on explaining their number-theoretic
origins. One such theorem is the following.
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Name Expression G A

Gauss ηj “
d´1
ÿ

`“0

e

ˆ

gk``j

p

˙

Z{pZ nonzero kth powers mod p

Ramanujan cnpxq “
n
ÿ

j“1
pj,nq“1

e

ˆ

jx

n

˙

Z{nZ pZ{nZqˆ

Kloosterman Kppa, bq “

p´1
ÿ

`“0

e

˜

a`` b`

p

¸

pZ{pZq2
"„

u 0
0 u´1



: u P pZ{pZqˆ
*

Heilbronn Hppaq “

p´1
ÿ

`“0

e

ˆ

a`p

p2

˙

Z{p2Z nonzero pth powers mod p2

Table 1. Gaussian periods, Ramanujan sums, Kloosterman sums, and Heil-
bronn sums appear as supercharacters arising from the action of a subgroup A
of AutG for a suitable abelian group G. Here p denotes an odd prime number.

Theorem 1.1. Suppose that q “ pa is an odd prime power and that σX is a cyclic
supercharacter of Z{qZ. If |X| “ d is prime and d ‰ p, then the image of σX is
bounded by the d-cusped hypocycloid parametrized by θ ÞÑ pd´ 1qeiθ ` eipd´1qθ.

In fact, for a fixed prime m, as the modulus q ” 1 pmod dq tends to infinity the
corresponding supercharacter images become dense in the filled hypocycloid in a
sense that will be made precise in Section 6 (see Figures 2 and 9).

(a) p “ 2791, A “ x800y (b) p “ 27011, A “ x9360y (c) p “ 202231, A “ x61576y

Figure 2. Graphs of cyclic supercharacters σX : Z{pZÑ C where X “ A1.

The preceding result is itself a special case of a much more general theorem
(Theorem 6.3) which relates the asymptotic behavior of cyclic supercharacter plots
to the mapping properties of certain multivariate Laurent polynomials, regarded as
complex-valued functions on suitable high-dimensional tori.

2. Multiplicativity and nesting plots

Our first order of business is to determine when and in what manner the image of
one cyclic supercharacter plot can appear in another. Certain cyclic supercharacters
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have a naturally multiplicative structure. When combined with Proposition 2.4 and
the discussion in Section 6, the following result provides a complete picture of these
supercharacters. Following the introduction, we let X “ Ar denote the orbit of r
in Z{nZ under the action of a cyclic subgroup A of pZ{nZqˆ.

Theorem 2.1. Let σX be a cyclic supercharacter of Z{nZ, writing n “
śk
j“1 p

aj
j

in standard form and X “ xωy. For each j, let ψj : Z{nZÑ Z{pajj Z be the natural
homomorphism, let xj be the multiplicative inverse of n{pajj pmod p

aj
j q, and write

Xj “ xψjpωqyxjψjprq. If the orbit sizes |Xj | are pairwise coprime, then

σXpyq “
k
ź

j“1

σXj

`

ψjpyq
˘

.

Proof. We prove the theorem for n “ p1p2 a product of distinct primes; the general
argument is similar. Let ψ “ pψ1, ψ2q be the ring isomorphism given by the Chinese
Remainder Theorem, and let d “ |X|, d1 “ |ψ1pXq| and d2 “ |ψ2pXq|. We have

σX1

`

ψ1pyq
˘

σX2

`

ψ2pyq
˘

“

d1´1
ÿ

j“0

e

ˆ

ψ1pω
jryqx1
p1

˙ d2´1
ÿ

k“0

e

ˆ

ψ2pω
kryqx2
p2

˙

“

d1´1
ÿ

j“0

d2´1
ÿ

k“0

e

ˆ

ψ1pω
jryqx1
p1

`
ψ2pω

kryqx2
p2

˙

“

d1´1
ÿ

j“0

d2´1
ÿ

k“0

e

˜

ψ´1
`

ψ1pω
jryq, ψ2pω

kryq
˘

n

¸

“

d1´1
ÿ

j“0

d2´1
ÿ

k“0

e

˜

ψ´1
`

ψ1pωq
j , ψ2pωq

k
˘

ry

n

¸

“

d´1
ÿ

`“0

e

ˆ

ω`ry

n

˙

“ σXpyq. �

The following easy result tells us that we observe all possible graphical behavior,
up to scaling, by studying cases where r “ 1 (i.e., where X “ A as sets).

Proposition 2.2. Let r belong to Z{nZ, and suppose that pr, nq “ n
d for some

positive divisor d of n, so that ξ “ rd
n is a unit modulo n. Also let ψ : Z{nZÑ Z{dZ

be the natural homomorphism.

(i) The images of σAr, σApr,nq, and σψdpAq1 are equal.

(ii) The image in (i), when scaled by |A|
|ψdpAq|

, is a subset of the image of σAξ.

Example 2.3. Let n “ 62160 “ 24 ¨ 3 ¨ 5 ¨ 7 ¨ 37. Each plot in Figure 3 displays the
image of a different cyclic supercharacter σX , where X “ x319yr. If d “ r{pn, rq,
then Proposition 2.2(i) says that each image equals that of a cyclic supercharacter
σX1 of Z{dZ, where X 1 “ xψdp319qy1. Proposition 2.2(ii) says that each nests in
the image in Figure 3(f).
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(a) r “ 37 (b) r “ 7 (c) r “ 5

(d) r “ 3 (e) r “ 4 (f) r “ 1

Figure 3. Graphs of cyclic supercharacters σX of Z{62160Z, where X “

x319yr. Each image nests in Figure 3(f), as per Proposition 2.2(ii). See Figure
1 for a brief discussion of colorization.

Because of Theorem 2.1, we are mostly interested in prime power moduli. The
following result implies that the image of any cyclic supercharacter on Z{paZ is a
scaled copy of one whose boundary is given by Theorem 6.3.

Proposition 2.4. Let p be an odd prime, a ą b nonnegative integers, and ψ the
natural homomorphism from Z{paZ to Z{pa´bZ. If σX is a cyclic supercharacter
of Z{pa´bZ, where X “ A1 with pb

ˇ

ˇ|X| and pa´b ” 1 pmod |ϕpXq|q, then

σXpZ{paZq “ t0u Y pbσϕpXqpZ{pa´bZq.

Proof. Let k|pp ´ 1q. If |X| “ kpb, then A “ ψ´1pA1q, where A1 is the unique
subgroup of pZ{pa´bZqˆ of order k. Let X 1 “ A11 (i.e., X 1 “ ϕpXq), so that

X “ tx` jpa´b : x P X 1, j “ 0, 1, . . . , pb ´ 1u.

We have

σXpyq “
ÿ

xPX1

pb´1
ÿ

j“0

e

ˆ

px` jpa´bqy

pa

˙

“

pb´1
ÿ

j“0

e

ˆ

jy

pb

˙

ÿ

xPX1

e

ˆ

xy

pa

˙

“

#

pbσX1pψpyqq, if pb|y
0, else.

�
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3. Symmetries

We say that a cyclic supercharacter σX : Z{nZÑ C has k-fold dihedral symmetry
if its image is invariant under the natural action of the dihedral group of order 2k.
In other words, σX has k-fold dihedral symmetry if its image is invariant under
complex conjugation and rotation by 2π{k about the origin. If X is the orbit of
r, where pr, nq “ n

d for some odd divisor d of n, then σX is generally asymmetric
about the imaginary axis, as evidenced by Figure 4.

(a) n “ 68913, A “ x88y (b) n “ 20485, A “ x4609y (c) n “ 51319, A “ x138y

(d) n “ 51319, A “ x27y (e) n “ 44161, A “ x608y (f) N “ 16383, A “ x2y

Figure 4. Graphs of σX : Z{nZ Ñ C, where X “ Ar, fixing r “ 1 (close
inspection reveals that (E) enjoys no rotational symmetry).

Proposition 3.1. If σX is a cyclic supercharacter of Z{nZ, where X “ xωyr, then
σX has pω ´ 1, n

pr,nq q-fold dihedral symmetry.

Proof. Let d “ n{pr, nq. If k “ pω ´ 1, dq, then ω, and hence every element of xωy,
has the form jk ` 1. Since r “ ξn{d for some unit ξ, each x in X has the form
pξn{dqpjk ` 1q. If y1 “ y ` d{k, then y1 ´ y ´ d{k ” 0 pmod nq, in which case

ξn

d
pjk ` 1q

ˆ

y1 ´ y ´
d

k

˙

” 0 pmod nq.

It follows that

pjk ` 1q

ˆ

ξn

d

`

y1 ´ y
˘

´
ξn

k

˙

” 0 pmod nq,

whence
ξn

d
pjk ` 1qy1 ”

ξn

d
pjk ` 1qy `

ξn

k
pjk ` 1q pmod nq
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”
ξn

d
pjk ` 1qy `

ξn

k
pmod nq,

Since the function e is periodic with period 1, we have
ÿ

xPX

e

ˆ

xy1

n

˙

“
ÿ

xPX

e

ˆ

xy ` ξn{k

n

˙

“ e

ˆ

ξ

k

˙

ÿ

xPX

e
´xy

n

¯

.

In other words, the image of σX is invariant under counterclockwise rotation by
2πξ{k about the origin. If mξ ” 1 pmod kq, then the graph is also invariant under
counterclockwise rotation bym¨2πξ{k “ 2π{k. Dihedral symmetry follows, since for
all y in Z{nZ, the the image of σX contains both σXpyq and σXpyq “ σXp´yq. �

Example 3.2. For m “ 1, 2, 3, 4, 6, 8, 12, let Xm denote the orbit of 1 under the
action of x4609y on Z{p20485mqZ. Consider the cyclic supercharacter σX1

, whose
graph appears in Figure 4(b). We have p20485, 4608q “ p5 ¨ 17 ¨ 241, 29 ¨ 32q “ 1,
so Theorem 3.1 guarantees that σX1

has 1-fold dihedral symmetry. It is visibly
apparent that σX has no rotational symmetry.

Figures 5(a) to 5(f) display the graphs of σXm in the cases m ‰ 1. For each
such m, the graph of σXm contains a scaled copy of σX1 by Theorem 2.2 and has
m-fold dihedral symmetry by Theorem 3.1, since p20485m, 4608q “ m. It is evident
from the associated figures that m is maximal in each case, in the sense that σXm

having k-fold dihedral symmetry implies k ď m.

(a) n “ 2 ¨ 20485 (b) n “ 3 ¨ 20485 (c) n “ 4 ¨ 20485

(d) n “ 6 ¨ 20485 (e) n “ 8 ¨ 20485 (f) n “ 12 ¨ 20485

Figure 5. Graphs of cyclic supercharacters σX of Z{nZ, where X “

x4609y1. One can produce dihedrally symmetric images containing the one
in Figure 4(b), each rotated copy of which is colored differently.
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4. Real and imaginary supercharacters

The images of some cyclic supercharacters are subsets of the real axis. Many
others are subsets of the union of the real and imaginary axes. In this section,
we establish sufficient conditions for each situation to occur and provide explicit
evaluations in certain cases. Let σX be a cyclic supercharacter of Z{nZ, where
X “ Ar. If A contains ´1, then it is immediate from (1) that σX is real-valued.

Example 4.1. Let X be the orbit of 3 under the action of x164y on Z{855Z. Since
1643 ” ´1 pmod nq, it follows that σX is real-valued, as suggested by Figure 6(a).

Example 4.2. If A “ x´1y and X “ Ar where r ‰ n
2 , then X “ t´r, ru and

σXpyq “ 2 cosp2πry{nq. Figure 6(b) illustrates this situation.

(a) n “ 855, A “ x164y (b) n “ 105, A “ x104y (c) n “ 121, A “ x94y

Figure 6. Graphs of cyclic supercharacters σX of Z{nZ, where X “ A1.
Each σX is real-valued, since each A contains ´1.

We turn our attention to cyclic supercharacters whose values, if not real, are
purely imaginary (see Figure 7). To this end, we introduce the following notation.
Let k be a positive divisor of n, and suppose that

A “ xj0n{k ´ 1y , for some 1 ď j0 ă k. (2)

In this situation, we have

pj0n{k ´ 1q
m
” p´1qm

`

mod n
k

˘

,

so that every element of A has either the form jn
k ` 1 or jn

k ´ 1, where 0 ď j ă k.
In this situation, we write

A “ tjn{k ` 1 : j P J`u Y tjn{k ´ 1 : j P J´u (3)

for some subsets J` and J´ of t0, 1, . . . , k ´ 1u.
The condition (3) is vacuous if k “ n. However, if k ă n and j0 ą 1 (i.e., if

A is nontrivial), then it follows that p´1q|A| ” 1 pmod n
k q, whence |A| is even. In

particular, this implies |J`| “ |J´|. The subsets J` and J´ are not necessarily
disjoint. For instance, if A “ x´1y “ t´1, 1u, then (3) holds where k “ 1 and
J` “ J´ “ t0u. In general, J` must contain 0, since A must contain 1. The
following result is typical of those obtained by imposing restrictions on J` and J´.

Proposition 4.3. Let σX be a cyclic supercharacter of Z{nZ, where X “ Ar, and
suppose that (3) holds, where k is even and J´ “ k

2 ´ J`.
(i) If r is even, then the image of σX is a subset of the real axis.
(ii) If r is odd, then σXpyq is real whenever y is even and purely imaginary

whenever y is odd.

Proof. Each x in X has the form pjn{k`1qr or ppk{2´ jqn{k ` 1q r. If y “ 2m for
some integer m, then for every summand epxy{nq in the definition of σXpyq having
the form e p2mpjn{k ` 1qr{nq, there is one of the form e p2mpn{2´ jn{k ` 1qr{nq,
its complex conjugate. From this we deduce that σXpyq is real whenever y is even. If
y “ 2m` 1, then for every summand of the form e pp2m` 1q pjn{k ` 1q r{nq, there
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is one of the form e pp2m` 1qpn{2´ jn{k ` 1qr{nq. If r is odd, then the latter is the
former reflected across the imaginary axis, in which case σXpyq is purely imaginary.
If r is even, then the latter is the conjugate of the former, whence σXpyq is real. �

(a) n “ 912, A “ x71y (b) n “ 400, A “ x39y (c) n “ 552, A “ x275y

Figure 7. Graphs of cyclic supercharacters σX : Z{nZ Ñ C whose values
are either real or purely imaginary.

Example 4.4. In the case of Figure 7(a), we have n “ 912, r “ 1, k “ 38, j0 “ 3,

J` “ t0, 2, 12, 16, 20, 22, 24, 26, 32u, and J´ “ t3, 7, 17, 19, 25, 31, 33, 35, 37u,

so the hypotheses of Proposition 4.3(ii) hold.

An explicit evaluation of σX is available if J` Y J´ “ t0, 1, . . . , k ´ 1u. The
following result, presented without proof, treats this situation (see Figure 7(b)).

Proposition 4.5. Suppose that k ą 2 is even, and that (3) holds where J` is the
set of all even residues modulo k and J´ is the set of all odd residues. If X is the
orbit of a unit r under the action of A on Z{nZ, then

σXpyq “

$

’

&

’

%

k cos 2πry
n if k|y,

ik sin 2πry
n if y ” k

2 pmod kq,

0 otherwise.

5. Ellipses

Discretized ellipses appear frequently in the graphs of cyclic supercharacters.
These, in turn, form primitive elements from which more complicated superchar-
acter plots emerge. In order to proceed, we recall the definition of a Gauss sum.
Suppose that m and k are integers with k ą 0. If χ is a Dirichlet character modulo
k, then the Gauss sum associated with χ is given by

Gpm,χq “
k
ÿ

`“1

χp`qe

ˆ

`m

k

˙

.

If p is prime, the quadratic Gauss sum gpm; pq over Z{pZ is given by gpm; pq “

gpm,χq, where χpaq “
´

a
p

¯

is the Legendre symbol of a and p. That is,

gpm; pq “
k´1
ÿ

`“0

e

ˆ

m`2

p

˙

.
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We require the following well-known result [3, Thm. 1.5.2].

Lemma 5.1. If p ” 1 pmod 4q is prime and pm, pq “ 1, then

gpm; pq “

ˆ

m

p

˙

?
p.

Proposition 5.2. Suppose that p|n and p ” 1 pmod 4q is prime. Let

Qp “ tm P Z{pZ :

ˆ

m

p

˙

“ 1u

denote the set of distinct nonzero quadratic residues modulo p. If (3) holds where

J` “ taq ` b : q P Qpu and J´ “ tcq ´ b : q P Qpu (4)

for integers a, b, c coprime to p with
´

a
p

¯

“ ´

´

c
p

¯

, then σXpyq belongs to the real
interval r1 ´ p, p ´ 1s whenever p|y, and otherwise belongs to the ellipse described
by the equation pRe zq2 ` pIm zq2{p “ 1.

Proof. For all y in Z{nZ, we have

σXpyq “
ÿ

xPA

e
´xy

n

¯

“
ÿ

jPJ`

e

¨

˝

´

jn
p ` 1

¯

y

n

˛

‚`
ÿ

jPJ´

e

˜

p
jn
p ´ 1qy

n

¸

“
ÿ

qPQp

e

ˆ

paq ` bqy

p
`
y

n

˙

`
ÿ

qPQp

e

ˆ

pcq ´ bqy

p
´
y

n

˙

“ e

ˆ

by

p
`
y

n

˙

ÿ

qPQp

e

ˆ

aqy

p

˙

` e

ˆ

´
by

p
´
y

n

˙

ÿ

qPQp

e

ˆ

cqy

p

˙

“ epθyq

pp´1q{2
ÿ

`“1

e

ˆ

a`2y

p

˙

` epθyq

pp´1q{2
ÿ

`“1

e

ˆ

c`2y

p

˙

,

where θy “
pbn`pqy
pn . If p|y, then epθyq “ ep yn q and ep

a`2y
p q “ ep c`

2y
p q “ 1, so

σXpyq “
pp´ 1q

2

ˆ

e
´ y

n

¯

` e
´ y

n

¯

˙

“ pp´ 1q cos
2πy

n
.

If not, then pp, yq “ 1 so that Lemma 5.1 yields

σXpyq “
e pθyq pgpay; pq ´ 1q ` epθyqpgpcy; pq ´ 1q

2

“
epθyqgpay; pq ` epθyqgpcy; pq

2
´ cos 2πθy

“

?
p

2

ˆˆ

ay

p

˙

epθyq `

ˆ

cy

p

˙

epθyq

˙

´ cos 2πθy

“ ˘

ˆ

y

p

˙?
p

2

´

epθyq ´ epθyq
¯

´ cos 2πθy

“ ˘i

ˆ

y

p

˙

?
p sin 2πθy ´ cos 2πθy, �



THE GRAPHIC NATURE OF GAUSSIAN PERIODS 11

(a) n “ 1535, A “ x613y (b) n “ 559, A “ x171y (c) n “ 770, A “ x153y

(d) n “ 1535 ¨ 43, A “ x613y (e) n “ 559 ¨ 7 ¨ 5, A “ x171y (f) n “ 770 ¨13 ¨3, A “ x1693y

Figure 8. Graphs of cyclic supercharacters σX of Z{nZ, where X “ A1.
Propositions 2.2, 3.1 and 5.2 can be used to produce supercharacters whose
images feature elliptical patterns.

Example 5.3. Let n “ d “ 1088 “ 43 ¨ 17 and consider the orbit X of r “ 1 under
the action of A “ x63y “ x n17 ´ 1y on Z{nZ. In this situation, illustrated by Figure
8(a), (3) holds with J` “ t0, 4u “ 2Q5 ` 2 and J´ “ t2, 4u “ Q17 ` 3. Figure
8(b) illustrates the situation J` “ Q13 ` 3 and J´ “ 2Q13 ´ 3, while Figure 8(c)
illustrates J` “ Q5`1 and J´ “ 2Q2´1. The remainder of Figure 8 demonstrates
the effect of using Propositions 2.2, 3.1 and 5.2 to produce supercharacters whose
images feature ellipses.

6. Asymptotic behavior

We now turn our attention to an entirely different matter, namely the asymptotic
behavior of cyclic supercharacter plots. To this end we begin by recalling several
definitions and results concerning uniform distribution modulo 1. The discrepency
of a finite subset S of r0, 1qm is the quantity

DpSq “ sup
B

ˇ

ˇ

ˇ

ˇ

|B X S|

|S|
´ µpBq

ˇ

ˇ

ˇ

ˇ

,

where the supremum runs over all boxes B “ ra1, b1qˆ¨ ¨ ¨ˆram, bmq and µ denotes
m-dimensional Lebesgue measure. We say that a sequence Sn of finite subsets of
r0, 1qd is uniformly distributed if limnÑ8DpSnq “ 0. If Sn is a sequence of finite
subsets in Rm, we say that Sn is uniformly distributed mod 1 if the corresponding
sequence of sets

 

ptx1u, tx2u, . . . , txduq : px1, x2, . . . , xmq P Sn
(

is uniformly dis-
tributed in r0, 1qm. Here txu denotes the fractional part x ´ txu of a real number
x. The following fundamental result is due to H. Weyl [13].
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Lemma 6.1. A sequence of finite sets Sn in Rm is uniformly distributed modulo 1
if and only if

lim
nÑ8

1

|Sn|

ÿ

uPSn

epu ¨ vq “ 0

for each v in Zm.

In the following, we suppose that q “ pa is a nonzero power of an odd prime
and that |X| “ d is a divisor of p´ 1. Let ωq denote a primitive dth root of unity
modulo q and let

Sq “

"

`

q
p1, ωq, ω

2
q , . . . , ω

ϕpdq´1
q q : ` “ 0, 1, . . . , q ´ 1

*

Ď r0, 1qϕpdq

where ϕ denotes the Euler totient function. The following lemma of Myerson, whose
proof we have adapted to suit our notation, can be found in [11, Thm. 12].

Lemma 6.2. The sets Sq for q ” 1 pmod dq are uniformly distributed modulo 1.

Proof. Fix a nonzero vector v “ pa0, a1, . . . , aϕpdq´1q in Zϕpdq and let

fptq “ a0 ` a1t` ¨ ¨ ¨ ` aϕpdq´1t
ϕpdq´1.

Let r “ q{pq, fpωqqq, and observe that

ÿ

uPSq

epu ¨ vq “
q´1
ÿ

`“0

e

ˆ

fpωqq`

q

˙

“

q{r´1
ÿ

m“0

pm`1qr´1
ÿ

`“mr

e

ˆ

fpωqq`

r

˙

“
q

r

r´1
ÿ

`“0

e

ˆ

fpωqq`

r

˙

“

#

q if q|fpωqq,
0 else.

Having fixed d and v, we claim that the sum above is nonzero for only finitely
many q ” 1 pmod dq. Letting Φd denote the dth cyclotomic polynomial, recall that
deg Φd “ ϕpdq and that Φd is the minimal polynomial of any primitive dth root
of unity. Clearly the gcd of fptq and Φdptq as polynomials in Qrts is in Z. Thus
there exist aptq and bptq in Zrts so that aptqΦdptq ` bptqfptq “ n for some integer
n. Passing to Z{qZ and letting t “ ωq, we find that bpωqqfpωqq ” n pmod pq. This
means that q|fpωqq implies that q|n, which can occur for only finitely many prime
powers q. Putting this all together, we find that

lim
qÑ8

q”1 pmod dq

1

|Sq|

ÿ

uPSq

epu ¨ vq “ 0

holds for all v in Zϕpdq. By Weyl’s Criterion, it follows that the sets Sq are uniformly
distributed mod 1 as q ” 1 pmod dq tends to infinity. �
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Theorem 6.3. Let σX be a cyclic supercharacter of Z{qZ, where q “ pa is a
nonzero power of an odd prime. If X “ A1 and |X| “ d divides p ´ 1, then the
image of σX is contained in the image of the function g : r0, 1qϕpdq Ñ C defined by

gpz1, z2, . . . , zϕpdqq “
d´1
ÿ

k“0

ϕpdq´1
ź

j“0

z
bk,j

j`1 (5)

where the integers bk,j are given by

tk ”

ϕpdq´1
ÿ

j“0

bk,jt
j pmod Φdptqq. (6)

For a fixed d, as q becomes large, the image of σX fills out the image of g, in the
sense that, given ε ą 0, there exists some q ” 1 pmod dq such that if σX : Z{qZÑ C
is a cyclic supercharacter with |X| “ d, then every open ball of radius ε ą 0 in the
image of g has nonempty intersection with the image of σX .

Proof. Let ωq be a primitive dth root of unity modulo q, so that A “ xωqy in
pZ{qZqˆ. Recall that t1, ep 1d q, . . . , ep

ϕpdq´1
d qu is a Z-basis for the ring of integers of

the cyclotomic field Qpep 1d qq [12, Prop. 10.2]. For k “ 0, 1, . . . , d ´ 1, the integers
bk,j in the expression

e

ˆ

k

d

˙

“

ϕpdq´1
ÿ

j“0

bk,je

ˆ

j

d

˙

,

are determined by (6). In particular, it follows that

ωkp ”

ϕpdq´1
ÿ

j“0

bk,jω
j
p pmod pq.

We have

σXpyq “
ÿ

xPX

e

ˆ

xy

q

˙

“

d´1
ÿ

k“0

e

˜

ωkp
p

¸

“

d´1
ÿ

k“0

e

¨

˝

ϕpdq´1
ÿ

j“0

bk,j
ωjp`

p

˛

‚,

from which it follows that the image of σX is contained in the image of the function
g : Tϕpdq Ñ C defined by (5). The density claim now follows from Lemma 6.2. �

In combination with Propositions 2.2 and 2.4, the preceding theorem character-
izes the boundary curves of cyclic supercharacters with prime power moduli. If d
is even, then X is closed under negation, so σX is real. If d “ pa where p is an odd
prime, then g : Tϕppaq Ñ C is given by

gpz1, z2, ¨ ¨ ¨ , zϕpdqq “

ϕpdq
ÿ

j“1

zj `
pa´1
ÿ

j“1

p´2
ź

`“0

z´1
j``pa´1 .

A particularly concrete manifestation of our result is Theorem 1.1, whose proof we
present below. Recall that a hypocycloid is a planar curve obtained by tracing the
path of a distinguished point on a small circle which rolls within a larger circle.
Rolling a circle of integral radius λ within a circle of integral radius κ, where κ ą λ,
yields the parametrization θ ÞÑ pκ´λqeiθ`λep1´κ{λqiθ of the hypocycloid centered
at the origin, containing the point κ, and having precisely κ cusps.
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(a) p “ 2017, A “ x294y (b) p “ 32587, A “ x10922y (c) p “ 200017, A “ x35098y

(d) p “ 4019, A “ x1551y (e) p “ 32173, A “ x3223y (f) p “ 200033, A “ x11073y

Figure 9. Cyclic supercharacters σX of Z{pZ, whereX “ A1, whose graphs
fill out |X|-hypocycloids.

Pf. of Thm. 1.1. Computing the coefficients bk,j from (6) we find that bk,j “ δkj
for k “ 0, 1, . . . , d´ 2, and bd´1,j “ ´1 for all j, from which (5) yields

gpz1, z2, . . . , zd´1q “ z1 ` z2 ` . . .` zd´1 `
1

z1z2 ¨ ¨ ¨ zd´1
.

The image of the function g : Td´1 Ñ C defined above is the filled hypocycloid
corresponding to the parameters κ “ d and λ “ 1, as observed in [9, §3]. �
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