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Abstract: The terms of AQ00278, the sequence defined by hg=0,hy =1, and hy» = hpyy + hg2, count
the trees in certain recursively defined forests. We show that for n large, hy, is approximately ASAri(2)”
for n even and hy, is approximately BI™2)" for n odd, with A,B > 1 and A not equal to B, and we give
estimates of A and B: A is 1436 = .001 and B is 1.452 = .001. The doubly exponential growth of the
‘sequence is not surprising (see, for example, [AS]) but the dependence of the growth on the parity of

the subscript is more interesting. Numerical and analytical investigation of similar sequences suggests
a possible generalization of this result to a large class of such recursions.
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Asymptatics
We etudy the growth of
hoss = gt + () 1)
a8 71 4 oo,
The sequence {k, } i bonnded by double the square of ifs tramlate:

Lemima 1 fn 2 1, then 0 < Ry € hyg1 € 2{3%)2.

Proof Thiris frue for n = 1. Since the gequence i increasing, i, < fppq
always, and hw-i-z = h%—l-i + (3%32 = (hﬁ—ki)z + {'ii'v-b+l)2 = 2(52%-}1)2‘ N

Rewrite (1) in the ollowing way for n > L

Ly

!
hatz = hugr + (ha)? = (o) (1 + {;‘*’g* )

The meceding lewmma ehown that 1 < o, <3ifn > 1, Then
-'aw,-m = {p—2 ) {otn—2)P 0 = (fteet)* (s ) {2 Pt = ..

which gives hp,, = Hj—ﬂ {Con—a; _2) ¥ mwa positive imbeger and o 8
defined to be 1. More algebra is enlightemng, beginning with reversing the
product inedecc:

w1

w—1
(ra—3 —31) [u—-1 1) 1
fow = | !a(aﬂ ST = exp (2 1"’5((32.#3 }) = &xp (2% ; u: 25 108 “%)

—1 2™ ve1 (V2™
= — = 1 1o
=i &xp QKM P, g = | exp ZW ;o .
> de=(1

Therefore if 4 i defiued by repuring

O
1
hgﬂ=gwfﬂgﬂws (2)
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-

it werros plavsible to expect that fg, = AV

A giilar apalysie for odd odegers meorporates the juitial condifion
fy = 1 and uses the formula hgey = H}:& (&%_25;“,3)2;[. Thie leads to
defirng B by the eqation

1 o= 1
log B ==Y —rlogans (3)
V2 pl o+

2nd-1

aml t0 the expeciation that fig,.y = 7V .

Lemma 2 The sevies of nownegative coustants defined in (2} and (3) con-
verpe, and sll partial swos of the it N termos of each of ther are within
%’%ﬁ of the actual sms. By comsideriug parial suuns for N = 18, we obtain
au estimate for A (respectively, B} wlich is 1.436 (respectively, 1.451) with
error les than 001,

Proof S 0 < log o, < logd the convergence of the peometric series

S o implies the couvergeuce of both series shown. Then infinite tails of

hoth gerien can be overestimated by u—b&%ﬁ. The nmerical rexults are
PRPRMEDA

obtaimed by direct calenlation. =

. how . howyr
Theorem 1 &A(ﬁ}ﬂ“ = 1 and lim W =

Proof Consider the first hnit. Unravel soe algebra via

e e@(?‘*"z;‘;‘; T lnga%) S i1
A oo 1 go = ep| - 3 2" ogay
(ﬁxP(ijﬂ :;7'4?!’*05 Cz?é))

et
to diseover that the destred resmlt will follow au esfimate which shows that
the seres Z?‘;n =i tlogag; = Q“Z?;i 2= og aps approaches O as
7 ~+ po. The extimation nexls to be finer than what 0 € logosy < logd
cau provide.
Pirst, 0 <logey < %‘;—"]ﬂ‘; becawe log{l+z) < zforz > 0. The seres (2]
and (3) both have positive terme. Sinee hy; = exp (ﬂﬁ Tl lngm),

we kucw by Lemuma 2 that for § > 15, & 19814 < by, < &2’ 1084, Bjpyilarly,
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for j > 15, e2° Vlea(td < gy € 2VTV6B I € = max(4, B),
7 < 1.46 and CV2 < 146442 < 1,72, We have

CﬂﬁJ ﬁ{'g\fg"’

Aigr o exp(RUETRA Log ) ( 172 )
LS R, ] = {exp(2%0 log(14] )] s (14»54)(;,4»@) < \map

which allows the sexies to be estinated easly. If § > 6, then V& > 145
and the following estimate 18 valid:

=5 o0 .
203 0 logay; <2y 270 {9VF)
j=wn i=n
a I3 )
m—1 N o—ir qhddy . 14ye
< ? Z? (‘Q ) 1 . .5(‘9)1'4'(.9 :’

f=w

Thie overentimnate certmnly approachen O rapidly, so the hrst Lot io £he
theoreamn 18 verthed, The secoud, for odd ndegemn, follows B a shnilar faslnon.
|

The proof above eerbaindy doesa™t wie all the mdormation preseot. In
fact, the eonvergence to the hudty is extreanely rapid, and very sharp exror
eetunates can be made. & resudt sirdlar to theorem 1 with siwdlar axor
extinater can be proved for any non-uegative initial conditions. Differerd:
mitial conditions give nise b0 different growth constams. The bnk between
the pair of initial conditions and the pair of growth eonstaés for £hin recur-
rence has been shown to be a real apalytic wapping with further nteresting
properties. See [GN].

Counting the trees in & forest

A praph s a set of vertices together with a set of edges L L
where the edges counect pair of distinct verfices. A verbex \\ /
comsected by an edpe i called incident with that odpe. A ; v
tree here will be a connected graph withouat cycles, whick L
are rlosed paths of edges. The munber of edges a verbex is \ //
incdent with i called the degree of the vertex. A rocfed v
free has ove distiuguished verbex with degree 1. The rook l
vertex will be labeled R. Any other verfaices of degree 1 in

& rooted tree are called leaves snd will be laheled 7. R
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Treess will be drawn here with their roots at the bottom of ther piciures.
The level of 8 vertex 1 #s distance o the root. The disfonce betwesn two
vertice in & tres » the minimunn muaober of edges required to travel from
one to the ofber. A free with theee leaves s displayed. Ooe Jeaf bag level 2
and the twa otbem have level 3. Thir tree aleo har two vexticer designated
¥ which are nexther leaves nor the root. They both have degree 3. Ope of
these has level 1 and the other b leved 2,

H,, will be a set of all roobed tres: of a certain type for each intepger
n > 1. Bvery leaf of each tree m 7, will have level n. Axy verbios: of
degres greater thae 1 tu trees i ¥, will be oue of two types: the dizoond
{*) and the circle (o), The dismoud will always have degree 3 so the free
must “bramh® st a diswend. The distance betweem two diamonds oest
always be at least 2, and the level of a diamond moawt be at least 2. All
other vertices of degree greater than 1 will be cixcdesy and eack excle will
have degres 2. There will be no branching at a crede - jugt a2 “oaok” . Here
i a display of some moall forests of thiy sperias, a rather peculiay sort of
bivary tres.

i I i £
Y R Y
,. (VAR IR
Hys Ha Hy: | T Ha l l \’f
&
] . . ‘ l *
R & l
R’ & #

The more mmmerous trees in 7y can be grouped sugpestively.
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The forest He divides vaturally fdo a digjolst won of A, the trees in
Hy whose level 2 vertex is a circle, and By, the trees in Hy whoes lavel 2
vertex i & disroomd, Note that these trees are “orieuted™: the left aud right
branches are digtinct. More tecdmically, these trees are m:mplm of what
are called simple poriiclly-ardeved rooted frees.

Consider Ag. Delete the root and lowent edge of a tree thﬂ set, and
change the lowest cirale to 2 root, The regult I8 au element of 3y, 16 i8 not
hard to see that thig mwappeg s a bijecton.

Now congider By, Go to the lowest dlamond (which mvst have level 2}
of any tree iu By, Separate the two branches rising from the diameond, and
in each oue exd the lowest edge by a root. Thi gives a pair of davents of
Hz. This mapping is a bijection of By with {#3)2, the set of pairg of trees
in Ha.

Thim the nomber of frees in He 8 the gun of the nuober of trees in
Hy and the gamare of the mwamber of trees in ;.

Theoretn 2 » > 1, by i85 the ooober of treen m M.

Proof The ecormespondence destribed above extends 0 W, g0 thee iz a
bijection between H, o aud H, 4 U (%, x #,.}. Then the theorexu is true
because Hy aud Ho cach eoudain one tee, =

Counting the leaves on the trees in a forest

The potures above nvite the guestion: bow wany lesves are there o
the forext H.,.7 Suppose that y, in the mmber of leaver in the forest 7.
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Then j1 = j2 = 1 awl the segqoence {4, } gatishies the recarrence

Jet2 = Jat1 + Zhada. (4]

Thie & fairly clear from the Wection deseribed i Theoran 2, ginee 4, h, 18
the total wonber of leaves whick: oomx om all £he left hand freen, or on Jl
the right han trees, 1o pairiogy from 7, x He.

Equation (4) may alko be obtained by the follvwing argumend which
may be of independent interest. Define a polynomdal P, (z) by

P)= 3 £,

TEHw

where £{T} it the mnuber of leaves on the tree T. Then deardy P (1} = ha,
{1} = ju, aud the sequence of polynomdals {F,} satitfien the oripinal
recurrence, {(1): Poys = FPop1 + P2, 'These equations imply (4).

Note that (4] is the hinearization of the recorsion (1) for % if we alter
the matial vaboes for (1) by the infatesinal perturbations fiy —+ By + dhy
aud hg —+ he 4 dhg then the resalting perturbation by, —+ by, + dhy, vatshes

dhgiz = dhyps + Qendhy,

up to higher order tenos,
The recursion {4) can be compared to the simpler recursion,

Tusa = Do, (5)

which has solubion .EMQ L Jgﬁm l_[:‘;l figk and ng_f_g = _}*2‘"&' r[:;l ?L;‘;gh}ﬂt.
Numserical experizuents indicate that if {4) and {5) are given the same iuitial
values, ie, Jy = 5y and Jp = ja, then 2% gnd 2041

T I
to (diffevent) constants. Analytically {from the known asymnptotics of hy,)

X .
and muarerically it appears that P2 and Bt

A2 Pt
comstants. Bo apparently jo,. 10 & C2™ha,, g for 8 = 0,1, Therefore the
mean number of leaves per tree in 7, it asymptotically a constaut {which
depeuds ou the pacity of n) umltiple of {V/2)".

comverge rapidly

also couverge t0
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An approach to more general recarrences with sorme experirmental
results

We sugpest here one way to avalyze sequences defined by polynornial
reenrrence relations. Begin with a recmrence wloch can be solved exactly:
Suppose that k.0 = h, 1k, with juitia condition (kg )] =
{1,2). An explieit forumla is given by by, = 20" Flhooncel numher)
Standard asymptobics for the Fibonaca nurabers thens ioply By, =
K for 7 large with K = 25 x1.363 and v = 125 ~ 1618,

We briefly explain how to find a siwilar expression for any recurrence de-
texxoined by one monosdsl We assmme that

Ji',ﬂ.i_k-:ck“fﬁ_'_l i h::;k_l, {6)

where ¢ is a positive constant sud each of the expouenir v; is & nonnegative
iuteger. We further aturoe that 7¢ > (¢ and that & k-tuple of nounegative
initial values (b, ... Rpeq) B given.

Then the sequence {log b, } satisfies a lnear recarrence with character-
istic polynowpial p(x) = 2% —rp_yx* 1 — | wryw —rg, which can be solved
exactly nsing classical techuiyuen. I p(l # 0 (p(l:i vmushm oudy in the
uninteresting case p(z) = x—1) then b, = C [} 47 where Agy. .oy Mg
are the roots of p, € = AP and Ag,. .., Ap.y are constauts sietermimad
by the fatial conditions.

Suppoee § i the maximuam integer so that plx) = g(x¢) for some poly
noral g of degree 7o = k/§. If ¢ hae roots {j;q, vy fhr— 1} then the root
{Aay- -y Ax—1} of pean be nunbered g that )‘l Gt = e forl=0,1,...,5-1
aud 7 =0,...,72a — 1. When § > 1, (6] becomes

-1

hng-z'—’CHHfE;1=Qsis---:f—1: (?)

where B, ; = [[& Aj,;:;‘.

The polynomial p(z) has one positive root v. Welet v = Aq = pgiff,
The roots Ag,. .., Aj—1 then all have maguitude v(p) aud make the domivant
contribution to the growth of Ay, sinoe v > |3 for i > j.
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This suggests one way to avalyze polynomdal recurrences with pogitive
ooefhotends. We suppose that the reenrrence i

Vex Fer,1 oz k—1
b = 3 K B e KA ®
s

where each texm in the finite o hag posttive coeflicient ¢, aud all expo-
vends T, ¢ 41 nonuegative iwbegers as in (). Bach term has an asodated
characteristic polyncanial, po{x) = =8 — 3§70 7z, which in tun hae &
nuique pogitive 1006 Va.

If one texm indeed by # it dominant I the sewe that vs > w, for
o # A, then siumiations ard gorne heardstic reanouing suggest that if the
initial conditiony ave chogen lage enongh so that hy, — oo, then hi, behuaven
sgympbotically like the exact golution (7) of the recurrence with oudy this
dounnaut bero:

s o/ (] 4) - 2, ®

=0

where again € = 47 bt now Ag,...,dr1 depend on the remaining
termg in the recuamence a8 well a8 on the mitial coudition.

The rermrreuce (1) analyzed previcusly has domnnant teno, b2 | with
C=1 k=2;=2anxv=2 Iuthscae, CJ[ A4 i
AV AV When mis even this s (A0A1) Y2 and when n & odd
it is (Ao/ A1 )Y2)", Theorem 1 therefore verifies (9] with Aoy ~ 1.436 aud
Agf Ay = 1451,

We have vo snggesiion for the correct ssywptotics when (8) has no
donrinaut term, por have we proved (9) iu general, Here is a report of some
mmnerical experiments which also snpport (9):
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Recurrence aud k, y, v for the .
initial comdition dominaid texm Observed agymaptotics
. d Ky o= 1344
wte = Ry + ()7, (0,1) 2,2, 3Y2  Lh,m (BT, n=1(2) for {Kﬁ m: 1.166
" Ko = 1.454
Bots = hagz + ()2 (0,0,1) | 3, 3,28 |k G, n=1(3) for {K; = 1.438
Ky~ 1.442
Fprs = (g2} + by (0,0,1) 1, 1,2 ho & {1L0257)% '
b = (hap1)® + (R 2, (0,1) 1, 1,2 hy, == (1.111)2°

Algebraic identities

SBuppote § = {sq,%1,.. -} 1 2oy gegquence of integens, and n 8 a positive
mteger. Let S, C 2" be the get of all conseritive n-tuples of elanents of
S: (z1,...,2a) € 8§, exactly whem x; = 53y for sorme & > 0 and all §
between 1 aud n. Defime Ig,, to be the ideal of polynomials with fnteger
coefficients in n variables {(elements of Z{Xy,.. ., X,]) which vanith on S,
I 9 i debined ar the solution of a eeurrence which 8 polyummial with
mteger coefhaents as disenssed above then the recurrence itnelf produces
elements of Ig,, for n eufhcently large, When do these elements ganerate
f5.47 A specific example msay be neeful. If F' g the sequence of Pibanaced
wumbers, then Iz containg Xy + Xy — X3, deterunned by the generating
recurrence. Ir 5 is not principal duce it also containy (X, X, — (X122 ~1
{froma the classical Coastini identity ).

Suppose H = {hg,l,...} it the segquence studied o this paper, so
Born = iyt + (he)? with (o, 1} = (0,1). Is Iy z a privcpal ideal geu-
exated by (X;):a + Xo — X7 Iz IH,d. generated by (}fl)? 4+ Xg — X5 aumd
(X 4+ X3 — X,7 In other words, does the seqnence H satisfy auy fuite
widtl polynorsial idexdity whick 1 nof nophed by the geserating relation?
Thix seerns mdikely but we do pot know a praof,
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