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The Dimension of the Space of Cusp Forms of Weight One
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1 Introduction

It is a basic problem to determine the dimension of the space of cusp forms of a given

type. For classical holomorphic forms of integral weight larger than one, the dimension

is well understood by means of either the Riemann-Roch theorem or the Selberg trace

formula. The case of weight one, however, remains mysterious. From the point of view

of spectral theory, this is because these forms belong to an eigenvalue of the Laplacian

which is not isolated; the difficulty of estimating nontrivially the multiplicity of such an

eigenvalue is well known.

Suppose, for example, that q is a prime and that S1(q) is the space of holomorphic

cusp forms for Γ0(q) of weight one with character (·/q), the Legendre symbol. No nonzero

cusp forms may exist unless (−1/q) = −1, so assume q ≡ 3 (mod 4). Hecke discovered

that the existence of such cusp forms is tied up with the class number h of Q(
√−q); if χ

is any nontrivial (hence nonreal) class character, then

∑
a

χ(a)e(N(a) z) ∈ S1(q), (1)

where a runs over all nonzero integral ideals of Q(
√−q). There are (h− 1)/2 independent

forms of this type, so by Siegel’s theorem we have the (ineffective) lower bound

dimS1(q) 	
ε
q1/2−ε

for all ε > 0.

In general, S1(q) is not spanned by forms of Hecke’s type. An active area of research

is the construction of specific examples demonstrating this. (See [F] and its references.)
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Such exotic forms seem quite rare, however, and it appears reasonable to expect that in

fact for all ε > 0

dimS1(q) = 1

2
(h − 1) + Oε(q

ε).

In particular, this would imply that dimS1(q) � q1/2 logq. Rather less, however, is actu-

ally known. Serre has shown [S] that ifq = 24m−1 or 24m+7, then dimS1(q) ≤ m−(h−1)/2,

while if q = 24m + 11 or 24m + 19, then dimS1(q) ≤ m − h + 1. Sarnak has informed me

that the Selberg trace formula for weight one [Hej, Chapter 9] with a suitably chosen test

function yields the bound

dimS1(q) � q

logq
,

which, for large values of q, is currently the best known.1 The main object here is to

improve this estimate.

Theorem 1. For q prime,

dimS1(q) � q11/12 log4
q,

with an absolute implied constant.

Roughly speaking, the idea of the proof is to exploit two conflicting properties

of the Fourier coefficients of newforms in S1(q) not of Hecke’s type (1): their approximate

orthogonality and the finiteness of the number of their possible values at primes. The

first property is a consequence of their belonging to automorphic forms, while the second

is a consequence of the Deligne-Serre theorem. Taken together, these properties limit the

number of possible newforms which may exist.

Following Serre [S], Theorem 1 has an application to the quotient X∗
0(q) of the

modular curve X0(q) by the Fricke involution z �→ −1/qz when q = 24m − 1 is prime. In

this case the genus of X∗
0(q) is m − (h − 1)/2.

Corollary. For q = 24m − 1 prime, the space of differential forms of the first kind on

X∗
0(q), with a zero of order at least m at the cusp, has dimension that is O(q11/12 log4

q).

A different kind of application of these ideas is to bound the number m4(−q) of

quartic number fields of discriminant −q.

1In an unpublished note, “Accumulation of the Eigenvalues of the Hyperbolic Laplacian at 1/4,”
J.-M. Deshouillers and H. Iwaniec obtained in this way the bound O(q log−3 q) for the multiplicity of the eigen-
value 1/4 in the case of weight-zero Maass cusp forms for Γ0(q) with trivial character.
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Dimension of the Space of Cusp Forms of Weight One 101

Theorem 2. For q prime,

m4(−q) � q7/8 log4
q,

with an absolute implied constant.

To put this result in context it may be of interest to show what follows from

algebraic number theory and trivial bounds for class numbers. By means of class field

theory, Heilbronn [Hei] showed that

m4(−q) = 4

3

∑
k

h2(k),

where k runs over all cubic number fields of discriminant −q. Here, for any � and any num-

ber field k, h�(k) denotes the number of ideal classes of k of (exact) order �. Furthermore,

by [Ha], the number of cubic fields in the sum is (3/2)h3(Q(
√−q)) . For the class number

h(k) of any number field k of degree n > 1 and discriminant D, we have the bound

h(k) � |D|1/2 logn−1 |D|,

where the implied constant depends only on n (see [N, page 153]). Since h�(k) ≤ h(k), we

deduce that

m4(−q) � q log3
q

with an absolute implied constant. The improvement of this given in Theorem 2 requires

both the classification of quartic fields of discriminant −q by odd octahedral Galois rep-

resentations of conductor q given in [S] and the proof in this case of the Artin conjecture

given in [T]. If we assume the Artin conjecture for icosahedral representations, then sim-

ilarly we can deduce that the number of nonreal quintic fields of discriminant q2 whose

normal closure has Galois group A5 is O(q11/12 log4
q).

2 Approximate orthogonality of Fourier coefficients

For q ∈ Z+ and ε an odd Dirichlet character modq, let S1(q) = S1(q, ε) be the set of all

holomorphic cusp forms for Γ0(q) of weight one with character ε. Thus f ∈ S1(q) satisfies,

for γ ∈ (
a b

c d

) ∈ Γ0(q),

f(γz) = ε(d) (cz + d) f(z),

and (Im z)1/2 |f(z)| is uniformly bounded on the upper half-plane H. The vector space S1(q)

is finite-dimensional and has an inner product

〈f, g〉 =
∫

Γ0(q)\H

f(z)ḡ(z)y−1 dxdy.
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Each f ∈ S1(q) has the Fourier expansion at ∞

f(z) =
∑
n≥1

af(n) e(nz).

The object of this section is to establish the following mean value result which expresses

the approximate orthogonality of the af(n) over any fixed orthonormal basis B for S1(q).

Proposition 1. For arbitrary cn ∈ C with 1 ≤ n ≤ N, we have

∑
f∈B

∣∣∣∣∣∣
∑
n≤N

cn af(n)

∣∣∣∣∣∣
2

�
(

1 + N

q

) ∑
n≤N

|cn|2

with an absolute implied constant.

The proof we give of this uses the following well-known duality principle.

Lemma 1. Suppose that V is a finite-dimensional inner product space over C with an

orthonormal basis B. Let {v1, . . . , vN} ⊂ V be a finite set of vectors, and let ∆ be a positive

number. Then the inequality

∑
n≤N

|〈u, vn〉|2 ≤ ∆ 〈u, u〉 (2)

holds for all u ∈ V if and only if

∑
f∈B

∣∣∣∣∣∣
∑
n≤N

cn 〈f, vn〉
∣∣∣∣∣∣
2

≤ ∆
∑
n≤N

|cn|2 (3)

holds for all cn ∈ C.

Proof. Define the operator A : CN → V = CB by (cn) �→ ∑
cnvn. Its adjoint A∗ : V → CN

is given by u �→ (〈u, vn〉). Let ‖A‖ and ‖A∗‖ be their norms. Inequality (2) means that

‖A∗‖ ≤ ∆, while (3) can be rewritten〈∑
cnvn,

∑
cnvn

〉
≤ ∆

∑
|cn|2,

which means that ‖A‖ ≤ ∆. Thus the lemma follows from the well-known fact that ‖A‖ =
‖A∗‖.

Taking vn = ∑
f∈B āf(n) f, we see that Proposition 1 is reduced to the following

lemma.
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Dimension of the Space of Cusp Forms of Weight One 103

Lemma 2. For any f ∈ S1(q),

∑
n≤N

|af(n)|2 �
(

1 + N

q

)
〈f, f〉

with an absolute implied constant.

Proof. We employ a technique of Iwaniec (unpublished) to bound such sums uniformly.

For any y > 0, we have

∑
n≥1

e−4πny |af(n)|2 =
∫1

0
|f(x + iy)|2 dx.

Thus, for any Y > 0,

∑
n≤N

FY (n) |af(n)|2 ≤
∫∞

Y

∫1

0
|f(z)|2y−1 dxdy, (4)

where

FY (n) =
∫∞

1
e−4πnYyy−1 dy ≥

∫∞

1
e−4πNYy y−1 dy (5)

for n ≤ N. Setting

P(Y) = {z ∈ H ; 0 < Re z ≤ 1, Im z > Y},

we have

∫∞

Y

∫1

0
|f(z)|2 y−1 dxdy ≤ max

z∈P(Y)
#{γ ∈ Γ0(q)/{±1} ; γz ∈ P(Y)} 〈f, f〉. (6)

Now for fixed z = x + iy ∈ H the condition that γz = (az + b)/(cqz + d) ∈ P(Y) is imposed

by requiring that

Im((az + b)/(cqz + d)) = y|cqz + d|−2 > Y (7)

and that

0 < Re((az + b)/(cqz + d)) ≤ 1. (8)

For fixed c and d satisfying (7), a and b are determined by (8). It follows that for z ∈ H

#{γ ∈ Γ0(q)/{±1};γz ∈ P(Y)}≤1 + #{c > 0, d; |cqz + d|2 < yY−1}

≤1 + #{c, d; 0 < c < q−1(yY)−1/2 and |cqx + d|2 < yY−1}
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by taking real and imaginary parts. Hence for z ∈ P(Y)

#{γ ∈ Γ0(q)/{±1}} ;γz ∈ P(Y)} ≤ 1 + q−1(yY)−1/2 (1 + 2y1/2Y−1/2)

= 1 + q−1(yY)−1/2 + 2q−1Y−1

≤ 1 + 3q−1Y−1.

Thus from (4) and (6) we get

∑
n≤N

FY (n) |af(n)|2 ≤ (1 + 3q−1Y−1) 〈f, f〉.

Choosing Y = 3N−1 and using (5), we get Lemma 2 (with 1018 for the absolute constant).

3 Consequences of the Deligne-Serre theorem

Let N1(q, ε) ⊂ S1(q, ε) be the set of normalized newforms. For f ∈ N1(q, ε) the associated

L-function is an Euler product

Lf(s) =
∑
n≥1

af(n)n−s =
∏
p

(1 − af(p)p−s + ε(p)p−2s)−1. (9)

The Deligne-Serre theorem [DS] states that Lf(s) is the Artin L-function of an irreducible

two-dimensional Galois representation ρ of conductor q with det ρ = ε (via the Artin

map). We shall use two consequences of this result. The first is that af(n) satisfies the

Ramanujan bound

|af(n)| ≤ d(n), (10)

where d(n) is the divisor function. The second is that f may be classified as being of

dihedral, tetrahedral, octahedral, or icosahedral type according to whether the image of

ρ in PGL(2,C) is Dh, A4, S4, or A5.

We now restrict attention to the case that q is prime and ε(·) = (·/q)
, and write

N1(q) for N1(q, ε). Also, let Ndih, Noct, Nico be the forms in N1(q) of dihedral, octahedral,

and icosahedral type, respectively. It is shown in [S, page 343 of OEuvres] that f is of

dihedral type exactly when it is of Hecke’s type (1).
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Dimension of the Space of Cusp Forms of Weight One 105

Proposition 2. Suppose that f ∈ N1(q) for q prime. Then

(a) 〈f, f〉 � q log3
q with an absolute implied constant.

(b) If f is not of dihedral type, then it is either of octahedral or icosahedral type.

If f ∈ Noct, then

af(p
8) − af(p

4) −
(
p

q

)
af(p

2) = 1, (11)

while if f ∈ Nico, then

a(p12) − af(p
8) −

(
p

q

)
af(p

2) = 1 (12)

for all primes p �= q.

Proof. (a) The Rankin-Selberg convolution

ϕ(s) =
∑
n≥1

b(n)n−s = (1 + q−s) ζ(2s)
∑
n≥1

|af(n)|2n−s (13)

is entire of order one except for a simple pole at s = 1 with

Res
s=1

ϕ(s) = 2π2

q
〈f, f〉,

and satisfies the functional equation

Φ(s) =
( q

4π2

)s

Γ (s)2ϕ(s) = Φ(1 − s) (14)

by [L]. Choose F ∈ C∞
c (0,∞) such that

∫∞
0 F(x)dx = 1. Then the Mellin transform

F̂(s) =
∫∞

0
F(x) xs

dx

x

is entire, of rapid decay in vertical strips, and F̂(1) = 1. By Mellin inversion,

F(x) = 1

2πi

∫

Re s=2

F̂(s)x−s ds

for x > 0. Thus

∑
n≥1

b(n)F(n/q2) = 1

2πi

∫

Re s=2

F̂(s)ϕ(s)q2s ds (15)

= 2π2q 〈f, f〉 + 1

2πi

∫

Re s=−1

F̂(s)ϕ(s)q2s ds,
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the shift of the line of integration from Re s = 2 to Re s = −1 being justified by a standard

application of the Phragmén-Lindelöf theorem. It follows from (14), (13), and (10) that

|ϕ(−1 + it)| ≤ (4π2)−3q3 |Γ (2 − it)|2
|Γ (−1 + it)|2 (1 + q−2)|ζ(4 − 2it)|

∑
n≥1

d(n)2n−2,

and by Stirling’s formula this is � q3(|t| + 1)6 with an absolute constant. Hence

1

2πi

∫
Re(s)=−1

F̂(s)ϕ(s)q2sds � q

∫∞

−∞
|F̂(−1 + it)|(|t| + 1)6dt � q (16)

since F̂(−1 + it) � (1 + |t|)−8. By (15) and (16) we get

〈f, f〉 = 1

2π2q

∑
n≥1

b(n) F(n/q2) + O(1)

where the implied constant depends only on F. Now, by (13) and (10)

0 ≤ b(n) ≤ 2
∑

n=m�2

d2(m) = 2d4(n)

where d4(n) is the number of factorizations of n into four factors. Thus

〈f, f〉 � 1

q

∑
n≥1

d4(n) F(n/q2) � q log3
q

with an absolute implied constant.

(b) The fact that f cannot be tetrahedral is shown in [S, Theorem 7 (c)]. It is also

observed in [S, page 362] that if p �= q and f ∈ Noct, then

(
p

q

)
a(p2) ∈ {−1,0,1,3}, (17)

while if f ∈ Nico, then

(
p

q

)
a(p2) ∈

{
−1,0,3,

1 + √
5

2
,

1 − √
5

2

}
. (18)

For general f ∈ N1(q, ε) it follows from (11) that, if we set x = ε̄(p)af(p2), then for p �= q

and n ≥ 0,

ε̄n(p)af(p
2n) = Pn(x), (19)

where P0(x) = 1, P1(x) = x, and Pn+1(x) = (x − 1)Pn(x) − Pn−1(x) for n ≥ 1. Thus P2(x) =
x2 − x − 1, P3(x) = x3 − 2x2 − x + 1, etc. One may check that

x(x + 1)(x − 1)(x − 3) + 1 = P4(x) − P2(x) − P1(x),
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while

x(x + 1)(x − 2)(x − 3)(x2 − x − 1) + 1 = P6(x) − P4(x) − P1(x).

Thus by (17)–(19) we finish the proof of (b).

Remark. It has been checked that no linear form
∑7

�=1 c� af(p�) takes positive values for

all possible values of af(p), p �= q, when f ∈ Noct. A similar remark applies to f ∈ Nico.

4 Counting newforms and quartic fields

By combining Propositions 1 and 2 we may now estimate the number of newforms of

octahedral or icosahedral type.

Proposition 3. For q prime,

(a) #Noct � q7/8 log4
q

(b) #Nico � q11/12 log4
q

with absolute implied constants.

Proof. By Propositions 1 and 2 (a) we have for any cn ∈ C

∑
f∈N1(q)

∣∣∣∣∣∣
∑
n≤N

cn af(n)

∣∣∣∣∣∣
2

� (q + N) log3
q

∑
n≤N

|cn|2,

using the well-known fact that distinct newforms are orthogonal. Thus we deduce by

positivity the inequality

∑
f∈Noct

∣∣∣∣∣∣
∑
n≤N

cn af(n)

∣∣∣∣∣∣
2

� (q + N) log3
q

∑
n≤N

|cn|2. (20)

Choose N = q and

cn =




1, n = p8 ≤ q,

−1, n = p4 ≤ q1/2,

− (
p/q

)
, n = p2 ≤ q1/4,

0, otherwise,

for p prime. By the prime number theorem and (11),

∑
n≤N

cnaf(n) ∼ 8q1/8

logq
, for f ∈ Noct,

while
∑
n≤N

|cn|2 ∼ 24q1/8

logq
.
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Hence, by (20),

#Noct � q7/8 log4
q.

A similar argument works for Nico.

Theorem 1 now follows from Propositions 2 (b) and 3, since

#Ndih = h − 1

2
� q1/2 logq.

For its corollary, we use the fact, shown in [S], that the required space of differ-

entials has dimension

1

2
dimS1(q) − 1

4
(h − 1).

Theorem 2 follows from Proposition 3 (a), Theorem 8 of [S], and Tunnell’s proof [T]

of the Artin conjecture for octahedral Galois representations. Here we also use the fact

that the Galois closure of any quartic extension with discriminant −q has Galois group

S4, since otherwise the discriminant would not be square free (e.g., see [B]).
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