
ON THE ANALYTIC THEORY OF TERNARY CUBIC FORMS

OLGA BALKANOVA, WILLIAM DUKE, AND DMITRY FROLENKOV

Abstract. The analytic properties of a Dirichlet series whose coefficients count certain
representations of integers by a ternary cubic form are studied. The form is a cubic
number field version of the sum of three cubes. Three main results are proven. The first
gives the analytic continuation of the series to the right half-plane. The second applies
this, together with growth estimates, to give an asymptotic formula for a smoothed
sum of the coefficients. The third main result refines this asymptotic formula, assuming
greater smoothing, to get a second main term. In some cases the constant in this second
term is given in terms of the arithmetic of an associated sextic number field. The proofs
make use of certain Hecke-type zeta functions for a cubic number field.

1. Introduction

Consider the integral ternary cubic form,

F (x, y, z) = ax3 + by3 + cz3 + 3dx2y + 3ex2z + 3fy2x+ 3gy2z(1.1)

+ 3hz2x+ 3iz2y + 6jxyz,

where a, b, c, · · · ∈ Z. Little is known in general about the number of solutions to

m = F (x, y, z)

with integersm,x, y, z. It can be infinite, so one usually restricts the x, y, z in some natural
way so that this number, say rF (m), is finite. An analytic technique that is sometimes
quite useful is to define the Dirichlet series

(1.2) ψF (s) =
∑
m≥1

rF (m)m−s

and relate its properties to rF (m), especially its averages, say

SF (X) =
∑
m≤X

rF (m),

and various smoothed versions.
This technique is well-known to be powerful in some cases where F is decomposable

into a product of linear factors. For example, when F (x, y, z) = xyz we have that

rF (n) = d3(n),

the generalized divisor function, when one restricts to positive x, y, z. The associated
Dirichlet series is given by ψF (s) = ζ3(s). Another paradigm case is when F is a norm
form for a cubic number field F, for instance
(1.3) F (x, y, z) = (α1x+ α2y + α3z)(α

′
1x+ α′

2y + α′
3z)(α

′′
1x+ α′′

2y + α′′
3z),

where α1, α2, α3 is an integral basis for an integral ideal a in F and where

α = α(1), α′ = α(2), α′′ = α(3)

denote the Galois conjugates of α ∈ F. After Dirichlet/Dedekind, one restricts to counting
integer triples (x, y, z) for which α1x+α2y+α3z have a given normm but are not associated
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to one another by a unit of F; rF (m) is then finite. If a is the ring of integers O of F and
F has class number one then ψF (s) is simply the Dedekind zeta function of F.
At the other extreme is the example

F (x, y, z) = x3 + y3 + z3.

Here it is natural to define rF (m) by restricting x, y, z > 0. For this form F , “elementary”
techniques can be applied to study averages of rF (m). In 2020 Vaughan [19] applied
estimates for exponential sums in an ingenious way to show that for F (x, y, z) = x3+y3+z3

we have

(1.4) SF (X) =
∑
m≤X

rF (m) = Γ3(4
3
)X − Γ2( 4

3
)

2Γ( 5
3
)
X

2
3 +O(X

5
9 log

1
3 X).

Here O(X
2
3 ) represents the “trivial” estimate for the remainder after the main term.

For this problem it likely seems unreasonable to expect that the Dirichlet series ψF (s)
from (1.2) can be very useful, since there is no known multiplicative structure behind the
counting function for the sum of three cubes.

Thus it might be surprising that for the number field version of the sum of three cubes
it is sometimes possible to adapt the ideas of Dirichlet/Dedekind’s and utilize the units
of the field to study ψF (s). Suppose that {α1, α2, α3} is an integral basis for an integral
ideal a in a totally real cubic number field F with discriminant D. Then

F (x, y, z) = (α1x+ α2y + α3z)
3 + (α′

1x+ α′
2y + α′

3z)
3 + (α′′

1x+ α′′
2y + α′′

3z)
3,(1.5)

is a ternary cubic form with rational integral coefficients. Define the counting function

rF (m) = #{(x, y, z) ∈ Z3; F (x, y, z) = m where α
(j)
1 x+ α

(j)
2 y + α

(j)
3 z > 0 for j = 1, 2, 3}

(1.6)

and let ψF (s) be given by (1.2). It is easy to show by a lattice point count that rf (m) is
finite and that the series ψF (s) is absolutely convergent for Re(s) > 1.

An example is the form

(1.7) F (x, y, z) = 3x3−4y3+38z3−3x2y+15x2z+15xy2+39y2z+39z2x−48z2y−24xyz,

associated to the Galois extension F = Q(α), where α3 + α2 − 2α − 1 = 0. Here a is the
ring of integers in F with integral basis {1, α, α2} and discriminant D = 49.
Note that many arguments that apply elementary methods to a form rely on it having a

simple structure, for example being diagonal. This comment applies to Vaughan’s result.
We shall apply Hecke-like zeta functions with Grössencharakteren for F to show that

for F in (1.5) the Dirichlet series ψF (s) has an analytic continuation to Re(s) > 0 except
for a simple pole at s = 1. Our approach is inspired by the paper [10] of Hecke.

Theorem 1. For a general totally real cubic number field F and an integral ideal a ⊂ F,
the function ψF (s) has a simple pole at s = 1 with residue

Γ3(4
3
)N(a)−1D− 1

2

but is otherwise holomorphic for Re(s) > 0.

To prove this we express ψF (s) an an infinite series of terms involving the Hecke zeta
functions multiplied by gamma factors. We will see that it is likely that the imaginary
axis is a natural boundary for ψF (s) coming from poles of the gamma factors. After
estimating ψF (s) in vertical strips to the right of the imaginary axis, we can then deduce
the following asymptotic formula.
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Theorem 2. Fix F from (1.5). For r ≥ 5
2
and any ϵ > 0 we have∑

1≤m≤X

rF (m)(1− m
X
)r =

Γ3( 4
3
)

(r+1)N(a)D
1
2
X +O(Xϵ).

Despite the likely existence of a natural boundary, we are able to truncate the infinite
series effectively and give a second main term in the asymptotic formula of Theorem 2,
provided we require larger values of r. In the proof we apply a well-known result of Baker,
that improves on an earlier result of Gelfond, and gives a lower bound for the difference
between the logarithms of two algebraic numbers.

Theorem 3. Fix F from (1.5). There exists constants R,K1 depending on F such that
for r > R we have∑

1≤m≤X

rF (m)(1− m
X
)r =

Γ3( 4
3
)

(r+1)N(a)D
1
2
X +K1 logX +O(1).

The constant K1 is given explicitly below in terms of the values at s = 0 of certain
completed Hecke zeta functions. If we assume that a is the ring of integers O of F and
that the wide class number of F is one, we can say more. In this case by [1] the narrow
class number of F is either one or two. If it is one then it will be shown that K1 = 0. For
the example in (1.7) we have that K1 = 0. If the narrow class number of F is two then F
has a unique unramified (at the finite places) quadratic extension K and it will be shown
that K1 > 0 is given by

(1.8) K1 =
RKhK
2wKR2

F
,

where hK is the class number of K, RK is its regulator and wK is the number of roots of
unity in K. The formula (1.8) applies, for instance, to those ternary cubics coming from
F with D = 229, 257, 697, 761, 788, 892, 985, . . . . When D = 229 the form is

F (x, y, z) = 3x3 + 24x2z + 24xy2 + 18xyz + 96xz2 + 3y3 + 96y2z + 60yz2 + 131z3,

which is associated to the non-Galois extension F determined by x3− 4x− 1 = 0, and the
sextic field K is determined by x6−x4−x3−x2+1 = 0. Here K1 = 0.0358081 . . . . It seems
remarkable that representations by these forms should be affected by the arithmetic of
associated sextic number fields.

Remark. It is possible to apply invariant theory to give necessary conditions that our
theorems apply to a given integral ternary cubic form F . There are two fundamental
invariants of F as in (1.1) (See [16, §220,221] for the complete formulas):

S = abcj − (bcde+ cafg + abhi)− j(agi+ bhe+ cdf) + · · ·

T = a2b2c2 − 6abc(agi+ bhe+ cdf)− 20abcj3 + 12(abcj(fh+ id+ eg) + · · · .
with the discriminant being of degree twelve in the coefficients: R = T 2 + 64S3. The
Hessian HF of F :

HF = det(∂i,jF ),

is the most basic covariant of F . The necessary conditions are that S = 0, T be the cube
of a positive integer and HF be irreducible over Q. These conditions can be verified by
direct calculation.
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2. A Hecke-type zeta function

In this section we define and state the basic properties of the Hecke-type zeta function
that we need. Basic references are Hecke’s papers [8],[9]. However, our zeta function does
not seem to immediately reduce to one defined by Hecke and so we will prove all of the
properties we state here in the section following this one.

Let F ⊂ R be a totally real cubic number field. Let O be the ring of integers of F, O∗

be the group of units, and O+ be the subgroup of totally positive units.
Let a be a (fractional) ideal in F. Suppose that α1, α2, α3 is an integral basis for a. Let

d be the different and D = N(d) the discriminant of F. For a, b, c ∈ Z write

µ = aα1 + bα2 + cα3(2.1)

µ′ = aα′
1 + bα′

2 + cα′
3

µ′′ = aα′′
1 + bα′′

2 + cα′′
3.

Here again µ = µ(1), µ′ = µ(2), µ′′ = µ(3) are the Galois conjugates of µ, ordered in a fixed
way.

Sign Characters. A sign character is defined for µ ∈ O and can be expressed uniquely by
the formula

(2.2) ν = (sgna1µ(1))(sgna2µ(2))(sgna3µ(3)),

where aj ∈ {0, 1}. Call (a1, a2, a3) the signature of ν. Note that ν(0) = 0 for any ν. For
µ1, µ2 ∈ F and η ∈ O+ we have

ν(µ1)ν(µ2) = ν(µ1µ2) and ν(ηµ1) = ν(µ1).

For any function C summed over a we can restrict to a sum over totally positive µ (to be
denoted µ ≻ 0) using these characters:∑

µ∈a
µ≻0

C(µ) = 1
8

∑
ν

(∑
µ

ν(µ)C(µ)
)

(2.3)

where the sum over ν is over all eight sign characters.

Grössencharaktere. Let (η1, η2) be a basis for the subgroup O+ of totally positive units
ordered so that

(2.4) δ = log η1 log η
′
2 − log η′1 log η2 > 0.

From now on η always denotes a totally positive unit, so η = ηn1
1 η

n2
2 for some n1, n2 ∈ Z.

For

(2.5) M =

(
1 log η1 log η2
1 log η′1 log η′2
1 log η′′1 log η′′2

)
define e

(j)
i by M−1 =

 1
3

1
3

1
3

e
(1)
1 e

(1)
2 e

(1)
3

e
(2)
1 e

(2)
2 e

(2)
3

 .

To evaluate the first row of M−1 as well as to show that detM = 3δ we have applied [12,
Lemma, p. 123 ] to matrices (

log η1 log η′1 log η′′1
log η2 log η′2 log η′′2
v3,1 v3,2 v3,3

)
with the last row subsequently being equal to (1, 0, 0), (0, 1, 0), (0, 0, 1). Thus a computa-
tion to eliminate η′′1 and η′′2 (since η′jη

′
jη

′′
j = 1 for j = 1, 2) gives

3δe
(1)
1 =2 log η′2 + log η2 3δe

(1)
2 = −2 log η2 − log η′2 3δe

(1)
3 = log η2 − log η′2(2.6)

3δe
(2)
1 =− 2 log η′1 − log η1 3δe

(2)
2 = 2 log η1 + log η′1 3δe

(2)
3 = log η′1 − log η1.(2.7)
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The following relations hold:

(2.8)
∑

1≤k≤3

e
(r)
k = 0 for r = 1, 2,

1
3
+
∑

1≤j≤2

e(j)p log η
(q)
j = δp,q for p, q = 1, 2, 3(2.9)

∑
1≤k≤3

e
(r)
k log η(k)s = δr,s for r, s = 1, 2,(2.10)

where δi,j is the Kronecker symbol. For n = (n1, n2) ∈ Z2 let

(2.11) λn(µ) = exp
(
2πi

∑
1≤i≤2

ni

∑
1≤j≤3

e
(i)
j log |µ(j)|

)
be a Grössencharakter for F. Then, for µ1, µ2 ∈ F, we have that

(2.12) λn(µ1)λn(µ2) = λn(µ1µ2) and λn(ηµ1) = λn(µ1).

The Hecke-type zeta function. For a a fractional ideal in F let (µ)a denote a set of repre-
sentatives for strict association classes of µ ∈ a, where µ1, µ2 ∈ a are strictly associated if
there is a totally positive unit η so that µ1 = µ2η. The zeta function with sign character
ν and Grössencharakter λn we need is defined for Re(s) > 1 by

(2.13) ζa(s, λnν) =
∑
(µ)a

ν(µ)λn(µ)|N(µ)|−s.

If the signature of ν is (a1, a2, a3) let

(2.14) σν = 1
2

3∑
j=1

aj.

Clearly ζa(s, νλn) will vanish identically unless σ ∈ {0, 1}. More generally, ζa(s, νλn) will
vanish identically if there exists a unit ϵ with the property that ν(ϵ)λn(ϵ) ̸= 1.

Set for j = 1, 2, 3

(2.15) κj = (e
(1)
j , e

(2)
j ),

with e
(i)
j given in (2.6).

Theorem 4. Let F be a totally real cubic field.
i) The zeta function ζa(s, νλn) from (2.13) is entire except for a simple pole at s = 1 when
νλn = ν0λ0.

ii) It satisfies the functional equation

ξa(s, νλn) = Γνλn(s)ζa(s, νλn) = (−1)σN(a)−1D− 1
2 ξ 1

ad
(1− s, νλ−n), where

d is the different of F and

(2.16) Γνλn(s) = π− 3s
2 Γ( s+a1

2
− 2πin·κ1

2
)Γ( s+a2

2
− 2πin·κ2

2
)Γ( s+a3

2
− 2πin·κ3

2
),

with · the usual dot product.

iii) The zeta function has finite order. More precisely, for any A > 1 there is a C > 0
depending only on F and A so that for all s with |s− 1| ≥ 1

|ζa(s, νλn)| ≤ Ce|s|
A

.

iv) We have the evaluation

(2.17) ress=1ζa(s, ν0λ0) = 8δN(a)−1D− 1
2 .
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v) In any fixed vertical strip and away from a pole, the function ξ(s, νλn) is bounded
uniformly in the variables s and n.

vi) The following estimate holds for s = σ + it:

(2.18) ζa(s, νλn) ≪
3∏

j=1

(1 + |t− 2π(n · κj)|)k(σ), where

(2.19) k(σ) =

 0, if σ > 1,
(1− σ)/2 + ϵ, if 0 ≤ σ ≤ 1,
1/2− σ, if σ < 0.

The implied constant does not depend on t or n.

3. An Epstein zeta function

In this section, we will prove Theorem 4. The main reference is Siegel’s book [17].
For convenience and completeness, we have included an Appendix that contains detailed
treatments of various long but somewhat routine calculations needed in the proof of
Proposition 1.

The idea is to deduce the basic analytic properties i)–v) of ζa(s, νλn) from an identity
that expresses it in terms of a Fourier coefficient of a certain Epstein zeta function. For
x = (x1, x2) ∈ R2 and j = 1, 2, 3 we let

(3.1) wj(x) = exp(x1 log η
(j)
1 + x2 log η

(j)
2 ) = η

(j)x1

1 η
(j)x2

2 .

Define the Epstein zeta function for Re(s) > 3
2
by

Za(s, x) =
∑
µ∈a
µ̸=0

3∏
j=1

(wj(x)µ
(j))aj

(
µ2w2

1(x) + µ′2w2
2(x) + µ′′2w2

3(x)
)−s−σν

,(3.2)

where σν is from (2.14).

Proposition 1. The function Za(s, x) is entire in s unless (a1, a2, a3) = (0, 0, 0), when it

is holomorphic except for a simple pole at s = 3
2
with residue 2πN(a)−1D− 1

2 . It has order
at most one. The function

Z∗
a (s, x) = π−sΓ(s+ σν)Za(s, x)

satisfies the functional equation

Z∗
a (s, x) = i−2σνN(a)−1D− 1

2Z∗
1
ad
(3
2
− s,−x).

It is bounded away from a pole in any fixed vertical strip.

Proof. We will apply [17, Thm. 3. p.54] to prove this. Define the positive definite 3× 3
matrix Qa,x determined by

(3.3) (a, b, c)Qa,x(a, b, c)
t = µ2w2

1(x) + µ′2w2
2(x) + µ′′2w2

3(x)

with entries a, b, c from (2.1). A calculation (see Lemma 12 in the Appendix) together
with a standard result (see e.g. [11, p.88]) shows that

(3.4) detQa,x = detA2 = DN2(a),

where

(3.5) A =

(
α1 α2 α3

α′
1 α′

2 α′
3

α′′
1 α′′

2 α′′
3

)
.
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Let

(3.6) Pa,x(a, b, c) =
3∏

j=1

(wj(x)µ
(j))aj =

3∏
j=1

w
aj
j (x)

3∏
j=1

(aα
(j)
1 + bα

(j)
2 + cα

(j)
3 )aj .

Another calculation (Lemma 13 in the Appendix) now shows

trQ−1
a,xP

†
a,x = 0,

where P †
a,x is the 3×3 matrix of second partials of Pa,x in the variables a, b, c. This means

that Pa,x is a spherical function with respect to Qa,x (see [17, p.46]).
In the notation of [17, p.47] we have that

(3.7) Za(s, x) = ζ(s, 0, 0, Qa,x, Pa,x).

It is classical that the columns of A−1 for A from (3.5) give an integral basis for 1
ad

(see
[11, §36]). A calculation using this fact (Lemma 14 in the Appendix) shows that

(3.8) Q−1
a,x = Q 1

ad
,−x.

The dual polynomial is by definition (see [17, p.50. ])

(3.9) P ∗
a,x(a, b, c) = Pa,x(Q

−1
a,x(a, b, c)

t).

Using this, still another computation (Lemma 15 in the Appendix) gives that

(3.10) P ∗
a,x = P 1

ad
,−x.

Thus from (3.2), (3.8) and (3.10) we have

(3.11) Z 1
ad
(s,−x) = ζ(s, 0, 0, Q−1

a,x, P
∗
a,x).

Now using (3.7) and (3.11), all of Proposition 1 except the finite order statement, is a direct
consequence of Theorem 3 of [17]. The finite order statement is a standard application of
the theta function representation of Z∗

a (s, x) that comes from [17, (60)]. □

In order to prove Theorem 4, we will express our zeta function as part of a Fourier
coefficient of Za(s, x). The function Za(s, x) is invariant under x1 7→ x1 + 1 and under
x2 7→ x2+1. Most of Theorem 4 follows immediately from Proposition 1 and the following
result. The upper bound (2.18) is a consequence of the uniform Phragmén-Lindelöf result
given in [15].

Recall the definition of Z∗
a (s, x) from Proposition 1.

Proposition 2. For n = (n1, n2) ∈ Z2 and Re(s) > 1∫ 1

0

∫ 1

0

Z∗
a (

3s
2
, x)e−2πin·xdx1 dx2 =

1
12δ

Γνλn(s)ζa(s, νλn),

where δ is from (2.4) and Γνλn(s) is given in (2.16).

The proof of Proposition 2 reduces to that of the following Lemma by the change of
variables s 7→ 3s

2
, after an identification of the Gamma factors is made. Here we use

2a1−a2−a3
6

+ σν

6
= a1

2
and similar statements for the other two factors.

Lemma 1. Assumptions as in Proposition 2,

I(n) =

∫ 1

0

∫ 1

0

Za(s, x)e
−2πin·xdx1 dx2 =

Γ∗
ν,n(s+ σν)

12 δ Γ(s+ σν)
ζa(

2s
3
, νλn), where

Γ∗
νλn

(s) = Γ
(
s
3
+ 2a1−a2−a3

6
− πiκ1 · n

)
Γ
(
s
3
+ 2a2−a1−a3

6
− πiκ2 · n

)
(3.12)

× Γ
(
s
3
+ 2a3−a1−a2

6
− πiκ3 · n

)
.
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Proof. The integral I(n) unfolds into the form

(3.13) I(n) =
∑
(µ)a

In(µ, s),

where

In(µ, s) =

∫ ∞

−∞

∫ ∞

−∞

3∏
j=1

(wj(x)µ
(j))aj(3.14)

×
(
µ2w2

1(x) + µ′2w2
2(x) + µ′′2w2

3(x)
)−s−σν

e−2πin·xdx1 dx2,

which is well defined on (µ)a. For a fixed representative µ make the following change of
variables in this integral:

x 7→ x− y,

where y = (y1, y2) with

y1 = e
(1)
1 log |µ|+ e

(1)
2 log |µ′|+ e

(1)
3 log |µ′′|(3.15)

y2 = e
(2)
1 log |µ|+ e

(2)
2 log |µ′|+ e

(2)
3 log |µ′′|.(3.16)

Using (2.11) we prove that

In(µ, s) = λn(µ)

∫ ∞

−∞

∫ ∞

−∞

3∏
j=1

(wj(x− y)µ(j))aj

(3.17)

×
(
µ2w2

1(x− y) + µ′2w2
2(x− y) + µ′′2w2

3(x− y)
)−s−σν

e−2πin·xdx1 dx2.

It follows from (3.1) that

(3.18) wj(x− y)µ(j) = wj(x)µ
(j) exp(−y1 log η(j)1 − y2 log η

(j)
2 ).

Using (3.15) and (2.9), we obtain

(3.19) y1 log η
(j)
1 + y2 log η

(j)
2 =

3∑
p=1

log |µ(p)|
2∑

i=1

e(i)p log η
(j)
i = log |µ(j)| − 1

3
log |N(µ)|.

Substituting (3.19) to (3.18), we have

(3.20) wj(x− y)µ(j) = wj(x)|N(µ)|1/3 µ
(j)

|µ(j)|
= wj(x)|N(µ)|1/3sgn(µ(j)).

Substituting (3.20) to (3.17) and using (2.2), (2.14) we show that

(3.21) In(µ, s) = ν(µ)λn(µ)|N(µ)|−
2s
3 Î(s+ σν),

where

Î(s) =

∫ ∞

−∞

∫ ∞

−∞

3∏
j=1

w
aj
j (x)

(
w2

1(x) + w2
2(x) + w2

3(x)
)−s

e−2πin·xdx1 dx2.(3.22)

Next we must compute the integral Î(s). In view of (3.21) and (3.13), the proof of
Lemma 1 will be complete once we show

(3.23) Î(s) =
Γ∗
νλn

(s)

12 δ Γ(s)
,
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where Γ∗
νλn

(s) is from (3.12). Recall (3.1) and make the change of variables in (3.22) given
for j = 1, 2 by uj = wj(x). Solving for x1, x2 we have

δx1 = log η′2 log u1 − log η2 log u2

δx2 =− log η′1 log u1 + log η1 log u2.

Since w1(x)w2(x)w3(x) = 1 and the Jacobian (see (2.4)) is (δu1u2)
−1 this yields

Î(s) =
1

δ

∫ ∞

0

∫ ∞

0

(
u21 + u22 +

1
(u1u2)2

)−s
uα1u

β
2
du1du2

u1u2
,(3.24)

where

α =2πi
δ
(n2 log η

′
1 − n1 log η

′
2) + a1 − a3(3.25)

β =2πi
δ
(n1 log η2 − n2 log η1) + a2 − a3.

We now apply the following double Mellin transform formula.

Lemma 2. For Re s > max (Re(α + β),Re(α− 2β),Re(β − 2α)) one has∫ ∞

0

∫ ∞

0

(u1 + u2 +
1

u1u2
)−suα1u

β
2
du1du2

u1u2
=

Γ( 1
3
(s−α−β))Γ( 1

3
(s+2α−β))Γ( 1

3
(s−α+2β))

3Γ(s)
.(3.26)

Proof. Make the following substitution:

u1 = yt, u2 = t(1− y), 0 ≤ y ≤ 1, 0 ≤ t <∞,

getting ∫ 1

0

ys+α−1(1− y)s+β−1

∫ ∞

0

(
1 + t3y(1− y)

)−s
t2s+α+β−1dtdy.

To evaluate the t-integral, we apply [5, Sec. 6.2. (30)]. As a result, we obtain for
Re s > max (Re(−α/2− β/2),Re(α + β))

Γ( 1
3
(2s+α+β))Γ( 1

3
(s−α−β))

3Γ(s)

∫ 1

0

y(s+2α−β)/3−1(1− y)(s−α+2β)/3−1dy.

Finally, using [14, 5.12.1] we obtain (3.26). 1 □

To verify (3.23), make the obvious change of variables in (3.24) so we can apply (3.26)

Î(s) =
Γ( 1

6
(2s−α−β))Γ( 1

6
(2s+2α−β))Γ( 1

6
(2s−α+2β))

12 δ Γ(s)
.

Then use the next identities, which follow from (3.25) and the formulas for the e′s from
(2.6),(2.7):

(3.27) 2α− β = −6πi(n1e
(1)
1 + n2e

(2)
1 ) + 2a1 − a2 − a3,

(3.28) 2β − α = −6πi(n1e
(1)
2 + n2e

(2)
2 ) + 2a2 − a1 − a3,

(3.29) α + β = 6πi(n1e
(1)
3 + n2e

(2)
3 ) + a1 + a2 − 2a3.

This completes the proof of Lemma 1 hence of Proposition 2 and Theorem 4. □

1We have for any n ≥ 1 the following elegant formula

(n+ 1)Γ(s)

∫ ∞

0

· · ·
∫ ∞

0

(u1 + u2 + · · ·+ un + 1
u1···un

)−suα1
1 · · ·uαn

n
du1···dun

u1···un

= Γ
(

1
n+1 (s− α1 − · · · − αn)

)
Γ
(

1
n+1 (s+ nα1 − α2 − · · · − αn)

)
· · ·Γ

(
1

n+1 (s− α1 − · · ·+ nαn)
)
.
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4. The Dirichlet series ψF (s)

In this section we prove the following result, which includes Theorem 1. When not
specified, the dependence of an implied constant will become clear from the context of
the argument.

Proposition 3. The function ψF (s) has a simple pole at s = 1 with residue

Γ3(4
3
)

N(a)D
1
2

but is otherwise holomorphic for Re(s) > 0. For any fixed 0 < δ1 < δ2 there is A > 0 so
that uniformly in δ1 ≤ Re(s) ≤ δ2 we have

ψF (s) ≪ e|Im(t)|A .

For the ternary cubic form

F (x, y, z) = (α1x+ α2y + α3z)
3 + (α′

1x+ α′
2y + α′

3z)
3 + (α′′

1x+ α′′
2y + α′′

3z)
3,

where {α1, α2, α3} is an integral basis for the ideal a, we have the identity

ψF (s) =
∑
m≥1

rF (m)m−s =
∑
µ∈a
µ≻0

(
µ3 + µ′3 + µ′′3)−s

,(4.1)

where rF (m) is defined by (1.6).
By (2.3) we can write

ψF (s) =
1
8

∑
ν

ψF (s; ν),(4.2)

where for Re(s) > 1

ψF (s; ν) =
∑
µ∈a

ν(µ)
(
|µ|3 + |µ′|3 + |µ′′|3

)−s

Recall (3.1) and define for x = (x1, x2) and Re(s) > 1

ψF (s, x; ν) =
∑
µ∈a

ν(µ)
(
|µ|3w3

1(x) + |µ′|3w3
2(x) + |µ′′|3w3

3(x)
)−s

.(4.3)

Observe that this function is invariant in x under translations from Z2. We will analyze
ψF (s; ν) by expanding ψF (s, x; ν) in a Fourier series and specialize x to be zero. For this
we will follow the basic technique from above. Then we can apply (4.2).

Lemma 3. For n = (n1, n2) ∈ Z2 and Re(s) > 1

AF (s, n; ν) =

∫ 1

0

∫ 1

0

ψF (s, x; ν)e
−2πin·xdx1 dx2 =

1
27δ

Γ∗∗
λn
(s)ζa(s, νλn),

where the Gamma factor is

Γ∗∗
λn
(s) = Γ(s)−1Γ

(
s
3
− 2πin·κ1

3

)
Γ
(
s
3
− 2πin·κ2

3

)
Γ
(
s
3
− 2πin·κ3

3

)
.(4.4)

Proof. The integral AF (s, n; ν) of Lemma 3 unfolds into the form

(4.5) AF (s, n; ν) =
∑
(µ)a

ν(µ)IF (µ, s),

where

IF (µ, s) =

∫ ∞

−∞

∫ ∞

−∞

(
|µ|3w3

1(x) + |µ′|3w3
2(x) + |µ′′|3w3

3(x)
)−s

e−2πin·xdx1 dx2,(4.6)
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which is well defined on (µ)a. For a fixed representative µ again make the change of
variables x 7→ x− y, where y = (y1, y2) with

y1 = e
(1)
1 log |µ|+ e

(1)
2 log |µ′|+ e

(1)
3 log |µ′′|

y2 = e
(2)
1 log |µ|+ e

(2)
2 log |µ′|+ e

(2)
3 log |µ′′|.

Now, similarly to the proof of Lemma 1, we obtain an analogue of (3.21):

(4.7) IF (µ, s) =
λn(µ)

|N(µ)|s

∫ ∞

−∞

∫ ∞

−∞

(
w3

1(x) + w3
2(x) + w3

3(x)
)−s

e−2πin·xdx1 dx2.

Next, the change of variables uj = wj(x), j = 1, 2 allows us to prove an analogue of
(3.24):

(4.8) IF (µ, s) =
λn(µ)

δ|N(µ)|s

∫ ∞

0

∫ ∞

0

(
u31 + u32 +

1
(u1u2)3

)−s

uα0
1 u

β0

2
du1du2

u1u2
,

where (see (3.25))

(4.9) α0 =
2πi
δ
(n2 log η

′
1 − n1 log η

′
2), β0 =

2πi
δ
(n1 log η2 − n2 log η1).

By making another change of variable vj = u3j , j = 1, 2 and applying Lemma 2, we obtain
(4.10)

IF (µ, s) =
λn(µ)

27δ|N(µ)|sΓ(s)
Γ

(
3s− α0 − β0

9

)
Γ

(
3s+ 2α0 − β0

9

)
Γ

(
3s− α0 + 2β0

9

)
.

It follows from (2.6), (2.7) that (see also (3.27), (3.28), (3.29))

(4.11) 2α0 − β0 = −6πi(n1e
(1)
1 + n2e

(2)
1 ), 2β0 − α0 = −6πi(n1e

(1)
2 + n2e

(2)
2 )

(4.12) α0 + β0 = 6πi(n1e
(1)
3 + n2e

(2)
3 ).

Substituting (4.11) and (4.12) into (4.10) and then using (4.5) we prove the lemma. □

The first statement of Proposition 3 follows from (4.2) and the next result, after the
residue at s = 1 is computed using iv) of Theorem 4. The second statement also follows
in view of iii) of Theorem 4.

Lemma 4. The series

(4.13) ψF (s; ν) =
∑
n∈Z2

Γ
(
s
3
−2πin·κ1

3

)
Γ
(
s
3
−2πin·κ2

3

)
Γ
(
s
3
−2πin·κ3

3

)
27δ Γ(s)

ζa(s, νλn).

converges uniformly on compact subsets in Re(s) > 0 that do not contain the possible pole
at s = 1.

This follows immediately from Lemma 3, vi) of Theorem 4, Stirling’s formula and the

following crucial lemma. Write ∥n∥ =
√
n2
1 + n2

2 =
√
n · n.

Lemma 5. There is a constant C > 0, depending only on η1 and η2, such that for at least
two of i = 1, 2, 3 we have

(4.14) |n · κi| ≥ C∥n∥.

Proof. For (i, j) = (1, 2), (i, j) = (1, 3) and (i, j) = (2, 3) we define the binary quadratic
form

(4.15) qi,j(n) = (n · κi)2 + (n · κi)(n · κj) + (n · κj)2 = ai,jn
2
1 + bi,jn1n2 + ci,jn

2
2.

Using (2.6), (2.7) we obtain

(4.16) 3δ2a1,2 = log2 η2 + log η2 log η
′
2 + log2 η′2,
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(4.17) 3δ2b1,2 = − log η1 log η
′
2 − 2 log η′1 log η

′
2 − 2 log η1 log η2 − log η′1 log η2,

(4.18) 3δ2c1,2 = log2 η1 + log η1 log η
′
1 + log2 η′1, b21,2 − 4a1,2c1,2 = − 1

3δ2
.

Applying (2.19) and (2.8), we show that κ3 = −κ2 − κ1, and thus q1,3(n) = q2,3(n) =
q1,2(n). Since a1,2 > 0 and b21,2 − 4a1,2c1,2 < 0, the quadratic form is positive definite.
Therefore, for some C1 > 0, depending only on η1 and η2, for all n ̸= (0, 0)

qi,j(n) ≥ C1∥n∥2.
Consequently, for (i, j) = (1, 2), (i, j) = (1, 3) and (i, j) = (2, 3) at least one of |n ·κi|, |n ·
κj| satisfies (4.14). Hence, at least two of the three |n · κi| satisfy (4.14). □

Remark. It can be shown (see Lemma 16 in the Appendix) that the set of numbers

{n · κ1, n · κ2, n · κ3; ∥n∥ ≤ N}
becomes dense in R as N → ∞. These points will give rise to singularities of ψF (s) when
the corresponding zeta values are not zero. It seems likely that as a result ψF (s) has a
natural boundary on the imaginary axis.

The next result shows that these troublesome poles can only come from zetas with
non-trivial sign characters.

Proposition 4. The function ψF (s; ν0) is regular for Re s > −3.

Proof. It follows from Lemma 4 and Theorem 4 (we take each aj = 0) that
(4.19)

ψF (s; ν0) =
π3s/2

27δ Γ(s)

∑
n∈Z2

ξa(s, ν0λn)H(s, n), H(s, n) =
3∏

j=1

Γ
(
(s− 2πin · κj)/3

)
Γ
(
(s− 2πin · κj)/2

) .
The function Γ(z/3)Γ−1(z/2) is regular at the points z = −3k when k is a positive even
number, but not if k is odd. Thus the poles of H(s, n) are

s(j,m) = −3− 6m+ 2πin · κj, m ∈ Z+,

and so ψF (s; ν0) is regular for Re s > −3. □

5. Growth in vertical strips

In this section we prove the following estimate, which is applied in the next sections to
derive Theorems 2 and 3.

Proposition 5. Fix ϵ, δ > 0. Then for δ ≤ Re(s) ≤ 1 we have

ψF (s) ≪ (1 + |t|)
5
2
(1−σ)+ϵ,

where as usual s = σ + it.

Proof. For j = 1, 2, 3 let cj = 2π · (n · κj). One has c1 + c2 + c3 = 0. Therefore, combining
Lemma 4 and vi) of Theorem 3 with the Stirling formula we obtain for s = σ + it with
0 < σ < 1 the estimate

(5.1) ψF (s) ≪
∑
n∈Z2

(1 + |t|)1/2−σe−
π
6
f(n,t)

3∏
j=1

(1 + |t− cj|)−σ/6+ϵ,

where

(5.2) f(n, t) = |t− c1|+ |t− c2|+ |t+ c1 + c2| − 3|t|.
Without loss of generality, we assume that c1 ≤ c2. Lemma 5 implies that

∥n∥ ≪ max(|c1|, |c2|) ≪ ∥n∥.
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To analyze f(n, t), it is necessary to study six different cases depending on how the
points 0, c1, c2,−c1−c2 are located on the real line. First, there are three cases concerning
the locations of c1 and c2. That is, c1 ≤ c2 ≤ 0 (case a), c1 ≤ 0 ≤ c2 (case b) or 0 ≤ c1 ≤ c2
(case c). In case b, there are also four possibilities for the point −c1 − c2. As a result,

Case a: c1 ≤ c2 ≤ 0 ≤ −c1 − c2,

Case b1: c1 ≤ 0 ≤ c2 ≤ −c1 − c2, if 0 ≤ 2c2 ≤ −c1

Case b2: c1 ≤ 0 ≤ −c1 − c2 ≤ c2, if 0 ≤ c2 ≤ −c1 ≤ 2c2

Case b3: c1 ≤ −c1 − c2 ≤ 0 ≤ c2, if 0 ≤ c2/2 ≤ −c1 ≤ c2

Case b4: −c1 − c2 ≤ c1 ≤ 0 ≤ c2, if 0 ≤ −c1 ≤ c2/2

Case c: −c1 − c2 ≤ 0 ≤ c1 ≤ c2.

Since all six cases can be treated in the same way, we give details only for case c. In this
settings, we have

(5.3)


f(n, t) = 0, if t ≤ −c1 − c2
f(n, t) = 2t+ 2c1 + 2c2, if − c1 − c2 ≤ t ≤ 0
f(n, t) = −4t+ 2c1 + 2c2, if 0 ≤ t ≤ c1
f(n, t) = −2t+ 2c2, if c1 ≤ t ≤ c2
f(n, t) = 0, if c2 ≤ t.

First, we should mention f(n, t) ≥ 0. Note that in case c we sum in (5.1) only over n
such that 0 ≤ c1 ≤ c2. However, finally we will expand the sum to the whole Z2. To
estimate (5.1) in case c, we divide the sum into two parts: ∥n∥ > N0|t| and ∥n∥ ≤ N0|t|,
where N0 is a large number depending on C from Lemma 5 and κ1, κ2. The idea is to
estimate f(n, t) from below so that e−f(n,t) becomes small enough. If |t| < ∥n∥/N0, then
|t| < c2/(CN0). Thus

|t| ≤ c2 − log2 t− log2 c2

and

(5.4) f(n, t) ≫ log2 t+ log2 ∥n∥.

Therefore, since for an arbitrary c > 0 and A > 1 one has e−c log2 t ≪ (1 + t)−A the
terms with ∥n∥ > N0|t| are negligible and their contribution to ψF (s) can be estimated
as O((1 + |t|)−A) for arbitrarily large A.

In the remaining case ∥n∥ ≤ N0|t|, the trivial estimate f(n, t) ≥ 0 yields

(5.5) ψF (s) ≪
∑

∥n∥≤N0|t|

(1 + |t|)1/2−σ(1 + |t|)−σ/2+ϵ ≪ (1 + |t|)5/2−3σ/2+ϵ.

This estimate can be improved by applying the Phragmen-Lindelof principle (see Theorem
2 of [15]). Since for δ > 0 we have ψF (1 + δ + it) ≪ 1, we have

(5.6) ψF (s) ≪ (1 + |t|)5/2(1−σ)+ϵ.

□
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6. Proof of Theorem 2

The next lemma is a modification of [6, Lemma on p.105].

Lemma 6. For r, c, x, T > 0 we have

(6.1) χ(1,∞)(x)

(
1− 1

x

)r

=
1

2πi

∫ c+iT

c−iT

Γ(1 + r)Γ(s)

Γ(1 + r + s)
xsds+O

(
xc

T r
min

(
1,

1

T | log x|

))
,

where χ(1,∞)(x) is the characteristic function of the interval (1,∞).

Applying Lemma 6, we prove the following statement.

Lemma 7. For any c > 1 and T ≤ X we have

(6.2)
∑

1≤m≤X

rF (m)(1− m
X
)r =

1

2πi

∫ c+iT

c−iT

Γ(1 + r)Γ(s)

Γ(1 + r + s)
ψF (s)X

sds+O

(
Xc

T r

)
.

Proof. Since
∑

m≤x rF (m) ≪ x1+ϵ and rF (m) ≥ 0, the series
∑∞

m=1 rF (m)m−s converges
absolutely for Re(s) > 1. Therefore, using (6.1) we have for c > 1 that∑

1≤m≤X

rF (m)(1− m
X
)r =

1

2πi

∫ c+iT

c−iT

Γ(1 + r)Γ(s)

Γ(1 + r + s)
ψF (s)X

sds+O

(
X∑

m=1

rF (m)Xc

mcT r

)
.

□

If we move the line of integration to Re s = δ0, where δ0 is an arbitrary small positive
number, we will cross the pole at the point s = 1. Using Propositions 3 and 5, we show
that

(6.3)
∑

1≤m≤X

rF (m)(1− m
X
)r =

Γ3(4
3
)X

(r + 1)N(a)D
1
2

+O

(
Xδ0

∫ T

−T

(1 + |t|)5(1−δ0)/2+ϵ

(1 + |t|)r+1
dt

)

+O

(∫ 1+ϵ

δ0

T 5(1−σ)/2+ϵ

T r+1
Xσdσ

)
+O

(
X1+ϵ

T r

)
.

By estimating these integrals trivially , we prove that the error term in (6.3) is less than

(6.4) Xδ0 max
(
1, T 5(1−δ0)/2−r+ϵ

)
+ T 3/2−r+ϵ max

((
X

T 5/2

)1+ϵ

,

(
X

T 5/2

)δ0
)

+
X1+ϵ

T r
.

Therefore, choosing T sufficiently large (say T = X), we conclude that for r ≥ 5/2

(6.5)
∑

1≤m≤X

rF (m)(1− m
X
)r =

Γ3(4
3
)X

(r + 1)N(a)D
1
2

+O
(
Xδ0+ϵ

)
,

thus proving Theorem 2. □

7. Proof of Theorem 3

In this section, we will improve (6.5), find the second main term in the asymptotic
formula, prove Theorem 3 and (1.8). To this end, we will move the line of integration in
(6.2) to Re s = −a with some a > 0. To overcome the difficulty of having a set of poles on
Re s = 0 that becomes dense, we will first truncate the sum in (4.13) at ∥n∥ = dT , where
d is some large constant such that (5.4) holds, and thus the contribution of terms with
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∥n∥ > dT is negligible. By doing this and using (4.2) and (4.13), we prove an analogue
of (6.3), namely,

(7.1)
∑

1≤m≤X

rF (m)(1− m
X
)r =

Γ3(4
3
)X

(r + 1)N(a)D
1
2

+
1

8

∑
ν

1

27δ

∑
∥n∥≤dT

J(n, ν,X, T )

+O

(∫ 1+ϵ

ϵ

T 5(1−σ)/2+ϵ

T r+1
Xσdσ

)
+O

(
X1+ϵ

T r

)
,

where

(7.2) J(n, ν,X, T ) =
1

2πi

∫ ϵ+iT

ϵ−iT

g(n, ν,X, s)ds,

(7.3) g(n, ν,X, s) =
Γ(1 + r)

Γ(1 + r + s)
Γ
(
s−2πin·κ1

3

)
Γ
(
s−2πin·κ2

3

)
Γ
(
s−2πin·κ3

3

)
ζa(s, νλn)X

s.

Now we move the line of integration in (7.2) to Re s = −ϵ with some 0 < ϵ < 1, crossing
poles at the points

(7.4) sj(n) = 2πin · κj for j = 1, 2, 3.

Lemma 8. For r > 5/2 + ϵ0 and T = X2/5 one has

(7.5)
∑

1≤m≤X

rF (m)(1− m
X
)r =

Γ3(4
3
)X

(r + 1)N(a)D
1
2

+ Sres +O(X−ϵ),

where

(7.6) Sres =
1

8

∑
ν

1

27δ

∑
∥n∥≤dT
|sj(n)|≤T

ressj(n) g(n, ν,X, s).

Proof. Since the number of poles (after taking the sum over ∥n∥ ≤ dT ) is finite, it is
possible to change T slightly so that Im sj(n) ̸= T . To this end, we consider the interval
(T, 2T ) and divide it into subintervals of length (fT )−1 with a huge constant f . As a
result, we have fT 2 intervals. Since the number of poles is less than 100(dT )2, choosing
f > 2025d2, it is possible to find an interval that does not contain any pole. By choosing
a new T as the center of this interval, we ensure that |T − Im sj(n)| ≫ T−1. With this
new T we have

(7.7) J(n, ν,X, T ) =
∑

|sj(n)|≤T

ressj(n) g(n, ν,X, s) + Jϵ(n, ν,X, T ) +
∑
±

J0(n, ν,X,±T ),

(7.8) Jϵ(n, ν,X, T ) =
1

2πi

∫ −ϵ+iT

−ϵ−iT

g(n, ν,X, s)ds,

(7.9) J0(n, ν,X, T ) =
1

2πi

∫ ϵ+iT

−ϵ+iT

g(n, ν,X, s)ds.

Substituting (7.7) into (7.1), we obtain

(7.10)
∑

1≤m≤X

rF (m)(1− m
X
)r =

Γ3(4
3
)X

(r + 1)N(a)D
1
2

+ Sϵ + S0 + Sres

+O

(
T 3/2−r+ϵXϵ max

(
1,

(
X

T 5/2

)))
+O

(
X1+ϵ

T r

)
,
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where Sres is defined by (7.6) and
(7.11)

Sϵ =
1

8

∑
ν

1

27δ

∑
∥n∥≤dT

∑
±

Jϵ(n, ν,X,±T ), S0 =
1

8

∑
ν

1

27δ

∑
∥n∥≤dT

∑
±

J0(n, ν,X,±T ).

To estimate Sϵ, we substitute (7.8) to (7.11), and after that interchange the order of
summation and integration. Next, we increase the summation over n back to the whole
Z2 with a negligibly small error term (since all estimates from Proposition 5 still hold).
As a result,

(7.12) Sϵ =
1

8

∑
ν

1

2πi

∫ −ϵ+iT

−ϵ−iT

Γ(1 + r)Γ(s)

Γ(1 + r + s)
ψ−
F (s; ν)X

sds,

where for Re s ≤ 0

(7.13) ψ−
F (s; ν) =

1

27δ Γ(s)

∑
n∈Z2

Γ
(
s
3
− 2πin·κ1

3

)
Γ
(
s
3
− 2πin·κ2

3

)
Γ
(
s
3
− 2πin·κ3

3

)
ζa(s, νλn).

Arguing as in Proposition 5, one can prove an analogue of (5.5). Note that now it is
required to use k(σ) = 1/2− σ from (2.19) instead of k(σ) = (1− σ)/2 + ϵ, as we did in
Proposition 5. Accordingly, for Re s < 0 and far away from possible poles of the Gamma
functions, we obtain the following result

(7.14) ψ−
F (s; ν) ≪

∑
∥n∥≤N0|t|

(1 + |t|)1/2−σ(1 + |t|)−2σ ≪ (1 + |t|)5/2−3σ.

Estimating (7.12) using (7.14) and assuming that r > 5/2 + ϵ0, we have

(7.15) Sϵ ≪
∫ T

−T

(1 + |t|)3/2−r+3ϵX−ϵdt≪ X−ϵ.

To estimate S0 from (7.11) we first let (as in Proposition 5)

(7.16) cj = 2π · (n · κj) for j = 1, 2, 3.

Note that for ∥n∥ ≤ dT we have

(7.17) |cj| ≪ ∥n∥ ≪ T.

Since c1 + c2 + c3 = 0, the product of three Gamma functions with κj from (7.3) with
s = σ + iT is equal to

(7.18) Γ
(σ+i(T−c1)

3

)
Γ
(σ+i(T−c2)

3

)
Γ
(σ+i(T+c1+c2)

3

)
.

We divide the sum over n in S0 (see (7.11)) into several parts (for simplicity, we will
continue to denote each part as S0) depending on whether the imaginary parts of the
arguments of the Gamma functions in (7.18) are small or not. If none of them is small,
that is

(7.19) |T − c1|, |T − c2|, |T + c1 + c2| ≫ 1,

we can argue as before. More precisely, we apply Stirling’s formula to all Gamma func-
tions, change the order of summation over n and integration over σ, and apply (7.14). As
a result, we have

(7.20) S0 ≪
∫ +ϵ

−ϵ

T 3/2−r+ϵXσdσ ≪ XϵT 3/2−r+ϵ.
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Now, consider the case when at least one of the absolute values in (7.19) is small. Note
that all three of them cannot be small. Suppose that |T − c1| is small and that the other
two are not. Using Stirling’s formula, we deduce from (7.3) that for |σ| < ϵ

(7.21) g(n, ν,X, s) ≪ ζa(σ + iT, νλn)X
σ

T 1/2+r(|σ|+ |T − c1|)
e−

π
6
(|T−c2|+|T+c1+c2|−3T )

× |T − c2|σ/3−1/2|T + c1 + c2|σ/3−1/2.

Since

|T − c2|+ |T + c1 + c2| − 3T ≥ c1 − T ≫ −1,

the exponential factor in (7.21) is less than some constant. Applying (2.18) and (2.19),
we show that

(7.22) g(n, ν,X, s) ≪ T ϵXσ

T 1/2+r(|σ|+ |T − c1|)
|T − c2|−2σ/3|T + c1 + c2|−2σ/3.

Since we assume that only |T − c1| is small, substituting (7.22) into (7.9) and taking into
account (7.17), we infer that

(7.23) J0(n, ν,X, T ) ≪
T ϵXϵ

T 1/2+r

∫ ϵ

−ϵ

dσ

|σ|+ |T − c1|
≪ T ϵXϵ

T 1/2+r
.

Substituting (7.23) into (7.11) and extending the summation over n from |T − c1| ≪ 1 to
the entire ∥n∥ ≪ T , we prove that

(7.24) S0 ≪ T 3/2−r(XT )ϵ.

Now suppose that |T − c1|, |T − c2| ≪ 1. Using Stirling’s formula, we deduce from (7.3)
that for |σ| < ϵ

(7.25) g(n, ν,X, s) ≪ ζa(σ + iT, νλn)X
σ|T + c1 + c2|σ/3−1/2e−

π
6
(|T+c1+c2|−3T )

(|σ|+ |T − c1|)(|σ|+ |T − c2|)T 1/2+r
.

Similarly to the previous case, the exponential factor is bounded by some constant. Since
|T + c1 + c2| ≫ T , applying (2.18) and (2.19) we show that

(7.26) g(n, ν,X, s) ≪ XσT−1/2−r−2σ/3

(|σ|+ |T − c1|)(|σ|+ |T − c2|)
.

Substituting (7.26) into (7.9), we obtain

(7.27) J0(n, ν,X, T ) ≪
∫ ϵ

−ϵ

XϵT−1/2−r+ϵdσ

(|σ|+ |T − c1|)(|σ|+ |T − c2|)
≪ XϵT−1/2−r+ϵ

max(|T − c1|, |T − c2|)
.

Substituting (7.27) into (7.11), using the fact that we choose T such that |T − cj| ≫ T−1,
and estimating the sum over n trivially, we infer that

(7.28) S0 ≪
∑

∥n∥≪T
T−1≪|T−c1|,|T−c2|≪1

XϵT−1/2−r+ϵ

max(|T − c1|, |T − c2|)
≪ XϵT 5/2−r+ϵ.

Note that with a little more work one can prove an estimate XϵT 3/2−r+ϵ in (7.28). It
follows from (7.10), (7.15), (7.20), (7.24), and (7.28) that for r > 5/2 + ϵ0

(7.29)
∑

1≤m≤X

rF (m)(1− m
X
)r =

Γ3(4
3
)X

(r + 1)N(a)D
1
2

+ Sres + E(X,T ),
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where the error term is

(7.30) E(X,T ) ≪ X1+ϵ

T r
+ T 3/2−r+ϵXϵ max

(
1,

X

T 5/2

)
+ T 5/2−r+ϵXϵ +X−ϵ.

Taking T = X2/5 we obtain

(7.31) E(X,T ) ≪ X
5−2r

5
+ϵ +X−ϵ ≪ X−ϵ,

provided that r > 5/2 + ϵ0. □

Our next goal is to show that the contribution to (7.5) of the residue at zero point is
K1 logX+O(1) with some constant K1, and the contribution of all other residues is O(1).
Note that to prove this we have to assume that r is very large. This is the reason why
did not try to move the integration line in Lemma 8 , say, to Re s = −a and optimize the
value of a.

Note that, as in Proposition 4, some poles (7.4) may be canceled by zeros of ζ(s, νλn).

Lemma 9. All poles of the function g(n, ν,X, s) (see (7.3)) are simple, except one at the
point s = 0.

Proof. To prove the lemma, we show that for any fixed n ̸= (0, 0) one has

(7.32) n · κi ̸= n · κj for any i, j = 1, 2, 3, i ̸= j.

Since κ3 = −κ1 − κ2 (see (2.15),(2.8)), it is required to prove that

(7.33) n · (κ1 − κ2), n · (2κ1 + κ2), n · (κ1 + 2κ2) ̸= 0.

Suppose that n · (κ1−κ2) = 0 for some n = (n1, n2) ̸= (0, 0). Then using (2.15) and (2.6),
(2.7) we have

n1 log(η2η
′
2)− n2 log(η1η

′
1) = 0 ⇒ (η2η

′
2)

n1 = (η1η
′
1)

n2 ⇒ (η′′2)
n1 = (η′′1)

n2 .

Since η′′j = σ2(ηj), where σ2 is an embedding, we obtain σ2(η
n1
2 − ηn2

1 ) = 0, and therefore
ηn1
2 = ηn2

1 , which contradicts the fact that η1, η2 is a basis for the subgroup of totally
positive units. The two remaining statements in (7.33) can be proved in the same way. □

Lemma 10. There exists some R such that for T = X2/5 and r > R we have

(7.34)
1

8

∑
ν

1

27δ

∑
∥n∥≤dT

0̸=|sj(n)|≤T

ressj(n) g(n, ν,X, s) ≪ 1.

Proof. Consider the residues at the points s1(n). Other residues can be treated similarly.
It follows from (7.3) and (7.4) that

(7.35) ress1(n) g(n, ν,X, s) ≪
ζa(ic1, νλn)

Γ(1 + r + ic1)
Γ
( i(c1−c2)

3

)
Γ
( i(c1−c3)

3

)
.

By Lemma 9 we have c1 ̸= c2, c1 ̸= c3. Nevertheless, it may happen that either |c1−c2| ≪ 1
or |c1 − c3| = |2c1 + c2| ≪ 1 or both |c1 − c2| ≪ 1, |c1 − c3| ≪ 1.
Suppose that |c1 − c2| ≪ 1 and |c1| ≫ 1. In this case, applying Stirling’s formula and

(2.18) we have

(7.36) ress1(n) g(n, ν,X, s) ≪
ζa(ic1, νλn)|2c1 + c2|−1/2

|c1 − c2| · |c1|1/2+r
e

−π
6

(|2c1+c2|−3|c1|)

≪ |2c1 + c2|ϵ|c1|−1/2−r

|c1 − c2|
≪ |c1|ϵ−1/2−r

|c1 − c2|
,
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since |2c1 + c2| − 3|c1| > −1. From Lemma 5 it follows that ∥n∥ ≪ |c1|, |c2| ≪ ∥n∥.
Consequently, to show (7.34) it is required to prove that

(7.37)
∑

∥n∥≤dT
0<|c1−c2|≪1

∥n∥−1/2−r+ϵ

|c1 − c2|
≪ 1.

Fortunately, the quantity |c1 − c2| is separated from zero. Using (2.6) and (2.15) we have

|c1 − c2| ≫ |n · (κ1 − κ2)| ≫ |n1 log(η2η
′
2)− n2 log(η1η

′
1)| = |n1 log η

′′
2 − n2 log η

′′
1 |.

Since η′′1 and η′′2 are multiplicatively independent, we can apply Baker’s result [2, Theorem
3.1] on linear forms in logarithms, getting

(7.38) |c1 − c2| ≫ ∥n∥−C

with some absolute constant C depending on η′′1 , η
′′
2 and the field F. There are several

results on a precise value of the constant C in (7.38), to mention a few: [3], [4], [7], [13].
But even the best known upper bounds on the constant C are very large. Nevertheless,
an estimate (7.38) allows us to prove (7.37) for r > C + 2. An interesting question is
whether it is possible to obtain (7.38) with some small value of C (say, C = 1/2) using
the fact that we are investigating a linear form in logarithms of totally positive units.

Suppose that |c1 − c2| ≪ 1 and |c1| ≪ 1. Since c1 + c2 + c3 = 0, we conclude that
|c3| ≪ 1. Thus |c1 − c3| ≪ 1 and ∥n∥ ≪ 1 by Lemma 5. In this case,

ress1(n) g(n, ν,X, s) ≪
1

|c1 − c2| · |c1 − c3|
,

and it is left to show that ∑
∥n∥≪1

1

|c1 − c2| · |c1 − c3|
≪ 1,

which immediately follows from (7.38). Note that the case |c1− c2| ≪ 1 and |c1− c3| ≪ 1
can be treated in the same way.

From now on, we may assume that |c1 − c2| ≫ 1 and |c1 − c3| ≫ 1. Accordingly,
applying Stirling’s formula and (2.18) we deduce from (7.35) that

(7.39) ress1(n) g(n, ν,X, s) ≪
ζa(ic1, νλn)e

−πf1,2(n)/6

(1 + |c1|)1/2+r
√

|2c1 + c2|
√
|c1 − c2|

≪ |2c1 + c2|ϵ|c1 − c2|ϵ

(1 + |c1|)1/2+r
e−πf1,2(n)/6,

where f1,2(n) = |c1 − c2|+ |2c1 + c2| − 3|c1|. Since |c1|, |c2| ≪ ∥n∥, to complete the proof
of (7.34) it remains to show that

(7.40)
∑

∥n∥≤dT
0̸=|sj(n)|≤T

ress1(n) g(n, ν,X, s) ≪
∑

∥n∥≤dT

∥n∥ϵe−πf1,2(n)/6

(1 + |c1|)1/2+r
≪ 1.

Suppose that c2 > 0 (the case c2 < 0 can be treated similarly). In this case,

(7.41)


f1,2(n) = 0, if c1 ≥ c2
f1,2(n) = 2c2 − 2c1, if 0 ≤ c1 ≤ c2
f1,2(n) = 2c2 + 4c1, if − c2/2 ≤ c1 ≤ 0
f1,2(n) = 0, if c1 ≤ −c2/2

.
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Note that f1,2(n) ≥ 0. If |c1| ≤ |c2|/4, then it follows from Lemma 5 and (7.41) that
f1,2(n) ≫ |c2| ≫ ∥n∥, and for some absolute k0 > 0

(7.42)
∑

∥n∥≤dT
|c1|≤|c2|/4

∥n∥ϵe−πf1,2(n)/6

(1 + |c1|)1/2+r
≪

∑
∥n∥≤dT

|c1|≤|c2|/4

∥n∥ϵe−k0∥n∥

(1 + |c1|)1/2+r
≪ 1.

If |c2|/4 < |c1| ≤ |c2|, then by Lemma 5 we have ∥n∥ ≪ |c1|, |c2| ≪ ∥n∥. Consequently,

(7.43)
∑

∥n∥≤dT
|c2|/4<|c1|≤|c2|

∥n∥ϵe−πf1,2(n)/6

(1 + |c1|)1/2+r
≪

∑
∥n∥≤dT

1

∥n∥1/2+r−ϵ
≪ 1

for r > 3/2 + ϵ. If |c1| > |c2|, then using Lemma 5 we infer that ∥n∥ ≪ |c1| ≪ ∥n∥. As a
result,

(7.44)
∑

∥n∥≤dT
|c1|>|c2|

∥n∥ϵe−πf1,2(n)/6

(1 + |c1|)1/2+r
≪

∑
∥n∥≤dT

1

∥n∥1/2+r−ϵ
≪ 1

for r > 3/2+ ϵ. Combining (7.42)-(7.44), we show that (7.40) holds, which completes the
proof of the lemma. □

Finally, let us compute the residue of the function (7.3) at the point s = 0. To emphasize
the dependence of the sign character ν (defined by (2.2)) on a1, a2, a3 we denote it by
νa1,a2,a3 .

Lemma 11. The following asymptotic formula holds:

(7.45)
1

8

∑
ν

1

27δ
ress=0 g(n, ν,X, s) = K1 logX +O(1),

where

(7.46) K1 =
1

16πδ
(ξa(0, ν1,1,0λ0) + ξa(0, ν1,0,1λ0) + ξa(0, ν0,1,1λ0)) .

Proof. The function g(n, ν,X, s) has a pole at s = 0 only if n = (0, 0). In this case, it is
reduced to

(7.47) g(0, ν,X, s) =
Γ(1 + r)Xs

Γ(1 + r + s)
ζa(s, νλ0)Γ

3
(
s
3

)
.

Note that (see (2.14)) ζa(s, νa1,a2,a3λ0) ≡ 0 if σν = 1/2 or σν = 3/2. Hence it is needed to
consider only four cases of νa1,a2,a3 , namely ν1,1,0, ν1,0,1, ν0,1,1 and ν0,0,0.

In the last case, the function g(0, ν0,0,0, X, s) is regular at s = 0 (see Proposition 4).
Consider the case ν = ν1,1,0. By Theorem 4

g(0, ν1,1,0, X, s) =
Γ3
(
s/3
)

Γ
(
s/2
) f(s),

where

f(s) =
Γ(1 + r)Xsπ3s/2

Γ(1 + r + s)Γ2( s+1
2
)
ξa(s, ν1,1,0λ0)

Therefore,

ress=0g(0, ν1,1,0, X, s) = ress=0

Γ3
(
s/3
)

Γ
(
s/2
) f(s) = 27

2
f ′(0)− 27

4
γf(0),
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Calculating f ′(0), we have

(7.48) ress=0g(0, ν1,1,0, X, s) =
27

2π
ξa(0, ν1,1,0λ0) logX +O(1).

The cases ν = ν1,0,1 and ν = ν0,1,1 lead to formulas analogous to (7.48) with the only
change of ν on the right-hand side. Combining them, we prove (7.45). □

Substituting (7.45) into (7.5) and using (7.34), we conclude that there exists some huge
R such that the asymptotic formula

(7.49)
∑

1≤m≤X

rF (m)(1− m
X
)r =

Γ3(4
3
)X

(k + 1)N(a)D
1
2

+K1 logX +O(1)

holds for r > R, thus proving theorem 3. □

Turning finally to the proof of the statements made after Theorem 3, if we assume that
a is the ring of integers O of F and that the wide class number of F is one then by [1,
p.94] we have that #O∗/O+ = 8 or 4 according to whether the narrow class number of F
is one or two. In the first case it can be checked that the only sign character ν for which
ν(ϵ) = 1 for all ϵ ∈ O∗ is the trivial one, so K1 = 0. In the second case there is a unique
ν with σν = 1 for which ν(ϵ) = 1 for all ϵ. For this ν we have that

(7.50) ζO(s, ν) = 4LF(s, χ),

where LF(s, χ) is the usual Hecke L-function for the narrow class character of F induced
by ν. The Dedekind zeta function for K factors as

(7.51) ζK(s) = LF(s, χ)ζF(s).

Since K/F is ramified at two real places we have that LF(s, χ) has a zero of order 1 at
s = 0. Also by (7.50)

ξO(0, ν) = 8πL′
F(0, χ).

Since δ = 2RF it follows from (7.46) and (7.51) that

(7.52) K1 =
L′
F(0, χ)

4RF
=

1

4RF
lim
s→0

ζK(s)

sζF(s)
.

To evaluate the limit we apply the class number formula formulated at s = 0 (see e.g.
[18, (2) p.71]). Since F is a totally real cubic field and K has two real and two pairs of
complex embeddings, we have

(7.53) lim
s→0

ζF(s)

s2
= −hFRF

wF
, lim

s→0

ζK(s)

s3
= −hKRK

wK
.

Note that the number of roots of unity wF is two and the class number hF is one. Therefore,
substituting (7.53) to (7.52), we prove (1.8).

8. Appendix

Lemma 12. The following identity holds:

(8.1) detQa,x = detA2,

where matrices Qa,x and A are defined by (3.3) and (3.5), respectively.

Proof. Let

(8.2) Aa,x =

 α
(1)
1 w1(x) α

(1)
2 w1(x) α

(1)
3 w1(x)

α
(2)
1 w2(x) α

(2)
2 w2(x) α

(2)
3 w2(x)

α
(3)
1 w3(x) α

(3)
2 w3(x) α

(3)
3 w3(x)

 ,
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where wj(x) are defined by (3.1). Using the definition of matrix Qa,x (see (3.3)) together
with (2.1) we deduce that

(8.3) Qa,x = AT
a,xAa,x.

Therefore,

(8.4) detQa,x = (w1(x)w2(x)w3(x))
2

∣∣∣∣∣∣∣
α
(1)
1 α

(1)
2 α

(1)
3

α
(2)
1 α

(2)
2 α

(2)
3

α
(3)
1 α

(3)
2 α

(3)
3

∣∣∣∣∣∣∣
2

.

Since ηj are units we have η
(1)
j η

(2)
j η

(3)
j = 1, and thus (see (3.1)) w1(x)w2(x)w3(x) = 1.

Therefore, for A defined by (3.5) we have

detQa,x = detA2.

□

Let

(8.5) Pa,x(a, b, c) =
3∏

j=1

w
aj
j (x)

3∏
j=1

(aα
(j)
1 + bα

(j)
2 + cα

(j)
3 )aj .

Lemma 13. The following identity holds:

(8.6) trQ−1
a,xP

†
a,x = 0,

where P †
a,x is the Hessian matrix Pa,x in the variables a, b, c.

Proof. First, note that the multiple
∏3

j=1w
aj
j (x) does not depend on a, b, c, and thus

(8.7) P †
a,x =

3∏
j=1

w
aj
j (x)P ††

a1,a2,a3
, tr(Q−1

a,xP
†
a,x) =

3∏
j=1

w
aj
j (x)tr(Q−1

a,xP
††
a1,a2,a3

),

where P ††
a1,a2,a3

is the Hessian matrix for the polynomial

(8.8) Pa1,a2,a3(a, b, c) =
3∏

j=1

(aα
(j)
1 + aα

(j)
2 + aα

(j)
3 )aj .

Note that the Hessian matrix is zero if more than one aj is zero. Also for a1 = a2 = a3 = 1
the following decomposition takes place:

(8.9) P ††
1,1,1 = (aα

(3)
1 + aα

(3)
2 + aα

(3)
3 )P ††

1,1,0 + (aα
(2)
1 + aα

(2)
2 + aα

(2)
3 )P ††

1,0,1+

+ (aα
(1)
1 + aα

(1)
2 + aα

(1)
3 )P ††

0,1,1.

Therefore, if we prove tr(Q−1
a,xP

††
a1,a2,a3

) = 0 in the case of exactly one of aj = 0, we will
prove the same for the case of all aj = 1.

It is sufficient to consider only the case a1 = a2 = 1, a3 = 0 since the remaining cases
can be treated in a similar way. Then
(8.10)

P ††
1,1,0 =

 p1,1 p1,2 p1,3
p2,1 p2,2 p2,3
p3,1 p3,2 p3,3

 =

 2α
(1)
1 α

(2)
1 α

(1)
1 α

(2)
2 + α

(2)
1 α

(1)
2 α

(1)
1 α

(2)
3 + α

(2)
1 α

(1)
3

α
(1)
1 α

(2)
2 + α

(2)
1 α

(1)
2 2α

(1)
2 α

(2)
2 α

(1)
2 α

(2)
3 + α

(2)
2 α

(1)
3

α
(1)
1 α

(2)
3 + α

(2)
1 α

(1)
3 α

(1)
2 α

(2)
3 + α

(2)
2 α

(1)
3 2α

(1)
3 α

(2)
3

 .

In view of (8.3), in order to show that tr(Q−1
a,xP

††
1,1,0) = 0 it is required to prove that

(8.11) tr(A−1
a,x(A

−1
a,x)

TP ††
1,1,0) = 0.
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To calculate the inverse of Aa,x (defined by (8.2)) we will use the cofactor matrix given
by

(8.12) A−1
a,x =

1

detAa,x

CT
a,x.

Therefore, (8.11) is equivalent to

(8.13) tr(CT
a,xCa,xP

††
1,1,0) = 0.

We have

(8.14) Ca,x =

 w2(x)w3(x)b1,1 w2(x)w3(x)b1,2 w2(x)w3(x)b1,3
w1(x)w3(x)b2,1 w1(x)w3(x)b2,2 w1(x)w3(x)b2,3
w1(x)w2(x)b3,1 w1(x)w2(x)b3,2 w1(x)w2(x)b3,3

 = DxBa,

where

(8.15) Dx =

 w2(x)w3(x) 0 0
0 w1(x)w3(x) 0
0 0 w1(x)w2(x)

 , Ba =

 b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

 .

Furthermore,

(8.16) Ba =

 α
(2)
2 α

(3)
3 − α

(3)
2 α

(2)
3 α

(3)
1 α

(2)
3 − α

(2)
1 α

(3)
3 α

(2)
1 α

(3)
2 − α

(3)
1 α

(2)
2

α
(3)
2 α

(1)
3 − α

(1)
2 α

(3)
3 α

(1)
1 α

(3)
3 − α

(3)
1 α

(1)
3 α

(3)
1 α

(1)
2 − α

(1)
1 α

(3)
2

α
(1)
2 α

(2)
3 − α

(2)
2 α

(1)
3 α

(1)
3 α

(2)
1 − α

(1)
1 α

(2)
3 α

(1)
1 α

(2)
2 − α

(2)
1 α

(1)
2

 .

Hence (8.13) is equivalent to

(8.17) tr(BT
a D

2
xBaP

††
1,1,0) = 0.

To simplify the notation, we denote the diagonal entries of D2
x by d1, d2, d3, namely

d1 := w2
2(x)w

2
3(x), d2 := w2

1(x)w
2
3(x), d3 := w2

1(x)w
2
2(x).

Then

(8.18) BT
a D

2
x =

 d1b1,1 d2b2,1 d3b3,1
d1b1,2 d2b2,2 d3b3,2
d1b1,3 d2b2,3 d3b3,3

 ,

(8.19)

BaP
††
1,1,0 =

 b1,1p1,1 + b1,2p2,1 + b1,3p3,1 b1,1p1,2 + b1,2p2,2 + b1,3p3,2 b1,1p1,3 + b1,2p2,3 + b1,3p3,3
b2,1p1,1 + b2,2p2,1 + b2,3p3,1 b2,1p1,2 + b2,2p2,2 + b2,3p3,2 b2,1p1,3 + b2,2p2,3 + b2,3p3,3
b3,1p1,1 + b3,2p2,1 + b3,3p3,1 b3,1p1,2 + b3,2p2,2 + b3,3p3,2 b3,1p1,3 + b3,2p2,3 + b3,3p3,3

 .

Using (8.18), (8.19) and the fact that the matrix P ††
1,1,0 is symmetric we obtain

(8.20) tr(BT
a D

2
xBaP

††
1,1,0) =

3∑
i=1

diSi,

(8.21) Si = b2i,1p1,1 + b2i,2p2,2 + b2i,3p3,3 + 2bi,1bi,2p1,2 + 2bi,1bi,3p1,3 + 2bi,2bi,3p2,3
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Now to prove that trace (8.20) is zero it is needed to show that Si = 0. Consider the case
i = 1. Using (8.10) and (8.16) we obtain

(8.22)
S1

2
= (α

(2)
2 α

(3)
3 − α

(3)
2 α

(2)
3 )2α

(1)
1 α

(2)
1

+ (α
(3)
1 α

(2)
3 − α

(2)
1 α

(3)
3 )2α

(1)
2 α

(2)
2 + (α

(2)
1 α

(3)
2 − α

(3)
1 α

(2)
2 )2α

(1)
3 α

(2)
3

+ (α
(2)
2 α

(3)
3 − α

(3)
2 α

(2)
3 )(α

(3)
1 α

(2)
3 − α

(2)
1 α

(3)
3 )(α

(1)
1 α

(2)
2 + α

(2)
1 α

(1)
2 )

+ (α
(2)
2 α

(3)
3 − α

(3)
2 α

(2)
3 )(α

(2)
1 α

(3)
2 − α

(3)
1 α

(2)
2 )(α

(1)
1 α

(2)
3 + α

(2)
1 α

(1)
3 )

+ (α
(3)
1 α

(2)
3 − α

(2)
1 α

(3)
3 )(α

(2)
1 α

(3)
2 − α

(3)
1 α

(2)
2 )(α

(1)
2 α

(2)
3 + α

(2)
2 α

(1)
3 ).

To simplify (8.22), we subsequently group together the terms with α
(1)
1 , α

(1)
2 , α

(1)
3 , getting

(8.23)
S1

2
= (α

(2)
2 α

(3)
3 − α

(3)
2 α

(2)
3 )2α

(1)
1 S1,1 + (α

(3)
1 α

(2)
3 − α

(2)
1 α

(3)
3 )α

(1)
2 S1,2

+ (α
(2)
1 α

(3)
2 − α

(3)
1 α

(2)
2 )2α

(1)
3 S1,3,

where
(8.24)

S1,1 = (α
(2)
2 α

(3)
3 − α

(3)
2 α

(2)
3 )α

(2)
1 + (α

(3)
1 α

(2)
3 − α

(2)
1 α

(3)
3 )α

(2)
2 + (α

(2)
1 α

(3)
2 − α

(3)
1 α

(2)
2 )α

(2)
3 = 0,

(8.25)

S1,2 = (α
(3)
1 α

(2)
3 − α

(2)
1 α

(3)
3 )α

(2)
2 + (α

(2)
2 α

(3)
3 − α

(3)
2 α

(2)
3 )α

(2)
1 + (α

(2)
1 α

(3)
2 − α

(3)
1 α

(2)
2 )α

(2)
3 = 0,

(8.26)

S1,3 = (α
(2)
1 α

(3)
2 − α

(3)
1 α

(2)
2 )α

(2)
3 + (α

(2)
2 α

(3)
3 − α

(3)
2 α

(2)
3 )α

(2)
1 + (α

(3)
1 α

(2)
3 − α

(2)
1 α

(3)
3 )α

(2)
2 = 0.

Therefore, S1 = 0. In the same way we can verify that S2 = 0. In this case, we group

together the terms with α
(2)
1 , α

(2)
2 , α

(2)
3 . The case of S3 differs slightly from the previous

two since there is no α
(3)
1 , α

(3)
2 , α

(3)
3 in S3

S3

2
= (α

(1)
2 α

(2)
3 − α

(2)
2 α

(1)
3 )2α

(1)
1 α

(2)
1

+ (α
(2)
1 α

(1)
3 − α

(1)
1 α

(2)
3 )2α

(1)
2 α

(2)
2 + (α

(1)
1 α

(2)
2 − α

(2)
1 α

(1)
2 )2α

(1)
3 α

(2)
3

+ (α
(1)
2 α

(2)
3 − α

(2)
2 α

(1)
3 )(α

(1)
3 α

(2)
1 − α

(1)
1 α

(2)
3 )(α

(1)
1 α

(2)
2 + α

(2)
1 α

(1)
2 )

+ (α
(1)
2 α

(2)
3 − α

(2)
2 α

(1)
3 )(α

(1)
1 α

(2)
2 − α

(2)
1 α

(1)
2 )(α

(1)
1 α

(2)
3 + α

(2)
1 α

(1)
3 )

+ (α
(2)
1 α

(1)
3 − α

(1)
1 α

(2)
3 )(α

(1)
1 α

(2)
2 − α

(2)
1 α

(1)
2 )(α

(1)
2 α

(2)
3 + α

(2)
2 α

(1)
3 ).

So we group together the terms with α
(1)
1 , α

(1)
2 , α

(1)
3 , getting

(8.27)
S3

2
= (α

(1)
2 α

(2)
3 − α

(2)
2 α

(1)
3 )α

(1)
1 S3,1 + (α

(1)
3 α

(2)
1 − α

(1)
1 α

(2)
3 )α

(1)
2 S3,2

+ (α
(1)
1 α

(2)
2 − α

(2)
1 α

(1)
2 )α

(1)
3 S3,3,

where

S3,1 = (α
(1)
2 α

(2)
3 − α

(2)
2 α

(1)
3 )α

(2)
1 + (α

(2)
1 α

(1)
3 − α

(1)
1 α

(2)
3 )α

(2)
2 + (α

(1)
1 α

(2)
2 − α

(2)
1 α

(1)
2 )α

(2)
3 = 0,

S3,2 = (α
(2)
1 α

(1)
3 − α

(1)
1 α

(2)
3 )α

(2)
2 + (α

(1)
2 α

(2)
3 − α

(2)
2 α

(1)
3 )α

(2)
1 + (α

(1)
1 α

(2)
2 − α

(2)
1 α

(1)
2 )α

(2)
3 = 0,

S3,3 = (α
(1)
1 α

(2)
2 − α

(2)
1 α

(1)
2 )α

(2)
3 + (α

(1)
2 α

(2)
3 − α

(2)
2 α

(1)
3 )α

(2)
1 + (α

(1)
3 α

(2)
1 − α

(1)
1 α

(2)
3 )α

(2)
2 = 0.
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Therefore, S3 = 0, and the trace (8.20) is also equal to zero. This concludes the proof. □

Lemma 14. The following identity holds:

(8.28) Q−1
a,x = Q 1

ad
,−x.

where matrices Qa,x is defined by (3.3).

Proof. Let β1, β2, β3 be an integral basis for 1
ad
. Then (see Lemma 12 )

(8.29) Q 1
ad

,−x = BT
1
ad

,−x
B 1

ad
,−x,

where

(8.30) B 1
ad

,x =

 β
(1)
1 w1(x) β

(1)
2 w1(x) β

(1)
3 w1(x)

β
(2)
1 w2(x) β

(2)
2 w2(x) β

(2)
3 w2(x)

β
(3)
1 w3(x) β

(3)
2 w3(x) β

(3)
3 w3(x)

 .

In accordance with (3.5) we define

(8.31) B =

(
β
(1)
1 β

(1)
2 β

(1)
3

β
(2)
1 β

(2)
2 β

(2)
3

β
(3)
1 β

(3)
2 β

(3)
3

)
.

Since the columns of A−1 (for A from (3.5)) form an integral basis for 1
ad

(see [11, §36]),
we infer that

(8.32) BTA = I, or equivalently ABT = I,

where I is the 3×3 identity matrix. Let [A]i and [B]i be vectors consisting of the elements
of the i-th row of matrices A and B, respectively. Let (A)i and (B)i be the column vectors
of A and B. Using this notation, we can rewrite the second equality in (8.32) as

(8.33) ABT =

(
[A]1·[B]1 [A]1·[B]2 [A]1·[B]3
[A]2·[B]1 [A]2·[B]2 [A]2·[B]3
[A]3·[B]1 [A]3·[B]2 [A]3·[B]3

)
=
(

1 0 0
0 1 0
0 0 1

)
.

Using (8.2), (8.30), (8.33) and (3.1), we show that

(8.34) B 1
ad

,−xA
T
a,x =

(
[A]1·[B]1 [A]2·[B]1w1(−x)w2(x) [A]3·[B]1w1(−x)w3(x)

[A]1·[B]2w1(x)w2(−x) [A]2·[B]2 [A]3·[B]2w2(−x)w3(x)
[A]1·[B]3w1(x)w3(−x) [A]2·[B]3w2(x)w3(−x) [A]3·[B]3

)
= I.

This immediately implies that BT
1
ad

,−x
Aa,x = I. Finally, applying (8.3), (8.29), (8.34) we

conclude that

Q 1
ad

,−x ·Qa,x = BT
1
ad

,−x

(
B 1

ad
,−x · AT

a,x

)
Aa,x = BT

1
ad

,−x
· Aa,x = I,

thus proving (8.28). □

Lemma 15. The following identity holds:

(8.35) P ∗
a,x = P 1

ad
,−x,

where Pa,x and P ∗
a,x are defined by (3.6) and (3.9), respectively.

Proof. Using (8.28), (8.29) and (8.30), we have

(8.36) Q−1
a,x = BT

1
ad

,−x
B 1

ad
,−x =

 q1,1 q1,2 q1,3
q2,1 q2,2 q2,3
q3,1 q3,2 q3,3

 ,

where for 1 ≤ i, j ≤ 3

(8.37) qi,j =
3∑

k=1

β
(k)
i β

(k)
j w2

k(−x).
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Applying (3.6), (3.9) and (8.36), we show that

(8.38) P ∗
a,x(a, b, c) =

3∏
j=1

w
aj
j (x)

3∏
j=1

(
3∑

m=1

(aqm,1 + bqm,2 + cqm,3)α
(j)
m

)aj

=
3∏

j=1

w
aj
j (x)

3∏
j=1

(
a

3∑
m=1

qm,1α
(j)
m + b

3∑
m=1

qm,2α
(j)
m + c

3∑
m=1

qm,3α
(j)
m

)aj

.

It follows from (8.37) and (8.33) that for 1 ≤ l ≤ 3

(8.39)
3∑

m=1

qm,lα
(j)
m =

3∑
k=1

w2
k(−x)β

(k)
l

3∑
m=1

β(k)
m α(j)

m

=
3∑

k=1

w2
k(−x)β

(k)
l [Bk][Aj] = w2

j (−x)β
(j)
l .

Substituting (8.39) to (8.38), applying the relation wj(x)wj(−x) = 1, we have

P ∗
a,x(a, b, c) =

3∏
j=1

w
aj
j (−x)

3∏
j=1

(
aβ

(j)
1 + bβ

(j)
2 + cβ

(j)
3

)aj
= P 1

ad
,−x(a, b, c).

This completes the proof of (8.35). □

Lemma 16. The set of numbers

(8.40) {n · κ1, n · κ2, n · κ3; ∥n∥ ≤ N}
becomes dense in R as N → ∞.

Proof. According to (2.15), we have to show that

(8.41) {n1e
(1)
1 + n2e

(2)
1 , n1e

(1)
2 + n2e

(2)
2 n1e

(1)
3 + n2e

(2)
3 : n1, n2 ∈ Z}

is dense in R. It is known that for α ̸∈ Q the set {n1 + αn2 : n1, n2 ∈ Z} is dense in R.
Thus, if we show that at least one of the fractions

(8.42)
e
(1)
1

e
(2)
1

,
e
(1)
2

e
(2)
2

,
e
(1)
3

e
(2)
3

is not a rational number, we prove (8.41). Assume the opposite: all numbers in (8.42) are

rationals. Then, since e
(j)
3 = −e(j)2 − e

(j)
1 there exist a1, a2, a3 ∈ Q such that

(8.43)
e
(1)
1

e
(2)
1

= a1,
e
(1)
2

e
(2)
2

= a2,
e
(1)
1 + e

(1)
2

e
(2)
1 + e

(2)
2

= a3.

Note that ai ̸= aj (otherwise the corresponding cofactor of the matrix (2.5) M−1 must be
zero, which is impossible since the matrix M has no zero entries). Thus, it follows from
(8.43) that there exist b1,1, b1,2, b2,1 ∈ Q such that

(8.44) e
(1)
1 = b1,1e

(2)
2 , e

(1)
2 = b1,2e

(2)
2 , e

(2)
1 = b2,1e

(2)
2 .

Furthermore, the following equalities hold

(8.45) 3δ(e
(2)
1 + 2e

(2)
2 ) = 3 log η1, −3δ(e

(1)
1 + 2e

(1)
2 ) = 3 log η2.

Consider the trivial equation

(8.46) 3δ(e
(2)
1 + 2e

(2)
2 )(e

(1)
1 + 2e

(1)
2 )− 3δ(e

(2)
1 + 2e

(2)
2 )(e

(1)
1 + 2e

(1)
2 ) = 0.
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Substituting (8.44) and (8.45) into (8.46), we obtain

(8.47) (b1,1 + 2b1,2) log η1 + (b2,1 + 2) log η2 = 0.

Note that it is impossible that b1,1 + 2b1,2 = b2,1 + 2 = 0, since otherwise∣∣∣∣∣ e(1)1 e
(1)
2

e
(2)
1 e

(2)
2

∣∣∣∣∣ = 0,

which contradicts the fact that the matrix M (2.5) does not have zero entries. Therefore,
(8.47) yields the nontrivial relation ηq11 η

q2
2 = 1 with q1, q2 ∈ Z, which is impossible since

η1, η2 are multiplicatively independent as a basis of a group of totally positive units. Thus,
at least one of the numbers (8.42) is irrational and the set (8.41) is dense in R. □
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[1] Armitage, J. V.; Fröhlich, A. Classnumbers and unit signatures. Mathematika 14 (1967), 94–98.
[2] Baker A., Transcendental number theory, Cambridge University Press, 1975
[3] Baker, A., A sharpening of the bounds for liner forms in logarithms III. Acta Arith. 27 (1975)

247-252.
[4] Baker A., The theory of linear forms in logarithms. In: Transcendence theory: advances and ap-

plications (Proc. Conf., Univ. Cambridge, Cambridge, 1976), pp. 1-27. Academic Press, London,
1977.

[5] Bateman, H. Tables of Integral Transforms, vol. 1, McGraw-Hill, New York, 1954.
[6] Davenport, H. Multiplicative number theory. Second edition. Revised by Hugh L. Montgomery.

Graduate Texts in Mathematics, 74. Springer-Verlag, New York-Berlin, 1980. xiii+177 pp.
[7] Gouillon N. Explicit lower bounds for linear forms in two logarithms, J. Theor. Nombres Bordeaux

18 (2006), 125-146.
[8] Hecke, E. Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen.

Erste Mitteilung. Math. Z. 1 (1918), no. 4, 357–376. Werke #12
[9] Hecke, E. Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen.

Zweite Mitteilung. Math. Z. 6 (1920), no. 1-2, 11–51. Werke #14
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