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W. DUKE

Abstract. Several problems are treated about minimizing the absolute value of a real
ternary quadratic form and of a real ternary cubic form, when restricted to the integer
points on a quadric surface. Among the results are an estimate for the minimum that
holds for all ternary quadratic forms and, for certain decomposable ternary cubics, a
best possible result that supplements a theorem of Davenport.

1. Introduction

One basic problem in the classical geometry of numbers is to estimate the minimal
absolute value of a real homogeneous polynomial P on Rn when evaluated at non-zero
points of Zn. Typically, such an estimate is given in terms of SL(n,R) invariants of
the polynomial. A major refinement is to understand the set of minima of all of those
polynomials in the SL(n,R)-orbit of P . Equivalently, we may fix P and vary the lattice.
After the case when P is an indefinite binary quadratic form, which was made famous by
Markoff, this set of minima may be called the spectrum of P .

In his recent lectures [27], Sarnak explains how these problems are part of a much
more general program that studies the “bass note” spectra of certain linear differential
operators. These operators act on functions or forms that are defined on the quotient
of a noncompact symmetric space by one of a family of discrete groups of motions. The
spectrum records the size of the smallest eigenvalue (the bass note) over the family. The
spectra in the classical geometry of numbers arise from ordinary lattices in Euclidean
space, where P corresponds to a differential operator, for instance x2

1 + · · · + x2
n to the

Laplacian.
A different kind of generalization of the classical geometry of numbers occurs when we

replace the lattice Zn by the set of integer points on an affine homogeneous variety and
seek to minimize the absolute value of a polynomial restricted to these integers. This
topic is a natural counterpart to that of counting asymptotically the integer points on the
variety in a large ball [14]. In one of the simplest interesting cases the integer points are
those on the (affine) quadric surface in R3 determined by

(1.1) J(x, y, z) := y2 − 4xz = 1.

Here we replace SL(3,R) by the orthogonal group SO+(J,R). The main goal of this
paper is to prove analogues of some well-known results about the minima of quadratic
and cubic forms and their spectra, when we restrict them to the integer points on this
quadric surface.

In each of the following two sections I will briefly describe the classical results and then
state some new ones. Their proofs rely heavily on work of Hermite, Mahler, Davenport
and Barnes.

2. Ternary quadratic forms

Recall the problem of minimizing the absolute value of a real ternary quadratic form
Q(x, y, z) evaluated at non-zero (x, y, z) ∈ Z3. Let the symmetric matrix associated to Q
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have determinant D. A result going back to Gauss [15] asserts that, when D ̸= 0, there
exists a nonzero integral vector (x, y, z) with

(2.1) |Q(x, y, z)| ≤ (2|D|)
1
3 .

The constant 2
1
3 is best possible in that equality holds for some (x, y, z) when Q(x, y, z)

is integrally equivalent to a non-zero multiple of

x2 + y2 + z2 + xy + yz + xz.

The first new problem I consider is that of minimizing |Q(x, y, z)| for any real ternary
quadratic form Q when we require that the integral vector (x, y, z) lie on the quadric
surface (1.1). What is sought is a bound that holds for all Q and is compatible with the
quadric condition, meaning that it is an invariant of G = SO+(J,R). The bound will be
defined in terms of the roots λj of the characteristic-type polynomial

(2.2) χQ(t) = det(Q− tJ) = 4(t− λ1)(t− λ2)(t− λ3),

which are such invariants.

Theorem 1. Let Q(x, y, z) be any real ternary quadratic form. For some (x, y, z) ∈ Z3

with x2 − 4yz = 1 we have

|Q(x, y, z)| ≤ 1
3

(∑
i̸=j

|λi − λj|+ |λ1 + λ2 + λ3|
)
.

Equality holds for (x, y, z) = (0, 1, 0) when Q = kJ for any fixed k. Thus the constant
1
3
is best possible for a bound of this type. To compare the inequality of Theorem 1 with

(2.1), note that D = −4λ1λ2λ3 and the RHS of (2.1) can be written as 2|λ1λ2λ3|1/3. Of
course,

2|λ1λ2λ3|
1
3 ≤ 2

3
(|λ1|+ |λ2|+ |λ3|).

The proof of Theorem 1 makes use of the Hermite’s original method of reduction of
a binary quartic form, which allows us to bound effectively the middle coefficient of a
reduced form. Most other approaches to reduction theory avoid estimating the middle
coefficients.

In the original problem where we minimize over all non-zero integer vectors, if we
restrict to indefinite Q, then the RHS of (2.1) can be replaced by (2

3
|D|) 1

3 , with equality
holding for some (x, y, z) if Q is equivalent to a non-zero multiple of

x2 + y2 − z2 + xz + yz.

This was shown by Markoff [23] and a simple proof was given by Davenport [11]. To go
further, for any nonsingular indefinite Q and g ∈ SL(n,R) set

µ(g) = inf
(x,y,z)∈Z3

(x,y,z)̸=0

|Q((x, y, z)g)|.

Note that we can write any indefinite ternary with the same determinant and signature
as Q in the form Q((x, y, z)g). Define the spectrum to be

σ = {µ(g); g ∈ SL(n,R)}.
The result of Markoff and Davenport implies that

sup σ = (2
3
|D|)

1
3 ∈ σ.

If we normalize so that |D| = 1, the four largest elements of σ are given by (see [13, Thm.
84 p.112])

{. . . , ( 8
25
)
1
3 , (1

3
)
1
3 , (2

5
)
1
3 , (2

3
)
1
3}.
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After the work of many people, culminating in the proof by Margulis [22] of the Oppenheim
conjecture, it is known that 0 is the only limit point of the spectrum. In the terminology
of [27], the spectrum is rigid. Also, the forms with positive minima come from classes
with rational representatives.

To define the spectrum of minima for Q over the quadric surface, set for g ∈ G =
SO+(J,R)

µJ(g) = inf
(x,y,z)∈Z3

J(x,y,z)=1

|Q((x, y, z)g)| and let σJ = {µQ(g); g ∈ G}.

It follows from Theorem 1 that sup σJ < ∞. Since the integer points on our quadric are
not a lattice we cannot immediately deduce this from Minkowski’s well-known existence
theorem. It is also not obvious that the supremum of elements in σJ is actually attained.
The following result on this is, in this special situation, similar in form to Mahler’s main
theorem on the existence of critical lattices in the classical geometry of numbers [21].

Theorem 2. For a fixed real ternary quadratic form Q we have that supσJ ∈ σJ .

For a general Q we do not have an estimate beyond that implied by Theorem 1 for
sup σJ . For some singular Q we can say more. If Q is singular it is known that it is
decomposable:

Q(x, y, z) = (a1x+ b1y + c1z)(a2x+ b2y + c2z),

where in general the coefficients are complex. The set of all such Q where aj, bj are real
and satisfy b21 = a1c1 and b22 = a2c2 is closed under the usual action of G. For such Q,
when normalized, we can deduce from a result of Barnes [1] the following.

Theorem 3. Suppose that α, β are unequal real numbers with |α− β| = 1. For

(2.3) Q(x, y, z) = (x+ αy + α2z)(x+ βy + β2z)

we have that sup σJ = 1
5
. The spectrum has a limit point at

−18+78
√
10

1681
= 0.136025 . . .

arising as the limit of the spectrum above it, which is an explicit sequence of rationals
{. . . , 1333

9797
, 3
20
, 1
5
}.

Theorem 1 implies that sup σJ ≤ 1
2
for these Q.

3. Ternary cubic forms

A second set of problems concerns minima of ternary cubic forms over our quadric
surface. First recall the classical case. Suppose that a real ternary cubic form is equivalent
under SL(3,R) to one of the form

K(x, y, z) = n(x3 + y3 + z3) + 6mxyz.

This includes all nonsingular forms when n ̸= 0 as well as decomposable ones, where
either n = 0 or n3 + 8m2 = 0. Not much is known about the spectrum σ of minima

µ(g) = inf
(x,y,z)∈Z3

(x,y,z)̸=0

|K((x, y, z)g)|

in the non-singular case other than the fact that it contains its supremum, and by
Minkowski we have that

sup σ ≤ 1
Γ3( 4

3
)
(|n|+ 2|m|).
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There are improvements of this estimate by Mordell [24], and by Davenport [8] when
m = 0 but even there the value of the supremum is not known and the spectrum is
mysterious.

To treat the analogous problem on the quadric we need to define some invariants and
a covariant for a general ternary cubic form transforming by g ∈ G = SO+(J,R). Write1

K(x, y, z) = ax3 + by3 + cz3 + 3dx2y + 3ey2z + 3fz2x+ 3kxy2 + 3hyz2 + 3izx2 + 6jxyz.

A linear covariant is given by

LK(x, y, z) = (k − i)x+ (b− j)y + (e− f)z,

meaning that for g ∈ G we have

LK((x, y, z)g) = LK′(x, y, z) where K ′(x, y, z) = K((x, y, z)g)

(see §7). In addition to the usual invariants for a ternary cubic

S = abcj + cd2e+ · · · and T = a2b2c2 + 4bc2d3 + · · · ,
which are given in full in [26, p. 191,192], we have two other invariants

R = 5ac− 8b2 − 24bj − 30dh+ 48ek + 12ei+ 12fk + 3fi− 18j2

and

(3.1) ∆ = − 1
46656

disc K(x2, 2x, 1) = a5c5 − 4096a2b6c2 + nearly 3700 terms.

For g ∈ G = SO+(J,R) set

(3.2) µJ(g) = inf
(x,y,z)∈Z3

J(x,y,z)=1

|K((x, y, z)g)|

and let σJ = {µJ(g); g ∈ G}. As was true for a general ternary quadratic form, for a
general ternary cubic form over our quadric, the question of the supremum of the spectrum
σ being finite and contained in σ is non-trivial.

Theorem 4. For a fixed real ternary cubic form K with L = 0 and ∆ ̸= 0 we have that
sup σJ < ∞ and supσJ ∈ σJ .

For the classical problem much more is known for decomposable forms, which are
of course singular. In a series of papers ending with [7], Davenport obtained several
results about them. For K(x, y, z) = xyz he showed that the two largest elements of
the spectrum are 1

9
and 1

7
and that 1

9
is isolated. Swinnerton-Dyer [29] (see also [5])

extended Davenport’s method and found 15 more isolated elements { 1√
148

, 5
63
, . . . } and

has suggested that 0 is the only limit point of the spectrum, i.e that it is rigid. It
remains a very attractive open problem to show this. Davenport also studied the form
K(x, y, z) = x(y2 + z2) and showed that the largest element of its spectrum is 1√

23
and

that it is not isolated.
For the corresponding problem over the quadric, we are able to obtain a satisfactory

result for the class of decomposable forms

(3.3) K(x, y, z) = (α2
1x+ α1α2y + α2

2z)(β
2
1x+ β1β2y + β2

2z)(γ
2
1x+ γ1γ2y + γ2

2z),

where αj, βj, γj are real for j = 1, 2, 3. This class is closed under the action of g ∈ G. An
invariant under this action is

D = (α2β1 − α1β2)(α2γ1 − α1γ2)(β1γ2 − β2γ1).

1I have replaced the expected “g” by “k” to avoid a notational conflict.
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When α1 = β1 = γ1 = 1 and α2, β2, γ2 are conjugates in a totally real cubic number field,
K is a rational norm form. For this class of decomposable forms we obtain the same value
as Davenport for the largest minimum, even when we only minimize over the quadric.
However, for us the value is not isolated.

Theorem 5. For K in (3.3) with D ̸= 0 we have

sup σJ = 1
7
|D| ∈ σJ .

This value of the spectrum is not isolated.

4. Proof of Theorem 1

Hermite’s original reduction theory of a general binary form in [16] applied to a binary
quartic form with real coefficients, say

F (x, y) = (a, b, c, d, e) = ax4 + 4bx3y + 6cx2y2 + 4dxy3 + e,

is the main tool needed for the proof of Theorem 1. 2 He associated to F a positive definite
binary quadratic form whose discriminant is minimal in a certain sense and to which he
applied the classical Lagrange reduction. His method naturally leads directly to bounds
for |ae|, |bd| and |c|2 in terms of the roots of F (x, 1) = 0. For the proof of Theorem 1, it
turns out that what is needed is precisely an upper bound for |c|, and Hermite’s method
is very effective for this. Hermite only worked out details when all zeros of F (x, 1) are
real (this is given in [17]), but fortunately the other cases also work out nicely.3 After
applying some classical identities relating the zeros of F (x, 1) to those of χQ we can derive
the simple bound of Theorem 1, which is uniform across signatures.

Turning to the proof, write

Q =
(

a b c
b d e
c e f

)
and J =

(
0 0 −2
0 1 0
−2 0 0

)
.

Then

(4.1) χQ(t) = det(Q− tJ) = 4t3 + 4(c− d)t2 + (c2 − 4cd+ 4be− af)t+D.

Clearly Theorem 1 holds for Q = kJ for any k ∈ R. For Q not of this form we next
show that we may assume a > 0. We use a well-known isomorphism

SL(2,R)/{±1} → G = SO+(J,R),
where G is the connected component of the identity of the special orthogonal group of J .
The isomorphism is given by

(4.2) (m n
r s ) 7→ g = g(m n

r s )
=

(
m2 2mn n2

mr ms+nr ns
r2 2rs s2

)
.

Note that J = gJgt. The image of SL(2,Z)/{±1} is the subgroup Γ = SO+(J,Z) of G.
For g ∈ G we have χgQgt = χQ and for γ ∈ Γ the form Q′ = γQγt represents the same
numbers as does Q. It is now easy to check that unless Q = kJ we can find γ ∈ Γ so that
the (1, 1) entry of Q′ is nonzero. Thus ±Q′ works for us.

Next we will relate the problem of minimizing Q on the quadric to that of minimizing
the middle coefficient of a representative in an associated class of binary quartic forms.

2Here and below I denote by (a1, a2, . . . , an) the binary form of degree n with binomial coefficients
attached.

3In his thesis Julia [19] extended Hermite’s work and gave geometric interpretations of reduced forms.
He computed what I call cases ii) and iii) of Lemma 1 but his computation of iii) is only partial and that
of ii) needs to be corrected. He obtained (4.5) with α3 and α4 interchanged, which results in a different
bound.
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We know that (x, y, z) = (mr,ms+nr, ns) runs over all integral solutions of J(x, y, z) = 1
as m,n, r, s run over integers with ms− nr = 1. Therefore

(4.3) inf
J(x,y,z)=1
(x,y,z)∈Z3

|Q(x, y, z)| = inf
γ∈Γ

|(0, 1, 0)γQγt(0, 1, 0)t)|.

Associated to Q is the quartic polynomial

F (x) = (x2, 2x, 1)Q(x2, 2x, 1)t = ax4 + 4bx3 + (2c+ 4d)x2 + 4ex+ f.

A computation shows that if

(rx+ s)4F (mx+n
rx+s

) = a1x
4 + 4b1x

3 + 6c1x
2 + 4d1x+ e1

for (m n
r s ) ∈ SL(2,R) then for h = g(m r

n s )
from (4.2)

(0, 1, 0)hQht(0, 1, 0)t = c1 +
1
3
(d− c).

Thus by (4.3)

(4.4) inf
J(x,y,z)=1
(x,y,z)∈Z3

|Q(x, y, z)| ≤ |c1|+ 1
3
|d− c|.

Here we use that h runs over Γ as (m n
r s ) runs over SL(2,Z).

As already mentioned, we now apply Hermite’s method of continual reduction from
[16] to the binary quartic form F (x, y) associated to F (x). The binary quadratic form
associated to F depends on the nature of the zeros of F (x) and will be given in (4.7).

Lemma 1. Let

F (x, y) = (a, b, c, d, e) = ax4 + 4bx3y + 6cx2y2 + 4dxy3 + ey4

for a, b, c, d, e ∈ R with a > 0. Define αj to be the zeros of

F (x, 1) = a(x− α1)(x− α2)(x− α3)(x− α4).

i) Assume that either each αj is real with α1 ≥ α2 ≥ α3 ≥ α4 or
ii) that none of the αj are real and that α2 = ᾱ1, α4 = ᾱ3 with Imα1 > 0, Imα3 < 0.
Then F is equivalent under SL(2,Z) to a form F1(x) = (a1, b1, c1, d1, e1) with

(4.5) |c1| < 1
3
|a(α1 − α3)(α2 − α4)|.

iii) When only α1, α2 are real and α4 = ᾱ3 then F is equivalent to (a1, b1, c1, d1, e1) with

(4.6) |c1| < 1
6
a(|(α1 − α2)(α3 − α4)|+ 2|(α1 − α3)(α2 − α4)|).

Proof. For real variables tj, uj define the positive definite binary quadratic form
(4.7)

Px2+2Q′xy+Ry2 =


∑4

j=1 t
2
j(x+ αjy)

2, in case i)

2u2
1(x+ α1y)(x+ ᾱ1y) + 2u2

2(x+ α3y)(x+ ᾱ3y), in case ii)

t21(x+ α1y)
2 + t22(x+ α2y)

2 + 2u2
1(x+ α3y)(x+ ᾱ3y), in case iii).

In case i) the idea is to minimize

T = a2(PR−Q′2)2/(t1t2t3t4)
2

with respect to real tj. After computing PR − Q′2 in terms of the tj, this is basically a
calculus problem. The result found by Hermite is that the minimal T is

(4.8) 16a2(α1 − α3)
2(α2 − α4)

2.
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After an SL(2,Z) transformation the resulting binary quadratic form can be made to
satisfy PR < 4

3
(PR−Q′2). From this one concludes (see [16, p.174] for the method) that

|a1e1|, |b1d1|, |c1|2 < 1
144

T.

Using (4.8), (4.5) follows.
Similarly, in case ii) we must minimize

(4.9) T = a2(PR−Q′2)2/(u2
1u

2
2)

2

with respect to u1, u2 (it is enough to minimize
√
T ). If we write α1 = u+iv and α3 = s+it

then

PR−Q′2 = 4(v2u4
1 + (u2 + v2 − 2us+ s2 + t2)u2

1u
2
2 + t2u4

2)

and the minimization of T leads to (4.5) when v > 0 and t < 0. Case iii) is similar where
t1t2u

2
1 is used in place of u2

1u
2
2 in (4.9) and now

PR−Q′2 = (α1−α2)
2t21t

2
2+2(s2+ t2−2sα1+α2

2)t
2
1u

2
1+2(s2+ t2−2sα2+α2

1)t
2
2u

2
1+4t2u4

1.

Note that the bounds in (4.5) and (4.6) are invariants of F under SL(2,Z). □

We apply this lemma to F with

F (x) = F (x, 1) = (x2, 2x, 1)Q(x2, 2x, 1)t = ax4 + 4bx3 + (2c+ 4d)x2 + 4ex+ f.

We have that χQ(t − c−d
3
) is the resolvent cubic of F , where χQ was defined in (2.2). It

is classical that χQ has all of its roots real if F has either all roots real or none of them
real. Otherwise, χQ has exactly one real root. Furthermore, the differences between roots
of χQ satisfy

4(λ3 − λ2) =a(α2 − α3)(α1 − α4)

4(λ3 − λ1) =a(α1 − α3)(α2 − α4)

4(λ2 − λ1) =a(α1 − α2)(α3 − α4).

For these statements see [4, p.124]. In case i) or ii) of Lemma 1 it follows that λ3 ≥ λ2 ≥ λ1

and so

|c1| < 1
3
|a(α1 − α3)(α2 − α4)| = 4

3
|λ3 − λ1| = 1

3

∑
i̸=j

|λi − λj|.

In case iii) we have the same bound for |c1|. Since by (4.1)

λ1 + λ2 + λ3 = d1 − c1

we conclude from (4.4) that for Q ̸= kJ we have

inf
J(x,y,z)=1
(x,y,z)∈Z3

|Q(x, y, z)| < 1
3

(∑
i̸=j

|λi − λj|+ |λ1 + λ2 + λ3|
)
. □

5. Proof of Theorem 2

The ideas behind the (rest of the) proof of Theorem 2 are from Mahler’s paper [21],
where they are expressed in the language of lattices and star bodies. For g ∈ G we have

µJ(g) = inf
γ∈Γ

|Q((0, 1, 0)γg)|,

where again Γ = SO+(J,Z). Clearly µJ(γg) = µJ(g) for γ ∈ Γ. It is easy to show that
for T ∈ R the subset of Γ\G given by

ST = {g ∈ Γ\G;µJ(g) ≥ T}
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is closed. Thus µJ is upper semi-continuous on Γ\G and since µJ is bounded by Theorem
1, to prove Theorem 2 we need only show that ST is compact for any T > 0. For this it is
enough to show sequential compactness. The following simple reduction lemma is needed.

Lemma 2. There is an absolute constant C > 0 such that each g ∈ Γ\G has a represen-
tative g with ∏

1≤j≤3

∥(g)j∥ ≤ C,

where (g)j is the jth row of g and ∥ · ∥ is the Euclidean norm.

Proof. For g from (4.2) we have∏
1≤j≤3

∥(g)j∥2 =
(
m4 + 4m2n2 + n4

) (
r4 + 4r2s2 + s4

) (
m2r2 +m2s2 + 2mnrs+ n2r2 + n2s2

)
≤ C1(m

2 + n2)3(r2 + s2)3.

Now choose (m n
r s ) ∈ SL(2,Z)\SL(2,R) to be reduced in the usual sense:

(m2 + n2)(r2 + s2) < C2.

□

The proof of sequential compactness proceeds as in the proof of Theorem 2 in [21].
The key idea is that a lower bound for each ∥(g)j∥ together with the upper bound for∏

1≤j≤3 ∥(g)j∥ in Lemma 2 gives an upper bound for each ∥(g)j∥. Then in a sequence

{gk} in ST we can extract a subsequence that converges to a point g ∈ ST . Here we use
that gk ∈ ST implies that for some constant cT > 0 we have ∥(gk)j∥ > cT for each j. □

6. Proof of Theorem 3

Theorem 3 is a nearly immediate consequence of a result of Barnes on the minimum of
the absolute value of the product of two related values of an indefinite binary quadratic
form. His result and its proof have a lot in common with those of Markoff on the minimum
of the absolute value of such a quadratic form.

For the homogeneous version of Q(x, y, z) from (2.3), namely

Q(x, y, z) = (α2
1x+ α1α2y + α2

2z)(β
2
1x+ β1β2y + β2

2z),

the associated binary quadratic form

q(x, y) = (α1x+ α2y)(β1x+ β2y)

is indefinite and has discriminant (α1β2 − β1α2)
2. We have the identity

q(m,n)q(r, s) = Q(mr,ms+ nr, ns).

Letting m,n, r, s run over integers with ms − nr = 1, the result now follows from [1,
Theorem 1]. □

7. Proof of Theorem 4

The arguments in the proof of Theorem 4 are similar to those for Theorems 1 and 2 so
I will be brief. Again the main are devices used are Hermite’s upper bound for the middle
coefficient of a reduced binary form, this time a binary sextic, and Mahler’s compactness
argument. Recall that

(7.1) K(x, y, z) = ax3+by3+cz3+3dx2y+3ey2z+3fz2x+3kxy2+3hyz2+3izx2+6jxyz

and
LK(x, y, z) = (k − i)x+ (b− j)y + (e− f)z.
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The fact that LK is a covariant follows from (4.2) after verifying the identity

LK

(
(x, y, z)

(
m2 2mn n2

mr ms+nr ns
r2 2rs s2

))
= LK′(x, y, z),

where

K ′(x, y, z) = K
(
(x, y, z)

(
m2 2mn n2

mr ms+nr ns
r2 2rs s2

))
.

The claim that supσJ < ∞ where σJ is defined below (3.2) when L(x, y, z) = 0 is a
consequence of the following more general result.

Lemma 3. For K from (7.1) with ∆ from (3.1) nonzero, there exists a constant C
depending only on ∆ such that

inf
(x,y,z)∈Z3

J(x,y,z)=1

|K(x, y, z)− 3
5
L(x, y, z)| ≤ C.

Proof. A computation verifies the following identity for m,n, r, s ∈ Z with ms− nr = 1:

K(mn,ms+nr, rs)−3
5
L(mn,ms+nr, rs) = 1

20

(
coefficient of x3y3 in FK(mx+ ny, rx+ sy)

)
,

where
FK = (a, d, 4

5
k + 1

5
i, 2

5
b+ 3

5
j, 4

5
e+ 1

5
f, h, c) = K(x2, 2xy, y2).

Now we may apply Hermite’s upper bound for the coefficient of x3y3 in the binary sextic
FK(x, y) when it is reduced. Here we make use of the assumption that ∆ = discFK ̸= 0
(c.f. [3, §5]). □

The proof that sup σJ ∈ σJ proceeds in the same way as that of Theorem 2.

8. Proof of Theorem 5

The main tools used in the proof of Theorem 5 are two theorems of Davenport. The
first is recorded as Lemma 4 below. This result, whose proof is intricate, gives a sharp
upper bound for the minimum among various products of special values of a reduced
binary cubic form with a positive discriminant. It does not appear to have been applied
before now. Also, as Davenport shows in [10], the corresponding result for a binary cubic
with a negative discriminant is not true.

The second result of Davenport, given as Lemma 5, shows that the minimum of a binary
cubic with a positive discriminant is not isolated.

Recall the notation from around (3.3). Associate to K the binary cubic form defined
(up to sign) by

(8.1) fK(x, y) = ±(α1x+ α2y)(β1x+ β2y)(γ1x+ γ2y).

The discriminant of fK is well-defined and given by D2. We have for any m,n, r, s the
identity

(8.2) |K(mr,ms+ nr, ns)| = |fK(m,n)fK(r, s)|.
For integers m1, n1, r1, s1 with m1n1 − r1s1 = ±1 let

(8.3) f(x, y) = fK(m1x+ r1y, n1x+ s1y).

A calculation shows

f(m,n)f(r, s) = fK(m2, n2)fK(r2, s2) where (m2 n2
r2 s2 ) = (m n

r s ) (
m1 n1
r1 s1 ) .

Now using this and (8.2) we have

(8.4) inf
(x,y,z)∈Z3

y2−4xz=1

|K(x, y, z)| = inf
(m,n,r,s)∈Z4

mn−rs=±1

|f(n,m)f(r, s)|.
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We may choose f(x, y) = ±(ax3 + bx2y + cxy2 + dy3) to be reduced in the sense of
Hermite. Explicitly, this means that the covariant binary quadratic form Ax2+Bxy+Cy2,
where

A = b2 − 3ac, B = bc− 9ad, C = c2 − 3bd,

satisfies
0 ≤ B ≤ A ≤ C.

The binary quadratic is positive definite with B2− 4AC = −3∆(f) < 0 (see [17] and [9]).
The following result is contained in Theorem 2 of [9], which after (8.4) finishes the proof

of the first statement of Theorem 5.

Lemma 4 (Davenport). Let f(x, y) be a reduced binary cubic form with discriminant D2.
Then

min{|f(1, 0)f(0, 1)|, |f(1, 0)f(1, 1)|, |f(1, 0)f(1,−1)|, |f(0, 1)f(1, 1)|, |f(0, 1)f(1,−1)|} ≤ |D|
7
.

The last statement of Theorem 5 is an immediate consequence of (8.4) and the following
result, which is Theorem A of [6]. Here, given f , we define K using (3.3).

Lemma 5 (Davenport). Let ϵ > 0. Then there exists a binary cubic form f(x, y) with
positive discriminant D2 such that none of the roots of f(x, 1) = 0 is equivalent to any
root of x3 + x2 − 2x− 1 = 0, and with the property that

|f(x, y)| > ( |D|
7+ϵ

)
1
2

for all integers (x, y) ̸= (0, 0).

□

Remarks. i) If instead of restricting to the the quadric surface y2 − 4xz = 1 we restrict
to the cone y2 = 4xz, then minimizing a ternary form reduces directly to minimizing a
binary form of twice its degree over nonzero integral pairs. Some striking new results
about the spectra of higher degree binary forms have recently been found [20] (see also
[27]).

ii) The papers [28],[12],[2] study the minima of the absolute values of certain real bilinear
forms, when they are restricted to the integral points of the affine surface xy − zw = 1.
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