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Abstract. Various results about a divisor function with Diophantine
properties are obtained, including a simple asymptotic formula for its
sum and a Voronöı-type formula. The proofs rely on analytic properties
of certain Dirichlet series that are expressed in terms of Hecke’s zeta
functions with Grössencharaktere associated to a real quadratic number
field. Also used are new estimates and asymptotics for the standard
hypergeometric function that are uniform in parameters, which are of
independent interest.

1. Introduction and statement of main results

Let d(n) be the usual divisor function. A method of Dirichlet [12] from
1849 leads to the identity

(1.1) ∆(x) :=
∑
n≤x

d(n)− x log x− (2γ − 1)x = −2
∑

1≤d≤x
1
2

ρ
(x
d

)
+O(1),

where γ is Euler’s constant and ρ is the sawtooth function defined for x ∈ R
by
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Figure 1. Sawtooth function ρ(x)

(1.2) ρ(x) = {x} − 1

2
= x− ⌊x⌋ − 1

2
.

This identity immediately implies the first result in the divisor problem,
which is the bound

∆(x) = O(x
1
2 ).
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In 1903 Voronöı [50] improved this estimate by showing∑
1≤d≤x

1
2

ρ
(x
d

)
= O(x

1
3 log x),

still using an elementary method. Essentially the same bound was obtained
using a different and more general elementary method in 1917 by Vinogradov
in his first paper [49]. See [10, p.165 and p. 213] for expositions of both
methods.

In 1904 Voronöı [51] took an analytic approach and established a formula

for ∆(x) that better displays its oscillatory behavior with respect to x
1
4 . It

can be expressed in the form

(1.3)
∑
n≤x

(
d(n)− log n−2γ

)
=

x
1
4

π
√
2

∑
n≥1

d(n)

n
3
4

cos(4π
√
nx− 1

4
π)+O(log x).

This formula reflects the functional equation of the Dirichlet series

ζ2(s) =
(∑
n≥1

n−s
)2

=
∑
n≥1

d(n)n−s.

It also implies ∆(x) = Oϵ(x
1
3
+ϵ), by truncating the right hand side of (1.3)

at n = x
1
3 and estimating the remainder. A number of relatively small, but

quite difficult, successive improvements of the one third exponent have been
given using estimates of exponential sums. The latest results are 131/416
due to Huxley [31] and 0.3144.. due to Li–Yang [36], while the conjecture is

∆(x) = Oϵ(x
1
4
+ϵ),

which would be essentially best possible. See [32] for a survey and references
on the Dirichlet divisor problem. A standard general reference covering the
divisor problem is [48].

Figure 2. Diophantine divisor function

In this paper we will consider a divisor function that counts divisors that
are restricted in a certain way. For a fixed α ≥ 1 define

(1.4) d(n, α) = #{d | n; α−1n ≤ d2 ≤ αn}.
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Thus d(n, α) counts divisors of n that are quite close together; it can be
written as

(1.5) d(n, α) = #{n = d1d2; α
−1d1 ≤ d2 ≤ αd1}.

As with the usual divisor function, let

(1.6) ∆(x, α) =
∑
n≤x

d(n, α)− x logα.

This sum counts the difference between the number of lattice points in a
sector under the hyperbola of the type shown in Figure 2, and its area. A
standard argument yields the trivial estimate

(1.7) ∆(x, α) = Oα(x
1
2 ).

As Figure 2 suggests, this problem is closely related to both the standard
Dirichlet divisor problem (the limit case α → ∞, informally speaking) and
the Hardy-Littlewood (H-L) problem of counting lattice points in a right
triangle. The H-L problem reduces to understanding the sum1

S(x, α) =
∑
n≤x

ρ(nα).

Our first result makes precise this connection.

Theorem 1.1. Let ∆(x, α) be given in (1.6). For x, α ≥ 1 we have

(1.8) ∆(x, α) = −2S
(
(x/α)

1
2 , α

)
− 2

∑
( x
α
)
1
2<d≤x

1
2

ρ
(x
d

)
+O(α)

with an absolute implied constant.

While this result clearly implies the trivial bound (1.7), Vinogradov’s
method already mentioned applies directly to give the following.

Corollary 1.2. For any ϵ > 0 we have that

(1.9) ∆(x, α) = −2S
(
(x/α)

1
2 , α
)
+Oα,ϵ(x

1
3
+ϵ).

Remark. Further improvements are possible using the methods of Huxley
[31] and Li–Yang [36], which give the same estimates for the remainder term
in (1.9) as in the classical Dirichlet divisor problem.

The size of the sum S(x, α) depends essentially on the arithmetic (Dio-

phantine) nature of α. The occurrence of S(( xα)
1
2 , α) in (1.8) indicates that

the behavior of ∆(x, α) should also depend on the arithmetic nature of α
and not merely its size. This is the reason for calling our divisor problem
“Diophantine”. Also, we emphasize that α is fixed.

1Useful general references for the sum S(x, α) are [34, §2 p.102] and the recent book
[4].
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Known properties of S(x, α) imply corresponding results for ∆(x, α). For
any ϵ > 0 we deduce from [21, §3] (see also [33]) that irrational α exist so
that

S(x, α) = O(x1−ϵ)

does not hold. Thus by the Corollary of Theorem 1.1, for any ϵ > 0 there
exist irrational α for which

(1.10) ∆(x, α) = O(x
1
2
−ϵ)

does not hold. That is, for general irrational α we cannot essentially improve
the trivial bound (1.7).

If the simple continued fraction expansion of irrational α has bounded
partial quotients, which includes quadratic irrational α, then we have the
essentially optimal results

(1.11) S(x, α) = O(log x) and S(x, α) = Ω±(log x),

which were proven independently by Hardy-Littlewood [21], [22] and Os-
trowski [41]. Thus for such α, by the above Corollary

(1.12) ∆(x, α) = Oϵ(x
1
3
+ϵ).

Just like analytic properties of

ζ2(s) + ζ ′(s)− 2γζ(s)

influence the growth of ∆(x) through Voronöı’s formula, analytic properties
of the Dirichlet series

(1.13) ϕ(s, α) =
∑
n≥1

(d(n, α)− logα)n−s

affect the behavior of ∆(x, α). Hardy-Littlewood [24] and Behnke [5] studied
the corresponding relationship between S(x, α) and the Dirichlet series

(1.14) ψ(s, α) =
∑
n≥1

ρ(nα)n−s.

For “most” α, the function ψ(s, α) has a natural boundary, whose location
is determined by the simple continued fraction of α.

The analysis of sums like S(x, α) and ∆(x, α) using analytic properties
of ψ and ϕ is greatly simplified through smoothing. It is natural to use the
standard Riesz means

(1.15) ∆r(x, α) =
∑
n≤x

(d(n, α)− logα)
(
1− n

x

)r
and

(1.16) Sr(x, α) =
∑
n≤x

ρ(nα)

(
1−

(n
x

)2)r

.

In general, one strives to work with such means with r ≥ 0 as small as
possible, thereby approximating the case r = 0 as closely as possible. For any
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r ≥ 0, the behavior of both ∆r(x, α) and Sr(x, α) still depend significantly
on Diophantine properties of α.

One can say much more about the sums if α is real quadratic. Here we
assume that α has the form

(1.17) α =
a+

√
a2 − 4

2
,

where a ∈ A and
(1.18)
A = {a| a > 3, D = a2 − 4 is the discriminant of a real quadratic field}.

The first few elements of the set A are

(1.19) A = {4, 5, 8, 9, 12, 13, 15, 17, 19, 21, 24, 28, 31, 32, . . .}.

The simple continued fraction of α is

(1.20) α = a− 1 +
1

1+

1

(a− 2)+

1

1+

1

(a− 2)+
· · · .

Note that α is the fundamental unit in F = Q(
√
D) and that α is totally

positive. Now ψ(s, α) from (1.14) has a meromorphic continuation to C with
infinitely many poles. For even D their positions, degrees and residues were
determined by Hecke using his Zeta functions with Grössencharakteren (see
[28, p.63, p. 323 in Werke]) and his proof immediately extends to cover
all α with a ∈ A. For these α we will see that ϕ(s, α) from (1.13) also
has a meromorphic continuation with infinitely many poles whose positions,
degrees, and residues we determine.

Although Theorem 1.1 provides the relation between the sums ∆0(x1, α)
and S0(x2, α), it is not easy to extract simple asymptotic information from
it as a result of the behavior of the second sum on the RHS. However, due to
a remarkable coincidence between the poles on the imaginary axis of ϕ(s, α)
and those of ψ(2s, α), it is possible to construct a combination of ∆r(x, α)
and Sr(

√
αx, α) so that the resulting asymptotic formula is simple. We give

two such asymptotic formulas under different assumptions on r.

Theorem 1.3. For x → +∞, a ∈ A, α as in (1.17), r > 1 and any
sufficiently small ϵ > 0 (say 0 < ϵ < (r − 1)/100) we have

(1.21) ∆r(x, α) + 2Sr(
√
αx, α) = C(a) +Oa(x

−ϵ),

where

(1.22) C(a) =
a− 3

12
+

1

2
logα−

√
D

12
.

Theorem 1.4. For x → +∞, a ∈ A, α as in (1.17), r > 3 and any
sufficiently small ϵ > 0 we have

(1.23) ∆r(x, α) + 2Sr(
√
αx, α) = C(a) +Oa(x

−1+ϵ).
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In the table below we provide some numerical computations to illustrate
the results of Theorems 1.3 and 1.4. To this end, let us define for a ∈ A and
α as in (1.17) the error term function

(1.24) E(r, a, x) = ∆r(x, α) + 2Sr(
√
αx, α)− C(a).

r E(r, 8, 105) E(r, 8, 106) E(r, 9, 105) E(r, 9, 106)
3 -1.93245e-05 -2.64042e-06 -2.80304e-05 -2.74769e-06
2 -9.07321e-06 -1.58076e-06 -3.22359e-05 -7.08911e-07
1 0.00185194 -0.000413826 0.00521695 -0.000775616
0.6 0.0357489 0.0328198 0.0758085 0.0195105
0.5 0.0679295 0.121604 0.135241 0.0879656
0.4 0.120632 0.412836 0.227332 0.327092
0.25 0.223755 2.38438 0.396916 2.03341
0.1 0.0787089 13.2703 0.166314 11.8602
0.01 -0.710027 37.1763 -1.04555 34.029
0 5.06076 48.639 4.51732 45.086

Table 1

A heuristic argument given in the remark at the end of section 8 suggests
that Theorem 1.3 might hold with the condition r > 1 replaced by r > 1/2.
This possible improvement also appears to be consistent with the numerics
in Table 1. Furthermore, it seems unlikely that the statement of Theorem
1.3 holds for each r > r0 if r0 < 1/2.

Still for α from (1.17) with D even, Hecke was able bound S(x, α) using
the analytic properties of ψ(s, α) together with a clever and intricate ap-
plication of (a slight extension of) the Schnee-Landau theorem. He showed
[28, (2) p.55, p.314 in Werke]

(1.25) S(x, α) = Oϵ(x
ϵ) for all ϵ > 0.

This is weaker than (1.11), but the ingredients used in the proof can also be
applied to obtain results about the averages like Sr(x, α) that are inaccessible
for general α [28, p. 71, p. 330 in Werke]. It is worth noting that in his
proof of (1.25), Hecke made strong use of the fact that ψ(s, α) has relatively
mild (“degree one”) growth in vertical strips away from poles. We will see
that ϕ(s, α) from (1.13) has “degree two”. The meaning of this will become
clear. Roughly speaking, it is the difference between ζ2(s) and ζ(s). This
causes significant new difficulties in the study of our divisor problem over
the H-L problem. It is for this reason we work mostly with Riesz means.
Another new difficulty that appears has to do with the appearance of certain
hypergeometric functions in the representation of ϕ(s, α). The exact nature
of the difficulty will be explained later.

Our next result is a weighted Voronöı-type formula for ∆r(x, α) with α
from (1.17). This formula comes out readily from the proof of Theorem 1.3.
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Theorem 1.5. For x → +∞, a ∈ A with a > 3 and α as in (1.17), r > 1
and any sufficiently small ϵ > 0 (say 0 < ϵ < (r − 1)/100) we have

(1.26) ∆r(x, α) =
3− a

12 logα
log x+ Cr(a)−

Γ(1 + r)

4 logα
×

×
∑
n̸=0

(−1)nΓ(inκ)

Γ(1 + r + inκ)
(xD)inκ

(
ζ(inκ, ν1λ

n) + ζ(inκ, ν1λ
−n)
)
+Oa(x

−ϵ),

where ζ(s, νjλ
n) is the Hecke zeta function defined by (4.4), κ = π/ logα,

ψ(z) - digamma function and

(1.27) Cr(a) =
3− a

12 logα

(
−ψ(1 + r)− ψ(1/2)− γ + log(π

√
D)
)
+

+ log
√
α− 1

4
− ζ ′(0, ν1)

2π logα
.

For r > 3 one can replace the error term Oa(x
−ϵ) in (1.26) by Oa(x

−1+ϵ).

By trivially estimating the infinite sum on the right hand side of the
formula we get for r > 1 that

(1.28)
∑
n≤x

(
1− n

x

)r (
d(n, α)− log α

)
=

3− a

12 logα
log x+O(1).

It follows, in particular, that |∆(x, α)| is unbounded. More precisely, there
is a C > 0 so that

∆(x, α) < −C log x

for arbitrarily large x. See e.g. [25].
Other kinds of restricted divisor functions have been introduced and stud-

ied. For some examples see [52], [11] (also [47, p.207]), [45], [18], [20], [2],
listed chronologically. A number of different generalizations and applications
of Hecke’s original method are given in the papers [5], [6], [14], [1].

Acknowledgement: This collaboration was initiated during the Automorphic
Forms in Budapest conference in August 2024. We thank the organizers and
the Rényi Institute for helping to make this possible.

2. Outline and Discussion of methods

In this section we outline the structure of the paper and then discuss a
few of the main ideas and methods used in the proofs of our theorems, in
particular Theorem 1.3.

One of these methods, a new precise hypergeometric asymptotic formula,
has independent interest and for convenience we will state it at the end of
this section.

Theorem 1.1 and its corollary are proven in the next section. The proof of
Theorem 1.1 is elementary and may be viewed as a development of Dirichlet’s
proof of (1.1). The proof of the corollary is a standard application of a
method of Vinogradov.
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The groundwork for the proofs of Theorems 1.3, 1.4 and 1.5 is begun in
section 4, where the definitions and basic properties of Hecke’s zeta functions
are explained. For the most part we refer to Hecke’s original papers but also
to some useful papers of Rademacher.

In section 5 we present the core results on the function ϕ(s, α). We show
how to represent ϕ(s, α) as an infinite sum involving Hecke zeta functions,
gamma functions and hypergeometric functions. This yields some informa-
tion about the poles of ϕ(s, α).

Section 6 is devoted to the properties of ψ(s, α) and is based on Hecke’s
paper [28]. In section 7, we prove the required estimates on the hypergeo-
metric function. In section 8, we establish Theorems 1.3, 1.4 and 1.5.

The first step in the proof of Theorem 1.3 is to construct a combination of
the sums ∆r(x1, α) and Sr(x2, α) such that the corresponding combination
of the functions ϕ(s1, α) and ψ(s2, α) does not have poles at the points inκ.
Computations performed in [28] and section 5 suggested us to use slightly
different smooth factors in (1.15) and (1.16). The reason for this is that the
functions ϕ(s, α) and ψ(2s, α) have poles at the same points. Although we
have managed to construct such a combination, it turns out that it still has
infinitely many poles at the points −j + inκ, j ≥ 1. This is why we are not
able to improve the error term O(x−1+ϵ) in Theorem 1.4 even for sufficiently
large r. An interesting question is whether it is possible to construct a more
complex combination of ∆r(x1, α) and Sr(x2, α) that will not have poles at
−j + inκ for 0 ≤ j ≤ J.

The next step is to study the left hand side of (1.21) using the results of
[28] and section 5. To do this, it is required to estimate as well as we can
the growth of

ϕ(σ + it, α) ≪ (1 + |t|)k(σ)

for σ > −C and t → ∞. It turns out that not only the value of k(σ) is
important, but also the fact that this estimate holds for a large negative
σ. This fact allows us to better optimize some parameters in the proof and
thus establish Theorem 1.3 for r > 1.

Note that this is the result of a deep study of the asymptotic properties
of the hypergeometric function that arises in ϕ(s, α). More precisely, the
function ϕ(s, α) can be expressed as a series over n whose terms include

(2.1) 2F1

(
s− inκ, s+ inκ, 1/2 + s;

2− a

4

)
.

To estimate ϕ(σ + it, α), one needs to obtain uniform estimates in n and
t on (2.1). The main difficulty is that real parts of all three parameters
of the hypergeometric function could be negative and this does not allow
us to apply most of its integral representations. Luckily, we can transform
it into a combination of hypergeometric functions that has σ only in the
first parameter. As a consequence, it is possible to use a standard integral
representation for the hypergeometric function. To obtain an asymptotic
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formula, we apply a version of the saddle point method due to McKee-Sun-
Ye [39], which allows the saddle point to be close to the end point of the
integration interval. As a result, the following proposition is proven, which
might also be of use in other contexts.

Proposition 2.1. Let s = σ + it with −∞ < σ1 < σ < σ2 < ∞ and
t→ +∞. Let β = nκ/t. Then for t−1+ϵ0 < β < 1− t−1+ϵ and 0 < z1 < z <
z2 <∞ we have

(2.2)
Γ(s− inκ)Γ(s+ inκ)

Γ(2s)
2F1 (s− inκ, s+ inκ, 1/2 + s;−z) =

= e−
πi
4 21−2σ−2it√π(1− β)σ−1/2+it(1−β)β−1/2+itβ y

1/2−itβ
+ (1− y+)

1/2−itβ√
|t|(y+ + z)σ+it(1−β)

×

(
1 +

(2z + 1)β√
4β2z2 + 4β2z + 1

)1/2
1 +

n∑
j=1

cj
(tβ)j

+
n∑

j=1

dj
(t(1− β))j

+

+Oz,σ

(
(1− β)σ−1/2

√
β

(tβ)n+1
+

(1− β)σ−1/2

(t(1− β))n+3/2
√
t

)
,

where cj , dj ≪z,σ 1 and

y+ =
1− 2βz +

√
4β2z2 + 4β2z + 1

2(1 + β)
.

3. Dirichlet’s method developed and Vinogradov’s applied

The following lemma is standard, but for convenience a proof follows.

Lemma 3.1. For x ≥ 1 we have

∑
n≤x

1

n
= log x+ γ − ρ(x)

x
+O(x−2).

Proof. Let

B1(x) = x− 1

2
and B2(x) = x2 − x+

1

6
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be the Bernoulli polynomials. By partial summation,

(3.1)
∑
n≤x

1

n
=

∫ x

1−

d⌊u⌋
u

=

∫ x

1

du

u
−
∫ x

1−

dB1({u})
u

= log x−
[B1({u})

u

]x
u=1−

−
∫ x

1

B1({u})
u2

du

= log x+
1

2
− B1({x})

x
−
∫ x

1

B1({u})
u2

du

= log x+ γ − B1({x})
x

+

∫ ∞

x

B1({u})
u2

du

= log x+ γ − B1({x})
x

− B2({x})
2x2

+

∫ ∞

x

B1({u})
u3

du.

This finishes the proof since ρ(x) = B1({x}). □

Proof of Theorem 1.1. By decomposing the sum according to if d ≤ m or
d > m we have∑

n≤x

d(n, α) =
∑
dm≤x

α−1d≤m≤αd

1 =
∑
dm≤x

α−1d≤m≤αd
d≤m

1 +
∑
dm≤x

α−1d≤m≤αd
d>m

1.

Since d = m always satisfies α−1d ≤ m ≤ αd, by using symmetry, we have∑
n≤x

d(n, α) = 2
∑
dm≤x

α−1d≤m≤αd
d≤m

1−
∑
d2≤x

1.

Thus ∑
n≤x

d(n, α) = 2
∑
d≤x

1
2

∑
d≤m≤min(αd,x

d
)

1−
∑
d≤x

1
2

1

= 2
∑
d≤x

1
2

∑
m≤min(αd,x

d
)

1− 2
∑
d≤x

1
2

(d− 1)−
∑
d≤x

1
2

1

= 2
∑
d≤x

1
2

∑
m≤min(αd,x

d
)

1− ⌊x
1
2 ⌋(⌊x

1
2 ⌋ − 1)− ⌊x

1
2 ⌋

= 2
∑
d≤x

1
2

∑
m≤min(αd,x

d
)

1− ⌊x
1
2 ⌋2.
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Since αd ≤ x
d if and only if d ≤ ( xα)

1
2 , we have∑

n≤x

d(n, α) = 2
∑

d≤( x
α
)
1
2

⌊αd⌋+ 2
∑

( x
α
)
1
2<d≤x

1
2

⌊x
d

⌋
− ⌊x

1
2 ⌋2

= 2
∑

d≤( x
α
)
1
2

αd+ 2
∑

( x
α
)
1
2<d≤x

1
2

x

d
− 2

∑
d≤( x

α
)
1
2

ρ(αd)−

− 2
∑

( x
α
)
1
2<d≤x

1
2

ρ
(x
d

)
− ⌊x

1
2 ⌋ − ⌊x

1
2 ⌋2.

Note that

⌊x
1
2 ⌋+ ⌊x

1
2 ⌋2 =⌊x

1
2 ⌋(⌊x

1
2 ⌋+ 1) =

(
x

1
2 − ρ(x

1
2 )− 1

2

)(
x

1
2 − ρ(x

1
2 ) +

1

2

)
= x− 2ρ(x

1
2 )x

1
2 +O(1).

Similarly, we have

2
∑

d≤( x
α
)
1
2

αd = α

⌊(x
α

) 1
2

⌋(⌊(x
α

) 1
2

⌋
+ 1

)
= x− 2ρ

((x
α

) 1
2

)
(xα)

1
2 +O(α).

By Lemma 3.1

2
∑

( x
α
)
1
2<d≤x

1
2

x

d
= x logα+ 2ρ

((x
α

) 1
2

)
(xα)

1
2 − 2ρ(x

1
2 )x

1
2 +O(α).

Combining the above we arrive at∑
n≤x

d(n, α) = x logα− 2
∑

d≤( x
α
)
1
2

ρ(αd)− 2
∑

( x
α
)
1
2<d≤x

1
2

ρ
(x
d

)
+O(α),

which gives Theorem 1.1. □
The Corollary of Theorem 1.1 follows easily from the next lemma, due to

Vinogradov, given in the form presented in [30, Thm 11.3]. Here we choose
f(y) = x

y .

Lemma 3.2. For k ≥ 1 and f ∈ C2[M,M +M ′] with

1

C
≤ |f ′′(y)| ≤ k

C

we have

M+M ′−1∑
n=M

{f(n)} =
M ′

2
+O(k2M ′ logC + kC)C− 1

3 ).
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4. Hecke zeta functions

In this section we define and record some important properties of Hecke’s
zeta functions for the real quadratic field F = Q(

√
D).

For α as in (1.17) with a > 3 let O = Z+ αZ be the ring of integers of F
and set

(4.1) κ =
π

logα
, A =

√
D

π
.

Furthermore, we define the Hecke sign characters

(4.2) ν0(µ) = 1, ν1(µ) = sgn(µµ′),

where µ′ stands for the Galois conjugate of µ, and let

(4.3) λ(µ) = e
iκ log | µ

µ′ |.

For n ∈ Z the Grössencharaktere νj(µ)λ
n(µ) satisfies νj(α)λ

n(α) = 1 and
so is well-defined on principal ideals of (µ) ⊂ O. The associated (partial)
zeta function is given for ℜs > 1 by

(4.4) ζ(s, νjλ
n) =

∑
(µ)

νj(µ)λ
n(µ)

|N(µ)|s
,

where the sum is over distinct nonzero principal ideals of O.

Lemma 4.1. For j ∈ {0, 1} and n ∈ Z, the completed zeta function given
by

(4.5) ξ(s, νjλ
n) = AsΓ

(
s+ j

2
+
inκ

2

)
Γ

(
s+ j

2
− inκ

2

)
ζ(s, νjλ

n)

is entire and satisfies the functional equation

(4.6) ξ(1− s, νjλ
n) = ξ(s, νjλ

−n),

except that, when n = j = 0, it has simple poles at s = 1, 0 with residues

(4.7) ress=0 ξ(s, ν0) = −2 logα, ress=1 ξ(s, ν0) = 2 logα.

In any fixed vertical strip and away from these poles, the function ξ(s, νjλ
n)

is bounded uniformly in the variables s and n.
We have the evaluation

(4.8) ξ(0, ν1) = πζ(0, ν1) =
a− 3

6
π.

The following estimate holds:

(4.9) ζ(σ + it, νjλ
n) ≪ (1 + |t− nκ|)k(σ) (1 + |t+ nκ|)k(σ) ,

where

(4.10) k(σ) =

 0, if σ > 1,
(1− σ)/2 + ϵ, if 0 ≤ σ ≤ 1,
1/2− σ, if σ < 0.
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Proof. The first statement follows from [26, p.35, p.73 in Werke] (see also
[28, section 3]). The second statement, implicit in [26], is proven in detail in
[43, Hilfssatz 7, p.126, p. 323 in Collected Papers I]. The proof is a standard
application of the integral representation of ξ in terms of a theta function
given by Hecke.

The fact that ζ(0, ν1) can be evaluated in elementary terms and is rational
is a special case of a phenomenon discovered by Hecke [27]. The specific
evaluation in (4.8) can readily be derived from [46, Thm. 13, p.143.].

Finally, (4.9) follows from Rademacher’s uniform version of the Phragmén-
Lindelöf theorem [44, Thm. 2], which he applied in his Theorem 5 to Hecke
zeta functions.

□

Remark. Note that ζ(s, νjλ
n) need not have an Euler product unless Q(α)

has (wide) class number one. It is known (see [8], also [7]) that this holds
exactly for

D = 12, 21, 77, 437,

with corresponding values of a given by 4, 5, 9, 21. In these cases we have

ζ(s, ν0) = ζ(s)L(s, χD) and ζ(s, ν1) = L(s, χD1)L(s, χD2),

where L(s, χD) is the Dirichlet L-functions with Kronecker symbol χD and
D = D1D2 with 12 = (−3)(−4), 21 = (−3)(−7), 77 = (−7)(−11) and 437 =
(−19)(−23). It can be checked that (4.8) yields well-known evaluations of
Dirichlet L-functions for these examples.

5. Properties of ϕ(s, α)

In order to use the Hecke zeta functions to prove our theorems, we will
express the Dirichlet series

(5.1) ϕ∗(s, α) =
∑
n

d(n, α)n−s,

with d(n, α) defined in (1.4), in terms of them. We use the following lemma,
which is easily shown by direct calculation.

Lemma 5.1. Let O = Z+ αZ where α = 1
2(a+

√
a2 − 4), with D = a2 − 4

the discriminant of a real quadratic field. The map

β 7→ (d1, d2) =

(∣∣∣∣ β√D
∣∣∣∣+ ∣∣∣∣ β′√

D

∣∣∣∣ , ∣∣∣∣ α′β√
D

∣∣∣∣+ ∣∣∣∣ αβ′√
D

∣∣∣∣)
gives a bijection from

{β ∈ O; β > 0 and β′ < 0} to {(d1, d2) ∈ (Z+)2; α−1d1 < d2 < αd1}.

Here, as usual, Z+ denotes the set of positive integers.
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This lemma can be adapted to apply to more general units α, but we
must restrict to (d1, d2) that satisfy a certain congruence (see [13, Lemma
2]).

For Re s > 1 let

Φj(s) = Φj(s, α) =
∑′

β∈O
νj(β)(|β|+ |β′|)−s(|α′β|+ |αβ′|)−s,

where as usual the prime in the sum means to leave out β = 0. Convergence
follows easily since the sum is over a two dimensional lattice. The next
identity follows straight from Lemma 5.1.

Lemma 5.2. For ϕ∗(s, α) defined in (5.1) we have the identity

ϕ∗(s, α) =
Ds

4

(
Φ0(s)− Φ1(s)

)
,

when Re s > 1.

Thus to study ϕ∗(s, α), hence ϕ(s, α) from (1.13), we are reduced to con-
sidering the Dirichlet series Φj(s) for j = 1, 2.

Proposition 5.3. Fix j ∈ {0, 1} and a as above and recall κ from (4.1).
Suppose that s is in a compact subset of C that does not contain any of the
points −2k − 1 + j ± inκ, for n, k ∈ {0, 1, 2, . . . } and also does not contain
s = 1 if j = 0. Then we have the uniformly convergent expansion

Φj(s) = B
∑
n∈Z

(−1)n
Γ( s+1−j+inκ

2 )Γ( s+1−j−inκ
2 )

(logα)Γ(2s)
×(5.2)

× 2F1(s+ inκ, s− inκ; s+
1

2
;
1

2
− a

4
)ξ(s, νjλ

n),(5.3)

where B = B(s) = (2
√
π)2s−2D− s

2 .

Together with Lemma 5.2, Proposition 5.3 gives the meromorphic contin-
uation of

(5.4) ϕ(s, α) = ϕ∗(s, α)− ζ(s) logα

with the location of its possible poles.

We will first restrict s so that Re s > 1 and prove the following variant
identity, which will also be used later upon analytic continuation.

Lemma 5.4. For j ∈ {0, 1} and Re s > 1

Φj(s) =
∑
n∈Z

(−1)n
Γ(s+ inκ)Γ(s− inκ)

(logα)Γ(2s)

(a
2

)−s+inκ
×(5.5)

× 2F1

(
s+ 1

2
− inκ

2
,
s

2
− inκ

2
; s+

1

2
;
D

a2

)
ζ(s, νjλ

n).(5.6)
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Proof. Define Φj(s, x) for x ∈ R and Re s > 1 by

Φj(s, x) =
∑′

β∈O
νj(β)(|β|ex + |β′|e−x)−s(|α′β|ex + |αβ′|e−x)−s.

To prove (5.5) we apply the basic principle of Fourier analysis, which was
used in brilliant and unexpected ways by Hecke to study algebraic numbers
[29, p. 104, p.338 in Werke]:

Wenn eine Funktion bei einer Substitution (von unendlich hoher Ordnung) invari-
ant bleibt, so entwickle man die Funktion in eine Fouriersche Reihe nach einer
geeignet gewählten Variablen, welche diese Invarianz in Evidenz setzt.2

Clearly Φj(s, x) is a C
1 function in x for fixed s with Re s > 1 and

Φj(s, x+ logα) = Φj(s, x).

Thus Φj(s, x) has an absolutely convergent Fourier expansion

Φj(s, x) =
∑
n∈Z

Aj(n, s)e

(
nx

logα

)
, where e(z) = e2πiz.

We apply Hecke’s well-known unfolding trick to compute Aj(n, s) :

Aj(n, s) =
1

logα

∫ logα

0

e

(
− nx

logα

) ∑′

β∈O

νj(β)(|β|ex + |β′|e−x)−s×

×(|α′β|ex + |αβ′|e−x)−sdx =
2

logα
Kn(s)ζ(s; νjλ

n),

where

Kn(s) =

∫ ∞

−∞

(
(ex + e−x)(α′ex + αe−x)

)−s
e

(
− nx

logα

)
dx

= αs

∫ ∞

−∞

(
(1 + e−2x)(1 + α2e−2x)

)−s
(e−2x)s+

πin
log α dx

=
αs

2

∫ 1

0

ts+inκ(1− t)s−inκ(1− (1− α2)t)−sdt

after making the change of variables t = (e2x + 1)−1 and recalling κ from (4.1).
Now the Euler integral formula [37, p.57] gives

(5.7) Kn(s) =
αs

2

Γ(s+ inκ)Γ(s− inκ)

Γ(2s)
2F1(s, s+ inκ; 2s; 1− α2).

By the quadratic transformation [37, (8) p. 93] we get

(5.8) Kn(s) = (−1)n
Γ(s+ inκ)Γ(s− inκ)

2Γ(2s)

(a
2

)−s+inκ

×

× 2F1

(
s+ 1

2
− inκ

2
,
s

2
− inκ

2
; s+

1

2
;
D

a2

)
,

from which (5.5) follows. □

2If a function remains invariant under a substitution (of infinitely high order), then
expand the function in a Fourier series with respect to a suitably chosen variable that
makes this invariance evident.
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In order to analytically continue the sum in (5.2) in s to the left, we need
to estimate the hypergeometric function uniformly in the large parameter n,
which occurs in both the first and second parameter of the hypergeometric
function. Note that a more detailed analysis of the hypergeometric function
is given in section 7.

Lemma 5.5. For |n| → ∞ one has

2F1

(
s+ inκ, s− inκ; s+

1

2
;
1

2
− a

4

)
≪ |n|1/2−σ,(5.9)

where the implied constant depends on a and s.

Proof. To prove (5.9) we apply [40, 15.8.1] followed by [40, 15.6.6], getting

(5.10) 2F1 (s+ inκ, s− inκ, 1/2 + s;−z) = (z + 1)1/2−sΓ(1/2 + s)

Γ(1/2inκ)Γ(1/2 + inκ)

× 1

2πi

∫
(c)

Γ(1/2− inκ+ w)Γ(1/2 + inκ+ w)

Γ(1/2 + s+ w)
Γ(−w)zwdw,

where −1/2 < c < 0. Let s = σ + it and w = u+ iv. Applying the Stirling
formula [40, 5.11.9] we obtain

(5.11)
Γ(1/2 + s)

Γ(1/2− inκ)Γ(1/2 + inκ)

Γ(1/2− inκ+ w)Γ(1/2 + inκ+ w)

Γ(1/2 + s+ w)
Γ(−w) ≪

≪ |t|σ (1 + |v + nκ|)u(1 + |v − nκ|)u

(1 + |v + t|)u+σ(1 + |v|)1/2+u
e−πg(t,nκ,v)/2,

where

(5.12) g(t, y, v) = |v + y|+ |v − y|+ |v| − |v + t|+ t− 2y.

Using (5.12) one can easily deduce that the part of the integral (5.10) with
|v| ≫ nκ + log2 n is negligible. Estimating the remaining integral trivially,
we obtain (5.9). □

Proof of Proposition 5.3. To derive (5.2) from Lemma 5.4, first observe
that by applying another quadratic transformation [15, (4) p.111] (or [40,
15.8.17]) to the hypergeometric function in (5.8) we get for a > 2:

(5.13)
(a
2

)−s+iκn

2F1

(
s+ 1

2
− inκ

2
,
s

2
− inκ

2
; s+

1

2
;
D

a2

)
=

=
(a
2

)−s−iκn

2F1

(
s+ 1

2
+
inκ

2
,
s

2
+
inκ

2
; s+

1

2
;
D

a2

)
=

= 2F1

(
s+ inκ, s− inκ; s+

1

2
;
1

2
− a

4

)
.
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Note that (5.2) can also be derived from (5.7) using a single quadratic
transformation [15, (30) p.113]. By using the duplication formula

Γ
(s
2

)
Γ

(
s+ 1

2

)
= 21−s√πΓ(s),

we see that the gamma factors on the right hand side of (5.5) combine with
those in (4.5) to allow us to deduce (5.2) from (5.5).

Proposition 5.3 now follows by the properties of the completed Hecke
zeta functions given in Lemma 4.1, including the uniform boundedness of
ξ(s, νjλ

n) in n and s, together with (5.9) and the standard fact that

(5.14) lim
|t|→∞

Γ(σ + it)

e−
π
2
|t||t|σ−

1
2

=
√
2π.

□

Remark. To study ψ(s, α) from (1.14) for certain real quadratic α, Hecke
used the simpler “degree one” functions

Ψj(s) =
∑′

µ

νj(µ)(|µ|+ |µ′|)−s,

with the appropriate summation over µ. The fact that Φj(s) has degree
two accounts for one of the new difficulties in treating the restricted divi-
sor problem using Hecke’s method, due to its increased growth in vertical
strips. Also, for Ψj(s) no hypergeometric function occurs in the correspond-
ing Fourier coefficient.

One can group together n and −n terms in (5.2) getting

(5.15) Φj(s) =
(2
√
π)2s−2

Ds/2

∞∑
n=1

(−1)n

Γ(2s) logα
×

× Γ

(
s+ 1− j + inκ

2

)
Γ

(
s+ 1− j − inκ

2

)
×

× (ξ(s, νjλ
n) + ξ(s, νjλ

−n))2F1

(
s− inκ, s+ inκ, 1/2 + s;

2− a

4

)
+

+
(2
√
π)2s−2ξ(s, νj)

Ds/2Γ(2s) logα
Γ2

(
s+ 1− j

2

)
2F1

(
s, s, 1/2 + s;

2− a

4

)
.

The function Φ0(s) has poles at the points:

(5.16) 1, 0, −1− 2m± inκ, form,n ∈ Z≥0.

The first two poles come from the poles of ξ(s, ν0), and the series of poles
comes from the poles of Gamma factors. The function Φ1(s) has poles at
the points:

(5.17) −2m± inκ, form,n ∈ Z≥0.
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Note that though the hypergeometric function in (5.2) has poles at −1
2 −m,

m ∈ Z≥0, the functions Φj(s) are holomorphic at these points due to the
presence of Γ−1(2s). According to (1.13), (5.4) and Lemma 5.2

(5.18) ϕ(s, α) =
Ds

4
Φ0(s)−

Ds

4
Φ1(s)− ζ(s) logα.

It turns out that ϕ(s, α) is holomorphic at s = 1. From (5.15) and (4.7)
we have

(5.19) ress=1
Ds

4
Φ0(s) =

√
D

2
2F1

(
1, 1, 3/2;

2− a

4

)
.

This hypergeometric function [42, Sec. 7.3.4., eq. (17)] reduces to

(5.20) 2F1 (1, 1, 3/2;−x) =
log(

√
x+

√
x+ 1)√

x(x+ 1)
,

and using the fact that D = a2 − 4 we obtain

ress=1
Ds

4
Φ0(s) = 2 log

(√
a− 2

2
+

√
a+ 2

2

)
(5.21)

= log

(
a+

√
a2 − 4

2

)
= logα.(5.22)

Therefore, this residue cancels out with the one of −ζ(s) logα so that ϕ(s, α)
is holomorphic at s = 1.

For our further computations we also need to know residues of ϕ(s, α)
at s = inκ with n ̸= 0. Applying (5.15) and (5.18) we prove the following
result.

Lemma 5.6. We have

(5.23) ress=inκ ϕ(s, α) = ress=inκ
−Ds

4
Φ1(s) =

=
−(2

√
π)2inκ−2Dinκ/2

2 logα

(−1)nΓ(inκ)

Γ(2inκ)

(
ξ(inκ, ν1λ

n) + ξ(inκ, ν1λ
−n)
)
.

6. Properties of ψ(2s, α)

In this section, we state some results of [28] needed for our calculations.
First, we remark that η, defined on [28, p.55], coincides with α in (1.17).

Furthermore, e(1), introduced in [28, p.60], is equal to 2, since for a > 3 the

number α is a totally positive fundamental unit in Q(
√
D). For j = 0, 1 let

(see [28, (3)])

(6.1) Ψj(s) =
∑
µ∈O

′ νj(µ)

(|µ|+ |µ′|)s
,
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where νj are the Hecke sign characters defined by (4.2), the prime sign above

the sum means that µ ̸= 0, and O is a ring of integers of Q(
√
D). For a ≡ 0

(mod 4) and D = a2 − 4 Hecke proved that (see [28, (5)])

(6.2) Ψj(2s) =
22s−2A−s

πΓ(2s) logα

∞∑
n=−∞

ξ(s, νjλ
n)×

× Γ

(
s+ 1− j + inκ

2

)
Γ

(
s+ 1− j − inκ

2

)
.

However, an analysis of Hecke’s proof shows that (6.2) is also true for odd
values of a.

Lemma 6.1. The following identity holds:

(6.3) ψ(2s, α) =
Ds

8
Ψ1(2s)−

Ds

8
Ψ0(2s) +

√
D

2
ζ(2s− 1).

Proof. First, consider the case a ≡ 0 (mod 4). According to [28, p.59]

(6.4) ψ(2s,
√
D) = 22s−3DsΨ1(2s)− 22s−3DsΨ0(2s) +

√
Dζ(2s− 1),

where D = D/4 = (a2 − 4)/4. Furthermore, {nα} = {n
√
D} for a ≡ 0

(mod 4), and thus ψ(2s,
√
D) = ψ(2s, α), which completes the proof of (6.3)

in this case.
Next, consider the case of odd a. To handle this, we will combine Lemma

5.1 with the results of [28]. Applying Lemma 5.1 to study (6.1), we obtain

(6.5)

Ψ0(s)−Ψ1(s) = 4
∑

µ>0,µ′<0

1

(|µ|+ |µ′|)s
= 4

∞∑
d1=1

∑
d1/α<d2<d1α

1

(d1
√
D)s

=

= 4
∞∑

d1=1

[αd1]− [d1/α]

(d1
√
D)s

= 4
∞∑

d1=1

d1
√
D − {αd1}+ {d1/α}

(d1
√
D)s

.

The identity

(6.6) {a−
√
D

2
d1} − {a+

√
D

2
d1} = 1− 2{a+

√
D

2
d1}

implies that

(6.7) Ψ0(s)−Ψ1(s) = 4D1/2−s/2ζ(s− 1)− 8D−s/2ψ(s, α),

which completes the proof of (6.3). □

The function Ψ0(2s) has poles at the points:

(6.8) 1, 0, −1− 2m± inκ form,n ∈ Z≥0,

and the function Ψ1(2s) has poles at the points: −2m± inκ for m,n ∈ Z≥0.
It follows from (6.2), (4.7) and (4.1) that

ress=1Ψ0(2s) =
2√
D
.
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Therefore, ψ(2s, α) is holomorphic at s = 1.
Next, we evaluate the residues of ψ(2s, α) at s = inκ with n ̸= 0 (here

once again we group together the summands with n and −n in (6.2)).

Lemma 6.2. We have

(6.9) ress=inκ ψ(2s, α) = ress=inκ 2
−3DsΨ1(2s) =

=
22inκ−4Dinκ/2

π1−inκ logα

Γ(inκ)

Γ(2inκ)

(
ξ(inκ, ν1λ

n) + ξ(inκ, ν1λ
−n)
)
.

Let

(6.10) H(s) =

∞∏
k=0

(1− α−s−2k).

Hecke proved (see [28, (8),(9)]) that for s = σ + it we have 3

(6.11) H(2s)ψ(2s, α) ≪ 1 + |t|m(σ),

where for σ > 1/2 we have m(σ) = 0, for −σ1 ≤ σ ≤ 1/2 we have m(σ) =
1− 2σ + ϵ with σ1 being arbitrary positive half-integral number.

Remark. A different proof giving the meromorphic continuation of the
Dirichlet series ψ(s, α) from (1.14) for certain real quadratic α can be found
in [23]. Their proof is based on properties of the double zeta function of
Barnes. This Hardy-Littlewood method was developed further in [38] and
then in [16] (see also [17]), to cover much more general Dirichlet series. In
fact, results of [16] yield another proof that our φ(s, α) has a meromorphic
continuation to a function of finite order and even can be applied to de-
termine the location of the poles, but without the explicit determination of
their residues or the growth estimates needed in our proof of Theorem 1.5.

7. Asymptotic analysis of the hypergeometric function

In this section, we prove new estimates for the growth of ϕ(s, α) by study-
ing the asymptotic behavior of the hypergeometric function appearing in
(5.15).

Using (4.5) and [40, 5.5.5] we have

(7.1) Φj(s) =
∞∑
n=1

(−1)n
Γ(s+ inκ)Γ(s− inκ)

Γ(2s) logα
×

× 2F1

(
s− inκ, s+ inκ, 1/2 + s;

2− a

4

)
(ζ(s, νjλ

n) + ζ(s, νjλ
−n))+

+
Γ2(s)ζ(s, νj)

Γ(2s) logα
2F1

(
s, s, 1/2 + s;

2− a

4

)
.

3This result was improved by Fujii [19, p.218].
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For s = σ + it, β ≥ 0 let

(7.2) F(β, σ, t, z) = H(2s)
Γ(σ + it(1 + β))Γ(σ + it(1− β))

Γ(2σ + 2it)

× 2F1 (σ + it(1 + β), σ + it(1− β), 1/2 + σ + it;−z) ,

where H(s) is defined by (6.10). Applying (4.9) we get
(7.3)

H(2s)Φj(s) ≪
∞∑
n=0

∣∣∣∣F (nκt , σ, t, a− 2

4

)∣∣∣∣ (1 + |t− nκ|)k(σ) (1 + |t+ nκ|)k(σ) .

Let β = nκ/t. From now on, we assume that β = nκ/t. Note that if n = 0
then β = 0, and if n ̸= 0 then β ≫ 1/t. When t = 0, we replace tβ by nκ.

Since F(β, σ, t, z) = F(−β, σ, t, z), it is enough to study only the case
t ≥ 0. In our analysis, we will use several properties of the Gamma function.
The first one is the following form of Stirling’s formula:

(7.4) Γ(σ + it) =
√
2π|t|σ−1/2e−π|t|/2e

i
(
t log |t|−t+

πt(σ−1/2)
2|t|

)
×

×

1 +
N−1∑
j=1

cj
|t|j

+O(|t|−N )

 ,

which is valid for |t| → ∞ and a fixed σ (note that cj(σ) ≪ 1). Furthermore,
we need some upper and lower bounds for ”small” t (say 0 < t ≪ T ϵ and
T → +∞). For 0 ≤ σ < C and σ + |t| > δ we have [40, 5.6.9]

(7.5) Γ(σ + it) ≪ (1 + |t|)σ−1/2e−π|t|/2.

In case when σ < 0, using [40, 5.5.3] and [40, 5.6.7], we get for ∥σ+ |t|∥ > δ
(here ∥x∥-is a distance to the nearest integer)

(7.6) Γ(σ + it) ≪ e−π|t|/2.

For σ ≥ 1/2 we have [40, 5.6.7]

(7.7) Γ(σ + it) ≫ eπ|t|/2,

and for σ < 1/2, using [40, 5.5.3] and [40, 5.6.9], we obtain

(7.8) Γ(σ + it)−1 ≪ Γ(1− σ − it)eπ|t| ≪ (1 + |t|)1/2−σeπ|t|/2.

To sum up, for 0 ≤ t≪ T ϵ, |σ| < C and ∥σ + |t|∥ > δ we have

(7.9) T−ϵ1e−π|t|/2 ≪ Γ(σ + it) ≪ e−π|t|/2T ϵ1 .

From now on, we assume that

(7.10) |σ| < C, 0 < δ < z < Z,

where C and Z are some large constants. For simplicity, we omit the de-
pendence on σ and z in O(·) and ≪ in this section.

Let us first consider the case β = 0 (that is the term n = 0 in (7.3)).
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Lemma 7.1. For T → +∞ we have

(7.11) F(0, σ, t, z) ≪ T ϵ0 , for 0 ≤ t ≤ T ϵ,

(7.12) F(0, σ, t, z) ≪ t−1/2, for t > T ϵ.

Proof. Applying [40, 15.8.1] and then writing the Mellin integral represen-
tation [40, 15.6.6], we obtain

(7.13) 2F1 (σ + it, σ + it, 1/2 + σ + it;−z) =

= (z + 1)1/2−σ−itΓ(1/2 + σ + it)

Γ2(1/2)2πi

∫
(c)

Γ2(1/2 + w)Γ(−w)
Γ(1/2 + σ + it+ w)

zwdw,

where −1/2 < c < 0. We first consider the case of large values of t > T ϵ.
To do this, we move the line of integration to ℜ(w) = 1/2, passing the
pole at w = 0. Let w = 1/2 + iy. Using Stirling’s formula (7.4), one can
easily deduce that the contribution of |y| ≫ tϵ is negligible. To estimate the
remaining part, we apply [40, 5.4.3, 5.4.4], getting

(7.14) 2F1 (σ + it, σ + it, 1/2 + σ + it;−z) ≪ 1 + t−1/2

∫ tϵ

−tϵ
e−π|y|dy ≪ 1.

Substituting (7.14) to (7.2) and using (7.4) we prove (7.12).
Now, let 0 ≤ t ≤ T ϵ. In this case, we again move the line of integration

to ℜ(w) = 1/2. Using (7.4) and (7.9), we show that the contribution of
|y| ≫ T ϵ is negligible and that the remaining integral can be estimated as

(7.15) 2F1 (σ + it, σ + it, 1/2 + σ + it;−z) ≪ 1 + T ϵ1

∫ T ϵ

−T ϵ

e−π|y|dy ≪ T ϵ0 .

Substituting (7.15) into (7.2) and using (7.9), we prove (7.11). □

From now on β ̸= 0. Let us begin the analysis of F(β, σ, t, z) by trans-
forming the hypergeometric function in (7.2) using [3, (1), (9), (13), p.105]
and [3, (34), p. 107]:

(7.16) 2F1 (σ + it(1− β), σ + it(1 + β), 1/2 + σ + it;−z) =

= z−σ−it(1−β) Γ(1/2 + σ + it)Γ(2itβ)

Γ(1/2 + itβ)Γ(σ + it(1 + β))
×

× 2F1

(
σ + it(1− β), 1/2− itβ, 1− 2itβ;

−1

z

)
+

+ z−σ−it(1+β) Γ(1/2 + σ + it)Γ(−2itβ)

Γ(1/2− itβ)Γ(σ + it(1− β))
×

× 2F1

(
σ + it(1 + β), 1/2 + itβ, 1 + 2itβ;

−1

z

)
.

Next, in order to study asymptotic properties of the hypergeometric func-
tions on the right hand side of (7.16) we use the integral representation [40,
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15.6.1]:

(7.17) 2F1

(
σ + it(1− β), 1/2− itβ, 1− 2itβ;

−1

z

)
=

=
Γ(1− 2itβ)

Γ2(1/2− itβ)

∫ 1

0

y−1/2−itβ(1− y)−1/2−itβ

(1 + y/z)σ+it(1−β)
dy.

Substituting (7.16) and (7.17) to (7.2) we obtain

(7.18) F(β, σ, t, z) = F1(β, σ, t, z) + F1(−β, σ, t, z),
where

(7.19) F1(β, σ, t, z) = H(2s)P(β, σ, t)I(β, σ, t, z),

(7.20) P(β, σ, t) =
Γ(σ + it(1 + β))

Γ(2σ + 2it)

Γ(1/2 + σ + it)Γ(−2itβ)Γ(1 + 2itβ)

Γ(1/2− itβ)Γ2(1/2 + itβ)
,

(7.21) I(β, σ, t, z) =
∫ 1

0

y−1/2+itβ(1− y)−1/2+itβ

(z + y)σ+it(1+β)
dy.

Consider the product of the Gamma functions in (7.20). Using [40, 5.5.3]
and [40, 5.5.5] we show that

(7.22) P(−β, σ, t) = 1

2i sinh(πtβ)

Γ(σ + it(1− β))Γ(1/2 + σ + it)

Γ(2σ + 2it)Γ(1/2− itβ)
=

=
−i cosh(πtβ)

22σ+2it
√
π sinh(πtβ)

Γ(σ + it(1− β))Γ(1/2 + itβ)

Γ(σ + it)
.

Note that estimating the integral (7.21) by absolute value one gets the trivial
estimate:

(7.23) I(±β, σ, t, z) ≪
∫ 1

0

y−1/2(1− y)−1/2

(z + y)σ
dy ≪ z−σ + (1 + z)−σ.

Let us consider the case of small t, say 0 ≤ t≪ T ϵ as T → +∞.

Lemma 7.2. For 0 ≤ t≪ T ϵ0 as T → +∞ we have

(7.24) F(β, σ, t, z) ≪ T ϵ(β − 1)σ−1/2e−πt(β−1), for tβ > T ϵ1 > 2t,

(7.25) F(β, σ, t, z) ≪ T ϵ, for 0 < tβ ≤ T ϵ1 .

Proof. Using (7.22), (7.4) and (7.9) we show that

(7.26) P(β, σ, t) ≪ T ϵ(t(1 + β))σ−1/2e−πtβ for tβ > T ϵ1 ,

and for 0 < tβ ≤ T ϵ1 we have P(β, σ, t) ≪ T ϵe−πtβ. In the same way,

(7.27) P(−β, σ, t) ≪ T ϵ(t(β − 1))σ−1/2e−πt(β−1) for tβ ≥ T ϵ1 > 2t,

(7.28) P(−β, σ, t) ≪ T ϵe−πt(β−1+|β−1|)/2 for 0 < tβ < T ϵ1 .

Combining these estimates with (7.18), (7.19), (7.23), we complete the proof.
□
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From now on, we assume that t≫ T ϵ as T → +∞.

Lemma 7.3. For t→ +∞ and β > 1 + t−1+ϵ the estimate holds:

(7.29) F(β, σ, t, z) ≪ (β − 1)σ−1/2e−π|t|(β−1).

Proof. It turns out that the main contribution to (7.18) comes from F1(−β, σ, t, z),
so let us start by studying this function. By Stirling’s formula (7.4) for
min(|1− β|, β) ≫ |t|−1+ϵ we have

(7.30)
Γ(σ + it(1− β))Γ(1/2 + itβ)

Γ(σ + it)
=

√
2π|1− β|σ−1/2e−

π|t|
2

(|1−β|+|β|−1)×

× eit((1−β) log |1−β|+β log β)e
πit(σ−1/2)

2|t|

(
1−β
|1−β|−1

)
×

×

1 +

N−1∑
j=1

cj
|tmin(β, 1− β)|j

+O(|tmin(β, 1− β)|−N )

 .

It follows from (7.22) and (7.30) that for β > 1+t−1+ϵ the following estimate
holds:

(7.31) P(−β, σ, t) ≪ (β − 1)σ−1/2e−π|t|(β−1).

Changing β to −β in (7.30), for β > t−1+ϵ we deduce that

(7.32) P(β, σ, t) ≪ e−π|t|β.

Now the estimate (7.29) follows from (7.18), (7.19), (7.31), (7.32) and
(7.23). □

Next, we consider the case t−1 ≪ β < t−1+ϵ0 .

Lemma 7.4. For t−1 ≪ β < t−1+ϵ0 we have

(7.33) F(β, σ, t, z) = H(2s)e
− πit

4|t| 21−2σ−2it√π(1− β)σ−1/2+it(1−β)×

× (1 + β)σ−1/2+it(1+β) (z + 1)1/2−σ−it√
|t|

1 +
n∑

j=1

ej · (tβ2)j
+O

(
tϵ

tn+1

)
,

where ej ≪z,σ 1.

Proof. Using [40, 15.8.1] and then applying the Mellin-Barnes integral rep-
resentation [40, 15.6.6], we obtain

(7.34) 2F1 (σ + it(1 + β), σ + it(1− β), 1/2 + σ + it;−z) =

= (z + 1)1/2−σ−it
2F1 (1/2− itβ, 1/2 + itβ, 1/2 + σ + it;−z) =

=
(z + 1)1/2−σ−itΓ(1/2 + σ + it)

Γ(1/2− itβ)Γ(1/2 + itβ)2πi
×

×
∫
(c)

Γ(1/2− itβ + w)Γ(1/2 + itβ + w)

Γ(1/2 + σ + it+ w)
Γ(−w)zwdw,
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where −1/2 < c < 0. Since t−1 ≪ β < t−1+ϵ0 , the third parameter of the
hypergeometric function is much larger than the first and second, so we can
simply move the line of integration to the right on ℜw = 1/2 + n, crossing
the poles at w = j. Let w = 1/2 + n+ iv. Applying (7.4), [40, 5.4.3, 5.4.4]
we obtain

(7.35)
Γ(1/2 + σ + it)

Γ(1/2− itβ)Γ(1/2 + itβ)

Γ(1/2− itβ + w)Γ(1/2 + itβ + w)

Γ(1/2 + σ + it+ w)
Γ(−w) ≪

≪ |t|σ (1 + |v + tβ|)n+1/2(1 + |v − tβ|)n+1/2

(1 + |v + t|)1/2+n+σ(1 + |v|)1+n
e−πg(t,β,v)/2,

where

(7.36) g(t, β, v) = |v + tβ|+ |v − tβ|+ |v| − |v + t|+ t− 2tβ.

Using (7.36) one can easily deduce that the part of the integral (7.34) with
|v| ≫ tβ + log2 t is negligible. Estimating the remaining integral trivially,
we obtain

(7.37) 2F1 (σ + it(1 + β), σ + it(1− β), 1/2 + σ + it;−z) =

= (z + 1)1/2−σ−it
n∑

j=0

(−1)jzj

j!

Γ(1/2 + σ + it)

Γ(1/2− itβ)Γ(1/2 + itβ)
×

× Γ(1/2− itβ + j)Γ(1/2 + itβ + j)

Γ(1/2 + σ + it+ j)
+O

(
tϵ

tn+1/2

)
.

Using (7.4) we deduce that

(7.38)
Γ(σ + it(1 + β))Γ(σ + it(1− β))

Γ(2σ + 2it)
=

√
2π√
|t|

21/2−2σ(1− β2)σ−1/2

× eit((1+β) log(1+β)+(1−β) log(1−β)−2 log 2)e
− πit

4|t|

1 +
N−1∑
j=1

cj
|t|j

+O(|t|−N )

 .

Substituting (7.37) and (7.38) into (7.2), we prove the lemma. □

Our next goal is to obtain an asymptotic formula in the range

t−1+ϵ0 < β < 1 + t−1+ϵ

as t → +∞. In view of (7.32), the part F1(β, σ, t, z) of (7.18) is negligible
and therefore we consider further only F1(−β, σ, t, z). Accordingly, it is
required to obtain an asymptotic expansion for the integral I(−β, σ, t, z)
via the saddle point method. To this end, we rewrite the integral in the
form:

(7.39) I(−β, σ, t, z) =
∫ 1

0

y−1/2(1− y)−1/2

(z + y)σ
e−itf1(β,z,y)dy,

(7.40) f1(β, z, y) = β log y + β log(1− y) + (1− β) log(y + z).
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The saddle point defined by ∂
∂yf1(β, z, y) = 0 is equal to

(7.41) y+ =
1− 2βz +

√
4β2z2 + 4β2z + 1

2(1 + β)
.

As we will see in the following lemma, 1/2 < y+ < 1 and as β tends to zero
the saddle point tends to one. Accordingly, we need a version of the saddle
point method which allows the saddle point to be located close to the end
point. Such version was proved in [39, Theorem 1.3]. To apply this method,
we also need to split the integral I(−β, σ, t, z) as a sum of several parts in
order to localize the saddle point and to have good control over the growth
of the function under the integral. Let us define four smoothed functions:
χ0(x), χ1/2(x), χsp(x) χ1(x), such that

(7.42) χ0(x) + χ1/2(x) + χsp(x) + χ1(x) = 1 for 0 < x < 1,

(7.43) χ0(x) = 1 for 0 < x <
1− y+

8
, χ0(x) = 0 for x >

1− y+
4

,

(7.44) χ1/2(x) = 1 for
1− y+

4
< x <

3y+ − 1

2
,

χ1/2(x) = 0 for x <
1− y+

8
, x >

5y+ − 1

4
,

(7.45) χsp(x) = 1 for |x− y+| <
1− y+

4
,

χsp(x) = 0 for |x− y+| >
1− y+

2
,

(7.46)

χ1(x) = 1 for
1 + y+

2
< x < 1, χ1(x) = 0 for 0 < x <

1 + 3y+
4

.

For a ∈ {0, 1/2, sp, 1} let
(7.47)

Ia(−β, σ, t, z) =
∫ 1

0
ga(y)e

−itf1(y)dy, ga(y) =
χa(y)y

−1/2(1− y)−1/2

(z + y)σ
,

where for simplicity, we write f1(y) instead of f1(β, z, y).

Lemma 7.5. For t−1+ϵ0 < β < 1 + t−1+ϵ we have

(7.48) I(−β, σ, t, z) = e
πit
4|t|

√
2π
y
1/2−itβ
+ (1− y+)

1/2−itβ

√
tβ(y+ + z)σ+it(1−β)

×

(
1 +

(2z + 1)β√
4β2z2 + 4β2z + 1

)1/2
1 +

n∑
j=1

cj
(tβ)j

+O

( √
β

(tβ)n+1

)
,

where cj ≪z,σ 1.
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Proof. First, we prove an asymptotic formula for Isp(−β, σ, t, z) using the
saddle point method. The saddle point is a solution of the equation f ′1(y) =
0, which yields the quadratic equation:

(7.49) (1 + β)y2 + (2βz − 1)y − βz = 0.

At the point y = 0 the quadratic polynomial above is equal to −βz, and at
the point y = 1 to β(1+ z), therefore only the largest root of (7.49) belongs
to the interval (0, 1), being the only relevant saddle point:

(7.50) y+ =
1− 2βz +

√
(2βz − 1)2 + 4β(1 + β)z

2(1 + β)
.

Furthermore, since the left hand side of (7.49) at the point y = 1/2 is equal

to β−1
4 < 0, we have 1/2 < y+ < 1 (and for 1 < β < 1 + t−1+ϵ the point y+

is close to 1/2). As β → 0 the equality holds:

(7.51) 1− y+ =
2β(1 + z)

1 + 2β(1 + z) +
√
4β2z2 + 4β2z + 1

= β(1 + z) +O(β2).

From the equation f ′1(y) = 0 one can deduce that

z + y+ =
(1− β)y+(1− y+)

β(2y+ − 1)
,

and thus

(7.52) f ′′1 (y+) =
−β
1− β

2(1 + β)y2+ − 2(1 + β)y+ + 1

y2+(1− y+)2
.

Expressing y2+ via (7.49), and then substituting (7.50), we obtain

(7.53) f ′′1 (y+) =
−β
1− β

1 + 2βz − 2β(2z + 1)y+
y2+(1− y+)2

=

=
−β

y2+(1− y+)2

√
4β2z2 + 4β2z + 1

β(1 + 2z) +
√
4β2z2 + 4β2z + 1

.

To apply the saddle point method in the form proved in [39, Theorem 1.3],
one needs to determine N,M, T, U such that for s = 0, . . . , 2n + 1 and
r = 2, . . . , 2n+ 3

(7.54) |g(s)sp (y)| ≪
U

N s
, |tf (r)1 (y)| ≪ T

M r
,

and |tf (2)1 (y)| ≫ T
M2 .

It follows from (7.45), (7.47) and (7.51) that |gsp(y)| ≪z,σ β
−1/2 and thus

U = β−1/2. Evaluating g
(s)
sp (y) one can deduce that N = β. Using (7.52) and

(7.51) we obtain |tf (2)1 (y)| ≍ t
β . Evaluating f

(r)
1 (y) we have |tf (r)1 (y)| ≪ tβ

βr ,

and therefore M = β and T = tβ. Now we are ready to estimate all error
terms in [39, (1.7)]. Due to the presence of χsp(y) in gsp(y) we immediately
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obtain that the term with functions Hi(x) vanishes. The first error term of
[39, (1.7)] can be estimated as
(7.55)

UM2n+5

NTn+2

[n/2+1/2]∑
j=1

(
1

yn+2+j
+

+
1

(1− y+)n+2+j

)
n+1−j∑
i=j

(N/M)i

Nn+1−j
≪

√
β

(tβ)n+2
,

(7.56)
UM2n+4(M/N + 1)

Tn+2Nn+1

(
1

yn+2
+

+
1

(1− y+)n+2

)
≪

√
β

(tβ)n+2
,

(7.57)

UM2n+4

Tn+2

n+1∑
j=1

(
1

yn+2+j
+

+
1

(1− y+)n+2+j

)
n+1−j∑
i=0

(N/M)i

Nn+1−j
≪

√
β

(tβ)n+2
,

(7.58)
U

Tn+1

(
M2n+2

N2n+1
+M

)
≪

√
β

(tβ)n+1
.

Furthermore, we would like to simplify a bit the formula for the main term
in [39, (1.7)]. Using [39, (3.4)], (7.53) and (7.51), we show that

(7.59) λ2 =
−tf ′′1 (y+)

4π
≍ tβ

(1− y+)2
≍ t

β
and λk ≍ tβ

βk
.

Also in [39, (3.21)] in our case we have ηk ≍ β−1/2−k, and therefore,

ϖk ≍ β−1/2−k (this also follows from [39, (4.8)]). Finally, [39, (1.7)] for
Isp(−β, σ, t, z) becomes

(7.60) Isp(−β, σ, t, z) = e
πit
4|t|

√
2πe−itf1(y+)√
|tf ′′1 (y+)|

gsp(y+) + n∑
j=1

cj

(tβ)j
√
β


+O

( √
β

(tβ)n+1

)
.

Using (7.47), (7.53) and (7.51), we infer

(7.61) Isp(−β, σ, t, z) = e
πit
4|t|

√
2π√
βt

y
1/2−itβ
+ (1− y+)

1/2−itβ

(y+ + z)σ+it(1−β)
×

×

(
1 +

(2z + 1)β√
4β2z2 + 4βz + 1

)1/2
1 +

n∑
j=1

cj
(tβ)j

+O

( √
β

(tβ)n+1

)
.

In order to prove (7.48) it remains to show that the three remaining inte-
grals Ia(−β, σ, t, z) are small. To do this, we will simply integrate by parts.
Consider the case a = 1 (other cases can be treated in a similar manner).
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Since f ′1(y) =
β
y − β

1−y + 1−β
z+y ≍ β

1−y , we get

(7.62) I1(−β, σ, t, z) ≪
1

t

∫ 1

0

∂

∂y

(
g1(y)

f ′1(y)

)
e−itf1(y)dy

≪ 1

tβ

∫ 1

0

χ1(y)y
−1/2(1− y)−1/2

(z + y)σ
dy ≪

√
β

tβ
.

Integrating by parts n-times and arguing similarly, we have

(7.63) I1(−β, σ, t, z) ≪
√
β

(tβ)n
.

Thus (7.48) follows. □

Using Lemma 7.5 we obtain the following estimate.

Lemma 7.6. For t→ +∞ and |1− β| < t−1+ϵ the estimate holds:

(7.64) F(β, σ, t, z) ≪ |t|ϵ1−σe−
π|t|
2

(|1−β|+|β|−1).

Proof. Using (7.9), we obtain

(7.65) P(−β, σ, t) ≪ t1/2−σ+ϵ1e−
π|t|
2

(|1−β|+|β|−1).

Using this estimate and Lemma 7.5 we estimate F1(−β, σ, t, z). Since F1(β, σ, t, z)
is negligible (due to (7.32)) we (7.18) complete the proof of the Lemma. □

Combining Lemma 7.5 and computations performed in Lemma 7.3, we
obtain the following asymptotic formula.

Lemma 7.7. For t−1+ϵ0 < β < 1− t−1+ϵ we have

(7.66) F(β, σ, t, z) = H(2s)e
− πit

4|t| 21−2σ−2it√π(1− β)σ−1/2+it(1−β)β−1/2+itβ

×
y
1/2−itβ
+ (1− y+)

1/2−itβ√
|t|(y+ + z)σ+it(1−β)

1 +

n∑
j=1

cj
(tβ)j

+

n∑
j=1

dj
(t(1− β))j

×

×

(
1 +

(2z + 1)β√
4β2z2 + 4β2z + 1

)1/2

+

+O

(
(1− β)σ−1/2

√
β

(tβ)n+1
+

(1− β)σ−1/2

(t(1− β))n+3/2
√
t

)
,

where cj , dj ≪z,σ 1.

Proof. We substitute (7.30) to (7.22), which yields

(7.67) P(−β, σ, t) = −it
|t|

21/2−2σ−2it(1− β)σ−1/2+it(1−β)βitβ

×

1 +

N∑
j=1

cj
|tmin(β, 1− β)|j

+O(|tmin(β, 1− β)|−N−1)

 .
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It follows from (7.32) and (7.23) that the contribution of F1(β, σ, t, z) to
(7.18) is negligible. Substituting (7.67) and (7.48) to (7.19) and using (7.18),
we prove (7.66). □

Let us compare the main terms of asymptotic expansions (7.66) and
(7.33). For t−1 ≪ β < t−1+ϵ0 we have

(7.68) eit((1+β) log(1+β)+(1−β) log(1−β)) = eO(tβ2) = 1 +O(tβ2),

(7.69) (1− β2)σ−1/2 = 1 +O(β2).

Therefore, the main term of (7.33) is

(7.70) H(2s)e
− πit

4|t| 21−2σ−2it√π (z + 1)1/2−σ−it√
|t|

.

Next, we simplify the main term of (7.66). Using (7.51) we have

(7.71) y
1/2−itβ
+ = y

1/2
+ e−itβ log y+ = y

1/2
+ eO(tβ2) = 1 +O(β) +O(tβ2),

(7.72) (1− y+)
1/2−itβ = β1/2−itβ(1 + z)1/2−itβ

(
1 +O(β) +O(tβ2)

)
,

(7.73) (y+ + z)σ+it(1−β) = (1 + z)σ+it(1−β)(1− β)σ+it(1−β)
(
1 +O(tβ2)

)
.

Therefore, the main term of (7.66) is equal to

(7.74) H(2s)e
− πit

4|t| 21−2σ−2it√π (1 + z)1/2−σ−it√
|t|

,

which coincides with (7.70).
As a corollary of the obtained results on the hypergeometric function, we

prove the following estimate on the growth of ϕ(s, α).

Lemma 7.8. For s = σ + it, |t| ≪ T ϵ and |σ| < C we have

(7.75) H(2s)ϕ(s, α) ≪ T ϵ,

and for |t| → +∞ we have

(7.76) H(2s)ϕ(s, α) ≪ |t|k(σ),
where

(7.77) k(σ) =

 0, if σ > 1,
3(1− σ)/2 + ϵ, if 0 ≤ σ ≤ 1,
3/2− 2σ, if σ < 0.

Proof. For σ > 1 the estimates (7.75) and (7.76) hold since ϕ(s, α) converges
absolutely. From now on, let σ ≤ 1. Due to (5.18) and the following estimate
on the Riemann-zeta function

|ζ(s)| ≪ |t|1/2−σ forσ < 0, |ζ(s)| ≪ |t|1/2−σ/2 for 0 < σ < 1,

it is enough to prove (7.75), (7.76) for Φj(s) instead of ϕ(s, α), i.e.

(7.78) H(2s)Φj(s) ≪ T ϵ for t≪ T ϵ,
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(7.79) H(2s)Φj(s) ≪ |t|k(σ).
Let us consider the case t > 0 (the opposite case t < 0 can be treated in
the same way). The estimate (7.78) follows immediately from (7.3), (7.11)
and Lemma 7.2. Next, we prove (7.79). Recall that nκ = tβ. To estimate
the sum (7.3) we split it into several sub-sums: n = 0, 0 < β ≤ t−1+ϵ0 ,
t−1+ϵ0 < β < 1 − t−1+ϵ, |β − 1| < t−1+ϵ and β > 1 + t−1+ϵ. If n = 0 we
apply (7.12), for n≪ tϵ0 we apply Lemma 7.4, getting
(7.80)∑
0≤n≪tϵ0

|F(β, σ, t, z)| (1 + |t− nκ|)k(σ) (1 + |t− nκ|)k(σ) ≪ |t|2k(σ)−1/2+ϵ0 .

The part of (7.3) with β > 1 + t−1+ϵ is negligible in view of Lemma 7.3. In
case when |β − 1| < t−1+ϵ, we use (7.64) to show that

(7.81)
∑

|nκ−t|<tϵ

|F(β, σ, t, z)| (1 + |t||1− β|)k(σ) (1 + |t||1 + β|)k(σ)

≪
∑

|nκ−t|<tϵ

|t|k(σ)−σ+ϵ ≪ |t|k(σ)−σ+ϵ1 .

We are left to consider the range t−1+ϵ0 < β < 1− t−1+ϵ. Using (7.66) and
(7.51), we have

(7.82)
∑

tϵ0<nκ<t−tϵ

|F(β, σ, t, z)| (1 + |t||1− β|)k(σ) (1 + |t||1 + β|)k(σ) ≪

≪
∑

tϵ0<nκ<t−tϵ

|t|2k(σ)−1/2(1− β)k(σ)+σ−1/2 ≪ |t|2k(σ)+1/2,

since k(σ) + σ > −1/2 due to (4.10). Combining (7.80), (7.81) and (7.82),
we obtain

(7.83) H(2s)Φj(s) ≪ |t|2k(σ)+1/2,

where k(σ) is defined by (4.10). To improve this result in case when 0 ≤
σ ≤ 1, we apply the Phragmen-Lindelöf theorem, which completes the proof
of (7.76). □

8. Proof of Theorems 1.3, 1.4 and 1.5

A possible way to relate the sums (1.15) and (1.16) with (1.13) and (1.14)
is to apply the following statement (this is an easy modification of the lemma
on p. 105 of [9]).

Lemma 8.1. For r, c, x, T > 0 we have

(8.1) χ(1,∞)(x)

(
1− 1

x

)r

=
1

2πi

∫ c+iT

c−iT

Γ(1 + r)Γ(s)

Γ(1 + r + s)
xsds+

+O

(
xc

T r
min

(
1,

1

T | log x|

))
,
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where χ(1,∞)(x) is the characteristic function of the interval (1,∞).

We begin the proofs by applying Lemma 8.1 to (1.15) and (1.16), which
yields the identity.

Lemma 8.2. We have

(8.2) ∆r(x, α) + 2Sr(
√
αx, α) =

=
1

2πi

∫ c+iT

c−iT

Γ(1 + r)Γ(s)

Γ(1 + r + s)
(ϕ(s, α) + 2αsψ(2s, α))xsds+O

(
xc

T r+1

)
.

Proof. Using (8.1), we immediately obtain the main term of (8.2) plus the
following error term:
(8.3)∑
n≤x

xcnϵ

ncT r
min

(
1,

1

T | log(x/n)|

)
+

∑
n≤

√
αx

xc

n2cT r
min

(
1,

1

T | log(αx/n2)|

)
.

Let us estimate the first sum. Assume that c > 1 + ϵ0. We have

(8.4)
∑
n≤x

xcnϵ

ncT r
min

(
1,

1

T | log(x/n)|

)

≪
∑

0≤x−n≪x/T

xc+ϵ

ncT r
+

∑
x−n≫x/T

xc

nc−ϵT r+1 log(x/n)
.

These sums can be estimated as

(8.5)
xc+ϵ

xcT r

x

T
+

xc

T r+1

∫ x(1−1/T )

1

dy

yc−ϵ log(x/y)

≪ x1+ϵ

T r+1
+

xc

T r+1
+

xc

T r+1

∫ x(1−1/T )

x(1−0.01)

dy

yc−ϵ log(x/y)
.

Finally,

(8.6)
x1+ϵ

T r+1
+

xc

T r+1
+

xc

T r+1

∫ x(1−1/T )

x(1−0.01)

dy

yc−ϵ log(x/y)

≪ xc

T r+1
+

xc

T r+1

x

xc−ϵ
log T ≪ xc

T r+1
.

□

Next, we move the line of integration in (8.2) to ℜs = −δ with δ =
−1/2 + 2k and k - some large (but fixed) positive integer. Doing this, we
cross poles at (see (5.16), (5.17)) s = 0 and

(8.7) −2m± inκ, −1− 2m± inκ, form,n ∈ Z≥0,m ≤ k − 1.

Note that these poles includes poles of Γ(s) in (8.2).
Our goal now is to show that the combination ϕ(s, α) + 2αsψ(2s, α) is

holomorphic at s = inκ.
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Lemma 8.3. For n ̸= 0 we have

(8.8) ress=inκ (ϕ(s, α) + 2αsψ(2s, α)) = 0.

Proof. It follows from (4.1) that αinκ = eπin = (−1)n. Using this together
with (5.23), (6.9) we conclude that

(8.9) ress=inκ (ϕ(s, α) + 2αsψ(2s, α)) =

=

(
22inκ−3Dinκ/2αinκ

π1−inκ logα
− (2

√
π)2inκ−2Dinκ/2(−1)n

2 logα

)
×

× Γ(inκ)

Γ(2inκ)

(
ξ(inκ, ν1λ

n) + ξ(inκ, ν1λ
−n)
)
= 0.

□

Next, we evaluate the residue at the point s = 0.

Lemma 8.4. We have

(8.10) ress=0
2Γ(1 + r)Γ(s)

Γ(1 + r + s)
(αx)sψ(2s, α) =

1

4
−

√
D

12
+
ζ ′(0, ν1)

2π logα
+

+
a− 3

12 logα

(
log x− ψ(1 + r)− ψ(1/2)− γ + log

αD

A

)
.

Proof. Using (6.3) we obtain

(8.11) ress=0
2Γ(1 + r)Γ(s)

Γ(1 + r + s)
(αx)sψ(2s, α) =

= 2 ress=0
Γ(1 + r)Γ(s)

8Γ(1 + r + s)
(αxD)sΨ1(2s)−

− 2 ress=0
Γ(1 + r)Γ(s)

8Γ(1 + r + s)
(αxD)sΨ0(2s) +

√
Dζ(−1).

In order to evaluate these two residues, we factor out from (6.2) the term
with n = 0, getting

(8.12)
Γ(1 + r)Γ(s)

8Γ(1 + r + s)
(αxD)sΨ1(2s) =

Γ(s)Γ2(s/2)

Γ(2s)
g1,0(s) +

Γ(s)

Γ(2s)
g1,1(s),

(8.13)
Γ(1 + r)Γ(s)

8Γ(1 + r + s)
(αxD)sΨ0(2s) =

Γ(s)ξ(s, ν0)

Γ(2s)
g0,0(s) +

Γ(s)

Γ(2s)
g0,1(s),

where

(8.14) g0,0(s) =
Γ(1 + r)(αxD)s

Γ(1 + r + s)

22s−5A−s

π logα
Γ2

(
1 + s

2

)
,
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(8.15) g0,1(s) =
Γ(1 + r)(αxD)s

Γ(1 + r + s)

22s−5A−s

π logα

×
∑
n̸=0

ξ(s, ν0λ
n)Γ

(
s+ 1 + inκ

2

)
Γ

(
s+ 1− inκ

2

)
,

(8.16) g1,0(s) =
Γ(1 + r)(αxD)s

Γ(1 + r + s)

22s−5A−s

π logα
ξ(s, ν1),

(8.17) g1,1(s) =
Γ(1 + r)(αxD)s

Γ(1 + r + s)

22s−5A−s

π logα

×
∑
n̸=0

ξ(s, ν1λ
n)Γ

(
s+ inκ

2

)
Γ

(
s− inκ

2

)
.

Substituting (8.12) and (8.13) to (8.11), we have

(8.18) ress=0
2Γ(1 + r)Γ(s)

Γ(1 + r + s)
(αx)sψ(2s, α) =

= 2 ress=0
Γ2(s/2)Γ(s)

Γ(2s)
g1,0(s)− 2 ress=0

Γ(s)ξ(s, ν0)

Γ(2s)
g0,0(s) +

√
Dζ(−1).

It follows from [40, 5.5.5] and [40, 5.7.1] that

(8.19)
Γ2(s/2)Γ(s)

Γ(2s)
=

Γ2(s/2)
√
π

22s−1Γ(s+ 1/2)
, Γ2(z) =

1

z2
− 2γ

z
+O(1).

Let

(8.20) g̃1,0(s) =

√
π

22s−1Γ(s+ 1/2)
g1,0(s),

then using (8.19) we obtain

(8.21) ress=0
Γ2(s/2)Γ(s)

Γ(2s)
g1,0(s) = 4g̃′1,0(0)− 4γg̃1,0(0).

Therefore, applying (4.7) and (8.21), we can rewrite (8.18) as

(8.22) ress=0
2Γ(1 + r)Γ(s)

Γ(1 + r + s)
(αx)sψ(2s, α) =

= 8g̃′1,0(0)− 8γg̃1,0(0 + 8g0,0(0) logα+
√
Dζ(−1).

To evaluate g0,0(0) we simply use (8.14)

(8.23) g0,0(0) =
2−5

logα
.

To compute g̃′1,0(0) and g̃1,0(0) we apply (8.16),(8.20) together with (4.8),
showing that

(8.24) g̃1,0(0) =
a− 3

96 logα
,
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(8.25) g̃′1,0(0) =
a− 3

96 logα

(
log

xαD

A
− ψ(1 + r)− ψ(1/2)

)
+

ζ ′(0, ν1)

16π logα
.

Substituting (8.23), (8.24) and (8.25) to (8.22) we prove (8.10). □

In the same manner we prove the following result.

Lemma 8.5. We have

(8.26) ress=0
Γ(1 + r)Γ(s)

Γ(1 + r + s)
ϕ(s, α)xs = log

√
α− 1

4
− ζ ′(0, ν1)

2π logα
−

− a− 3

12 logα

(
log x− ψ(1 + r)− ψ(1/2)− γ + log(π

√
D)
)
.

Proof. Applying (5.18) we obtain

(8.27) ress=0
Γ(1 + r)Γ(s)

Γ(1 + r + s)
ϕ(s, α)xs = ress=0

Γ(1 + r)Γ(s)

4Γ(1 + r + s)
(xD)sΦ0(s)−

− ress=0
Γ(1 + r)Γ(s)

4Γ(1 + r + s)
(xD)sΦ1(s)− ζ(0) logα.

In order to evaluate these two residues, we factor out from (5.2) the term
with n = 0, getting

(8.28)
Γ(1 + r)Γ(s)

4Γ(1 + r + s)
(xD)sΦ0(s) =

Γ(s)ξ(s, ν0)

Γ(2s)
f0,0(s) +

Γ(s)

Γ(2s)
f0,1(s),

(8.29)
Γ(1 + r)Γ(s)

4Γ(1 + r + s)
(xD)sΦ1(s) =

Γ(s)Γ2(s/2)

Γ(2s)
f1,0(s) +

Γ(s)

Γ(2s)
f1,1(s),

where

(8.30) f0,0(s) =
Γ(1 + r)xs

Γ(1 + r + s)

(2
√
π)2s−2Ds/2

4 logα
Γ2

(
s+ 1

2

)
×

× 2F1

(
s, s, 1/2 + s;

2− a

4

)
,

(8.31) f0,1(s) =
Γ(1 + r)xs

Γ(1 + r + s)

(2
√
π)2s−2Ds/2

4 logα
×

×
∑
n ̸=0

(−1)nξ(s, ν0λ
n)Γ

(
s+ 1 + inκ

2

)
Γ

(
s+ 1− inκ

2

)
×

× 2F1

(
s− inκ, s+ inκ, 1/2 + s;

2− a

4

)
,

(8.32) f1,0(s) =
Γ(1 + r)xs

Γ(1 + r + s)

(2
√
π)2s−2Ds/2

4 logα
ξ(s, ν1)×

× 2F1

(
s, s, 1/2 + s;

2− a

4

)
,
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(8.33) f1,1(s) =
Γ(1 + r)xs

Γ(1 + r + s)

(2
√
π)2s−2Ds/2

4 logα
×

×
∞∑

n=−∞
(−1)nξ(s, ν1λ

n)Γ

(
s+ inκ

2

)
Γ

(
s− inκ

2

)
×

× 2F1

(
s− inκ, s+ inκ, 1/2 + s;

2− a

4

)
.

Arguing as in Lemma 8.4 (i.e. applying (8.19)), we infer that

(8.34) ress=0
Γ(1 + r)Γ(s)

Γ(1 + r + s)
ϕ(s, α)xs =

= −4f0,0(0) logα− 4f̃ ′1,0(0) + 4γf̃1,0(0)− ζ(0) logα,

where

(8.35) f̃1,0(s) =

√
π

22s−1Γ(s+ 1/2)
f1,0(s).

To evaluate the hypergeometric function in (8.30), (8.32), we apply (5.13):
(8.36)

2F1

(
s, s, 1/2 + s;

2− a

4

)
=
(a
2

)−s

2F1

(
s+ 1

2
,
s

2
, 1/2 + s; 1− 4

a2

)
.

The advantage of working with the hypergeometric function on the right
hand side of (8.36) is that it can be represented as a series [40, 15.2.1].
Doing so, we obtain

(8.37) 2F1

(
s, s, 1/2 + s;

2− a

4

) ∣∣∣∣∣
s=0

= 1.

To evaluate f0,0(0) we simply use (8.30) and (8.37), for f̃1,0(0) we use (8.32),
(8.35), (8.37) together with (4.8), getting

(8.38) f0,0(0) =
1

16 logα
, f̃1,0(0) =

a− 3

48 logα
.

It is left to study f̃ ′1,0(0). To this end, it is required to find the derivative of

the hypergeometric function in (8.32) with respect to s at the point s = 0.
It follows from (8.36) that

(8.39)
d

ds
2F1

(
s, s, 1/2 + s;

2− a

4

) ∣∣∣∣∣
s=0

=

= − log
a

2
+

d

ds
2F1

(
s+ 1

2
,
s

2
, 1/2 + s;

D

a2

) ∣∣∣∣∣
s=0

.
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Representing the last hypergeometric function via its series representation
[40, 15.2.1], we find that

(8.40)
d

ds
2F1

(
s+ 1

2
,
s

2
, 1/2 + s;

D

a2

) ∣∣∣∣∣
s=0

=

=
d

ds

1 +

∞∑
j=1

(s/2)j (s/2 + 1/2)j
j!(s+ 1/2)j

(
D

a2

)j
∣∣∣∣∣

s=0

.

Since (s/2)j =
s
2(s/2+ 1) · . . . · (s/2+ j − 1), the derivative is non-zero only

when we differentiate the factor s/2. Thus

(8.41)
d

ds
2F1

(
s+ 1

2
,
s

2
, 1/2 + s;

D

a2

) ∣∣∣∣∣
s=0

=

=
1

2

∞∑
j=1

(j − 1)!

j!

(
D

a2

)j

=
−1

2
log

(
1− D

a2

)
= log

a

2
.

It follows from (8.39) and (8.41) that

(8.42)
d

ds
2F1

(
s, s, 1/2 + s;

2− a

4

) ∣∣∣∣∣
s=0

= 0.

Using (8.35), (8.32), (8.42) and (4.8), we obtain

(8.43) f̃ ′1,0(0) =
1

8π logα

d

ds
×

×
(

Γ(1 + r)Γ(1/2)

Γ(1 + r + s)Γ(s+ 1/2)
(πx

√
D)s2F1

(
s, s, 1/2 + s;

2− a

4

)
ξ(s, ν1)

) ∣∣∣∣∣
s=0

=
a− 3

48 logα

(
log(πx

√
D)− ψ(1 + r)− ψ(1/2)

)
+
ζ ′(0, ν1)

8π logα
.

Substituting (8.38) and (8.43) to (8.34), we prove (8.26). □

Lemma 8.6. We have

(8.44) ress=0
Γ(1 + r)Γ(s)

Γ(1 + r + s)
(ϕ(s, α) + 2αsψ(2s, α))xs = C(a),

where C(a) is defined by (1.22).

Proof. Summing (8.10) and (8.26), recalling that A =
√
D/π, we finally

show that

(8.45) ress=0
Γ(1 + r)Γ(s)

Γ(1 + r + s)
(ϕ(s, α) + 2αsψ(2s, α))xs =

=
a− 3

12 logα
log

αD

Aπ
√
D

+ log
√
α−

√
D

12
= C(a).

□
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Now we are going to estimate residues at the points −1− 2m± inκ, see
(8.7).

Lemma 8.7. For n > 0 we have

(8.46) ress=−1−2m±inκ (ϕ(s, α) + 2αsψ(2s, α)) ≪m n5/2+4m.

Proof. We estimate only the residues of the function ϕ(s, α) since for ψ(2s, α)
all computations are similar (compare (5.2) and (6.2)). Furthermore, we
consider only the case of + sign in the pole. It follows from (5.18) and (5.2)
that

(8.47) ress=−1−2m+inκ ϕ(s, α) = ress=−1−2m+inκ
Ds

4
Φ0(s).

Using (8.47), (5.15) and the first identity of (5.13), we obtain

(8.48) ress=−1−2m+inκ ϕ(s, α) ≪
Γ (−m+ inκ)

Γ(−2− 4m+ 2inκ)

× ξ(−1− 2m+ inκ, ν0λ
±n)2F1

(
−1− 2m

2
,−m,−1/2− 2m+ inκ;

D

a2

)
.

Since the second parameter of the hypergeometric function is a negative
integer it reduces [40, 15.2.4] to a polynomial and thus is ≪m 1. To estimate
the Hecke zeta function we apply (4.6), (4.5), getting
(8.49)
ξ(−1− 2m+ inκ, ν0λ

±n) = ξ(2 + 2m− inκ, ν0λ
∓n) ≪m Γ (1 +m− inκ) .

Substituting (8.49) to (8.48) and using the Stirling formula (7.4), we find
(8.50)

ress=−1−2m+inκ ϕ(s, α) ≪
Γ (−m+ inκ) Γ (1 +m− inκ)

Γ(−2− 4m+ 2inκ)
≪ n5/2+4m,

thus proving the lemma. □

Similarly, we estimate residues at the points −2m± inκ, see (8.7).

Lemma 8.8. For m > 0 and n > 0 we have

(8.51) ress=−2m±inκ (ϕ(s, α) + 2αsψ(2s, α)) ≪m n1/2+4m.

Proof. Once again we estimate only residues of the function ϕ(s, α) and
consider only the case of + sign in the pole. It follows from (5.18) and (5.2)
that

(8.52) ress=−2m+inκ ϕ(s, α) = ress=−2m+inκ
−Ds

4
Φ1(s).

Using (8.52), (5.15), the first identity of (5.13) followed by (4.6), (4.5), and
the Stirling formula (7.4), we obtain

(8.53) ress=−2m+inκ ϕ(s, α) ≪
Γ (−m+ inκ)

Γ(−4m+ 2inκ)
ξ(−2m+ inκ, ν1λ

±n) ≪

≪ Γ (−m+ inκ) Γ(1 +m− inκ)

Γ(−4m+ 2inκ)
≪ n1/2+4m.
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□

8.1. Proof of Theorem 1.3. As has been already explained, we move the
line of integration in (8.2) to ℜs = −δ with δ = −1/2+2k and k being some
large (but fixed) positive integer, crossing the poles at (8.7). The residue at
s = 0 is evaluated in Lemma 8.6, and we prove in Lemma 8.3 that residues
at the points s = inκ, n ̸= 0 are equal to zero. The contribution of the
remaining residues was estimated in Lemmas 8.7 and 8.8. Consequently,

(8.54) ∆r(x, α) + 2Sr(
√
αx, α) = C(a) +O

(
xc

T r+1

)
+

O

(
k−1∑
m=0

∑
0<n≪T

n4m+3/2−r

x1+2m

)
+O

(
k−1∑
m=1

∑
0<n≪T

n4m−1/2−r

x2m

)
+O(x−1+ϵ)+

O

(∫ c+iT

−δ−iT

Γ(1 + r)Γ(s)

Γ(1 + r + s)
G(s)xsds

)
+O

(∫ c±iT

−δ±iT

Γ(1 + r)Γ(s)

Γ(1 + r + s)
G(s)xsdσ

)
,

where

(8.55) G(s) = ϕ(s, α) + 2αsψ(2s, α).

Note that we used the following fact (see (8.47), (5.15),(5.13)):

(8.56) ress=−1−2m
Γ(1 + r)Γ(s)

Γ(1 + r + s)
ϕ(s, α)xs =

= ress=−1−2m Γ2

(
s+ 1

2

)
xsDs/2

4 logα

Γ(1 + r)Γ(s)

Γ(1 + r + s)Γ(2s)

× (2
√
π)2s−2ξ(s, ν0)

(a
2

)−s

2F1

(
s

2
,
1 + s

2
, 1/2 + s;

D

a2

)
≪m x−1−2m+ϵ.

Similarly, the residue at s = −2m is bounded by x−2m+ϵ.
To estimate the integrals in (8.54), we apply (6.11), (7.76). In order to

be able to do this, we choose among special values of T (see [19, p.227]):

(8.57)
πk

logα
< Tk <

π(k + 1)

logα
.

In this case, H(2σ ± 2iTk) ≫ 1. For simplicity, we will write T instead of
Tk.

Lemma 8.9. For c = 1 + ϵ, δ > 0, 0 < r < 3/2 + 2δ we have

(8.58)

xc

T r+1
+

∫ −δ+iT

−δ−iT

Γ(s)

Γ(r + 1 + s)
G(s)xsdt+

∫ c±iT

−δ±iT

Γ(s)

Γ(r + 1 + s)
G(s)xsdσ

≪ x1+ϵ

T 1+r
+
T 3/2−r+2δ

xδ
.
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Proof. Consider the first integral in (8.58). First, we treat the part over
|t| ≪ T ϵ. Using Lemma 7.2 we deduce that

(8.59)

∫ −δ+iT ϵ

−δ−iT ϵ

Γ(s)

Γ(r + 1 + s)
G(s)xsdt≪ T ϵx−δ.

In the remaining range, we apply (7.76), showing that
(8.60)∫ −δ+iT

−δ+iT ϵ

Γ(s)

Γ(r + 1 + s)
G(s)xsdt≪

∫ −δ+iT

−δ+iT ϵ

t1/2+2δ−rx−δdt≪ T 3/2−r+2δx−δ

if r < 3/2 + 2δ. Using (6.11), (7.76), we obtain

(8.61)

∫ c+iT

−δ+iT

Γ(s)G(s)

Γ(r + 1 + s)
xσdσ ≪

∫ c

−δ
T k(σ)−1−rxσdσ

≪
∫ 0

−δ
T 1/2−2σ−rxσdσ +

∫ 1

0
T 1/2−3σ/2−r+ϵxσdσ +

∫ c

1
T−1−rxσdσ

≪ T 1/2−r max

(
T 2δ

xδ
, 1

)
+ T 1/2−r+ϵmax

( x

T 3/2
, 1
)
+

xc

T 1+r

≪ T 1/2−r+ϵmax

(
x

T 3/2
,
T 2δ

xδ

)
+

xc

T 1+r
.

The same result holds for the integral over (−δ − iT, c − iT ). Taking into
account both (8.60) and (8.61) and choosing c = 1+ ϵ, we obtain (8.58). □

Applying Lemma 8.9 to (8.54), we obtain for 0 < r < 5/2

(8.62) ∆r(x, α) + 2Sr(
√
αx, α) = C(a) +O

(
x−1+ϵ +

x1+ϵ

T 1+r
+
T 3/2−r+2δ

xδ

)

+O

(
k−1∑
m=0

T 4m+5/2−r

x1+2m

)
+O

(
k−1∑
m=1

T 4m+1/2−r

x2m

)

= C(a) +O

(
x−1+ϵ +

x1+ϵ

T 1+r
+
T 3/2−r+2δ

xδ

)

+O

(
T 5/2−r

x
max

(
1,
T 4k

x2k

)
+
T 9/2−r

x2
max

(
1,
T 4k−4

x2k−2

))
.

The optimal choice of T is Top = x
2+2δ
5+4δ , which yields (since Top < x1/2) the

estimate

(8.63) ∆r(x, α) + 2Sr(
√
αx, α) = C(a) +O

(
x−1+ϵ + x1+ϵ−(1+r) 2+2δ

5+4δ

)
.

To ensure that the error term is smaller than the main term, one requires

(1 + r)2+2δ
5+4δ > 1 + 2ϵ, which holds if r > 3/2+δ

1+δ + 5ϵ. In terms of δ we have
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δ > 3−2r+10ϵ
2r−2−8ϵ . Since δ = −1/2 + 2k, choosing k sufficiently large, we obtain

(8.64) ∆r(x, α) + 2Sr(
√
αx, α) = C(a) +Oa(x

−ϵ)

for r ≥ 1 + ϵ1, thus proving Theorem 1.3.

8.2. Proof of Theorems 1.4 and 1.5. In case of Theorem 1.4, we have
r > 3, and thus for m = 0 the sum over n in (8.54) is now O(1) instead of

O(T 5/2−r). Nevertheless, this does not affect (8.63). To get the error term
O
(
x−1+ϵ

)
in (8.63), one needs (1 + r)2+2δ

5+4δ > 2, which holds if r > 4+3δ
1+δ .

The latter inequality is valid for r > 3 since we can choose δ = −1/2 + 2k
with k being sufficiently large. This completes the proof of Theorem 1.4.

The proof of Theorem 1.5 differs only slightly from the proof of Theorems
1.3 and 1.4. Applying (8.1) to (1.15), we get

(8.65) ∆r(x, α) =
1

2πi

∫ c+iT

c−iT

Γ(1 + r)Γ(s)

Γ(1 + r + s)
ϕ(s, α)xsds+O

(
xc

T r+1

)
.

Moving the line of integration to the left, we first pass poles at the points
s = 0 and s = inκ. The residue at s = 0 gives (see (8.26)) the main term
of (1.26), and the residues (5.23) at s = inκ give rise to the series in (1.26).
Note that replacing the sum of residues by the series (1.26) produces the
error
(8.66)∑

|n|≫T

(−1)nΓ(inκ)

Γ(1 + r + inκ)
(xD)inκζ(inκ, ν1λ

n) ≪
∑

|n|≫T

n1/2+ϵ

n1+r
≪ T 1/2−r+ϵ,

which is smaller than x1+ϵ/T 1+r for T ≪
√
x. Thus, this does not affect

the error. The rest of the proof is identical to that given in Theorem 1.3,
since we get an analogue of (8.54) with G(s) replaced by ϕ(s, α), and the
function ϕ(s, α) grows faster than 2αsψ(2s, α).

Remark. An interesting question is to determine the smallest value of r
for which Theorems 1.3 and 1.4 still hold. Unfortunately, we were unable to
obtain some reasonable conjectures based solely on numerical computations.
So instead, we decided to speculate a little about the possibility of various
improvements in the proofs of Theorems 1.3 and 1.4. One key ingredient
is to improve the convexity estimate on ϕ(s, α) for ℜs < 0, see Lemma 7.8.
It seems reasonable to assume that there is a square-root cancellation in
the sum (7.82). This would allow us to improve the estimate (7.77) from
k(σ) = 3/2− 2σ to k(σ) = 1− 2σ. Furthermore, if it were possible to obtain
an asymptotic expansion for this sum, we could also assume a square-root
cancellation in the integral (8.60). All these assumptions yield the following
improvement of (8.62):

(8.67) ∆r(x, α)+2Sr(
√
αx, α) = C(a)+O

(
x−δ+ϵ +

x1+ϵ

T 1+r
+
T 1/2−r+2δ

xδ

)
,
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where 0 < δ < 1. The optimal choice of T now is Top = x
2+2δ
3+4δ . As a result,

(8.68) ∆r(x, α) + 2Sr(
√
αx, α) = C(a) +O

(
x−δ+ϵ + x1+ϵ−(1+r) 2+2δ

3+4δ

)
.

The error term above is O(x−ϵ) if we assume that r > 1+2δ
2+2δ . Taking δ

a small positive number, we could conclude that Theorem 1.3 holds for
r > 1/2, under these assumptions. Furthermore, it seems unlikely that
further reduction of 1/2 is possible.
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