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I. Introduction and Statement of the Main Result

In 1923 Hardy and Littlewood gave the estimate
(1.1) [ kG + i) @t < Trog'T
-7

as T — oo for the fourth moment of the Riemann {-function on its critical line
(see [10], p. 194). Three years later Ingham [15] showed this to be sharp by
providing the asymptotic result

fT [8(% + i) |4 dt = 77T log*T + O{T log®T).
-7

For the Dedekind {-function of a number field k of degree n = 2 no comparable
result is known, to give one being essentially equivalent in difficulty to sharply
bounding 7|83 + ir)|*" dt. However, for k = Q(y/~1), Sarnak [26] has re-
cently given the following sharp average version of Hardy and Littlewood’s
estimate:

(12) L [ G+ i) [ d < TogtT
T

iz T~

as T — oo, where, for m & Z, X" is the “ Grissencharakter” mod 1 defined for an
ideal a = (a) by A"(a) = (&/|af)*". His method is a development of one first
employed by Titchmarsh in 1928 for the Riemann {-function (see [28], p. 143)
and then by Potter {23} in 1940 for the mean square of Dirichlet series of
signature a Ia Hecke. It is based on the transformation properties of an associ-
ated automorphic form, specifically the derivative of an Eisenstein series on
hyperbolic 3-space. This method avoids the use of approximate functional
equations and the large sieve for Grossencharaktere, which yield for general k
the estimate (see [6])

(1.3) Y fT 163 + it, x M) [* dt < TlogT
|m]§T -T k.q

as T — o0, where xN” for m € Z"~! is a certain Grossencharakter mod q. Here
and throughout 4 denotes a positive but unspecified constant. As remarked in
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[26] it should be possible to extend Sarnak’s method to general k, giving in (1.3)
the sharp bound T"log*T.

My object here is to extend this method in a different direction which includes
functions attached to certain newforms which are not of complex multiplication
type. In order to simplify algebraic aspects we shall restrict our attention in this
application to forms on I (2), but expect cur result to extend to I, (N) for
N e Z* atleast for N not a square by using results from [21}]. To state this, let,
for k € 22+, 4, denote the set of normalized newforms of weight k on T(2)
(see [2] for definitions and basic results). If f € 4, has the Fourier expansion
f(z) = X% ja(n)e(nz), where e(z) = exp{2miz}, then the L-function attached
to f is given for #e(s) > $(k + 1) by the absolutely convergent Dirichlet series

oo

L(s)= 2 a(nyn"

n=1

L;(s) has the Euler product expansion (see [2], p. 151)

(L) L) = (@£ 27707 [T - a(p)p™ + 7 7)

p>2

also for #e{s) > $(k + 1), and continues to an entire function of order 1 which
satisfies the functional equation

15)  &(s) = (2m) T()L,(s) = £(~1)%%, (k - 5),

where the 1’s in (1.4) and (1.5) correspond (see [2], p. 149). Hence the “critical
line” for L,(s) is #e(s) = 1k. In Section 3 we shall prove

THEOREM 1. As T — oo,

y Z'leLf(%kHt)rd:« T og*T
8ghkxT fen, =T
K even

with the implied constant absolute.

It is remarked that for a single L-function the methods of Chandrasekharan
and Narasimhan (4] would give [T |L(3k + it)|* di < T*log"T as T — oo for
some A > 0. Thus Theorem 1 gives an improvement to 7 log*T “on average” for
k = T, since the number of nonzero integrals being summed is > T2, In fact it
is sharp since a similar lower bound can be obtained. As above, the uniformity
difficulties associated with the use of approximate functional equations and a
large sieve inequality, in this case for the Fourier coefficients (see [5]), are avoided
by the Fourier analysis of a certain Maass form restricted to a “cone” in
hyperbolic 5-space which leads to Theorem 1. This analysis is carried out more
generally in the next section.
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Before proceeding to this we shall briefly reveal the identity of the first
newform on I,(2). This occurs for weight & = 8. We refer to Rankin’s book [25],
§ 10.3, for the details. We have A = { Fy* }, where

F¥(z) =e(z) ﬁ (1 - e{nz) ~ e(2nz) + e(3nz))®
(1.6) T
= §1®(n)e(nz)

in honor of Glaisher, who in 1907 first studied ©(n) in connection with the
number of representations r(n) of n € Z* as the sum of 16 integral squares. In
fact, forn € Z%,

ne(n) = 2[B(n) + 16(-1)"'0(n)],

where
a,(n) if n is odd,
B(n) = Y (—1)}9d7 if nis even.
d|n

Also, ©(2) = —8 from (1.6) so that the + sign holds in (1.4) and {1.5). In
passing we note that an analysis of the trace of a certain representation occurring
in Section 3 below leads to the remarkable formula

O(n) = (16 + 8(-1)")

e Y n(n - m)[(2m)° — 5(2m)*n + 6(2m)?n> - n?),

mek
where ry{n) is the number of representations of n z 0 as the sum of 3 integral
squares.

2. The Mean Square of Certain Dirichlet Series

In this section a general mean square estimate will be given which will be
applied in the next section to prove Theorem 1. The Dirichlet series to be
considered are analogous to those introduced by Hecke in 1936 ([11], p. 591, see
also [12]). Here one says a function ¢(s)} has signature {A, k,v} for A\, k>0
and vy = £11if

(i)  o¢(s)= Y a(m)n™* forsomeseC,
n=1
(2.1) (i1) (s — k)(s) is entire of finite genus,

(i) R(s) = (@2m/A) T(s}d(s) = yR(k — 5).
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Soon after their introduction, Potter [23] showed that for &{s) with signature
{A, k, v} such that

Y la(n)[F ~ bx*logex

ngx

for some b, ¢ =z 0 we have that, as T — oo,

(2.2) fe 7

1, AP 2kb a1
¢(§k~%~n) di ~ =0 T loge* T,

We shall establish a version of this result for a class of functions which have two
gamma factors in their functional equations, at the expense of averaging over
certain “twists.” Actually we will give only an upper bound, not an asymptotic
result. Nevertheless, the analysis shows that under appropriate assumptions this
bound is sharp, and with further work an asymptotic result should be obtainable
by the same method.

Let A C R" for n > 1 be a full lattice and r &€ R. Say ¢(s) has signature
(A,n, ryif

(i) o(s)= Y a(B)B"* forsomea(B),seC,

BeA

(ii) (S - Hn+ ir))(S - 3(n - ir))d:(s) is entire
of finite genus and, for any degree m spherical

(2.3) harmonic P, on 87!, the twist of ¢(s) by P,,,
¢(s, P,) = X a(B)P,.(B/1BNIBI"™,
BeA

is entire of finite genus for m z 1,
(iii) for any P, with m = 0,

R(s,P,)) =" ¥T(s+ 3(m+ ir))T{s + (m — ir))¢{s, P,)
= (~1)"R(in ~ s, P;),
where

Pn’z((wl" ) "wn)) = Pm((wl’ e PR _wn))' |

Thus #(s) = tn is the “critical line” for each ¢(s, F,). Here as usual a prime
in a sum indicates that the term with zero argument should be omitted.
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In order to state our result we first need to discuss the spherical harmon-
ics P,. These are eigenfunctions of the Lap]ace-Beltrami operator on S§"7!
with eigenvalues A,, = A(P,) given by —A, = 72 — —(n -~ 2)?, where r = m +
+n — 1. The dimension of the eigenspace 92’,” of A, is given by (see [30], p. 445)

_@m+4n-2)T(m+n-2) 2 w2

(24) 4, T(m+ Dl(n—-1)  (n—ap™ ~ & m=xn

Denote by L3, the sum over any orthonormal basis { P,,} of 2, with respect to
the inner product of L}(dw), where dew is the usual invariant measure on §"1
normalized so that w(S""') = 1. We now give the analogue of Potter’s result.

THEOREM 2.  Suppose ¢(s) has signature {A, n, ) and that, for some ¢ > 0,

25y Y la(B8)] < x"logex
1Bl=x

as x - co. Suppose that n is even. Then, as T — co,

y ¥y f (4n +it, P,)|" dr < T"loge*1T,
O<mxT £,

where the implied constants depend only on $(s).

Note that by (2.4) the number of integrals being summed is =, T" ! so that
“on average,” for0 <m < T,

fT ]tp(%n + i, Pm)}ldt <« Tlog®'T as T — oo.

In case n = 2, Theorem 2 includes (essentially) Samak’s result (1.2). Since parts
of the proof are similar we shall be brief at times, referring then to [26]. Finally
we remark that the condition that n be even is only imposed to simplify the proof
of Lemma 1 and is not essential.

Proof: Functions with signature (A, n, r) were first considered by Maass
[20] in 1949. In this paper a non-holomorphic, (n + 1)-dimensional version of
Hecke’s correspondence is given for such functions. To describe this it is
convenient to introduce the Clifford algebra %, ,,, which is the associative
algebra over R generated by » clements i),---,7, subject to the relations
iy = —ii, for k # h, i = —1, and no others (we will use the notation of [1]).
%,.1 1is a real vector space of dimension 2”. The (n + 1)-dimensional subspace

Vil = {x = xg+ x0; + o+ +x,0,; x; €R)

H’
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contains H"*' = {x € V"*1; x, > 0}, a model for hyperbolic (» + 1)-space
when endowed with the metric ds? = |dx|*x, % After Vahlen [29] (see also [1])
any proper isometry y of H"'! acts by yx = (ax + b)(ex + d)™* for
a,b,e,de €, ,C %,,, suitably chosen. The Laplace-Beltrami operator is given
by

o b d
. wnt+l I-n__2
An-}-l =Xy hg() axh (xn axh )

Consider A as a lattice in V" and let A’ € V" c ¥"*! be its dual lattice with
respect to the inner product He(Xy) Here ¥ = x, — xd; — -~ —x, i, if
X =xy+ x4y + -+ +x, i, ;. An analogue of Hecke’s triangle group for
n > 1 is the group of isometries I' of H"*! generated by x ~» x + a for all
a& A'and x ~» ~x7! (in %,.,). Say f € C*(H"*') is an automorphic function
for T if

2
(i) A+ (7'2-6- %m)f=0 for somer € R,

(2.6) (i) f(x)<=x! as x,- o0 and f{x) < xy?
as  x, ~ 07 uniformly in xy,---, x,_q,
(i) f(yx) =f(x) forally € I.

By separation of variables in (2.6)(1) and (if), (iii) we get the Fourier expansion
27)  f(x) =ul(x,)+ L a(B)xp/K, (2m|Blx,)e(%e(Bx)),
A=A

where

(2.8) u(x,) = ayx!2H g, x 2T e (),
. n

x!?*(a, + a,logx,) ifr=0,
and K, is the usual Bessel function.
Suppose a{B) in (2.7) comes from that in (2.3)i) and that g, and a, in (2.8)
are determined by the condition that
2ay 2a,

o(s,1) - (s —3n+i))M, - (s—3(n—ir))M_,

2a;  2a,[T'(in) -1
¢(s,1) ~ [m - m(—{— - log'rr)] §— 5n
(29) M() MO r(z”) ( 2 )
) (s - %”)ZM{J

is entire in s, according to whether r # 0 or r = 0, respectively. Here M, =
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m "I (3n)T(3n + ir). Maass shows in [20] that the map ¢(s) — f(x) so

defined gives an isomorphism from the linear space of functions with signature

{A, n, r) onto the linear space of automorphic functions for T, provided n > 1.
Define, for x € H"*1,

f(x) —u(x,(yx)) ifthereisayeT
(2.10) *(x) = s.t.x,(yx) > 1,

f(x) otherwise.
Thus f*(x) is I'-invariant. Introduce as in [26} the “conical” coordinates
(2.11) x,=pcosf, x—ix,=wpsinb,

where p > 0,0 < 8 < 4w, and w € §" 7! © V™. Consider, for m = 0, the integral
] —_— dp
(212) G(s,0,B,) = [ | 1*(p.0,0)P, () dogl,

absolutely convergent for % (s) sufficiently large. Substituting for f* its Fourier
expansion from (2.7) and (2.10) we get after interchanging the sum and integral
that, for m > (,

G(s.,0, P,) =cos"%¢ ' a(B)f p"/ 2K, (27| Blp cos 8)
(2.13) ped

f P (w)e(psind{w, B)) dw—

where ( +,+ ) is the usual inner product on R” and we are using the fact that
Jsr-1P,(w) dw = 0. By [13], p. 25, the inner integral may be evaluated to give

PRIGEAS (LG

2ai™cos™ 20

G(s,8,P,) = - T
(s ) Q, (sing)"*"!

(2.14)
[0 K, 21Blp cos 0), (2Bl sin )

where 7= m + in — 1 as on page 819 and Q, = 27"/?I'(n)"! is the area of
S*~1 Thus
(2.15) G(s,8,P,) = M(s,8)¢(4s + in, B, ),
where
M(s,0) =M(s,8;,m,n,r)
= "2 lg =20 (1 Y(sin )" *(cos )T H (s, §)
with

(2.159) H(s,8) = H(s,8;r,r) = fmpsKir(p)J,(ptan ) dp.
0
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By Mellin inversion we get from (2.12), for some ¢,
(2.16)
= 1 foo —
f *(p, 8, w)P (w)dw= *ﬁm.-fﬁ M(s,0)¢(ks+ %n, P )p “ds.
Srrfl i c—ioo
For m > 0, by (2.3)(iii), we may move the contour to the left in (2.16) giving
- 1 s> . 1 _— —2it
f *(p,0,0)P, (w)dw= —f M(2u,0)qs(—n +it, Pm)p *dr.
Srr“l T — o0 4
By Parseval’s relation on R* and S"7! we get

2

dt

Yy v fi}M(2i:,9)|2‘¢(%n + it,Pm)

m=>0 &, =

(2.17)
< [7[ 11p.0,0)[ da’2.
g Jgu e
Now M(s, #) may be written in terms of the hypergeometric function as in
[26], p. 172 (see [9], p. 693)

M(s,0) = %i'”w’s’"/z(tanﬁ)m(cos 8"’

T'(4n) 1

T (a)T b, 5n + m, —tan® )

(i + m) (a) (b)F(a, ,zn+m, —tan’f |,
for Re(s) > —m — 3n, where

a=%m+in+s+ir) and b=1i(m+ in+s—ir)

If r # 0, we may proceed as in [26], p. 172 to transform —tan®d — (I + tan?6) !
= cos?f and then estimate M from below. Since this initial transformation is not
valid if r = 0, the case required for Theorem 1, we shall estimate the integral

H(s, #) in (2.15") using the method of stationary phase. We remark that here is
the only place where we use the assumption in Theorem 2 that »n be even.

LemMa 1. Let T'= tanf and suppose v = xT and t = yT for x, y € [A,2A4]
and for some A > 0. Then, as T' > oo,

1HQit, 0)] ~ T7K, (% + 4y*).

Here v = 4n + m — 1 is assumed integral.
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Proof: Use the representation (see [9], p. 952)
S R S
J Az} = 5~ f“ﬂexp{—vru + izsinv} do
in (2.15%) and change variables to get
. 1 = .
H(2it,8) = ﬂfmwfiwg(u)exp{ﬂ"h(u,v)} dudy,

where g(u) = e“K,(e*) and h(u, v) = ye"sinuv — xv + 2uy. There is a single
simple stationary point inside the domain of integration at

(u{)’ UO) = (% Iog(x2 + 4y2)= _tangl(zy/x))’ Dy & ("" "12"’770)’
which is a saddle point since

h,. h
h,, h

v

e e < .

oy

Also, on the boundary v = += the normals to the level curves h(u, v) = ¢ have
u-component 2y # 0 so the level curves do not become tangent to the boundary.
By the method of stationary phase for multiple integrals as developed by Jones
and Kline [16], p. 19 (see also [3], p. 347) Lemma 1 follows.

Returning to (2.17), by Lemma 1 and (2.15),

(2.18)

« [2AT d
> o b,

2 o0
dt«T"f f 2 de
AT<m=24T @, "AT mor Yo Mgt

¢'(%n + it, Pm)

using the fact that K, (z) > 1 for z € [/5 4,25 A] with suitable 4 > 0 depend-
ing only on r, Thus to complete the proof of Theorem 2 we need to show that, as

6—>§'H’,

i # 2 ie c+1
(2.19) fo fsm|f (p,0.0)[" do ) < log™(sec ).

[ ot = (o )y ey

[T 1700, 52,0, ) ) a2,
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in view of the fact that, as x > —x™), we have p — p~, § —» 6, and & — —w,
together with the invariance of f*. By Cauchy’s inequality,

= dp * 2, dp
%2 g, 40 3 dp
./; .[gn_lgfl du P <<j; fS”_Jf(P,B,w) u(pcos®)| de o
since
¢
f;|u*(0 cos 5)[2%9” < Cosnaj;m P tdp <1 as 8- tu,

where f*(x} = u*(x,) + f(x) — u{x,). Thus, by (2.7), (2.19) follows from

LemMa 2. Assuming (2.5), as § — Lo™,

2

Y a(B)(pcos8)*K, (27| Blp cos B) e (p sin 8w, )| dw
A

o0
'[1 '[S‘"‘l Be

= Alog® !(sec ) + O(log“(sec §)).

dp
e

Proof: After squaring and interchanging the integral and sums we get

Y a(2)a(B) ["K,(2rlaip cos 0)K, (271lp cos )

a, fe A

-p”cos"Bf e(psint{w,a — B)) dr.u%E
Sn—l

= cos™ 3 |a(a) |2f°oK,.2,(2w|a|p cos 6).0”ge
aeA 1 p

(2.20)

- "6 ,_a(e)a(B)
+7l T (dn) ——l o Y
2 )(Sing)n/le g |a _ Bln/Zwl

< [“K, (2lalo cos 6) K., (2m)81p cos 8)
1

0", 5 1(2mp sinBla — B) dp (using, [13], p. 25 again)

=Il +12.
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We shall begin with I,, for which we need the following convolution- -type
bilinear inequalities:

LEMMA 3. For {¢,) € I’(A) and A e R,

() Lovpeac( @) B, o(Ale ~ Bia — 8172 < [y licy|
and
(il) Z'anpeacfa)éy(Bia — BI7" 12 < Iyl o,

Proof: This is proved in a similar manner as Lemma 4 in [26], using the fact
that, for B={y € R", |y| = 4},

Ral€) = @7) " [exp( =13, £)) dy = (4/1¢)" 1, (A8,
To continue with I,, integrate by parts in (2.20) to get

T'(4n)cos™d
2(wsinf)"? Eﬁa(a)a(ﬁ)

-
| K, (2nfalp cos 0) K., (27|l cos 0)

0", /2(2‘”9 sin fla — B|)|a —~ |“"/2f

B fwd_p [, (27]elo cos 8) K, (27|B|p cos 8)]
1

n/Jn/Z(Zvrpsmﬂa—— Be ~ B ~n/2dp}
m121+122-
Now
T'(4n)cos™d
T (i Y2 aa(B) K, (2m|alcos 8
. 2wsin)"? o7 E a(a) ( ) K, (27| )

“K; (27| Blcos 8) 4, (27 sinbja — B|)jer — B/

< cos"d Y |a(a) 'K 2(27)alcos )

acA
by Lemma 3(i), so by (2.5), as 8 — 177, I,, < log‘(sec #).

We next integrate by parts each term which results from differentiating

p™"K,,(2mlalp cos 0)"K _,, (271Bip cos )
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in I, again, estimating each boundary term that arises by Lemma 3(i) (after
embedding in R"*?). We continue this process until we may apply Lemma 3(i),
A typical integral term will then be bounded by

la({a}a(B)|

Alcos 0™ ¥ — Bln/2+[71/2|allllﬁliz

a#f |G€

[ 0K,y (2mlalp cos )K .. (2m1Blp cos 0) | do

if one uses the fact that J, ,,,, 1(z) << |z]7"/% as z = co. Here [ = I, + [, is the
number of integrations by parts performed. This is seen to be

la{e)a(B)|

o — B|N/2HTL2

< cos"@ Y
R
e, 1Bl < secd

log(|ajcos 8 Yog(|Blcos #)

using the easily established estimates

z7CN if p £ 0
2.21 K < ’
(2.21) A2) {—logz if » =0,

as z = 0% (see [16], p. 108, for the relevant formulae). By Lemma 3(ii) each
remaining integral term in 1, is

<cos"® Y |a(a)|'log?(|ajcos #)

|| = sec &
c 1l
< log{secl) as 80— iv~,

by (2.5) and summation by parts.
Returning to (2.20) and 1,

I, = cos"0 3 |a(a) szooKfr(Zﬂalp cos G)p"%g
1

ac€A

_ oy lal@f - ndp
(2.22) mg lof” f;uamsaK"’(zwp)p p

Y la(a)l e flef%(Zvrp)p”%

laj=sec @
+0(log°(sec 8)) by (2.5).

Lemma 2 follows after summation by parts in (2.22).
This completes the proof of Theorem 2,
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3. The Proof of Theorem I

In order to deduce Theorem 1 from Theorem 2 we shall first construct an
appropriate function ¢(s) with signature (A,4,0). Here A = y2 0, where 0 is
the (maximal) order in the Hamiltonian quaternions over () generated over Z by
{i, j, ke, 51 + i + j + k)}, thought of as a full lattice in R*. Let, for Re(s) large,

SRS ""2‘5(21—4 X N(“)_x} = ¢ T d(BA2)IBI*,

asd Be A

where N{«) = e& and d(a) = 5#{(8,v) € 0% 8y = a) is the divisor function
for ¢,

LEMMA 4. ¢(s) has signature (A, 4,0},

Proof: (2.3)(i) follows from (3.1). Next, by a well known variant of Jacobi's
theorem on sums of four squares we have

(2]

8(s) = z—s( Ela(n)n-x)z,

=

where 6(n) = L, 4 caad. Thus
(3.2) o(s) = 275(1 — 27V ) (s ~ 1),

showing the first part of (2.3)(ii).

To discuss twists of ¢(s) by spherical harmonics we introduce the unique
irreducible unitary (27 + 1) X (27 + 1) representation of SU(2) given explicitly as
a matrix T, in [30], p. 115, where in general /€ {0,%,1, .- }. The entries in
v2{ + 1 T, constitate an orthonormal basis of #,, (Recall the discussion near
(2.4) and see p. 160 of [30]). We may identify SU(2) with §° ¢ ¥* To show the
second part of (2.3)(ii) first notice that, for all of the above /,

2

— 1 13 -8 1 4 —2s
63 2 (ﬁgmﬂ(aﬂa])f\’(a) = ﬂﬁgAd(B/ﬁ)T;(B/IBI)IBI
=¢(s, 7)),

where in fact ¢(s, T} =0 unless /&€ Z. By [27], p. 69, each entry in
¢(s,T;) is entire of finite genus if /> 0 and, furthermore, if R(s, 1)) =
7 5 THs + Dé(s, T), then R(s,T)) = (~1DHR(2 ~ 5, T/) for all [ Thus
(2.3)(iii) holds as well, proving Lemma 4.



828 W. DUKE
We shall now apply Theorem 2,

Lemma 5. Zoo or o220+ DT 0@ + it, T)|> @ < T*log*T as T —
o0, where ||M)|* = t(MM*) for any square matrix M. The implied constant is
absolute.

By Lemma 4 and Theorem 2, Lemma 5 follows from
LemMA 6. For d(a) defined in(3.1), as x — oo,

" dYa) ~ Ax’log3x.
2. g
Nia)=x
acs@®

Proof: Lemma 6 follows easily from the identity

(3.4) % 2 d*a) Nle) " = §5(s)/80(25),

=g}

where {4(5) = 3L, o ,N(a)*, both for Ze(s) > 2. The proof of (3.4) is compu-
tationally much more involved than its rational prototype, L,. ,d%(n)n™* =
$%(s)/8(25). As before,

Sols) = L a(n)n™ = (1= 2)(s)8(s - 1)

n>0

s0, for He(s) > 2,

1 —5
§@(~") = 1_[ ﬂ( Z Z N(P) )
p prime mz0 N(pg—&pm

and

21—42'd(a)N<a>”=1;1§(2 S d(e) M)~

wed mz0 N(p)=p™

It follows from these formulae and an elementary factorization property of
integral quaternions (Proposition 1.3, p. 12, in [17]) that

= T dz(a)N(a)“'“=l;I~2-lg( MDY dZ(pw(p)”);

asd mz0 N(py=p"
ped
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thus we are reduced to showing that

1 —ms
57 2 X de)p
mz0 N(p)=p"
pald

(3.5)
Ja=-2ya -2 if p=2,

@)1= - ) =) i > 2,

for p a rational prime,

For this we need a formula for d(p). Let p" be the largest odd integer
dividing p. Then it can be shown using the Hurwitz decomposition theorem (see
[14] p. 54.) that if N(p) = p™+?" then, for m, n = 0,

d(p)=2n+1)(1-p) "+ (1 -p")(1-p)?
J = p)m+ 1) - 2],

It also follows (see [14], p. 56.) that, for odd p,

(3.6)

1 .
57 #{p € 0; N(p) = p»*", p"lp maximal}

(37) ) {1 it m =0,

(p+Dpm ! iftm>0.
For p =12, (3.5) follows easily from the identity ¥, . (m + 1™ =

(1 — x®)(1 — x)~* since in this case n = 0 and d(p) = m + 1.
For p > 2 we write the left-hand side of (3.5) as

wIZ L L dip)p e

mz0 nz0 N(py=pm*2
p"lp maximal

and apply (3.6) and (3.7). A rather long and tedious calculation then yields (3.5).

Define the (Brandt) matrices for n € Z7 by

1
B(n) =g ¥ Tia/la).
vy

Thus, from (3.3),

(39) 8(s.T) = zﬂ(n};a(n)w)z.
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Lemma 7. (i) For (m, n) =1, B{m)B{n) = B,(mn) and
() B (p**Y) = B(p)BAP*) — xo(PIBLP*™?) for p a prime, k 2 1, and

i, p#2,

Proof: This follows from Theorem 2, p. 106, of [7] or it may be proved
directly as in the proofs of Theorems 5.4-5.5, p. 299 of [24].

it transpires that B,(n) form a commuting family of Hermitian (since T is
unitary) matrices. Thus there is a wnitary U s.t. UB(n)U™" = D(n) for all
n € Z%, where D{n) is diagonal. By work of Eichler on the “basis problem” (see
[21], Corollary 8, p. 696 and [7]), we see that the nonzero entries in r'D(#n) are
precisely the n™ Fourier coefficients of all newforms f € 4, where k = 2/ + 2,
each counted exactly once. Of course, their multiplicativity properties follow
from Lemma 7.

Thus from Lemma 5 we have

(3.9) Y (k-1 [" T |L(ks2+in)| d < T'I0gT,
BghsT T e,
k even

since [|¢(1 + it, THI? = |Us(1 + it, THU™Y? and, from (3.8),

Up(s, T)U = 2_5( )‘f, D(n)n_“") .

Theorem 1 follows easily from (3.9).

Acknowledgment. I wish to thank Aloys Krieg for his comments and for his
help in the derivation of formuta (3.6).
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