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1. Introduction

Some of Ramanujan’s original discoveries about hypergeometric
functions and their relation to modular integrals, especially Eisen-
stein series of negative weight, are still not very well understood. These
discoveries take the form of identities that he recorded, without proof,
as entries in his notebooks.∗ In the following sections I will introduce
some of these entries, discuss their status, give new proofs of several
of them and also provide new results of a similar nature.

2. Infinite series

Roughly one hundred years ago, Ramanujan recorded the fol-
lowing identity in his first notebook:

∑
n≥1

n odd

1

n2(e
ny
2 + e−

ny
2 )

=

√
x

4

1 + (2
3
)2 x + (2·4

3·5)
2 x2 + (2·4·6

3·5·7)
2 x3 + . . .

1 + (1
2
)2 x + (1·3

2·4)
2 x2 + (1·3·5

2·4·6)
2 x3 + . . .

.

Here it is understood that for 0 < x < 1,

y = π
1 + (1

2
)2 (1− x) + (1·3

2·4)
2 (1− x)2 + . . .

1 + (1
2
)2 x + (1·3

2·4)
2 x2 + (1·3·5

2·4·6)
2 x3 + . . .

.

The basic meaning of this identity can be comprehended by anyone
familiar with infinite series. However, as Hardy observed, there is
always more in one of Ramanujan’s formulæ than meets the eye.

This identity really belongs to the theory of Jacobian elliptic func-
tions. In this theory a central role is played by Legendre’s complete

Research supported in part by NSF Grant DMS-0355564.
∗See the Notes at the end of the paper for references to the literature.
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elliptic integral of the first kind with modulus k:

K = K(k) =

∫ π/2

0

(1− k2 sin2 ϕ)−1/2dϕ.

Provided |k| < 1, it is easy to see that 2
π
K can be expressed as a

hypergeometric series†

2
π
K = F (k2) = 2F1(

1
2
, 1

2
; 1; k2) = 1 + (1

2
)2 k2 + (1·3

2·4)
2 k4 + . . . .

Following Jacobi, we set q = e−πK′/K , where K ′ = K(k′) and k′ =√
1− k2 is the complementary modulus. In terms of the theta con-

stants

ϑ2 =
∑

n∈Z
q(n+ 1

2
)2 , ϑ3 =

∑

n∈Z
qn2

and ϑ4 =
∑

n∈Z
(−1)nqn2

,

we have Jacobi’s fundamental relations

(2.1) k = (ϑ2/ϑ3)
2, k′ = (ϑ4/ϑ3)

2 and F (k2) = ϑ2
3.

Setting x = k2 and q = e−y, Ramanujan’s identity can be written

(2.2) 4
∑
n≥1

n odd

qn/2

n2(1 + qn)
=

k 3F2

(
1, 1, 1; 3

2
, 3

2
; k2

)

F (k2)
.

The left hand side is recognizable as the Fourier expansion of an
Eisenstein series, but of weight -1. The identity (2.2) should be com-
pared with two highlights of Jacobi’s Fundamenta Nova. The first is
an identity for an Eisenstein series of weight 1:

(2.3) 4
∑
n≥1

n odd

qn/2

1 + qn
= kF (k2).

Taken together with (2.1), this gives a formula for the number of
ways of representing an integer as the sum of two triangular num-
bers. The second is an identity for an Eisenstein series of weight 0:

(2.4) 4
∑
n≥1

n odd

(−1)
n−1

2 q
n
2

n(1 + qn)
= arcsin k.

†Generally we will use the following notation for hypergeometric series

m+1Fm(a1, . . . , am+1; b1, . . . , bm; z) =
∞∑

n=0

(a1)n...(am+1)n

(b1)n...(bm)n

zn

n! ,

where as usual (a)n = a(a + 1) · · · (a + n− 1) = Γ(a + n)/Γ(a).
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This gives a formula for the modular angle that, as Jacobi noted, can
be expressed most elegantly as

(2.5) 1
4
arcsin k = arctan(q1/2)− arctan(q3/2) + arctan(q5/2)− · · · .

While identities of this type for Eisenstein series with nonnega-
tive weights are well understood, those like Ramanujan’s in negative
weights are not. In this paper I will provide the following new ex-
ample of weight -2:

(2.6) 4
∑
n≥1

n odd

(−1)
n−1

2 q
n
2

n3(1 + qn)
=

kk′ 4F3

(
1, 1, 1, 1; 3

2
, 3

2
, 3

2
; 4k2k′2

)

3F2

(
1
2
, 1

2
, 1

2
; 1, 1; 4k2k′2

) ,

whose analogy with (2.2) is clear. Although he apparently did not
discover (2.6), Ramanujan attempted to determine the next case and
wrote in his first notebook a statement equivalent to the following:

(2.7) 4
∑
n≥1

n odd

qn/2

n4(1 + qn)
=

k + (2
3
)2

[
1 + (2

3
)2

{
1 + (1

2
)2

}]
k3 + . . .

F (k2)3
.

However, Ramanujan drew a very faint line through it and did not
record it in his second notebook; its status has remained unclear un-
til now. One can try to guess the rule for the formation of the coeffi-
cients, but already the coefficient 56

81
of k3 in the numerator is wrong.

Nevertheless, Ramanujan was not too far off; the correct formula
reads

4
∑
n≥1

n odd

qn/2

n4(1 + qn)
=

k + 76
81

k3 + · · ·+ ank
2n+1 + . . .

F (k2)3
(2.8)

where an = 1
4

n∑

`=0

(1)2`
( 3
2
)2`

∑̀
m=0

(m+1)2n−`

(m+ 1
2
)2n−`+1

.

This last example leads one to suspect that there probably cannot be
many more simple hypergeometric identities like (2.2) and (2.6), at
least essentially different ones.

As for proofs, Ramanujan did not reveal one for (2.2). It was
not until 1991 that a proof was published by Berndt. He deduced
it from another entry of Ramanujan from the second notebook that
evaluates certain iterated integrals involving hypergeometric series.
The proof uses the theory of second order nonhomogeneous differ-
ential equations and takes several pages of computation. A very
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short proof of (2.2) as well as a proof of (2.8), both based on con-
tinued fractions, are given in §4. Then (2.6) is proved in §5 by an ex-
tension of Berndt’s approach; it follows from a higher order version
of Ramanujan’s iterated integral. This approach seems to be more
general than that by continued fractions and also has applications
to the evaluation of integrals of cusp forms in terms of generalized
hypergeometric series.

3. Infinite products

Before turning to these proofs, consider the following remark-
able application Ramanujan found of (2.2), which appears in his lost
notebook:
{(

1−q1/2

1+q1/2

)(
1+q3/2

1−q3/2

)3(1−q5/2

1+q5/2

)5 · · ·
}log q {(

1−iq′
1+iq′

)(
1+iq′2
1−iq′2

)2(1−iq′3
1+iq′3

)3 · · ·
}2iπ

= exp
(

π2

4
− k 3F2(1,1,1; 3

2
, 3
2
;k2)

2F1( 1
2
, 1
2
;1;k2)

)
,(3.1)

where q = e−πK′/K and q′ = e−πK/K′ . A prototype from Jacobi’s
classical theory is
{(

1+iq1/2

1−iq1/2

)(
1−iq3/2

1+iq3/2

)(
1+iq5/2

1−iq5/2

) · · ·
}{(

1+iq′1/2

1−iq′1/2

)(
1−iq′3/2

1+iq′3/2

)(
1+iq′5/2

1−iq′5/2

) · · ·
}

= i,

which is a consequence of (2.5) and the obvious modular relation

arcsin k + arcsin k′ = π/2.

In 2003 Berndt, Chan and Zaharescu observed similarly that (3.1) fol-
lows from Ramanujan’s identity (2.2) together with the τ -derivative
of the modular relation

(3.2)
∑
n≥1

n odd

sec(πnτ
2

)n−2 = π2

8
− τ

∑
n≥1

χ(n) tan(πn
2τ

)n−2,

where q = eπiτ and χ(n) = (−1)(n−1)/2 for odd n, χ(n) = 0 otherwise.
They also gave a proof of (3.2) using a residue calculation.

It is interesting to note that at the end of his early paper On the
integral

∫ x

0
tan−1 t

t
dt, Ramanujan reveals his technique for obtaining

inversion formulas like (3.2) by proving the following:

π

4

∑
n≥1

sech πnx

n2
=

π3

8

(
1

3
+

x2

2

)
− πx

∑
m≥1

χ(m)

m2
coth mπ

2x
.(3.3)
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He starts with the identity π sech πx = 4
∑

m≥1
mχ(m)
m2+4x2 . This gives

π

4

∑
n≥1

sech πnx

n2
=

∑
m,n

mχ(m)

n2(m2 + 4n2x2)

=
∑
m≥1

χ(m)

m

∑
n≥1

(
1

n2
− 1

( m
2x

)2 + n2

)

=
π3

8

(
1

3
+

x2

2

)
− πx

∑
m≥1

χ(m)

m2
coth mπ

2x
,

upon using that π coth πx = 1
x

+ 2x
∑

n≥1
1

x2+n2 and the evaluations

L(1, χ) = π
4
, ζ(2) = π2

6
and L(3, χ) = π3

32

of the Dirichlet L-series L(s, χ) =
∑

m≥1 χ(m)m−s. Note that (3.2) fol-
lows easily by combining suitably the identity (3.3) at the arguments
x and x/2 and then taking x = iτ . It can also be proved directly by
the same method.

A standard calculation using the Lipschitz formula shows that

d2

dτ2

∑
n≥1

n odd

sec(πnτ
2

)n−2 = 1
2π

∑

m,n∈Z
n odd

χ(m)

(m + nτ)3
,

which is an Eisenstein series of weight 3. It can be seen that (3.2)
is simply the transformation of the modular integral of this Eisen-
stein series as τ 7→ −1/τ and as such is very well understood in a
much more general context. Still, it is of interest to observe that Ra-
manujan’s technique adapts well to more general situations and can
be used to prove many of the inversion formulas for the modular
integrals that appear in his notebooks. Another relevant example is
given by

(3.4)
∑
n≥1

χ(n) sec(πnτ
2

)n−3 = π3

32
(τ 2 + 1)− τ 2

∑
n≥1

χ(n) sec(πn
2τ

)n−3.

By taking two derivatives of this and combining with (2.6) we obtain
another identity like (3.1) but more complicated.
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4. Continued fractions

In Ramanujan’s first notebook we find a continued fraction that
is equivalent to the following:

(4.1)
4F

k

∑
n≥1

n odd

qn/2

(1 + qn)(zF 2 + n2)
=

1

z +
12

1 +
22k2

z +
32

1 +
42k2

z + . . .

,

where F = F (k2) = 2F1(
1
2
, 1

2
; 1; k2). He rediscovered this beautiful

result, which is due to Stieltjes in 1894. It is thus plausible that Ra-
manujan was aware that it provides a simple proof of (2.2). The even
part of the continued fraction is

(4.2)
1

z + 12−
1222k2

z + 22k2 + 32−
3242k2

z + 42k2 + 52−
5262k2

z + 62k2 + 72− · · ·
and this converges for z = 0 to

(4.3)
1

1−
(2

3
)2k2

1 + (2
3
)2k2−

(4
5
)2k2

1 + (4
5
)2k2−

(6
7
)2k2

1 + (6
7
)2k2− · · · .

An elementary identity of Euler gives for any complex numbers a1, . . . , an

that

(4.4) 1 +
n∑

`=1

a1a2 · · · a` =
1

1−
a1

1 + a1−
a2

1 + a2−
a3

1 + a3− · · ·
an

1 + an

.

It follows easily that the continued fraction in (4.3) equals

1 + (2
3
)2 k2 + (2·4

3·5)
2 k4 + · · · = 3F2(1, 1, 1; 3

2
, 3

2
; k2).

Thus (2.2) follows from (4.1). ¤

Many properties of a continued fraction of the form

f(z) =
1

z + b1−
a2

z + b2−
a3

z + b3− · · ·
are best understood through its relation to the infinite matrix

J =




b1 1 0 · · ·
a2 b2 1 · · ·
0 a3 b3 · · ·
... . . .


 .
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This is because, as was observed already by Sylvester,

(4.5) fn(z) =
1

z + b1−
a2

z + b2−
a3

z + b3− · · ·
an

z + bn

is the leading entry of the matrix (zI + Jn)−1, where

Jn =




b1 1 0 0 · · · 0
a2 b2 1 0 · · · 0
0 a3 b3 1 · · · 0
...
0 0 · · · an−1 bn−1 1
0 0 · · · 0 an bn




.

A convenient method for computing the power series at ∞ of f(z) is
to expand (zI + J)−1 in a geometric series to get formally

(4.6) f(z) = z−1

∞∑
m=0

(−1)m µm z−m,

where µm is the leading entry of Jm
n for any n > m/2 + 1. When

applied to f given by (4.2) using

J =




1 1 0 · · ·
1222k2 22k2 + 32 1 · · ·

0 3242k2 42k2 + 52 · · ·
... . . .


 ,

we get for the Eisenstein series of weight 2m + 1 the identity

(4.7)
∑
n≥1

n odd

n2mqn/2

1 + qn
= kµmF 2m+1,

after expanding the left hand side of (4.1) in a geometric series and
matching terms. This gives for m = 0 another proof of (2.3). In order
to obtain an expression for the Eisenstein series of negative weight
−2m− 1, we need to compute f (m)(0).

Returning to the general f , we have from (4.5) that for m ≥ 0

(−1)mf (m)
n (0)/m!

is the leading entry of J−m−1
n . Write dn = det Jn. Turnbull showed

that the ij-th entry of J−1
n can be expressed in terms of f by

(4.8) (−1)i+j di−1dj−1

a1 · · · aj

(fn(0)− fr(0)) , where r = max(i−1, j−1),
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when a1 = d0 = 1 and f0 = 0. It follows that

(4.9) −f ′n(0) = fn(0)2 +
n−1∑
j=1

d2
j

a1a2 . . . aj+1

(fn(0)− fj(0))2 .

Suppose now that cj 6= 0 and that fn(z) has the form

fn(z) =
1

z +

c1

1 +

c2

z +

c3

1 +

c4

z + · · ·
c2n−1

1

=
1

z + c1−
c1c2

z + c2 + c3−
c3c4

z + c4 + c5− · · ·
c2n−3c2n−2

z + c2n−2 + c2n−1

.

We have by (4.4) again that

fn(0) =
1

c1

+
c2

c1c3

+ · · ·+ c2c4 · · · c2n−2

c1c3 · · · c2n−1

.

Furthermore in this case dj = c1c3 · · · c2j−1, so Turnbull’s identity
(4.9) yields the explicit formula

(4.10) −f ′n(0) = fn(0)2 +
n−1∑
j=1

c1c3 · · · c2j−1

c2c4 . . . c2j

(fn(0)− fj(0))2 ,

where

fn(0)− fj(0) =
c2c4 · · · c2j

c1c3 · · · c2j+1

+ · · ·+ c2c4 · · · c2n−2

c1c3 · · · c2n−1

.

In order to prove (2.8) we apply (4.10) to the nth convergent of the
even part (4.2) of Stieltjes continued fraction and take the limit as
n →∞. This leads to the identity

4F 3

k

∑
n≥1

n odd

qn/2

n4(1 + qn)
=

∞∑

`=0

(
3
2

)2

`

(1)2
`

1

(2` + 1)2

[ ∞∑

n=`

(1)2
n

(3
2
)2
n

k2n−2`

]2

k2`.

After some manipulation this can be put into the form (2.8). ¤

Another continued fraction found by Ramanujan can be written

4

kk′
∑
n≥1

n odd

(−1)
n−1

2 q
n
2 n

(1 + qn)(zF 2 + n2)
(4.11)

=
1

z + (1− 2k2)−
22(1− 22)(kk′)2

z + 32(1− 2k2)−
42(1− 42)(kk′)2

z + 52(1− 2k2)− · · · .
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We will need below the following easy consequence of (4.11) and
(4.6):

(4.12) 4
∑
n≥1

n odd

(−1)
n−1

2 n3q
n
2

1 + qn
= kk′(1− 2k2) F 4.

Using Turnbull’s identity (4.9) as above on (4.11) together with (2.6)
gives an (apparently complicated) hypergeometric identity. It would
be interesting to derive (2.6) by proving this identity directly. How-
ever, I will proceed differently.

5. Iterated integrals

Ramanujan’s notebooks contain an unusual iterated integral in-
volving a general Gauss hypergeometric series

F (x) = 2F1(a, b; c; x).

Assuming that r > 1 this identity can be written‡

F (x)

∫ x

0

∫ u

0

tr−2F (t) dt du
ω(u)

= xr−c(1−x)1−d

(r−1)(r−c) 3F2

[
r−a,r−b,1
r,r−c+1 ; x

]
,(5.1)

where d = a + b− c + 1 and

ω(x) = ω(a, b, c; x) = xc(1− x)dF 2(x).

It seems likely that Ramanujan considered this to be an identity be-
tween power series. His method for deriving it is unknown. If we
assume that c = a + b + 1/2 we can give a three-fold version as well.
For r > 1 we have

F 2(x)

∫ x

0

∫ v

0

∫ u

0

tr−2F 2(t) dt du
ω(u)

dv
ω(v)

(5.2)

= xr+1−2c

(r−1)(r−c)(r−2c+1) 4F3

[
r−2a,r−2b,r−a−b,1

r,r−c+1,r−2c+2 ; x
]
,

where ω(x) = xc(1− x)1/2F 2(x).
In the special case c = 1, r = 3/2 and a = b = 1/2, (5.1) is

equivalent to (2.2). This is seen by making in both integrals vari-
able changes of the form y = πF (1− t)/F (t), for which dy

dt
= −ω(t)−1,

‡In this section the parameters a, b, c of F (x) may change and must be under-
stood from the context in which F (x) appears. We shall suppose for simplicity
that a, b > 0 and that 0 < c ≤ 1. As usual, the range of these parameters in an
identity can be extended by analytic continuation.
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and using the identity of Jacobi:

(5.3) 4
∑
n≥1

n odd

(−1)
n−1

2 n2q
n
2

1− qn
= k′2k F 3(k2).

Similarly, when a = b = 1/4, (5.2) is equivalent to (2.6). To see this,
make in each integral a change of variable of the form

t = 4k2k′2 = 4k2(1− k2),

for which
dt
dy

= −4k2k′2(1− 2k2)2F1(
1
2
, 1

2
; 1; k2) = −ω(4k2k′2),

after applying the Gauss quadratic transformation

(5.4) 2F1(
1
2
, 1

2
; 1; k2) = 2F1(

1
4
, 1

4
; 1; 4k2k′2) = F (4k2k′2).

Next execute the integrals using the identity

4
∑
n≥1

n odd

(−1)
n−1

2 n3q
n
2

1 + qn
= kk′(1− 2k2) F 4(4k2k′2),

which follows from (4.12) and (5.4). Finally, apply Clausen’s identity

(5.5) F 2(x) = 3F2

(
1
2
, 1

2
, 1

2
; 1, 1; x

)
.

Berndt was the first to provide a proof of Ramanujan’s formula
(5.1) and to use it to derive (2.2). We now indicate a generalization
and simplification of his proof of (5.1) that also gives a proof of (5.2),
hence (2.6). Recall that F solves the hypergeometric equation LF =
0, where

L = D2
x + c−(a+b+1)x

x(1−x)
Dx − ab

x(1−x)
,

which can also be written as

x(1− x)L = δ(δ + c− 1)− x(δ + a)(δ + b),

when δ = xDx. Taking x 7→ 1− x shows that

G(x) = Γ(a)Γ(b)
Γ(c)Γ(d) 2F1(a, b; d; 1− x)

is also a solution and a standard calculation on hypergeometric se-
ries shows that again

(5.6)
(

G(x)
F (x)

)′
= −ω(x)−1.
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For any nonnegative integer m let L(m) be the unique monic linear
differential operator of order m + 1 that satisfies L(m)F jGm−j = 0 for
each j = 0, . . . ,m. Further let

(5.7) Fm(x) = 1
m!

∫ x

0

(
G(t)
F (t)

− G(x)
F (x)

)m

tr−2Fm(t) dt.

It can be checked that

(5.8) (ω(x)Dx)
m+1Fm(x) = xc+r−2(1− x)dFm+2(x),

while for 0 ≤ ` ≤ m

(5.9) (ω(x)Dx)
`Fm(x)|x=0 = 0.

Since we have that

Fm(x)Fm(x) = 1
m!

∫ x

0

(G(t)F (x)−G(x)F (t))m tr−2 dt,

it also follows that

(5.10) L(m)FmFm = xr−mc−2(1− x)−md.

To prove (5.1), suppose that m = 1 and observe that it follows
from its power series expansion that

w = xr−1

(r−1)(r−c) 3F2

[
r−a,r−b,1
r,r−c+1 ; x

]

satisfies the nonhomogeneous hypergeometric equation

(δ(δ + 1− c)− x(δ + 1− a)(δ + 1− b)) w = xr−2.

Using this a calculation shows that

(5.11) L(x1−c(1− x)1−dw) = xr−c−2(1− x)−d.

From (5.8) we have that

F1(x) =

∫ x

0

∫ u

0

tr−2F (t) dt du
ω(u)

,

while by (5.10), L(FF1) = xr−c−2(1− x)−d, so from (5.11)

F1(x) = xr−c(1−x)1−d

(r−1)(r−c)F (x) 3F2

[
r−a,r−b,1
r,r−c+1 ; x

]
+ c1 + c2

G(x)
F (x)

for constants c1, c2. Applying ω(x)Dx to both sides and using (5.6)
and (5.9), we see that c2 = 0. Taking x = 0 we then see that c1 = 0,
giving (5.1). Turning now to the proof of (5.2), when c = a + b + 1/2
the symmetric square L(2) of L is hypergeometric; we have

x3(1− x)L(2) = δ(δ + 2c− 2)(δ + c− 1)− x(δ + 2a)(δ + 2b)(δ + a + b).

As before, it follows from the power series that

(5.12) L(2)w = xr−2c−2(1− x)−1,
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where w denotes the right hand side of (5.2). From (5.8) we have that

F2(x) =

∫ x

0

∫ v

0

∫ u

0

tr−2F 2(t) dt du
ω(u)

dv
ω(v)

,

while by (5.10), L(2)F 2F2 = xr−2c−2(1− x)−1. Thus we have

F2(x) = xr+1−2c

(r−1)(r−c)(r−2c+1)F 2(x) 4F3

[
r−2a,r−2b,r−a−b,1

r,r−c+1,r−2c+2 ; x
]

+c1 + c2
G(x)
F (x)

+ c3

(
G(x)
F (x)

)2
,

for constants c1, c2 and c3. Again we can conclude that c3 = c2 = c1 =
0 using (5.6) and (5.9), thus proving (5.2). This also completes the
proof of the identity (2.6). ¤

It should now be clear that one may compute for any positive
integer m the (m + 1)–fold dt/ω–integral of tr+c−2(1− t)dFm+2(t), or
even of tr+c−2(1− t)sFm+2(t) for more general s, in terms of solutions
to a nonhomogeneous linear ODE of order m + 1. However, such
solutions will only rarely be hypergeometric. A non-hypergeometric
example considered by Ramanujan that can easily be treated in this
manner when m = 1 is given by the identity

(5.13) 4
∑
n≥1

n odd

(−1)
n−1

2 q
n
2

n2(1− qn)
=

k

F

∞∑
n=0

(n!)2

(3
2
)2
n

n∑

`=0

(1
2
)2
`

(`!)2
k2n,

when a = b = 1/2 and c = 1. A more difficult case would be (2.8),
where one would have to take m = 3.

On the other hand, if we leave the realm of Eisenstein series there
are examples of cusp forms of weights 3 and 4 that have hypergeo-
metric integrals. For instance, define the integers an by

(5.14) q
∏
n≥1

(1− q4n)6 =
∑
n≥1

anq
n.

Then it follows from (5.1) when r = 5/4 and (2.1) that
∑
n≥1

anq
n
4 n−2 =

√
k 3F2(

3
4
, 3

4
, 1; 5

4
, 5

4
; k2)

2F (k2)
.

Now
∑

n≥1 ane(nτ) is the Fourier expansion of the unique newform
of weight 3 for Γ0(16) with character χ defined below (3.2). Here, as
usual, we write e(z) = e2πiz. Similarly, there is a newform of weight
4 for Γ0(64) whose Fourier expansion begins
∑
n≥1

bne(nτ) = e(τ)− 22e(5τ)− 27e(9τ) + 18e(13τ)− 94e(17τ) + . . .
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and for which we can deduce from (5.2) that
∑
n≥1

bnq
n
4 n−3 =

√
kk′ 4F3

(
3
4
, 3

4
, 3

4
, 1; 5

4
, 5

4
, 5

4
; 4k2k′2

)

2 3F2

(
1
2
, 1

2
, 1

2
; 1, 1; 4k2k′2

) .

The curious reader may find some other interesting examples when
the monodromy group of F (a, b; c; x) is an arithmetic hyperbolic tri-
angle group.

Acknowledgments: I thank Bruce Berndt and the referee for a num-
ber of helpful suggestions.

Notes

§1. Introduction

According to Watson [27] and Berndt [6], Ramanujan must have recorded most
of the entries of his first notebook from about 1904 until about 1913. The second
notebook is a revised and enlarged version of the first, likely written between 1913
and 1914, before he left for England. Both were published, along with a third
notebook, in facsimile form and in two volumes, in 1957 [20]. The first notebook
is in volume I while the second and third are in volume II. The manuscript now
known as his lost notebook was likely written between 1919 and 1920 [1, p.1] and
was published in [21].

§2. Infinite series

Ramanujan’s identity appears in [20, I p. 280 and II p. 218]. Hardy’s remark is in
his obituary notice for Ramanujan, reproduced in [19, footnote on p. XXV].

A standard reference for Jacobi’s theory is [29] and one for (generalized) hyper-
geometric series is [4]. For expositions of Ramanujan’s work on hypergeometric
series see Lecture VII of Hardy’s book [14], which is based on [13], and the more
recent and comprehensive accounts [2] and [5, II]. Jacobi’s formulas (2.3–2.5) are
in [16, (6) p.159, (46),(47) p.164]. Ramanujan also entered these in his notebooks:
see [20, II p. 215]. His exposure to the theory of elliptic functions before he came
to England is discussed in [8].

Ramanujan’s crossed out entry is in [20, I p.280] and is discussed in [5, V p.402].

Berndt’s proof of (2.2) is in [5, III p.153].

§3. Infinite products

Ramanujan’s infinite product identity (3.1) appears in [21, p. 209]. The original
entry, which is nearly illegible, was deciphered by Berndt and its derivation from
(2.2) appears in [7].

Ramanujan’s paper is #7 in [19, p.40].

The inversion formula (3.4) is a special case of an entry found in [20, I p.279]. See
also [5, II p.276].
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§4. Continued fractions

Ramanujan’s continued fraction is in [20, I p.156, II p.220] and also in his first letter
to Hardy [19, p.350]. Stieltjes result can be found in [23, p. 555 and p.733]. Rogers
[22] independently found an equivalent continued fraction. An improvement on
Rogers’s treatment is given in [10]. That Ramanujan’s version follows from the
work of Rogers was pointed out by Preece [18]. See also [5, III p.163]. For a proof
of (4.4) see [26, p.17].

For Sylvester’s contribution see [24]. A very readable account of the connection
between continued fractions and matrices was given by Whittaker [28]. Hermite
[15] gave another method to compute the identity (4.7) for Eisenstein series of
positive weight based on the Tayler expansion of the elliptic function cn (see also
[12, p.252]). See also the recent work of Milne [17].

Turnbull’s results (4.8) and (4.9) are proved in [25, I §3, §4].

The continued fraction (4.11) is found in [20, I p.156 and II p.220]. For a proof see
[5, III p.166]. The identity (4.12) also appears in [20, I p.275 and II p.214] and is
proved in [5, III p.135].

§5. Iterated integrals

Ramanujan’s identity (5.1) appears in [20, I p.236 and II p.139], the integrals being
indefinite. The definite version is from [5, II p.88]. Another formulation in case
a = b = 1/2 and c = 1 is found in [20, II p.210].

Jacobi’s formula (5.3) is found in [16, (43) p.164]. For Gauss’s quadratic transfor-
mation and Clausen’s identity see, for instance, [4, p.95, p.86]. The special case of
Clausen’s identity (5.5) appears with proof in Gauss’s Nachlass [11, III p.424.].

Berndt’s proof of (5.1) is in [5, II p.88].

A useful reference for the theory of nonhomogeneous linear differential equations
is [3]. See Chapter 6 for the theory of nonhomogeneous hypergeometric functions
and page 277 for a discussion of nonhomogeneous generalized hypergeometric
functions.

Ramanujan’s identity (5.13) is in [20, I p. 280], directly above the crossed out entry
(2.7). A proof of (5.13) can be found in [5, V p.399]. Some interesting results about
L(3) can be found in [9].
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