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ESTIMATING HECKE EIGENVALUES OF
SIEGEL MODULAR FORMS

W. DUKE, R. HOWE, AND J.-S. LI

0. Introduction. A central problem in the theory of automorphic forms is to
estimate the Hecke eigenvalues of cusp forms. Historically, such eigenvalues first
arose as multiplicative remainder terms in formulas for the number of representa-
tions of integers by certain quadratic forms IRa]. In this case the eigenfunctions are
holomorphic cusp forms for congruence subgroups of the modular group, and the
best possible estimate for their eigenvalues was obtained by Deligne when he proved
the Ramanujan-Petersson conjecture [De].

In this paper we shall consider the case of holomorphic Siegel cusp forms of
degree n > 2. As when n 1, the Hecke eigenvalues here are closely connected to
representations by a positive quadratic form of scalar multiples of a fixed form in
n variables. In contrast to the case n 1, however, only relatively weak bounds
are known for these eigenvalues. Such bounds have previously been obtained by
generalizing two classical approaches: the Rankin-Selberg method and the method
of Poincar6 series and Kloosterman sums. In the case n > 2, we shall go well beyond
these methods by estimating the matrix coefficients of certain representations. For
precise statements of our results, see formulas (1.7), (1.8), and (1.9) below.
For the sake of exposition, we shall restrict our attention to modular forms for

the full Siegel modular group (with trivial multiplier system when n 2), although
the method employed generalizes considerably. We remark that Shahidi [Sh] has
obtained good estimates for the Hecke eigenvalues of generic cusp forms on quite
general groups. However, when n > 2, holomorphic Siegel modular forms are not
generic; so his estimates do not apply here.

In the final section further results are given concerning the absolute convergence
of certain L-functions and the Hecke eigenvalues of singular modular forms (see
[A]).
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1. Classical approach for cusp forms. Let G GSp2 be the group of symplectic
similitudes with respect to
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where n e Z+. The connected component

G+ (R) {g e G(R) l’gJg rJ, r > O}

acts on , the Siegel upper half-plane of degree n, by Z o(Z)= (AZ + B)

x (CZ + D)-, where
CD

e (R). Define the automorphy factor

j(g, Z)= (det g)-X/z det(CZ + D).

For k e Z+ and f a function on off, define the weight-k slash operator

(1.1) flo(Z) J(9, z)-kf(9(Z))

For m Z+ set

(1.2) F,, { Mz.(Z); ’yJ mJ}

and F F: SP2n(Z). The weight-k Hecke operator is defined by

(1.3) Tmf mnk/2-n(n+l)/2 E fir.
e F\F,

This makes sense provided we have

for all y e F. Also, the sum is finite since F" is a finite union of(left or right) cosets ofF.
Let S.k be the (finite-dimensional) space of Siegel cusp forms of weight k for F. We

refer to [KI-I for many basic properties ofSiegel modular forms. The theory ofHecke
operators can be found in i-A] and l-Fr]. The latter sources may be consulted for
proofs of the facts used below. The space S.k possesses a natural inner product,
making it a Hilbert space. The operators (T"}m=: comprise a family of commuting
Hermitian linear operators on S.k, and S.k possesses an orthonormal basis of simulta-
neous eigenforms [Fr, pp. 272-274]. Let f be such an eigenform. Then for each m

T"f 2"f

where 2,, R. The 2,. are the Hecke eioenvalues; estimating them is our main
concern. We shall restrict our attention to square-free m; since 2m is multiplicative,
we are reduced to considering 2, for p prime. Now F\Fp has 1--I7=: (1 + pJ) elements,
and since for a cusp form fir(Z) is uniformly bounded on g, the trivial bound for,. is

p << pnk/2.
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In fact, it is not much harder to prove (see [Kol], [W])

I1 < 2npnk/2.

Classical approaches to improving this bound first connect 2p with the Fourier
coefficients a(N), where

f(Z) a(N)e(tr NZ) for Z e
N>O

with N running over positive semi-integral n x n matrices. If n 1, we have the
simple relation

2pa(N) a(pN)

for p]xN a prime. For n > 2 we only have this asymptotically.

PROPOSIXION 1.1. Let Trf 2for f a Siegel cusp form of degree n > 2. Then
for M a positive semi-integral n x n matrix

(1.4) 2pa(M) a(pM) << (det M)k/2pnk/2-1

as p --. c through primes. Here, the implied constant depends only on f.
Proof. It is convenient to use the language of matrix residue classes. For

D e Matn(Z) the symmetric residue classes (mod D) are elements of the quotient
group o s’o/, where

z]o {B e Mat(Z); BD DB}

and {B e o; B SD for some S tS e Mat.(Z)}. Thus, we write B1
B2(mod D) if Bx B2 SD for some S tS.

LEMMAI.2. Asetof representatives forF\F,isgivenby( BD),whereDruns
over a fixed set of left nonassociated (with respect to GL.(Z)) right divisors of
m m 1 n, A mD-, and B runs over representatives of lo.

Proof. For completeness we will provide a proof of this standard result. There

isaa=
C D

eFsuchthattrp= forpeF,.If
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then A1A A’, C1A 0, A1B + BD B’, and CB + DD D’. This implies that
C 0 since det A 0; so

A’ A1A and D’ DxD

withtAID=l.,andhenceA,DxeGL,(Z).AlsotDxB=tBxD;so( DB) is

uniquely determined up to GL.(Z) association and symmetric residue classes.
In view of this lemma, (1.3), and (1.1), we may write, for a nk 1/2n(n + 1) and

meZ+,

Tmf(Z) m (det D)-k f((mtD-Z + B)D-)
Dim B(modD)

m a(N) (det O)-ke(tr mD-N’D-Z) e(tr NBD-1)
N>O Dim B(modD)

where the sums are over appropriate D and B. Thus, the coefficient of e(tr MZ) in
T f(Z) is

a(mM)+O(mDIm (detD)-a(m-DM’D)#l)
D#m

since #,m m(1/2)n(n+ )" Using the Hecke-type bound (see [Rag, p. 450])

a(N) (det N)/2

we get, since 2ma(M) is also the coefficient of e(tr MZ) in Tmf(Z), that

2ma(M a(mM) (det M)/2mn/2-nCn+)/2 #1o
Dim
Dm

for any m 6 Z+.
Now for m p we have from Lemma 1.2 that

DIp

as before, so that in fact

E #D << p(1/2)n(n+l)-1

Thus, the estimate (1.4) follows.
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By means ofProposition 1.1 and estimates for a(pM), we can thus derive estimates
for 2p, provided a(M) :/: O. As we shall see, even the error term p,k/2-x in (1.4), which
is the limitation of the Fourier coefficient method as outlined here, is superceded
by the techniques of this paper when n > 3. (It should be noticed, however, that
estimates for general Fourier coefficients cannot be obtained from those for 2p,
which only control the growth of these coefficients along scalar multiples of a fixed
positive matrix.)
The Rankin-Selberg method gives the best known bound for a(N) when n > 2 in

terms of det S (see [BR] and [Fo]):

(1.5) a(N) << (det N)k/2-o-+

where 6- 2n + 4[n/2] + 2 + 2/(n + 1) with [a] integral part of a. From (1.4)
and (1.5) we deduce by choosing M with a(M) :/: 0 that

(1.6) 2p << p,,k/2-,,a.+

where n6,, 1/4 as n c. In Corollary 4.3(a) below, it is proved that, if n > 1, then

(1.7) 12v] 2npnk/2-n(n+l)/12,

which is clearly much stronger than (1.6) for all n > 1. When n 2, (1.7) is essentially
the same as that which follows from Kitaoka’s [Ki-I improvement of (1.5) gotten by
the method of Poincar6 series and Kloosterman sums, namely,

a(N) << (det N)k/2-/4+

However, for n 2r, r > 1, (1.7) is improved in Corollary 4.3(b) below to

(1.8) I1 < 2"P"k/2-’’+)/8,

and when n 2, in Corollary 4.5 to

(1.9) I1 < 4Pk-x.

Without further assumptions, the exponent k- 1 in (1.9) cannot be improved
since for f in the Maass space we have by the Saito-Kurokawa correspondence (see
[EZ, p. 79] and reference there) that

/]’t =Ct + pk-1 + pk-2

where ,>x c,,e(nz) is a normalized Hecke eigenform of weight 2k 2 for SL2(Z).
Thus, 2p pk-X + O(pk-3/2). It has been conjectured (see [Kur]) that for f not in
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the Maass space

holds, this being the Ramanujan conjecture for cusp forms of degree two.

2. From classical to adelic. In this section we reinterpret the Hecke operator To
in terms of representation theory of the symplectic group with coefficients in the
p-adic numbers Q,. In 3 we use this reinterpretation to get a bound on 2, in terms
of the asymptotics of matrix coefficients of representations. Most of this material,
especially the first few lemmas, is known to experts. But since it is essential for our
main results, we have given a fairly detailed account.

Let G GSp2., G+ (R) the connected component of G(R), F Sp2.(Z) as in 1.
Let A be the ring of adeles [W] of Q. For a finite prime p let Qp be the p-adic
numbers, Zp the ring of p-adie integers, and K G(Z,). Let K: be the product of
all K, p finite. Using strong approximation [Kn] for Sp2. and the fact that Z is a
principal ideal domain, one obtains

(2.1) G(A) G(Q)G+(R)K:.

We observe that G+ (R)K: is an open subgroup of G(A) and that G(Q) c G+ (R)K:
F.
Suppose f is a Siegel cusp form ofweight k with respect to F. We define a function

by on G(A) as follows. Write 9 G(A) as O 9(R)x according to (2.1). Then set

(2.2) f(g) f(goo(i))"J(goo, i)-’.

Here, means /-1 times the identity matrix. Note that : is a function on
G(Q)\G(A) which is right invariant under Ky and the center of G(A).

LEMMA 2.1. Leta(p)=(1"0 pl.O) whichwecnsiderasanelementfG(Q)r
G(Qp). If {y} is a set of coset representatives for F\F, (see 1), then {p. y-l} is a set

of coset representatives for Kpa(p)K,/Kp.

Proof. Ify a(p, /with ,/F, then py-1 -I(Pl0 O). -1 which is
In/

clearly in Koa(p)Ko. If pyl =_ p.yl(mod K,), then y2yi-1 K,. We have y2yi-1 6
SP2n(Q), and all the entries of ’2y-I are of the form tip with Z, c 0, or 1. The
condition ,2y-1 K, insures that tip Z. Hence, ,2,-1 F, l"q ’2. This shows
that the natural map y v--, p. -1 from F\F, to Koa(p)Kp/Ko is injective.

Let kla(p)k2 represent a right Ko-coset. We may assume kl Sp2,(Z,) and
k2 1. Let kl be the image of kl in SP2n(Zp/pZp)._= SP2n(Z/pZ). Standard approxi-
mation results let us choose 1 F with Yl kl. Then -lk 12.(rood p) and
a(p)-; k a(p) e K,. It follows that the above map from F\F to K,a(p)K,/K, is
also surjective. Q.E.D.
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COROLLARY 2.2. Let (p) be the operator on functions on G(Q)\G(A) defined by
convolution on the ritht by the characteristic function of the double coset X,
K,a(p)K,. Then, (p)b b, chx, where chx is the characteristic function of a set
X and Haar measure is normalized to have Vol(K,) 1. We have

(2.3) p.k/2-,(.+1)/2

Proof. We calculate T(p)bs(g) for g G(A).
By formula (2.1) we may assume g G/ (R).
Let {7} be a set of coset representatives for F\Fp. By the above lemma the set

{ p,-1 } represents the cosets Kpa(p)K/K. Let (p7-1) be the element of G(A) which
is equal to pT- at the pth component and 1 elsewhere. Since g G/ (R), we have
g(p-l) (p- )pg. Hence,

(p)y(g)-- 6((P?-)" g).

But (p7-1), p/-" (P/-)oo" k with k K. (see (2.1)). Hence,

f((P-)og(i))j((P-?)oo#, i)-k.

Write g(i) z. Since j is a factor of automorphy, we have

j((p-l)oot, i) J((P-T)oo, z).j(#, i)

j(p-1, y(z))j(, z)j(g, i).

Of course, j(p-, (z)) 1. Hence,

’(P)6(g) E f((z))j(, z)-kj(g, i)-k

fir(z)’j(g, i)-k.
r\r

Comparing this with (2.2) and the definition of Tp (1.3), we obtain (2.3). Q.E.D.

Now assume the function by defined by (2.2) generates an irreducible automorphic
cuspidal representation zr (R)% of G(A). (We refer to [B-i for basic terminology
concerning automorphic representations.) For each finite p the representation rr, is
spherical with respect to Kp; that is, it admits a nonzero vector invariant under K.
In fact, one checks using (2.1) and the F-invariance off that b- is K,-invariant for
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all p. Let A be the group of diagonal elements in G. Then r, is determined by (the
Weyl group orbit of) an unramified character Z of A(Qp) (see [Sa]). We will call ;t,
or rather its orbit under the Weyl group, the Satake parameter of z,. Let tI) chxp
where X, Ka(p)K, as in Corollary 2.2.

LEMMA 2.3.
scalar

The operator (0) acts in the space of K-fixed vectors of np by the

(2.4) , p.t.+x)/4.
a.S

where

S {a diag(at,..., a,, pa-[t,..., pa2t)las 1 or p}.

Proof. Let P be the Borel subgroup of G consisting of matrices of the form

where a is an n x n upper triangular matrix, and b, d are whatever they must be.
Thus, A

_
P. Let B be the Iwahori subgroup (see [I-I) compatible with the choice

of P, so that P(Zp)
_

B. Let W be the Weyl group for (A, G). Then

(2.5) K,= J P(Z,)wB.

(We choose representatives ofw W in Kp.) One checks by an easy calculation that
a(p)-t Ba(p)

_
Kp. Hence, (2.5) implies

(2.6) Kt,a(p)K,= P(Z,)w(a(p))K,

where w(a(p)) wa(p)w-t. (Identify w with an element of Kp.)
Let us describe the Weyl group I4’ in detail. Write a typical element of A as

a

bl

where albl a2b2 a,,b,,. Let S, be the symmetric group on n letters. Then
S, acts on A by permuting the coordinates at, a,. Note that since albt
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a2b2 ""--a,b,, each s S. will also permute the coordinates bl b, via the
same permutation. Now S., acting on A via the above manner, is a subgroup of W.
For 1, 2, n, let tr be the automorphism of A which interchanges at and bi,

while leaving the other coordinates fixed. Let R, be the group generated by
1 < < n. Then R, is of order 2" and is another subgroup of W. In fact, W itself is
the semidirect product of R, and S,.
The stabilizer of a(p) in W (or more accurately, the stabilizer in W of the class of

a(p) in A(Qp)/A(Zp))is nothing but S.. Since W R.S., (2.6) gives

(2.7) K,a(p)K= ) P(Z,)w(a(p))K.
wR

This is now a disjoint union. From our description of R,, it is clear that the w(a(p))’s
here are precisely the elements of S in (2.4).
We will show below that

Vol P(Z)w(a(p))Kp p,t,+x)/4.6(w(a(p)))-/2

where 6 is the Jacobian for the adjoint action of A on the unipotent radical of P.
The representation n is the unique irreducible spherical subquotient of the

induced representation ,,,,,t’--t,.)o,), (see [C]). Here, lnd refers to unitary, or normal-
ized, induction. Let br, x be the Kp-invariant function in the space of this induced
representation, normalized so that br, x(1 1. Then

dx
pa(p)Kp

(2.9) p"t"+x)/4Z(w(a(p))
wR

by (2.7) and (2.8). This is of course equivalent to (2.4). Q.E.D.

Proof of (2.8) Let N be the unipotent radical of P and write a w(a(p)). We
claim that the map n - na gives rise to a bijection between N(Z)/N(Z)
aN(Z)a- and P(Z)aKp/K. It is clear that the map is well defined and injec-
tive. To see that it is also surjective, observe that P(Zp)= N(Z)A(Z) and hence
P(Zp)aK N(Z)aK. The claim follows. Thus, the volume of P(Zp)aK is equal
to the index [N(Z): N(Z) aN(Z)a- ]. Let A, be the set of roots of A in (the Lie
algebra of) N. For each root A, there is a one-dimensional subgroup N,

_
N,

and we have N I-/,a.N,, the product being taken in any fixed order. See
Steinberg [St] for these facts.

Thus, we have N(Zp)-- H, ea,, N,(Z)and

EN(Z,): N(Z) aN(Zp)a-I ] I-I EN,(Z,)" N,(Z,) aN(Zp)a-1].
tA
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Let I’1 denote the normalized p-adic norm [W]. One checks easily that

lz(a)1-1,[N(Z,): N(Z,) c aN,(Z,)a-x ]
I. 1,

ifl(a)l < 1
otherwise.

It follows that the volume of P(Z,)aK, is equal to (HteAn(a)Icz(a)])-x, where An(a) --.
An is the set of A, with Im(a)l < 1.

If a typical element of A is written as

a

bl

as before, then the roots in An are given by aa], 1 < < j < n, and abfx, 1 < <.
j < n. Now write a a’. a" with

an-1

bl

a

1
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We will also identify a’ with the element

an-1

bl

of GSP2tn_l). We have

1--I ’(a)’-1= I-I ’(a)l-l"( ’aial’-1)’( ,_<l-[. la,b-ll-1)A.(a) A. l(a’)
lail < la,,I la, < Ibnl

Since a w(a(p)) S, we have ai or p, aib p for all i. From this one finds
easily that

( <n ’aial[-1)’( -<,,. ’aibfl’-l) ’al "’’anl-l"
lail<la,d la I<lb

Hence,

I-I I(a)l -x =( I-I
An(a) An- l(a’) I(a)l-) la...anl -x

Using induction on n, we obtain

I-I I(a)l -x (laxt" laa21.., lax.., al)-x

(lalln.la2ln-1...lanl)-1

On the other hand, using ab p, we have

(/<j)-1/2 ( )-1/2pntn+t)/4. (a)-l/2 pntn+l)/4, la,afl I-I la,bfl

n in-1 1)-1(lal "la2 ...lanl

This proves (2.8).

3. Hecke eigenvalues and matrix coefficients.
G(Qp); similar notations apply to subgroups of G.

In this section we write G for
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Consider a number r, < r < o. We say that an admissible representation r of
G with unitary central character has L matrix coefficients if, for every pair ofsmooth
vectors u, v in the space of r, one has

I((a)u, v)l da <
/z

(Here, Z denotes the center of G.)
Let r be an irreducible spherical representation of G with Satake parameter

:t as above (see [Sa] ). We write for ( 0 )Pa-
where a is the nx n matrix

a diag(al,..., an) with ai Qp.
LEMMA 3.1. Let 1 < r < o and suppose rc has L matrix coefficients. Then for

any gt S as in (2.4) we have

(3.1) I:()1 < p(1-2/r)ttl/4)ntn+l)].

Proof. To prepare for the proof, we introduce some notations. Let A be the set
of simple roots determined by the choice of P. Set

A- {a a I(a)l 1 for all A}.

Let r be an admissible representation of G with unitary central character. Let V be
the space of r. Let Vs be its Jacquet module [C] with respect to N. Following
Harish-Chandra, we call a character of A a P-exponent for r if it occurs as a
subquotient of Vs. From Casselman [C, 4] we may deduce the following (see
[C, Corollary 4.4.5] and the proof of [C, Theorem 4.4.5]).

LEMMA 3.2. If has L matrix coefficients, then for every P-exponent # one has

for all a A-\ZA(Z).

Let zr and its Satake parameter be as before. Replacing Z by co(;0, w W, if
necessary, we may assume that ;t is in the negative Weyl chamber. That is, Iz(a)l > 1
for all a A-. The relation between r and its Satake parameter is that r is the
subquotient of Indg;( containing the K,-fixed vector. We claim that, with ;t as
specified, rr is a subrepresentation of Indg7.. To see this, we appeal to the Langlands
classification [Si]. This implies that we may realize n as a subrepresentation of
Indg, rl where P1 - P is a suitable parabolic subgroup, with Levi decomposition
Px M1N1, and rl - tr (R) v where tr is a tempered representation ofM and v is a
positive-valued quasi character ofM1 whose restriction to A is in the negative Weyl
chamber. Frobenius reciprocity [C-I says that for r to be a subrepresentation of
Ind,r, the representation r must also be spherical. Hence, tr is also spherical,
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and since it is tempered, it is the unique irreducible spherical subrepresentation of

lnd’ulT.x for a suitable unramified unitary character Zx of A. Thus, rc is a sub-
representation of Ind’;t1 (R) v. Hence, ;tl (R) v is also a Satake parameter for r; that
is, and ;t (R) v are in the same W-orbit. But I1 and I; (R) vl v are both in the
negative Weyl chamber; so they must be equal. It follows easily (see [Bk], 3.3,
Prop. 1) that g and (R) v are conjugate by an element of W c M. Therefore,
Indt2lVt,7. is equivalent to Ind’ivtZ (R) v (both being unitary), so that rc is also a
subrepresentation of Indz.

Let (r0N denote the Jacquet module of t (see [C]). By Frobenius reciprocity (see
[C, Theorem 2.4.1]) we obtain

Homa((rc)N, Z61/2) - HomG(rc, Indgz) :/: O.

Thus, ZI 1/2 is a P-exponent of n, and we have by Lemma 3.2

(3.2) IZbx/2-’/’(a)l < 1, (a A- \ZA(Zp)).

(; 0)Write a typical element of A as
ba_

with a diag(a,..., a,), b 6 Q.
Write z() lax I lanl"" Ibl, with v s C, s C. The v and s are defined modulo
2hi/log(p); in particular, the real parts Re v and Re s are well defined. Since the
restriction of Z to Z is unitary, we have

(3.3) Re(s) -- Re(vl + ""+ v,).
z

Having ;t in the negative Weyl chamber means

(3.4) Re(vx) < Re(v2) < < Re(v,) < O.

Taking a (P 0)p-aI, A- in (3.2), we obtain

(3.5) -Re(vx +...+v,)<(1 _).n(n+2 1)

Now let S as in (2.4). Then ai 1 or p, and we get

By (3.3)-(3.5) we obtain

Iz(a)l p-Re(v, +...+v,,) p-Re(s)

Iz(a)l <

as required. This concludes the proof of Lemma 3.1.
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Now let f be a Siegel cusp form of weight k with respect to F SP2n(Z and
assume that the function bs generates the irreducible representation n (R)np. Let
2, be the eigenvalue of T on f. From (2.3), (2.4), and Lemma 3.1, we obtain the
following corollary.

COROLLARY 3.3. If has L matrix coefficients, then

(3.6) I;tl < 2"" p.k/2-.(.+x)/2r.

4. Estimates of matrix coefficients. In this section ve let F be a local field
of characteristic other than 2. Let W F2n be endowed with a nondegenerate
symplectic form and let Sp(W) be the corresponding group of isometries. For each
integer with 1 < < n, we fix once for all a nondegenerate subspace W W of
dimension 21 and let Sp(Wt) be the corresponding symplectic group. Then Sp(Wt)

_
Sp(W). In order to use some inductive arguments from [H1], we must also consider
Sp(W), the metaplectic two-fold cover of Sp(W). Henceforth, we will consider
representations of Sp(W) as being re_presentations of Sp(W) trivial on the two-
element kernel of the covering map Sp(W) Sp(W). For 1 < < n let p(Wt) be
the inverse image of Sp(Wt) n Sp(W).

Let p be a unitary representation of S"(W.). We recall from [HI] the notion of
rank of p. Consider the unipotent subgroup N of Sp(W) consisting of matrices of
the form

(4.1) n(b)
1.

where b is a symmetric n x n matrix with entries in F. It is well known that N can
be uniquely lifted to a subgroup of S"(W), which we again denote by N. The
correspondence b n(b) identifies N with the additive group of n x n symmetric
matrices. Fix a nontrivial character 4 of F. The Pontrjagin dual N of N is also
identified with the group of n x n symmetric matrices: to each such matrix fl we
associate the character ,a defined by

(4.2) a(n(b)) (tr(fl. b)).

Here, tr denotes the trace of a matrix. Now the restriction of p to N is decomposed
into a direct integral over/; such a decomposition is determined by a projection-
valued measure on/. We call this measure the spectral measure of pIN. Following
[HIl, we will say that p has N-rank r if the spectral measure of pIN is supported
on the set of matrices of rank > r but not (entirely) supported on the set of matrices
ofrank > r. We say that/9 has pure rank r if the spectral measure ofpIN is supported
on a subset of the set of matrices of rank r.

Recall also that p is said to be strongly L if, for a dense set of vectors in the
(Hilbert) space of p, the associated matrix coefficients are in L(Sp(W)). The repre-
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sentation p is strongly Lp+ if it is strongly U" for any p’ > p. If p is admissible and
strongly L, then one checks easily that matrix coefficients associated to smooth
vectors are all in L(Sp(W,)).

LEMMA 4.1. Let l< n. If Pltw,) is stronolY L+, where p < 2k, k a positive
inteoer, then p itself is stronoly Lq+, where q 2k([n/l] + 1). Here, Ix] denotes the
laroest inteoer not 9reater than x.

Proof. This follows immediately from Proposition 8.3 of [H1] and the corollary
on page 108 of [CHH].

LEMMA 4.2. Suppose divides n. Then we can take q 2kn/l in Lemma 4.1.

Proof. This follows from the remark after the proofofProposition 8.3 in [H 1].

THEOREM 4.3. Let p be a unitary representation of p(l/V.)(n > 1) of pure rank n.
Then

(a) /f n :/: 1, 2, 4, then p is strongly L6+e;
(b) /f n 2, 4, then p is strongly La+.
Proof. We use induction. Suppose it has been proven for P(Wm) with 2 <

rn < n. Choose an integer with 1 < < n. By Corollary 2.13 of [H1], P ltw,) is a
finite sum of representations of the form tr (R) z, where cr is of pure rank and z is an
(n -/)-fold tensor power ofthe oscillator representation. By induction, tr is strongly
Ltt)+ where

/=1

p(1) 8, l= 2, 4
6, otherwise.

One can directly estimate matrix coefficients of the oscillator representation, to
conclude that z is strongly L4/"-)+ (see [H1, Proposition 8.1]). Thus, tr (R) z, and
hence P ltw,) is strongly Lr+ with

+ 4l
r(/).

(We use the Jordan-H61der inequality.)
Assume first n > 12. We choose l> 5. Then r(1)= 121/(3n- l). To get q

2k([n/l] + 1) < 6 in Lemma 4.1, we need n/l < 3 and k 1. Thus, 121/(3n l) < 2.
Hence, the conditions on are

n 3- < <-n, 1> 5.

Such an integer always exists since n > 12. Thus, the theorem will follow once we
prove it for 2 < n < 11. But this can be proved in the same way as for n > 12, by
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choosing appropriate I. In the case divides n we use Lemma 4.2 instead. The proof
is indicated by the following table.

n 2 3 4 5 6 7 8 9 11

2 2 2 3 3 3 4

Lemma Used 4.2 4.2 4.2 4.1 4.2 4.1 4.1 4.2 4.1

PROPOSITION 4.4. Assume F : C. Suppose n 2r(r > 1) and p is a representation
of Sp(W) (not S’(W)) of pure rank n. Then p is strongly L4+.

Proof. Throughout, we consider p as a representation of Sp(W). First, consider
the case n 2. By Corollary 2.12 of [H1], Plptrvl) is a finite sum of representations
of the form tr (R) co, where co is an oscillator representation of Sp(W1) L(2) and
tr is a representation of’L(2) ofpure rank 1. Since p factors through Sp(W2), Pltrv)
must factor through Sp(W1). But it is well known that under 09 the kernel of the
covering p(W) --* Sp(W) acts by its unique nontrivial character. The same therefore
must be true for tr; i.e., tr is a genuine representation [G] of S"(WI). It is well known,
and easy to see, that any irreducible, genuine, unitary representation of S’(W) is
strongly L4+. In fact, the genuine, irreducible unitary representation ofS"(W) with
slowest decay of matrix coefficients is a piece of the oscillator representation. Thus
a, which is a direct integral of irreducibles, must also be strongly L’+. It follows
then that Pltwl) is strongly L2+; i.e., it is tempered. Applying Lemma 4.2, we see
that/9 itself is strongly L4+.
For general n 2r(r > 1) we apply Lemma 4.2 with 2’-1. From Corollary

2.12 of [H1], we see Plptw0 is a finite sum of representations tr (R) z with r a unitary
representation of Sp(Wt) of pure rank and z an/-fold tensor product of oscillator
representations. Since 2’- is even, z factors through Sp(W). Since p is a repre-
sentation of Sp(W), tr must also factor through Sp(WI). Hence, we may assume tr to
be strongly L’+ by induction. But then Lemma 4.2 shows that p is strongly L4+.

Remark. It is expected that every unitary representation of p(W2) of pure rank
2 is strongly L’+’. Given this, the arguments above show that the representation p in
Theorem 4.3 is L6+ even for n 2, 4; and in Proposition 4.4, p can be any unitary
representation of S"(W,) of pure rank n- 2 (not necessarily factoring through
Sp(W)).

COROLLARY 4.5. Let p be any unitary representation of Sp(W) (n > 1) of pure
rank n. Then

(a) p is strongly L6+e;
(b) /f n 2(r > 1), then p is strongly L+.
Proof. This follows trivially from Theorem 4.3 and Proposition 4.4.

Remark. There is no reason to think the cases n 2 singled out in part (b) of
Corollary 4.5 are in fact different from general n; the discrepancy between parts (a)
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and (b) seems to be purely an artifact of our method of proof. Thus, one expects
that a representation p of Sp(W) of pure rank n should be L4/ for any n. Knowing
this would give rise to corresponding improvements in Proposition 5.2, Corollary
5.3, and Proposition 5.6.

5. Conclusions and complements. We now come back to the setting of 2.
Because of the close relationship between G GSp2, and Sp2,, Corollary 4.5
obviously implies the following proposition.

PROPOSITION 5.1. Let p be a place of Q. Let p be a unitary representation of G(Qp)
of pure rank n. We allow p with Q R. Then

(a) /f n > 1, then p is strongly L6+e;
(b) /f n 2r, r > 1 then p is strongly L+.
PROPOSITION 5.2. Let @% be any irreducible automorphic cuspidal represen-

tation of G(A) (not necessarily coming from a classical Siegel cusp form).
(a) If n > l, then each local component zp has L6+e matrix coefficients.
(b) If n 2, r > 1, then each local component rc, has L+ matrix coefficients.

Proof. Let N be the unipotent subgroup of G consisting of elements of the form
(4.1) but now considered to be defined over Q. The Pointrjagin dual of N(Q)\N(A)
can be identified with the set of n x n symmetric matrices fl with entries in Q (see
(4.2)). Let f be a nonzero smooth function in the space of r. For each fixed g 6 G(A)
the function n f(ng) is defined on N(Q)\N(A), and is of course smooth. Hence,
it has a Fourier expansion of the form

where fl runs through the set of n n symmetric matrices with entries in Q. Since
rt is cuspidal, the main result of [L2-1 says that there is at least one fl of full rank n,
for which the corresponding Fourier coefficient fa(g) is nonzero. By Lemma 2.4 of
[H3], this implies that each component % is of pure rank n. Now use Proposition
5.1.

Remark. This proposition is valid for any number field (instead of Q).

Combining Proposition 5.2 with Corollary 3.3, we obtain the following corollary.

COROLLARY 5.3. Let f be a Siegel cusp form of weight k as in 2. Assume that it
is an eigenform under the Hecke operator Tp, with eigenvalue 2.

(a) If n > 1, then

2"" pnk/2-n(n+l)/12.

(b) If n 2", r > 1, then
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For n 2’ our estimate of matrix coefficients for cusp forms is essentially sharp
(see Example 5.8 below), but the estimate for the Hecke eigenvalue 2, can be
improved somewhat, at least for n 2.

Let A be the group of diagonal elements as in 2. Let E be the set of roots of A
in G. We use other notations as in 2. Let p be a finite prime. For each E we let
a be the corresponding coroot and set a, a(p) A(Qp). Of course, a, ought to be
considered a class in A(Qp)/A(Z).
PRoposmon 5.4. Let n 2. Let p be an irreducible, spherical unitary representa-

tion of G(Q,) which is not one-dimensional. Let ;t be the Satake parameter for p (see
2). Then

(5.1) I;t(a)l < P for any E.

Proof. This may be seen by inspection of the classification of the unramified
unitary dual of G(Q) given by Rodier; see JR, 7.2].

Note that the representation p in the above Proposition is necessarily of rank 2
since by I-H 1], any (irreducible unitary) representation of G(Q,) of rank 0 must be
one-dimensional, and any representation of rank must be a component of the
oscillator representation which can only live on the metaplectic cover of G(Q,).
COROLLARY 5.5. Let n 2 and f a Siegel cusp form of weight k and eigenvalues

2. Then

I,} < 4pk-1

Proof. As in the proof of Lemma 3.1, we write a typical element of A as
diag(al, a,.,a-{b, aib). Write ;t()= lalVlla,.IV21b] and assume Z is in the

negative Weyl chamber. For any S as in Lemma 2.3, we have by (3.4) and (3.5)

I,(t)l

__
p-(1/2)Re(v+v2).

For the root given by () ala2b-, we have a diag(p, p, p-, p-), and (5.1)
gives p-1/9 < p. Hence, I;()1 < p/2 for each e S. This together with (2.3) and
(2.4) gives the result as claimed.

PROPOSITIOn 5.6. Let n (R)n be any irreducible automorphic cuspidal represen-
tation of Sp2n(A). Let S be a finite set of places outside of which the representations

n are unramified. Let

(5.2) 70 I-I

be the partial Langlands L-function attached to the (2n + 1)-dimensional representa-
tion of r’G (see i,B]).

(a) The Euler product (5.2) is absolutely convergent for Re(s) > n + 1.
(b) If n 2r, r > 1, then (5.2) is absolutely convergent for Re(s) > n/2 + 1.
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Proof. Assume p S. Let us review the definition of L(s, %). Let A, P be as in
2-4, and A 1, P1 their intersections with Sp2,. The representation % is determined
by an unramified character Z of A. Write ;t as

then

al

a

(5.3) L(s, %) (1 p-S)-1 ii I-(1 p-S-v,)(1 p-+’)-1-1
i=1

Now suppose % has L matrix coefficients. We may assume that ;t is in the
negative Weyl chamber, so that

Re(vl) <’" < Re(vn) < O.

By the obvious analogue of formula (3.2), we obtain

(5.4) Ix6/-/’(a)l < 1 (a A- A (Z))

where A-=AlC3A-. Taking a =)
find

0_l)
with 6 diao(p, 1,..., 1) in (5.4), we

(5.5) IRe(v)l <(1-)n, i= 1, 2,..., n.

Hence, we have the following lemma.

LEMMA 5.7. If all %, p q S, have L matrix coefficients, then LS(z, s) converges for
Re(s) > (1 2/r)n + 1.

Now the proposition follows from Proposition 5.2.

Example 5.8. Assume that n is even. Let On be an orthogonal group associated
to a nondegenerate quadratic form in n variables. Let tr (R)try, be a one-dimensional
automorphic representation of On(A) which is trivial on SOn(A). Assume that On(R)
is compact and troo is nontrivial. Then tr can be theta lifted to a nontrivial cuspidal
automorphic representation r O(a) of Sp2n(A) (see I-HPS] for the case n 2). Let
S be the finite set of places of Q such that at p S, On is unramified and try, is trivial.
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Then % O(a)p is spherical. Let Zp be the Satake parameter for %. From work of
Rallis JR-I, one has

(5.6)
a

Inlal lazl 2 lan/2ln/2 lan/2+l la.-l "v(a...an)

where v is the unique unramified quadratic character of Q if On is nonsplit over
Qp and is trivial otherwise.
From this it follows that, for p S, np is L4+ but not L4, and LS(n, s) converges

absolutely for Re(s) > n/2 + but not for Re(s) n/2 + 1. Thus, for n 2 the
estimates of Proposition 5.2 and 5.6 are sharp. From (5.6) we can also see that the
estimate of Corollary 5.5 is sharp.

Finally, let n (R)% be a unitary automorphic representation of SP2n(A) (or
GSp2n(A)) which is singular in the sense of Maass [M-I. Then there is an even integer
< n so that each component np is of rank in the sense of [H1] (see [H3]). By
Howe I-H2] and Li ILl], there must be an orthogonal group Ol in variables, and an
irreducible unitary representation % of O(Qp) for each p, such that np is the local
theta lift of %. If n, is spherical (p finite), then the Satake parameter of n, is related
to that of % given by a formula of Rallis [R]. From that we obtain (we omit the
routine details of proof) the following proposition.

PROPOSITION 5.9.
matrix coefficients.

Suppose r is singular of rank < n. Then each has L4n/l+"

PROPOSITION 5.10. Suppose f is a Siegel modular form of weight k < n/2 (hence
singular of rank 2k < n by [H3]) which is an eigenvector for the Hecke operators T
with eigenvalues 2. Then

Il 2n" pk(n-x)/4.

Remark. In Proposition 5.9, if > 2n/3, then 4nil < 6, so that we can establish
stronger decay of matrix coefficients for singular representations of rank in the
range 2n/3 < < n than for representations of rank n. This anomalous situation is
further evidence that Corollary 4.5 is not optimal and that we should expect matrix
coefficients in L4+e for any representation of Sp(W.) of pure rank n. This would give
us corresponding better estimates on the 2p for cusp forms.
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